1
|
Mitsis A, Khattab E, Myrianthefs M, Tzikas S, Kadoglou NPE, Fragakis N, Ziakas A, Kassimis G. Chemerin in the Spotlight: Revealing Its Multifaceted Role in Acute Myocardial Infarction. Biomedicines 2024; 12:2133. [PMID: 39335646 PMCID: PMC11428948 DOI: 10.3390/biomedicines12092133] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2024] [Revised: 09/15/2024] [Accepted: 09/18/2024] [Indexed: 09/30/2024] Open
Abstract
Chemerin, an adipokine known for its role in adipogenesis and inflammation, has emerged as a significant biomarker in cardiovascular diseases, including acute myocardial infarction (AMI). Recent studies have highlighted chemerin's involvement in the pathophysiological processes of coronary artery disease (CAD), where it modulates inflammatory responses, endothelial function, and vascular remodelling. Elevated levels of chemerin have been associated with adverse cardiovascular outcomes, including increased myocardial injury, left ventricular dysfunction, and heightened inflammatory states post-AMI. This manuscript aims to provide a comprehensive review of the current understanding of chemerin's role in AMI, detailing its molecular mechanisms, clinical implications, and potential as a biomarker for diagnosis and prognosis. Additionally, we explore the therapeutic prospects of targeting chemerin pathways to mitigate myocardial damage and improve clinical outcomes in AMI patients. By synthesizing the latest research findings, this review seeks to elucidate the multifaceted role of chemerin in AMI and its promise as a target for innovative therapeutic strategies.
Collapse
Affiliation(s)
- Andreas Mitsis
- Cardiology Department, Nicosia General Hospital, State Health Services Organization, Nicosia 2029, Cyprus; (E.K.); (M.M.)
| | - Elina Khattab
- Cardiology Department, Nicosia General Hospital, State Health Services Organization, Nicosia 2029, Cyprus; (E.K.); (M.M.)
| | - Michael Myrianthefs
- Cardiology Department, Nicosia General Hospital, State Health Services Organization, Nicosia 2029, Cyprus; (E.K.); (M.M.)
| | - Stergios Tzikas
- Third Department of Cardiology, Aristotle University of Thessaloniki, 54636 Thessaloniki, Greece;
| | | | - Nikolaos Fragakis
- Second Department of Cardiology, Aristotle University of Thessaloniki, 54642 Thessaloniki, Greece; (N.F.); (G.K.)
| | - Antonios Ziakas
- First Department of Cardiology, AHEPA University Hospital, Aristotle University of Thessaloniki, 54636 Thessaloniki, Greece;
| | - George Kassimis
- Second Department of Cardiology, Aristotle University of Thessaloniki, 54642 Thessaloniki, Greece; (N.F.); (G.K.)
| |
Collapse
|
2
|
Lin YF, Li MH, Huang RH, Zhang SZ, Xu XF, Zhou HM, Liu MH, Liao XX, Liao LZ, Guo Y, Zhuang XD. GP73 enhances the ox-LDL-induced inflammatory response in THP-1 derived macrophages via affecting NLRP3 inflammasome signaling. Int J Cardiol 2023; 387:131109. [PMID: 37271284 DOI: 10.1016/j.ijcard.2023.05.059] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/05/2022] [Revised: 04/29/2023] [Accepted: 05/31/2023] [Indexed: 06/06/2023]
Abstract
BACKGROUND Atherosclerosis is a chronic inflammatory disease with its molecular basis incompletely understood. Here, we determined whether the Golgi phosphoprotein 73 (GP73), a novel protein highly related to inflammation and disrupted lipid metabolism, was involved in the development of atherosclerosis. METHODS Public microarray databases of human vascular samples were analyzed for expression patterns. Apolipoprotein-E-gene-deficient (ApoE-/-) mice (8-week-old) were randomly assigned to either a chow diet group or a high-fat diet group. The levels of serum GP73, lipid profiles and key inflammatory cytokines were determined by ELISA. The aortic root plaque was isolated and used for by Oil Red O staining. PMA-differentiated THP-1 macrophages were transfected with GP73 small interfering RNA (siRNA) or infected with adenovirus expressing GP73, and then stimulated with oxidized low density lipoprotein (ox-LDL). The expressions of pro-inflammatory cytokines and signal pathway key targets were determined by ELISA kit and Western blot respectively. In addition, ichloro-dihydro-fluorescein diacetate (DCFH-DA) was used to measure the intracellular ROS levels. RESULTS The expressions of GP73 and NLRP3 were substantially upregulated in human atherosclerotic lesions. There were significant linear correlations between GP73 and inflammatory cytokines expressions. High-fat diet-induced atherosclerosis and increased levels of plasma inflammatory mediators (IL-1β, IL-18, and TNF-α) were observed in ApoE-/- mice. Besides, the expressions of GP73 in the aorta and serum were significantly upregulated and positively correlated with the NLRP3 expression. In the THP-1 derived macrophages, ox-LDL treatment upregulated the expressions of GP73 and NLRP3 proteins and activated the inflammatory responses in a concentration-dependent and time-dependent manner. Silencing of GP73 attenuated the inflammatory response and rescued the decreased migration induced by ox-LDL, inhibiting the NLRP3 inflammasome signaling and the ROS and p-NF-κB activation. CONCLUSIONS We demonstrated that GP73 promoted the ox-LDL-induced inflammation in macrophages by affecting the NF-κB/NLRP3 inflammasome signaling, and may play a role in atherosclerosis.
Collapse
Affiliation(s)
- Yi-Fen Lin
- Cardiology department, first affiliated hospital of Sun Yat-Sen University, 58 Zhongshan 2nd Road, Guangzhou 510080, China; NHC Key Laboratory of Assisted Circulation (Sun Yat-sen University), 58 Zhongshan 2nd Road, Guangzhou 510080, China.
| | - Miao-Hong Li
- Cardiology department, first affiliated hospital of Sun Yat-Sen University, 58 Zhongshan 2nd Road, Guangzhou 510080, China; NHC Key Laboratory of Assisted Circulation (Sun Yat-sen University), 58 Zhongshan 2nd Road, Guangzhou 510080, China.
| | - Ri-Hua Huang
- Cardiology department, first affiliated hospital of Sun Yat-Sen University, 58 Zhongshan 2nd Road, Guangzhou 510080, China; NHC Key Laboratory of Assisted Circulation (Sun Yat-sen University), 58 Zhongshan 2nd Road, Guangzhou 510080, China.
| | - Shao-Zhao Zhang
- Cardiology department, first affiliated hospital of Sun Yat-Sen University, 58 Zhongshan 2nd Road, Guangzhou 510080, China; NHC Key Laboratory of Assisted Circulation (Sun Yat-sen University), 58 Zhongshan 2nd Road, Guangzhou 510080, China.
| | - Xing-Feng Xu
- Cardiology department, first affiliated hospital of Sun Yat-Sen University, 58 Zhongshan 2nd Road, Guangzhou 510080, China; NHC Key Laboratory of Assisted Circulation (Sun Yat-sen University), 58 Zhongshan 2nd Road, Guangzhou 510080, China.
| | - Hui-Min Zhou
- Cardiology department, first affiliated hospital of Sun Yat-Sen University, 58 Zhongshan 2nd Road, Guangzhou 510080, China; NHC Key Laboratory of Assisted Circulation (Sun Yat-sen University), 58 Zhongshan 2nd Road, Guangzhou 510080, China.
| | - Meng-Hui Liu
- Cardiology department, first affiliated hospital of Sun Yat-Sen University, 58 Zhongshan 2nd Road, Guangzhou 510080, China; NHC Key Laboratory of Assisted Circulation (Sun Yat-sen University), 58 Zhongshan 2nd Road, Guangzhou 510080, China.
| | - Xin-Xue Liao
- Cardiology department, first affiliated hospital of Sun Yat-Sen University, 58 Zhongshan 2nd Road, Guangzhou 510080, China; NHC Key Laboratory of Assisted Circulation (Sun Yat-sen University), 58 Zhongshan 2nd Road, Guangzhou 510080, China.
| | - Li-Zhen Liao
- Guangdong Engineering Research Center for Light and Health, Guangdong Pharmaceutical University, Guangzhou Higher Education Mega Center, Guangzhou, China; Guangdong Provincial Key Laboratory of Pharmaceutical Bioactive Substances, Guangdong Pharmaceutical University, Guangzhou 510006, China.
| | - Yue Guo
- Cardiology department, first affiliated hospital of Sun Yat-Sen University, 58 Zhongshan 2nd Road, Guangzhou 510080, China; NHC Key Laboratory of Assisted Circulation (Sun Yat-sen University), 58 Zhongshan 2nd Road, Guangzhou 510080, China.
| | - Xiao-Dong Zhuang
- Cardiology department, first affiliated hospital of Sun Yat-Sen University, 58 Zhongshan 2nd Road, Guangzhou 510080, China; NHC Key Laboratory of Assisted Circulation (Sun Yat-sen University), 58 Zhongshan 2nd Road, Guangzhou 510080, China.
| |
Collapse
|
3
|
Qin L, Wu J, Sun X, Huang X, Huang W, Weng C, Cai J. The regulatory role of metabolic organ-secreted factors in the nonalcoholic fatty liver disease and cardiovascular disease. Front Cardiovasc Med 2023; 10:1119005. [PMID: 37180779 PMCID: PMC10169694 DOI: 10.3389/fcvm.2023.1119005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2022] [Accepted: 04/13/2023] [Indexed: 05/16/2023] Open
Abstract
Nonalcoholic fatty liver disease (NAFLD) is a chronic metabolic disease characterized by an excessive accumulation of fat in the liver, which is becoming a major global health problem, affecting about a quarter of the population. In the past decade, mounting studies have found that 25%-40% of NAFLD patients have cardiovascular disease (CVD), and CVD is one of the leading causes of death in these subjects. However, it has not attracted enough awareness and emphasis from clinicians, and the underlying mechanisms of CVD in NAFLD patients remain unclear. Available research reveals that inflammation, insulin resistance, oxidative stress, and glucose and lipid metabolism disorders play indispensable roles in the pathogenesis of CVD in NAFLD. Notably, emerging evidence indicates that metabolic organ-secreted factors, including hepatokines, adipokines, cytokines, extracellular vesicles, and gut-derived factors, are also involved in the occurrence and development of metabolic disease and CVD. Nevertheless, few studies have focused on the role of metabolic organ-secreted factors in NAFLD and CVD. Therefore, in this review, we summarize the relationship between metabolic organ-secreted factors and NAFLD as well as CVD, which is beneficial for clinicians to comprehensive and detailed understanding of the association between both diseases and strengthen management to improve adverse cardiovascular prognosis and survival.
Collapse
Affiliation(s)
| | | | | | | | | | - Chunyan Weng
- Department of Cardiology, The Third Xiangya Hospital of Central South University, Changsha, China
| | - Jingjing Cai
- Department of Cardiology, The Third Xiangya Hospital of Central South University, Changsha, China
| |
Collapse
|
4
|
Pankiewicz K, Issat T. Understanding the Role of Chemerin in the Pathophysiology of Pre-Eclampsia. Antioxidants (Basel) 2023; 12:antiox12040830. [PMID: 37107205 PMCID: PMC10135338 DOI: 10.3390/antiox12040830] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2023] [Revised: 03/25/2023] [Accepted: 03/27/2023] [Indexed: 03/31/2023] Open
Abstract
Chemerin is a multifaceted adipokine that is involved in multiple biological processes, including inflammation, angiogenesis, adipogenesis, and energy metabolism, as well as oxidative stress. There is a vast body of evidence for a crucial role of chemerin in the development of different cardiovascular diseases. Blood chemerin levels, as well as its placental expression, are elevated in patients with pre-eclampsia (PE) and correlate positively with the severity of the disease. This narrative review summarizes the current knowledge about the potential role of chemerin during PE development, with a particular focus on its involvement in oxidative stress and endothelial dysfunction.
Collapse
|
5
|
Lee YN, Wu YJ, Lee HI, Wang HH, Hung CL, Chang CY, Chou YH, Tien TY, Lee CW, Lin CF, Su CH, Yeh HI. Hsa-miR-409-3p regulates endothelial progenitor senescence via PP2A-P38 and is a potential ageing marker in humans. J Cell Mol Med 2023; 27:687-700. [PMID: 36756741 PMCID: PMC9983318 DOI: 10.1111/jcmm.17691] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2022] [Revised: 01/14/2023] [Accepted: 01/29/2023] [Indexed: 02/10/2023] Open
Abstract
We explored the roles of hsa-microRNA (miR)-409-3p in senescence and signalling mechanism of human endothelial progenitor cells (EPCs). Hsa-miR-409-3p was found upregulated in senescent EPCs. Overexpression of miRNA mimics in young EPCs inhibited angiogenesis. In senescent EPCs, compared to young EPCs, protein phosphatase 2A (PP2A) was downregulated, with activation of p38/JNK by phosphorylation. Young EPCs treated with siPP2A caused inhibited angiogenesis with activation of p38/JNK, similar to findings in senescent EPCs. Time series analysis showed, in young EPCs treated with hsa-miR-409-3p mimics, PP2A was steadily downregulated for 72 h, while p38/JNK was activated with a peak at 48 hours. The inhibited angiogenesis of young EPCs after miRNA-409-3p mimics treatment was reversed by the p38 inhibitor. The effect of hsa-miR-409-3p on PP2A signalling was attenuated by exogenous VEGF. Analysis of human peripheral blood mononuclear cells (PBMCs) obtained from healthy people revealed hsa-miR-409-3p expression was higher in those older than 65 years, compared to those younger than 30 years, regardless of gender. In summary, hsa-miR-409-3p was upregulated in senescent EPCs and acted as a negative modulator of angiogenesis via targeting protein phosphatase 2 catalytic subunit alpha (PPP2CA) gene and regulating PP2A/p38 signalling. Data from human PBMCs suggested hsa-miR-409-3p a potential biomarker for human ageing.
Collapse
Affiliation(s)
- Yi-Nan Lee
- Department of Medical Research, MacKay Memorial Hospital, Taipei City, Taiwan
| | - Yih-Jer Wu
- Division of Cardiology/Cardiovascular Center, MacKay Memorial Hospital, Taipei City, Taiwan.,Mackay Medical College, New Taipei City, Taiwan
| | - Hsin-I Lee
- Department of Medical Research, MacKay Memorial Hospital, Taipei City, Taiwan
| | | | - Chung-Lieh Hung
- Division of Cardiology/Cardiovascular Center, MacKay Memorial Hospital, Taipei City, Taiwan.,Mackay Medical College, New Taipei City, Taiwan
| | - Chiung-Yin Chang
- Department of Medical Research, MacKay Memorial Hospital, Taipei City, Taiwan
| | - Yen-Hung Chou
- Department of Medical Research, MacKay Memorial Hospital, Taipei City, Taiwan
| | - Ting-Yi Tien
- Department of Medical Research, MacKay Memorial Hospital, Taipei City, Taiwan.,MacKay Junior College of Medicine, Nursing and Management, Taipei, Taiwan
| | - Chun-Wei Lee
- Division of Cardiology/Cardiovascular Center, MacKay Memorial Hospital, Taipei City, Taiwan.,MacKay Junior College of Medicine, Nursing and Management, Taipei, Taiwan
| | - Chao-Feng Lin
- Division of Cardiology/Cardiovascular Center, MacKay Memorial Hospital, Taipei City, Taiwan.,Mackay Medical College, New Taipei City, Taiwan
| | - Cheng-Huang Su
- Division of Cardiology/Cardiovascular Center, MacKay Memorial Hospital, Taipei City, Taiwan.,Mackay Medical College, New Taipei City, Taiwan
| | - Hung-I Yeh
- Division of Cardiology/Cardiovascular Center, MacKay Memorial Hospital, Taipei City, Taiwan.,Mackay Medical College, New Taipei City, Taiwan
| |
Collapse
|
6
|
Macvanin MT, Rizzo M, Radovanovic J, Sonmez A, Paneni F, Isenovic ER. Role of Chemerin in Cardiovascular Diseases. Biomedicines 2022; 10:biomedicines10112970. [PMID: 36428537 PMCID: PMC9687862 DOI: 10.3390/biomedicines10112970] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2022] [Revised: 11/12/2022] [Accepted: 11/14/2022] [Indexed: 11/19/2022] Open
Abstract
(1) Background: Obesity is closely connected to the pathophysiology of cardiovascular diseases (CVDs). Excess fat accumulation is associated with metabolic malfunctions that disrupt cardiovascular homeostasis by activating inflammatory processes that recruit immune cells to the site of injury and reduce nitric oxide levels, resulting in increased blood pressure, endothelial cell migration, proliferation, and apoptosis. Adipose tissue produces adipokines, such as chemerin, that may alter immune responses, lipid metabolism, vascular homeostasis, and angiogenesis. (2) Methods: We performed PubMed and MEDLINE searches for articles with English abstracts published between 1997 (when the first report on chemerin identification was published) and 2022. The search retrieved original peer-reviewed articles analyzed in the context of the role of chemerin in CVDs, explicitly focusing on the most recent findings published in the past five years. (3) Results: This review summarizes up-to-date findings related to mechanisms of chemerin action, its role in the development and progression of CVDs, and novel strategies for developing chemerin-targeting therapeutic agents for treating CVDs. (4) Conclusions: Extensive evidence points to chemerin's role in vascular inflammation, angiogenesis, and blood pressure modulation, which opens up exciting perspectives for developing chemerin-targeting therapeutic agents for the treatment of CVDs.
Collapse
Affiliation(s)
- Mirjana T. Macvanin
- Department of Radiobiology and Molecular Genetics, VINČA Institute of Nuclear Sciences—National Institute of the Republic of Serbia, University of Belgrade, 11000 Belgrade, Serbia
| | - Manfredi Rizzo
- Department of Internal Medicine and Medical Specialties (DIMIS), Università degli Studi di Palermo (UNIPA), 90128 Palermo, Italy
| | - Jelena Radovanovic
- Department of Radiobiology and Molecular Genetics, VINČA Institute of Nuclear Sciences—National Institute of the Republic of Serbia, University of Belgrade, 11000 Belgrade, Serbia
| | - Alper Sonmez
- Department of Endocrinology and Metabolism, Gulhane School of Medicine, University of Health Sciences, Ankara 34668, Turkey
| | - Francesco Paneni
- University Heart Center, University Hospital Zurich, 8091 Zurich, Switzerland
- Center for Translational and Experimental Cardiology (CTEC), Department of Cardiology, University Hospital Zurich, University of Zurich, Wagistrasse 12, 8952 Schlieren, Switzerland
- Correspondence:
| | - Esma R. Isenovic
- Department of Radiobiology and Molecular Genetics, VINČA Institute of Nuclear Sciences—National Institute of the Republic of Serbia, University of Belgrade, 11000 Belgrade, Serbia
| |
Collapse
|
7
|
Shi H, Wu H, Winkler MA, Belin de Chantemèle EJ, Lee R, Kim HW, Weintraub NL. Perivascular adipose tissue in autoimmune rheumatic diseases. Pharmacol Res 2022; 182:106354. [PMID: 35842184 PMCID: PMC10184774 DOI: 10.1016/j.phrs.2022.106354] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/28/2022] [Revised: 06/27/2022] [Accepted: 07/11/2022] [Indexed: 01/14/2023]
Abstract
Perivascular adipose tissue (PVAT) resides at the outermost boundary of the vascular wall, surrounding most conduit blood vessels, except for the cerebral vessels, in humans. A growing body of evidence suggests that inflammation localized within PVAT may contribute to the pathogenesis of cardiovascular disease (CVD). Patients with autoimmune rheumatic diseases (ARDs), e.g., systemic lupus erythematosus (SLE), rheumatoid arthritis (RA), psoriasis, etc., exhibit heightened systemic inflammation and are at increased risk for CVD. Data from clinical studies in patients with ARDs support a linkage between dysfunctional adipose tissue, and PVAT in particular, in disease pathogenesis. Here, we review the data linking PVAT to the pathogenesis of CVD in patients with ARDs, focusing on the role of novel PVAT imaging techniques in defining disease risk and responses to biological therapies.
Collapse
Affiliation(s)
- Hong Shi
- Division of Rheumatology, Medical College of Georgia at Augusta University, Augusta, GA, USA; Vascular Biology Center, Medical College of Georgia at Augusta University, Augusta, GA, USA
| | - Hanping Wu
- Department of Radiology and Imaging, Medical College of Georgia at Augusta University, Augusta, GA, USA
| | - Michael A Winkler
- Department of Radiology and Imaging, Medical College of Georgia at Augusta University, Augusta, GA, USA
| | - Eric J Belin de Chantemèle
- Division of Cardiology, Department of Medicine, Medical College of Georgia at Augusta University, Augusta, GA, USA; Vascular Biology Center, Medical College of Georgia at Augusta University, Augusta, GA, USA
| | - Richard Lee
- Department of Surgery, Medical College of Georgia at Augusta University, Augusta, GA, USA
| | - Ha Won Kim
- Division of Cardiology, Department of Medicine, Medical College of Georgia at Augusta University, Augusta, GA, USA; Vascular Biology Center, Medical College of Georgia at Augusta University, Augusta, GA, USA
| | - Neal L Weintraub
- Division of Cardiology, Department of Medicine, Medical College of Georgia at Augusta University, Augusta, GA, USA; Vascular Biology Center, Medical College of Georgia at Augusta University, Augusta, GA, USA.
| |
Collapse
|
8
|
Pohl R, Eichelberger L, Feder S, Haberl EM, Rein-Fischboeck L, McMullen N, Sinal CJ, Bruckmann A, Weiss TS, Beck M, Höring M, Krautbauer S, Liebisch G, Wiest R, Wanninger J, Buechler C. Hepatocyte expressed chemerin-156 does not protect from experimental non-alcoholic steatohepatitis. Mol Cell Biochem 2022; 477:2059-2071. [PMID: 35449483 PMCID: PMC9237010 DOI: 10.1007/s11010-022-04430-3] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2021] [Accepted: 03/30/2022] [Indexed: 02/06/2023]
Abstract
Non-alcoholic steatohepatitis (NASH) is a rapidly growing liver disease. The chemoattractant chemerin is abundant in hepatocytes, and hepatocyte expressed prochemerin protected from NASH. Prochemerin is inactive and different active isoforms have been described. Here, the effect of hepatocyte expressed muChem-156, a highly active murine chemerin isoform, was studied in the methionine–choline deficient dietary model of NASH. Mice overexpressing muChem-156 had higher hepatic chemerin protein. Serum chemerin levels and the capability of serum to activate the chemerin receptors was unchanged showing that the liver did not release active chemerin. Notably, activation of the chemerin receptors by hepatic vein blood did not increase in parallel to total chemerin protein in patients with liver cirrhosis. In experimental NASH, muChem-156 had no effect on liver lipids. Accordingly, overexpression of active chemerin in hepatocytes or treatment of hepatocytes with recombinant chemerin did not affect cellular triglyceride and cholesterol levels. Importantly, overexpression of muChem-156 in the murine liver did not change the hepatic expression of inflammatory and profibrotic genes. The downstream targets of chemerin such as p38 kinase were neither activated in the liver of muChem-156 producing mice nor in HepG2, Huh7 and Hepa1-6 cells overexpressing this isoform. Recombinant chemerin had no effect on global gene expression of primary human hepatocytes and hepatic stellate cells within 24 h of incubation. Phosphorylation of p38 kinase was, however, increased upon short-time incubation of HepG2 cells with chemerin. These findings show that muChem-156 overexpression in hepatocytes does not protect from liver steatosis and inflammation.
Collapse
Affiliation(s)
- Rebekka Pohl
- Department of Internal Medicine I, Regensburg University Hospital, 93053, Regensburg, Germany
| | - Laura Eichelberger
- Department of Internal Medicine I, Regensburg University Hospital, 93053, Regensburg, Germany
| | - Susanne Feder
- Department of Internal Medicine I, Regensburg University Hospital, 93053, Regensburg, Germany
| | - Elisabeth M Haberl
- Department of Internal Medicine I, Regensburg University Hospital, 93053, Regensburg, Germany
| | - Lisa Rein-Fischboeck
- Department of Internal Medicine I, Regensburg University Hospital, 93053, Regensburg, Germany
| | - Nichole McMullen
- Department of Pharmacology, Dalhousie University, Halifax, NS, B3H 4R2, Canada
| | - Christopher J Sinal
- Department of Pharmacology, Dalhousie University, Halifax, NS, B3H 4R2, Canada
| | - Astrid Bruckmann
- Biochemistry Center Regensburg (BZR), Laboratory for RNA Biology, University of Regensburg, Regensburg, Germany
| | - Thomas S Weiss
- Children's University Hospital (KUNO), Regensburg University Hospital, 93053, Regensburg, Germany
| | - Michael Beck
- Department of Internal Medicine I, Regensburg University Hospital, 93053, Regensburg, Germany
| | - Marcus Höring
- Institute of Clinical Chemistry and Laboratory Medicine, Regensburg University Hospital, 93053, Regensburg, Germany
| | - Sabrina Krautbauer
- Department of Internal Medicine I, Regensburg University Hospital, 93053, Regensburg, Germany.,Institute of Clinical Chemistry and Laboratory Medicine, Regensburg University Hospital, 93053, Regensburg, Germany
| | - Gerhard Liebisch
- Institute of Clinical Chemistry and Laboratory Medicine, Regensburg University Hospital, 93053, Regensburg, Germany
| | - Reiner Wiest
- Department of Visceral Surgery and Medicine, University Inselspital, 3010, Bern, Switzerland
| | - Josef Wanninger
- Department of Internal Medicine I, Regensburg University Hospital, 93053, Regensburg, Germany
| | - Christa Buechler
- Department of Internal Medicine I, Regensburg University Hospital, 93053, Regensburg, Germany.
| |
Collapse
|
9
|
Xie Y, Liu L. Role of Chemerin/ChemR23 axis as an emerging therapeutic perspective on obesity-related vascular dysfunction. J Transl Med 2022; 20:141. [PMID: 35317838 PMCID: PMC8939091 DOI: 10.1186/s12967-021-03220-7] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2021] [Accepted: 12/27/2021] [Indexed: 02/08/2023] Open
Abstract
Sufficient epidemiological investigations demonstrate that there is a close correlation between obesity and vascular dysfunction. Nevertheless, specific mechanisms underlying this link remain currently unclear. Given the crucial and decisive role of vascular dysfunction in multitudinous diseases, various hypotheses had been proposed and numerous experiments were being carried out. One recognized view is that increased adipokine secretion following the expanded mass of white adipose tissue due to obesity contributes to the regulation of vascular function. Chemerin, as a neo-adipokine, whose systemic level is elevated in obesity, is believed as a regulator of adipogenesis, inflammation, and vascular dysfunction via binding its cell surface receptor, chemR23. Hence, this review aims to focus on the up-to-date proof on chemerin/chemR23 axis-relevant signaling pathways, emphasize the multifarious impacts of chemerin/chemR23 axis on vascular function regulation, raise certain unsettled questions to inspire further investigations, and explore the therapeutic possibilities targeting chemerin/chemR23.
Collapse
Affiliation(s)
- Yingying Xie
- Department of Cardiovascular Medicine, The Second Xiangya Hospital, Central South University, Changsha, China.,Research Institute of Blood Lipid and Atherosclerosis, Central South University, Changsha, China.,Modern Cardiovascular Disease Clinical Technology Research Center of Hunan Province, Changsha, China.,Cardiovascular Disease Research Center of Hunan Province, Changsha, China
| | - Ling Liu
- Department of Cardiovascular Medicine, The Second Xiangya Hospital, Central South University, Changsha, China. .,Research Institute of Blood Lipid and Atherosclerosis, Central South University, Changsha, China. .,Modern Cardiovascular Disease Clinical Technology Research Center of Hunan Province, Changsha, China. .,Cardiovascular Disease Research Center of Hunan Province, Changsha, China.
| |
Collapse
|
10
|
Ren Q, Wang H, Zeng Y, Fang X, Wang M, Li D, Huang W, Xu Y. Circulating chemerin levels in metabolic-associated fatty liver disease: a systematic review and meta-analysis. Lipids Health Dis 2022; 21:27. [PMID: 35236351 PMCID: PMC8889738 DOI: 10.1186/s12944-022-01637-7] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2021] [Accepted: 02/17/2022] [Indexed: 12/21/2022] Open
Abstract
Background and objectives Chemerin is a brand-new adipokine that has been linked to both inflammation and metabolic dysfunction. Even though a rising number of studies have connected chemerin to metabolic-associated fatty liver disease (MAFLD), formerly referred to as non-alcoholic fatty liver disease (NAFLD), this association has been controversial. Methods A comprehensive literature search was undertaken up to February 1, 2022, in the PubMed, Embase, Web of Science, CNKI, WANFANG, and CBM library databases. Circulating chemerin levels were obtained and summarized using the standardized mean difference (SMD) and 95% confidence interval (CI). Subgroup and meta-regression analyses were conducted to examine the possibility of heterogeneity. Results A total of 17 studies involving 2580 participants (1584 MAFLD patients and 996 controls) evaluated circulating chemerin levels in patients with MAFLD. The present study showed that higher chemerin levels were found in patients with MAFLD (SMD: 1.32; 95% CI: 0.29, 2.35) and nonalcoholic fatty liver (NAFL) (SMD: 0.75; 95% CI: 0.01, 1.50) compared to controls. However, circulating chemerin levels did not differ significantly in the following comparisons: nonalcoholic steatohepatitis (NASH) patients and controls (SMD: 0.75; 95% CI: -0.52, 2.03); NASH patients and NAFL patients (SMD: 0.16; 95% CI: -0.39, 0.70); moderate to severe steatosis and mild steatosis (SMD: 0.55; 95% CI: -0.59, 1.69); present liver fibrosis and absent liver fibrosis (SMD: 0.66; 95% CI: -0.42, 1.74); present lobular inflammation and absent lobular inflammation (SMD: 0.45; 95% CI: -0.53, 1.42); and present portal inflammation and absent portal inflammation (SMD: 1.92; 95% CI: -0.85, 4.69). Conclusions Chemerin levels were considerably greater in patients with MAFLD than in controls, despite the fact that they were not significantly linked to different liver tissue lesions of MAFLD. In different subtypes of MAFLD, in comparison to healthy controls, the chemerin levels of NAFL patients were higher, whereas, there was no obvious difference in chemerin levels between NASH patients and controls. It is possible that chemerin will be used as a biomarker in the future to track the development and progression of MAFLD. Supplementary Information The online version contains supplementary material available at 10.1186/s12944-022-01637-7.
Collapse
Affiliation(s)
- Qian Ren
- Department of Endocrinology and Metabolism, The Affiliated Hospital of Southwest Medical University, Luzhou, Sichuan, China.,Sichuan Clinical Research Center for Nephropathy, Luzhou, Sichuan, China.,Luzhou Key Laboratory of Cardiovascular and Metabolic Diseases, the Affiliated Hospital of Southwest Medical University, Luzhou, Sichuan, China.,Metabolic Vascular Disease Key Laboratory of Sichuan Province, Luzhou, Sichuan, China
| | - Hongya Wang
- Department of Endocrinology and Metabolism, The Affiliated Hospital of Southwest Medical University, Luzhou, Sichuan, China.,Sichuan Clinical Research Center for Nephropathy, Luzhou, Sichuan, China.,Luzhou Key Laboratory of Cardiovascular and Metabolic Diseases, the Affiliated Hospital of Southwest Medical University, Luzhou, Sichuan, China.,Metabolic Vascular Disease Key Laboratory of Sichuan Province, Luzhou, Sichuan, China
| | - Yan Zeng
- Department of Endocrinology and Metabolism, The Affiliated Hospital of Southwest Medical University, Luzhou, Sichuan, China.,Sichuan Clinical Research Center for Nephropathy, Luzhou, Sichuan, China.,Luzhou Key Laboratory of Cardiovascular and Metabolic Diseases, the Affiliated Hospital of Southwest Medical University, Luzhou, Sichuan, China.,Metabolic Vascular Disease Key Laboratory of Sichuan Province, Luzhou, Sichuan, China
| | - Xia Fang
- Department of Endocrinology and Metabolism, The Affiliated Hospital of Southwest Medical University, Luzhou, Sichuan, China.,Sichuan Clinical Research Center for Nephropathy, Luzhou, Sichuan, China.,Luzhou Key Laboratory of Cardiovascular and Metabolic Diseases, the Affiliated Hospital of Southwest Medical University, Luzhou, Sichuan, China.,Metabolic Vascular Disease Key Laboratory of Sichuan Province, Luzhou, Sichuan, China.,Experimental Medicine Center, The Affiliated Hospital of Southwest Medical University, Luzhou, China
| | - Mei Wang
- Department of Endocrinology and Metabolism, The Affiliated Hospital of Southwest Medical University, Luzhou, Sichuan, China.,Sichuan Clinical Research Center for Nephropathy, Luzhou, Sichuan, China.,Luzhou Key Laboratory of Cardiovascular and Metabolic Diseases, the Affiliated Hospital of Southwest Medical University, Luzhou, Sichuan, China.,Metabolic Vascular Disease Key Laboratory of Sichuan Province, Luzhou, Sichuan, China
| | - Dongze Li
- Department of Endocrinology and Metabolism, The Affiliated Hospital of Southwest Medical University, Luzhou, Sichuan, China.,Sichuan Clinical Research Center for Nephropathy, Luzhou, Sichuan, China.,Luzhou Key Laboratory of Cardiovascular and Metabolic Diseases, the Affiliated Hospital of Southwest Medical University, Luzhou, Sichuan, China.,Metabolic Vascular Disease Key Laboratory of Sichuan Province, Luzhou, Sichuan, China
| | - Wei Huang
- Department of Endocrinology and Metabolism, The Affiliated Hospital of Southwest Medical University, Luzhou, Sichuan, China. .,Sichuan Clinical Research Center for Nephropathy, Luzhou, Sichuan, China. .,Luzhou Key Laboratory of Cardiovascular and Metabolic Diseases, the Affiliated Hospital of Southwest Medical University, Luzhou, Sichuan, China. .,Metabolic Vascular Disease Key Laboratory of Sichuan Province, Luzhou, Sichuan, China.
| | - Yong Xu
- Department of Endocrinology and Metabolism, The Affiliated Hospital of Southwest Medical University, Luzhou, Sichuan, China. .,Sichuan Clinical Research Center for Nephropathy, Luzhou, Sichuan, China. .,Luzhou Key Laboratory of Cardiovascular and Metabolic Diseases, the Affiliated Hospital of Southwest Medical University, Luzhou, Sichuan, China. .,Metabolic Vascular Disease Key Laboratory of Sichuan Province, Luzhou, Sichuan, China.
| |
Collapse
|
11
|
Fischer TF, Beck-Sickinger AG. Chemerin - exploring a versatile adipokine. Biol Chem 2022; 403:625-642. [PMID: 35040613 DOI: 10.1515/hsz-2021-0409] [Citation(s) in RCA: 21] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2021] [Accepted: 12/23/2021] [Indexed: 12/14/2022]
Abstract
Chemerin is a small chemotactic protein and a key player in initiating the early immune response. As an adipokine, chemerin is also involved in energy homeostasis and the regulation of reproductive functions. Secreted as inactive prochemerin, it relies on proteolytic activation by serine proteases to exert biological activity. Chemerin binds to three distinct G protein-coupled receptors (GPCR), namely chemokine-like receptor 1 (CMKLR1, recently named chemerin1), G protein-coupled receptor 1 (GPR1, recently named chemerin2), and CC-motif chemokine receptor-like 2 (CCRL2). Only CMKLR1 displays conventional G protein signaling, while GPR1 only recruits arrestin in response to ligand stimulation, and no CCRL2-mediated signaling events have been described to date. However, GPR1 undergoes constitutive endocytosis, making this receptor perfectly adapted as decoy receptor. Here, we discuss expression pattern, activation, and receptor binding of chemerin. Moreover, we review the current literature regarding the involvement of chemerin in cancer and several obesity-related diseases, as well as recent developments in therapeutic targeting of the chemerin system.
Collapse
Affiliation(s)
- Tobias F Fischer
- Institute of Biochemistry, University of Leipzig, Brüderstraße 34, D-04103 Leipzig, Germany
| | | |
Collapse
|
12
|
Wang Y, Jiang C, Shang Z, Qiu G, Yuan G, Xu K, Hou Q, He Y, Liu Y. AGEs/RAGE Promote Osteogenic Differentiation in Rat Bone Marrow-Derived Endothelial Progenitor Cells via MAPK Signaling. J Diabetes Res 2022; 2022:4067812. [PMID: 35155684 PMCID: PMC8825668 DOI: 10.1155/2022/4067812] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/19/2021] [Revised: 11/19/2021] [Accepted: 12/01/2021] [Indexed: 12/22/2022] Open
Abstract
Systemic vascular impairment is the most common complication of diabetes. Advanced glycation end products (AGEs) can exacerbate diabetes-related vascular damage by affecting the intima and media through a variety of mechanisms. In the study, we demonstrated that AGEs and their membrane receptor RAGE could induce the differentiation of EPCs into osteoblasts under certain circumstances, thereby promoting accelerated atherosclerosis. Differentiation into osteoblasts was confirmed by positive staining for DiI-acetylated fluorescently labeled low-density lipoprotein and FITC-conjugated Ulex europaeus agglutinin. During differentiation, expression of receptor for AGE (RAGE) was significantly upregulated. This upregulation was attenuated by transfection with RAGE-targeting small interfering (si)RNA. siRNA-mediated knockdown of RAGE expression significantly inhibited the upregulation of AGE-induced calcification-related proteins, such as runt-related transcription factor 2 (RUNX2) and osteoprotegerin (OPG). Additional experiments showed that AGE induction of EPCs significantly induced ERK, p38MAPK, and JNK activation. The AGE-induced upregulation of osteoblast proteins (RUNX2 and OPG) was suppressed by treatment with a p38MAPK inhibitor (SB203580) or JNK inhibitor (SP600125), but not by treatment with an ERK inhibitor (PD98059), which indicated that AGE-induced osteoblast differentiation from EPCs may be mediated by p38MAPK and JNK signaling, but not by ERK signaling. These data suggested that AGEs may bind to RAGE on the EPC membrane to trigger differentiation into osteoblasts. The underlying mechanism appears to involve the p38MAPK and JNK1/2 pathways, but not the ERK1/2 pathway.
Collapse
Affiliation(s)
- Yuping Wang
- Department of Vascular Surgery, The Affiliated Hospital of Southwest Medical University, Luzhou 646000, China
- Department of Breast, Thyroid and Vascular Surgery, Traditional Chinese Medicine Hospital Affiliated to Southwest Medical University, Luzhou 646000, China
| | - Chunxia Jiang
- Department of Endocrinology and Metabolism, The Affiliated Hospital of Southwest Medical University, Sichuan Luzhou 646000, China
| | - Zhongming Shang
- Department of Breast, Thyroid and Vascular Surgery, Traditional Chinese Medicine Hospital Affiliated to Southwest Medical University, Luzhou 646000, China
| | - Guochun Qiu
- Department of Breast, Thyroid and Vascular Surgery, Traditional Chinese Medicine Hospital Affiliated to Southwest Medical University, Luzhou 646000, China
| | - Gang Yuan
- Department of Intervention, Traditional Chinese Medicine Hospital Affiliated to Southwest Medical University, Luzhou 646000, China
| | - Kaiqiang Xu
- Department of Breast, Thyroid and Vascular Surgery, Traditional Chinese Medicine Hospital Affiliated to Southwest Medical University, Luzhou 646000, China
| | - Qingchun Hou
- Department of Pediatric Surgery & Vascular Surgery, Zigong Fourth People's Hospital, 643000 Zigong, China
| | - Yanzheng He
- Department of Vascular Surgery, The Affiliated Hospital of Southwest Medical University, Luzhou 646000, China
- Cardiovascular and Metabolic Diseases Key Laboratory of Luzhou, Luzhou 646000, China
- Key Laboratory of Medical Electrophysiology, Ministry of Education & Medical Electrophysiological Key Laboratory of Sichuan Province, (Collaborative Innovation Center for Prevention of Cardiovascular Diseases) Institute of Cardiovascular Research, Southwest Medical University, Luzhou 646000, China
- Department of General Surgery, The Affiliated Hospital of Southwest Medical University, Luzhou 646000, China
| | - Yong Liu
- Department of Vascular Surgery, The Affiliated Hospital of Southwest Medical University, Luzhou 646000, China
- Cardiovascular and Metabolic Diseases Key Laboratory of Luzhou, Luzhou 646000, China
- Key Laboratory of Medical Electrophysiology, Ministry of Education & Medical Electrophysiological Key Laboratory of Sichuan Province, (Collaborative Innovation Center for Prevention of Cardiovascular Diseases) Institute of Cardiovascular Research, Southwest Medical University, Luzhou 646000, China
- Department of General Surgery, The Affiliated Hospital of Southwest Medical University, Luzhou 646000, China
| |
Collapse
|