1
|
Maurya DK, Sharma D. Culinary spices and herbs in managing early and long-COVID-19 complications: A comprehensive review. Phytother Res 2023; 37:4908-4931. [PMID: 37468320 DOI: 10.1002/ptr.7957] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2022] [Revised: 06/16/2023] [Accepted: 07/02/2023] [Indexed: 07/21/2023]
Abstract
Human race is preparing for the upsurge and aftermath of COVID-19 pandemic complicated by novel variants, new waves, variable mortality rate, and post-COVID complications. Despite use of repurposed drugs, symptomatic treatments and licensing of multiple vaccines, the daily number of cases and rate of transmission are significant. Culinary spices and herbs have been historically used in pandemic and non-pandemic times to reduce respiratory viral burden. Specific food items and culinary spices can boost the levels of protective immunity and also offer therapeutic benefits against impervious bugs via well-known as well as less-known but scientifically testable mechanisms. Here, we analyzed the phytochemicals profile of Ayurvedic herbs and inferred from the clinical trials/observational studies to provide a focused and succinct perspective on the relevance of "food-based" traditional decoction to moderate COVID-19 disease and long-COVID via modulation of immunity and reinstatement of homeostasis. We also underscore the druggable targets in pathogenesis of COVID-19 which are relevant to the ongoing clinical trials using spices and herbs. This information will provide a strong scientific rationale for standardization of the traditional herbs-based therapies and adopting the use of herbs, spices, and their formulations for reducing SARS-CoV-2 transmission, long-COVID symptoms, and COVID-19 disease progression.
Collapse
Affiliation(s)
- Dharmendra Kumar Maurya
- Radiation Biology & Health Sciences Division, Bhabha Atomic Research Centre, Mumbai, India
- Homi Bhabha National Institute, Mumbai, India
| | - Deepak Sharma
- Radiation Biology & Health Sciences Division, Bhabha Atomic Research Centre, Mumbai, India
- Homi Bhabha National Institute, Mumbai, India
| |
Collapse
|
2
|
Su YH, Lin JY. Menthone supplementation protects from allergic inflammation in the lungs of asthmatic mice. Eur J Pharmacol 2022; 931:175222. [PMID: 35988786 DOI: 10.1016/j.ejphar.2022.175222] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2022] [Revised: 07/24/2022] [Accepted: 08/16/2022] [Indexed: 11/03/2022]
Abstract
To screen potent terpenoid compounds against allergic inflammation in vitro and in vivo, five terpenoid compounds including menthone, farnesol, oridonin, β-escin and lupeol, were first selected to compare their anti-allergic inflammation potential using mouse lung mast cells in vitro. Among five selected terpenoid compounds, just menthone treatment decreased TNF-α/IL-10 secretion ratios in lipopolysaccharide -stimulated mast cells in vitro. As a result, menthone was further chosen to treat ovalbumin (OVA)-sensitized and challenged BALB/c mice by gavage for 5 weeks. There were six groups including dietary control (DC group, 0 mg menthone/kg b.w./day), 8 (ML group), 40 (MM group) as well as 200 mg menthone/kg b.w./day (MH group) by gavage, positive control (PC group, 3 mg dexamethasone/kg b.w. by gavage before OVA challenge) and non-treatment control (NTC group, normal mice without treatment) in the experiment. Changes of inflammatory mediators, cell distribution, Th1/Th2 and pro-/anti-inflammatory cytokines secretion as well as relative gene expression amounts of six receptors related to allergic inflammation in the lungs and airways were measured. The results showed that middle menthone supplementation (40 mg menthone/kg b.w./day) in vivo decreased protein and eotaxin, but increased Th1 cytokine levels in the bronchoalveolar lavage fluid. Menthone supplementation inhibited eosinophilia, mast cell degranulation, chemokine (C-C motif) receptor 3 (CC receptor 3) and chemokine (C-X-C motif) receptor 1 (CXC receptor 1) gene expression amounts in the lungs, but restored the percentage of monocytes/macrophages. Our results suggest that menthone supplementation may alleviate allergic asthma through regulating airway allergic inflammation, protein overproduction, eosinophils infiltration, Th1/Th2 immune balance, CC receptor 3 and CXC receptor 1 gene expression amounts in the lungs but restoring the percentage of monocytes/macrophages in allergic asthmatic mice.
Collapse
Affiliation(s)
- Yi-Hsuan Su
- Department of Food Science and Biotechnology, National Chung Hsing University, 250 Kuo-Kuang Road, Taichung, 40227, Taiwan
| | - Jin-Yuarn Lin
- Department of Food Science and Biotechnology, National Chung Hsing University, 250 Kuo-Kuang Road, Taichung, 40227, Taiwan.
| |
Collapse
|
3
|
Su YH, Lin JY. Menthone Inhalation Alleviates Local and Systemic Allergic Inflammation in Ovalbumin-Sensitized and Challenged Asthmatic Mice. Int J Mol Sci 2022; 23:ijms23074011. [PMID: 35409371 PMCID: PMC8999977 DOI: 10.3390/ijms23074011] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2022] [Revised: 03/31/2022] [Accepted: 04/01/2022] [Indexed: 02/01/2023] Open
Abstract
Menthone is rich in Mentha × Piperita L. essential oil and it has anti-inflammatory properties; research shows that it is useful, via percutaneous absorption, in treating inflammation-related diseases. However, anti-allergic inflammatory effects of volatile menthone have not yet been used to treat allergic asthma, in vivo. We hypothesized that menthone inhalation may have anti-inflammatory and anti-allergic effects in patients with allergic asthma. Therefore, in our study, menthone inhalation was used to treat ovalbumin (OVA)-sensitized and challenged asthmatic mice. Allergic inflammation mediator changes in the lungs and airways, sera, splenocytes, and peritoneal macrophages of the mice were measured. Relative expression amounts of six receptor genes related to allergic inflammation of the lungs and airways were quantitated using a two-step real time quantitative polymerase chain reaction (qPCR). Results showed that menthone inhalation increased serum OVA-specific IgG2a/IgG1 and IgG2a/IgE ratios, increased Th1-type cytokine production in the bronchoalveolar lavage fluid, and decreased nitric oxide, protein, and eotaxin levels. Menthone inhalation inhibited mast cell and eosinophil degranulation, and chemokine (C-C motif) receptor 3 (Ccr3) gene expression amounts, but (relatively) increased Th1 cytokine secretion by splenocytes. Our results evidence that menthone inhalation alleviates local and systemic allergic inflammation in asthmatic mice.
Collapse
|
4
|
Aminian AR, Mohebbati R, Boskabady MH. The Effect of Ocimum basilicum L. and Its Main Ingredients on Respiratory Disorders: An Experimental, Preclinical, and Clinical Review. Front Pharmacol 2022; 12:805391. [PMID: 35046828 PMCID: PMC8762307 DOI: 10.3389/fphar.2021.805391] [Citation(s) in RCA: 20] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2021] [Accepted: 12/03/2021] [Indexed: 01/08/2023] Open
Abstract
Ocimum basilicum L. (O. basilicum) and its constituents show anti-inflammatory, immunomodulatory, and antioxidant effects. The plant has been mainly utilized in traditional medicine for the treatment of respiratory disorders. In the present article, effects of O. basilicum and its main constituents on respiratory disorders, assessed by experimental and clinical studies, were reviewed. Relevant studies were searched in PubMed, Science Direct, Medline, and Embase databases using relevant keywords including “Ocimum basilicum,” “basilicums,” “linalool,” “respiratory disease,” “asthma,” “obstructive pulmonary disease,” “bronchodilatory,” “bronchitis,” “lung cancer,” and “pulmonary fibrosis,” and other related keywords.The reviewed articles showed both relieving and preventing effects of the plant and its ingredients on obstructive pulmonary diseases such as chronic obstructive pulmonary disease (COPD), asthma, and other respiratory disorders such as bronchitis, aspergillosis tuberculosis, and lung cancer. The results of the reviewed articles suggest the therapeutic potential of O. basilicum and its constituent, linalool, on respiratory disorders.
Collapse
Affiliation(s)
- Ahmad Reza Aminian
- Department of Physiology, Faculty of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Reza Mohebbati
- Department of Physiology, Faculty of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran.,Applied Biomedical Research Center, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Mohammad Hossein Boskabady
- Department of Physiology, Faculty of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran.,Applied Biomedical Research Center, Mashhad University of Medical Sciences, Mashhad, Iran
| |
Collapse
|
5
|
Sharifi-Rad J, Adetunji CO, Olaniyan OT, Ojo SK, Samuel MO, Temitayo BT, Roli OI, Nimota OO, Oluwabunmi BT, Adetunji JB, Sharopov F, Cruz-Martins N, del Mar Contreras M. Antimicrobial, Antioxidant and Other Pharmacological Activities of Ocimum Species: Potential to Be Used as Food Preservatives and Functional Ingredients. FOOD REVIEWS INTERNATIONAL 2021. [DOI: 10.1080/87559129.2021.1934693] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/20/2022]
Affiliation(s)
- Javad Sharifi-Rad
- Phytochemistry Research Center, Shahid Beheshti University of Medical Sciences, Tehran, Iran
- Facultad De Medicina, Universidad Del Azuay, Cuenca, Ecuador
| | - Charles Oluwaeun Adetunji
- Department of Microbiology, Biotechnology and Nanotechnology Laboratory, Edo University Iyamho, Edo State, Nigeria
| | - Olugbemi T. Olaniyan
- Laboratory for Reproductive Biology and Developmental Programming, Department of Physiology, Edo University, Iyahmo, Edo State, Nigeria
| | - Stephen Kayode Ojo
- Department of Microbiology, Federal University, Oye-Ekiti, Ekiti State, Nigeria
| | - Micheal Olugbenga Samuel
- Cardiometabolic Research Unit, Department of Physiology, College of Health Sciences, Bowen University, Iwo, Osun State, Nigeria
| | - Banjo Temitope Temitayo
- Institute for Human Resources Development, Federal University of Agriculture, Abeokuta, Ogun State, Nigeria
| | - Osahon Itohan Roli
- Department of Anatomy, College of Basic Medical Science Edo University Iyamho, Nigeria
| | | | | | - Juliana Bunmi Adetunji
- Nutritional and Toxicological Research Laboratory, Department of Biochemistry, Osun State University, Osogbo, Osun State, Nigeria
| | - Farukh Sharopov
- Department of Pharmaceutical Technology, Avicenna Tajik State Medical University, Rudaki, Dushanbe, Tajikistan
| | - Natália Cruz-Martins
- Faculty of Medicine, University of Porto, Porto, Portugal
- Institute for Research and Innovation in Health (I3s), University of Porto, Porto, Portugal
- Laboratory of Neuropsychophysiology, Faculty of Psychology and Education Sciences, University of Porto, Porto, Portugal
| | - María del Mar Contreras
- Department of Chemical, Environmental, and Materials Engineering, University of Jaén, Campus Las Lagunillas, Jaén, Spain
| |
Collapse
|
6
|
Alshibl HM, Al-Abdullah ES, Haiba ME, Alkahtani HM, Awad GE, Mahmoud AH, Ibrahim BM, Bari A, Villinger A. Synthesis and Evaluation of New Coumarin Derivatives as Antioxidant, Antimicrobial, and Anti-Inflammatory Agents. Molecules 2020; 25:E3251. [PMID: 32708787 PMCID: PMC7397269 DOI: 10.3390/molecules25143251] [Citation(s) in RCA: 50] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2020] [Revised: 07/14/2020] [Accepted: 07/15/2020] [Indexed: 12/11/2022] Open
Abstract
New pyranocoumarin and coumarin-sulfonamide derivatives were prepared and evaluated for their antioxidant, antimicrobial, and/or anti-inflammatory activities. Coumarin-sulfonamide compounds 8a-d demonstrated significant antioxidant activity, while 7c,d, 8c,d, and 9c,d exhibited antimicrobial activity equal to or higher than the standard antimicrobials against at least one tested microorganism. Regarding the anti-inflammatory testing, pyranocoumarins 2b, 3a,b and 5c and coumarin-sulfonamide compound 9a showed more potent antiproteinase activity than aspirin in vitro; however, five compounds were as potent as aspirin. The anti-inflammatory activity of the promising compounds was further assessed pharmacologically on formaldehyde-induced rat paw oedema and showed significant inhibition of oedema. For in vitro COX-inhibitory activity of coumarin derivatives, pyranocoumarin derivative 5a was the most selective (SI = 152) and coumarin-sulfonamide derivative 8d was most active toward COX-2 isozyme. The most active derivatives met the in silico criteria for orally active drugs; thus, they may serve as promising candidates to develop more potent and highly efficient antioxidant, antimicrobial, and/or anti-inflammatory agents.
Collapse
Affiliation(s)
- Hanan M. Alshibl
- Department of Pharmaceutical Chemistry, College of Pharmacy, King Saud University, Riyadh 11451, Saudi Arabia; (E.S.A.-A.); (M.E.H.); (H.M.A.); (A.B.)
| | - Ebtehal S. Al-Abdullah
- Department of Pharmaceutical Chemistry, College of Pharmacy, King Saud University, Riyadh 11451, Saudi Arabia; (E.S.A.-A.); (M.E.H.); (H.M.A.); (A.B.)
| | - Mogedda E. Haiba
- Department of Pharmaceutical Chemistry, College of Pharmacy, King Saud University, Riyadh 11451, Saudi Arabia; (E.S.A.-A.); (M.E.H.); (H.M.A.); (A.B.)
- Department of Medicinal Chemistry, National Research Centre, Cairo 12622, Egypt
| | - Hamad M. Alkahtani
- Department of Pharmaceutical Chemistry, College of Pharmacy, King Saud University, Riyadh 11451, Saudi Arabia; (E.S.A.-A.); (M.E.H.); (H.M.A.); (A.B.)
| | - Ghada E.A. Awad
- Chemistry of Natural and Microbial Product Department, National Research Centre, Cairo 12622, Egypt;
| | - Ahlam H. Mahmoud
- Department of Therapeutic Chemistry, Pharmaceutical and Drug Industries Research Division, National Research Centre, Dokki, Cairo 12622, Egypt;
| | - Bassant M.M. Ibrahim
- Pharmacology Department, Medical Research Division, National Research Centre, Cairo 12622, Egypt;
| | - Ahmed Bari
- Department of Pharmaceutical Chemistry, College of Pharmacy, King Saud University, Riyadh 11451, Saudi Arabia; (E.S.A.-A.); (M.E.H.); (H.M.A.); (A.B.)
| | - Alexander Villinger
- Institut für Chemie, Abteilung Anorganische Chemie, Universität Rostock, Albert-Einstein-Str. 3a, 18059 Rostock, Germany;
| |
Collapse
|
7
|
Ndjoubi KO, Sharma R, Hussein AA. The Potential of Natural Diterpenes Against Tuberculosis: An Updated Review. Curr Pharm Des 2020; 26:2909-2932. [PMID: 32532186 DOI: 10.2174/1381612826666200612163326] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2020] [Accepted: 04/28/2020] [Indexed: 11/22/2022]
Abstract
Every year, 10 million people are affected by tuberculosis (TB). Despite being a preventable and curable disease, 1.5 million people die from TB each year, making it the world's top infectious disease. Many of the frontline antibiotics cause painful and disagreeable side effects. To mitigate the side effects from the use of chemically synthesized or clinical anti-tubercular drugs, there are many research studies focussed on natural products as a source of potential anti-tuberculosis drugs. Among different phytoconstituents, several classes of diterpenoids exert significant antimicrobial effects. This review explores diterpenoids as potential anti-tubercular drugs from natural sources. A total of 204 diterpenoids isolated from medicinal plants and marine species are discussed that inhibit the growth of Mycobacterium tuberculosis. The literature from 1994-2018 is reviewed, and 158 diterpenoids from medicinal plants, as well as 40 diterpenoids from marines, are alluded to have antituberculosis properties. The antitubercular activities discussed in the review indicate that the type of diterpenoids, the Mtb strains, substituents attached to diterpenoids and their position in the diterpenoids general skeleton can change the compounds antimycobacterial inhibitory effects.
Collapse
Affiliation(s)
- Kadidiatou O Ndjoubi
- Chemistry Department, Cape Peninsula University of Technology, Bellville Campus, Symphony Road, 7535 Bellville, South Africa
| | - Rajan Sharma
- Chemistry Department, Cape Peninsula University of Technology, Bellville Campus, Symphony Road, 7535 Bellville, South Africa
| | - Ahmed A Hussein
- Chemistry Department, Cape Peninsula University of Technology, Bellville Campus, Symphony Road, 7535 Bellville, South Africa
| |
Collapse
|
8
|
Amala R, Sujatha S. Presence of pyrroloquinazoline alkaloid in Adhatoda vasica attenuates inflammatory response through the downregulation of pro-inflammatory mediators in LPS stimulated RAW 264.7 macrophages. ACTA ACUST UNITED AC 2019; 11:15-22. [PMID: 33469504 PMCID: PMC7803918 DOI: 10.34172/bi.2021.03] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2019] [Revised: 10/28/2019] [Accepted: 11/24/2019] [Indexed: 01/22/2023]
Abstract
![]()
Introduction: Inflammation is the primary response caused due to harmful stimuli which are followed by the increased draining of plasma and immune cells from the body into the site of the injured tissue. A signaling cascade of growth factors and cytokines propagates and eventually matures in the inflammatory site involving the blood vessels and immune markers within the injured tissue in order to promote the renewal of the degenerated tissue. During a chronic disorder like diabetic foot ulcer, there is an obstinate inflammation which may act as a prime factor for limb amputation and upon persistent prevalence may even lead to death.
Methods: This study focuses on the mode of action of ALK-F (alkaloid fraction) isolated from Adhatoda vasica in attenuating the nitric oxide production which was estimated by Griess assay, tumor necrosis factor-α (TNF-α), and interleukin-6 (IL-6) expression was analyzed by ELISA and expression of COX-2 and iNOS by RT-PCR and western blotting in LPS stimulated RAW 264.7 macrophages. Total intracellular ROS was analyzed by DCFH-DA probing and the presence of quinazoline alkaloid (vasicine) in the ALK-F was evidenced by high performance liquid chromatography (HPLC).
Results: The ALK-F of A. vasica exhibited a significant inhibitory effect on LPS elicited nitrite production (13.2 ± 1.06 µM), iNOS, and COX-2 (2.6 and 3.3 fold) in a dose-dependent manner. There was a significant decrease in the generation of these pro-inflammatory cytokines TNF-α (1102 ± 1.02 pg/mL) and IL-6 (18 ± 0.87 ng/mL) and total intracellular ROS in the highest tested concentrations (1 µg and 10 µg) of ALK-F of A. vasica. HPLC analysis by the gradient elution method revealed the presence of 12% of quinazoline alkaloid vasicine in the crude alkaloid fraction.
Conclusion: Thus this study communally suggests that attenuation of nitric oxide and the dysregulation of genes responsible for inflammation which deliberates A. vasica to conflict against inflammation and provide remedial benefits in diabetic wound care.
Collapse
Affiliation(s)
- Reddy Amala
- Animal Cell Culture Laboratory, Department of Biotechnology, SRMIST, Kattankulathur, Tamilnadu, India
| | - Sundaresan Sujatha
- Animal Cell Culture Laboratory, Department of Biotechnology, SRMIST, Kattankulathur, Tamilnadu, India
| |
Collapse
|
9
|
Adebayo SA, Ondua M, Shai LJ, Lebelo SL. Inhibition of nitric oxide production and free radical scavenging activities of four South African medicinal plants. J Inflamm Res 2019; 12:195-203. [PMID: 31496781 PMCID: PMC6691489 DOI: 10.2147/jir.s199377] [Citation(s) in RCA: 20] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/24/2018] [Accepted: 02/20/2019] [Indexed: 01/11/2023] Open
Abstract
Introduction Traditional healing is often the preferred form of therapy especially in rural and resource-limited communities. The extracts of plants are used to treat many diseases such as arthritis and chronic pain. Four medicinal plant species, namely, Acokanthera oppositifolia, Plantago lanceolata, Conyza canadensis and Artemisia vulgaris used in Southern Africa to treat pain and inflammation-related diseases were selected for evaluation in laboratory-based experiments. Methods The selected plant species were evaluated for phytochemical content, antioxidant and anti-inflammatory activities, as well as cytotoxicity effects against mammalian cells in culture. Results The results indicated that the n-hexane and chloroform extracts of P. lanceolata had the best antioxidant activities with an IC50=0.41 μg/mL. Also, the acetone extracts of P. lanceolata had 93.76% nitric oxide (NO) inhibition. However, the chloroform and n-hexane extracts of C. canadensis produced NO inhibition of 98.53% and 99.2%, respectively, at 100 μg/mL with IC50=17.69 μg/mL. Furthermore, the ethyl acetate extracts also had promising NO inhibitory activity (96.33%), but the cytotoxicity results with cell viabilities of 5.31%, 5.7% and 5.89%, respectively, suggested that the observed activity was due to a cytotoxic effect. Acetone extracts of C. canadensis were also cytotoxic at 30 µg/mL with 6.07–6.67% cell viabilities compared with the acetone extracts of P. lanceolata (99.57%). Conclusion The results partially validate the ethnomedicinal uses of the selected plant species used for inflammation-related conditions. However, because some of the extracts had potential cytotoxic effects, caution is advised in their use, especially those consumed orally.
Collapse
Affiliation(s)
- S A Adebayo
- Phytomedicine and Phytopharmacology Research Group, Department of Plant Sciences, University of the Free State, Phuthaditjhaba 9866, South Africa.,Department of Biomedical Sciences, Faculty of Science, Tshwane University of Technology, Pretoria 0001, South Africa
| | - M Ondua
- Department of Paraclinical Sciences, Faculty of Veterinary Science, University of Pretoria, Onderstepoort 0110, South Africa
| | - L J Shai
- Department of Biomedical Sciences, Faculty of Science, Tshwane University of Technology, Pretoria 0001, South Africa
| | - S L Lebelo
- Department of Life and Consumer Sciences, University of South Africa, Florida 1710, South Africa
| |
Collapse
|
10
|
Maneesh A, Chakraborty K. Previously undescribed fridooleanenes and oxygenated labdanes from the brown seaweed Sargassum wightii and their protein tyrosine phosphatase-1B inhibitory activity. PHYTOCHEMISTRY 2017; 144:19-32. [PMID: 28888144 DOI: 10.1016/j.phytochem.2017.08.011] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/28/2017] [Revised: 08/10/2017] [Accepted: 08/12/2017] [Indexed: 06/07/2023]
Abstract
Previously undescribed fridooleanene triterpenoids 2α-hydroxy-(28,29)-frido-olean-12(13), 21(22)-dien-20-propyl-21-hex-4'(Z)-enoate, 2α-hydroxy-(28,29)-frido-olean-12(13), 21(22)-dien-20-prop-2(E)-en-21-butanoate and oxygenated labdane diterpenoids 2α-hydroxy-8(17), (12E), 14-labdatriene, 3β, 6β, 13α-tri hydroxy 8(17), 12E, 14-labdatriene were purified from the ethyl acetate-methanol and dichloromethane fractions of the air-dried thalli of Sargassum wightii (Sargassaceae), a brown seaweed collected from the Gulf-of-Mannar of Penninsular India. Inhibitory potential of Δ12 oleanenes towards protein tyrosine phosphatase-1B, the critical regulator of insulin-receptor activity were found to be significantly greater (IC50 0.1 × 10-2 and 0.09 × 10-2 mg/mL, respectively) than the standard sodium metavanadate (IC50 0.31 × 10-2 mg/mL). Fridooleanene triterpenoids displayed greater antioxidant activities (IC50DPPH 0.16-0.18 mg/mL) than the commercially available antioxidants, butylated hydroxytoluene and α-tocopherol (IC50DPPH 0.25 and 0.63 mg/mL, respectively). In general, the oxygenated labdane diterpenoids displayed significantly lesser antioxidant and tyrosine phosphatase-1B inhibitory properties than those exhibited by the fridooleanenes. Bioactivities of the titled compounds were primarily determined by the electronic and lipophilic parameters and not by the steric descriptors. Molecular docking simulations and kinetic studies were employed to describe the tyrosine phosphatase-1B inhibitory mechanism. The previously undescribed fridooleanene triterpenoids might be used as potential anti-hyperglycaemic pharmacophore leads to reduce the risk of elevated postprandial glucose levels.
Collapse
Affiliation(s)
- Anusree Maneesh
- Marine Bioprospecting Section of Marine Biotechnology Division, Central Marine Fisheries Research Institute, Ernakulam North, P.B. No. 1603, Cochin, India
| | - Kajal Chakraborty
- Marine Bioprospecting Section of Marine Biotechnology Division, Central Marine Fisheries Research Institute, Ernakulam North, P.B. No. 1603, Cochin, India.
| |
Collapse
|
11
|
Kapewangolo P, Kandawa-Schulz M, Meyer D. Anti-HIV Activity of Ocimum labiatum Extract and Isolated Pheophytin-a. Molecules 2017; 22:E1763. [PMID: 29113139 PMCID: PMC6150305 DOI: 10.3390/molecules22111763] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2017] [Accepted: 10/16/2017] [Indexed: 01/22/2023] Open
Abstract
Ocimum plants are traditionally used to manage HIV/AIDS in various African countries. The effects of Ocimum labiatum extract on HIV-1 protease (PR) and reverse transcriptase (RT) is presented here along with characterization of an identified bioactive compound, achieved through ¹H- and 13C-NMR. The extract's effect on HIV-1 replication was assessed by HIV-1 p24 antigen capture. Cytotoxicity of samples was evaluated using tetrazolium dyes and real-time cell electronic sensing (RT-CES). Ocimum labiatum inhibited HIV-1 PR with an IC50 value of 49.8 ± 0.4 μg/mL and presented weak inhibition (21%) against HIV-1 RT. The extract also reduced HIV-1 replication in U1 cells at a non-cytotoxic concentration (25 μg/mL). The CC50 value of the extract in U1 cells was 42.0 ± 0.13 μg/mL. The HIV-1 PR inhibiting fraction was purified using prep-HPLC and yielded a chlorophyll derivative, pheophytin-a (phy-a). Phy-a inhibited HIV-1 PR with an IC50 value of 44.4 ± 1.5 μg/mL (51 ± 1.7 μM). The low cytotoxicity of phy-a in TZM-bl cells was detected by RT-CES and the CC50 value in U1 cells was 51.3 ± 1.0 μg/mL (58.9 ± 1.2 μM). This study provides the first in vitro evidence of anti-HIV activity of O. labiatum and isolated phy-a, supporting further investigation of O. labiatum for lead compounds against HIV-1.
Collapse
Affiliation(s)
- Petrina Kapewangolo
- Department of Biochemistry, Faculty of Natural and Agricultural Sciences, University of Pretoria, Pretoria 0002, South Africa.
- Department of Chemistry and Biochemistry, Faculty of Science, University of Namibia, P/Bag 13301, Windhoek 9000, Namibia.
| | - Martha Kandawa-Schulz
- Department of Chemistry and Biochemistry, Faculty of Science, University of Namibia, P/Bag 13301, Windhoek 9000, Namibia.
| | - Debra Meyer
- Department of Biochemistry, Faculty of Natural and Agricultural Sciences, University of Pretoria, Pretoria 0002, South Africa.
- Department of Biochemistry, Faculty of Science, University of Johannesburg, Auckland Park, Johannesburg 2006, South Africa.
| |
Collapse
|
12
|
Kapewangolo P, Omolo JJ, Fonteh P, Kandawa-Schulz M, Meyer D. Triterpenoids from Ocimum labiatum Activates Latent HIV-1 Expression In Vitro: Potential for Use in Adjuvant Therapy. Molecules 2017; 22:molecules22101703. [PMID: 29027985 PMCID: PMC6151608 DOI: 10.3390/molecules22101703] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2017] [Revised: 10/04/2017] [Accepted: 10/09/2017] [Indexed: 11/30/2022] Open
Abstract
Latent HIV reservoirs in infected individuals prevent current treatment from eradicating infection. Treatment strategies against latency involve adjuvants for viral reactivation which exposes viral particles to antiretroviral drugs. In this study, the effect of novel triterpenoids isolated from Ocimum labiatum on HIV-1 expression was measured through HIV-1 p24 antigen capture in the U1 latency model of HIV-1 infection and in peripheral blood mononuclear cells (PBMCs) of infected patients on combination antiretroviral therapy (cART). The mechanism of viral reactivation was determined through the compound’s effect on cytokine production, histone deacetylase (HDAC) inhibition, and protein kinase C (PKC) activation. Cytotoxicity of the triterpenoids was determined using a tetrazolium dye and flow cytometry. The isolated triterpene isomers, 3-hydroxy-4,6a,6b,11,12,14b-hexamethyl-1,2,3,4,6,6a,6b,7,8,8a,9,10,11,12,12a,14,14a,14b-octadecahydropicene-4,8a-dicarboxylic acid (HHODC), significantly (p < 0.05) induced HIV-1 expression in a dose-dependent manner in U1 cells at non-cytotoxic concentrations. HHODC also induced viral expression in PBMCs of HIV-1 infected patients on cART. In addition, the compound up-regulated the production of interleukin (IL)-2, IL-6, tumour necrosis factor (TNF)-α, and interferon (IFN)-γ but had no effect on HDAC and PKC activity, suggesting cytokine upregulation as being involved in latency activation. The observed in vitro reactivation of HIV-1 introduces the adjuvant potential of HHODC for the first time here.
Collapse
Affiliation(s)
- Petrina Kapewangolo
- Department of Biochemistry, Faculty of Natural and Agricultural Sciences, University of Pretoria, Hatfield Campus, Pretoria 0002, South Africa.
- Department of Chemistry and Biochemistry, Faculty of Science, University of Namibia, P/Bag 13301, Windhoek 9000, Namibia.
| | - Justin J Omolo
- Department of Traditional Medicine, National Institute for Medical Research, P.O. Box 9653, Dar es Salaam 2448, Tanzania.
| | - Pascaline Fonteh
- Department of Biochemistry, Faculty of Natural and Agricultural Sciences, University of Pretoria, Hatfield Campus, Pretoria 0002, South Africa.
- Department of Surgery, Faculty of Health Sciences, University of Witwatersrand, 7 York Road, Parktown, Johannesburg 2193, South Africa.
| | - Martha Kandawa-Schulz
- Department of Chemistry and Biochemistry, Faculty of Science, University of Namibia, P/Bag 13301, Windhoek 9000, Namibia.
| | - Debra Meyer
- Department of Biochemistry, Faculty of Natural and Agricultural Sciences, University of Pretoria, Hatfield Campus, Pretoria 0002, South Africa.
- Department of Biochemistry, Faculty of Science, University of Johannesburg, Auckland Park, Johannesburg 2006, South Africa.
| |
Collapse
|
13
|
Tran QT, Wong WF, Chai CL. Labdane diterpenoids as potential anti-inflammatory agents. Pharmacol Res 2017; 124:43-63. [PMID: 28751221 DOI: 10.1016/j.phrs.2017.07.019] [Citation(s) in RCA: 60] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/28/2017] [Revised: 07/21/2017] [Accepted: 07/21/2017] [Indexed: 01/20/2023]
|
14
|
Martins I, Varela A, Frija LMT, Estevão MAS, Planchon S, Renaut J, Afonso CAM, Silva Pereira C. Proteomic Insights on the Metabolism of Penicillium janczewskii during the Biotransformation of the Plant Terpenoid Labdanolic Acid. Front Bioeng Biotechnol 2017; 5:45. [PMID: 28824907 PMCID: PMC5534450 DOI: 10.3389/fbioe.2017.00045] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2016] [Accepted: 07/10/2017] [Indexed: 01/24/2023] Open
Abstract
Plant terpenoids compose a natural source of chemodiversity of exceptional value. Many of these compounds own biological/pharmacological activity, others are regarded as unique chemical skeletons for the synthesis of derivatives with improved properties. Functional chemical modification of terpenoids through biotransformation frequently relies on the use of Ascomycota strains, but information on major cellular responses is still largely lacking. Penicillium janczewskii mediates a stereo-selective hydroxylation of labdanolic acid (LA)-terpenoid found abundantly in Cistus ladanifer-producing 3β-hydroxy-labdanolic acid with yields >90%. Herein, combined analyses of mycelial and extracellular differential proteomes demonstrated that the plant terpenoid increased stress responses, especially against oxidative stress (e.g., accumulation of superoxide dismutase) and apparently altered mitochondria functioning. One putative cytochrome P450 monooxygenase differentially accumulated in the secretome and the terpenoid bioconversion was inhibited in vivo in the presence of a P450 inhibitor. The stereo-selective hydroxylation of the plant terpenoid is likely mediated by P450 enzymes, yet its unequivocal identity remains unclear. To the best of our knowledge, this is the first time that proteomics was used to investigate how a plant terpenoid impacts the metabolism of a filamentous fungus during its efficiently biotransformation. Our findings may encourage the development of new strategies for the valorization of plant natural resources through biotechnology.
Collapse
Affiliation(s)
- Isabel Martins
- Instituto de Tecnologia Química e Biológica António Xavier, Universidade Nova de Lisboa (ITQB NOVA), Oeiras, Portugal
| | - Adélia Varela
- Instituto de Tecnologia Química e Biológica António Xavier, Universidade Nova de Lisboa (ITQB NOVA), Oeiras, Portugal
- Instituto Nacional Investigação Agrária e Veterinária, Oeiras, Portugal
| | - Luís M. T. Frija
- Instituto de Investigação do Medicamento (iMed.ULisboa), Faculdade de Farmácia, Universidade de Lisboa, Lisboa, Portugal
| | - Mónica A. S. Estevão
- Instituto de Investigação do Medicamento (iMed.ULisboa), Faculdade de Farmácia, Universidade de Lisboa, Lisboa, Portugal
| | - Sébastien Planchon
- Environmental Research and Innovation (ERIN) Department, Luxembourg Institute of Science and Technology, Belvaux, Luxembourg
| | - Jenny Renaut
- Environmental Research and Innovation (ERIN) Department, Luxembourg Institute of Science and Technology, Belvaux, Luxembourg
| | - Carlos A. M. Afonso
- Instituto de Investigação do Medicamento (iMed.ULisboa), Faculdade de Farmácia, Universidade de Lisboa, Lisboa, Portugal
| | - Cristina Silva Pereira
- Instituto de Tecnologia Química e Biológica António Xavier, Universidade Nova de Lisboa (ITQB NOVA), Oeiras, Portugal
| |
Collapse
|
15
|
Dzoyem J, McGaw L, Kuete V, Bakowsky U. Anti-inflammatory and Anti-nociceptive Activities of African Medicinal Spices and Vegetables. MEDICINAL SPICES AND VEGETABLES FROM AFRICA 2017:239-270. [DOI: 10.1016/b978-0-12-809286-6.00009-1] [Citation(s) in RCA: 33] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/03/2025]
|