1
|
Gao Y, Zou Y, Sokolowskei D, Xing X, Tower RJ, Lai Z, Shi J, Zhu L, Zheng Q, James AW, Xu J, Zhang Z. Nr4a1 enhances Wnt4 transcription to promote mesenchymal stem cell osteogenesis and alleviates inflammation-inhibited bone regeneration. Mol Ther 2024; 32:1479-1496. [PMID: 38429926 PMCID: PMC11081873 DOI: 10.1016/j.ymthe.2024.02.034] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2023] [Revised: 01/15/2024] [Accepted: 02/27/2024] [Indexed: 03/03/2024] Open
Abstract
Intense inflammatory response impairs bone marrow mesenchymal stem cell (BMSC)-mediated bone regeneration, with transforming growth factor (TGF)-β1 being the most highly expressed cytokine. However, how to find effective and safe means to improve bone formation impaired by excessive TGF-β1 remains unclear. In this study, we found that the expression of orphan nuclear receptor Nr4a1, an endogenous repressor of TGF-β1, was suppressed directly by TGF-β1-induced Smad3 and indirectly by Hdac4, respectively. Importantly, Nr4a1 overexpression promoted BMSC osteogenesis and reversed TGF-β1-mediated osteogenic inhibition and pro-fibrotic effects. Transcriptomic and histologic analyses confirmed that upregulation of Nr4a1 increased the transcription of Wnt family member 4 (Wnt4) and activated Wnt pathway. Mechanistically, Nr4a1 bound to the promoter of Wnt4 and regulated its expression, thereby enhancing the osteogenic capacity of BMSCs. Moreover, treatment with Nr4a1 gene therapy or Nr4a1 agonist Csn-B could promote ectopic bone formation, defect repair, and fracture healing. Finally, we demonstrated the correlation of NR4A1 with osteogenesis and the activation of the WNT4/β-catenin pathway in human BMSCs and fracture samples. Taken together, these findings uncover the critical role of Nr4a1 in bone formation and alleviation of inflammation-induced bone regeneration disorders, and suggest that Nr4a1 has the potential to be a therapeutic target for accelerating bone healing.
Collapse
Affiliation(s)
- Yangshuai Gao
- Division of Spine Surgery, Department of Orthopaedics, Nanfang Hospital, Southern Medical University, Guangzhou, Guangdong 510515, China; The First School of Clinical Medicine, Southern Medical University, Guangzhou, Guangdong 510515, China
| | - Yuming Zou
- Academy of Orthopedics·Guangdong Province, Guangdong Provincial Key Laboratory of Bone and Joint Degeneration Diseases, The Third Affiliated Hospital of Southern Medical University, Guangzhou 510630, China; Department of Joint Surgery, Center for Orthopedic Surgery, The Third Affiliated Hospital of Southern Medical University, Guangzhou 510630, China
| | - Dimitri Sokolowskei
- Center for Organogenesis, Regeneration and Trauma, Department of Surgery, University of Texas Southwestern Medical Center, Dallas, TX 75390, USA
| | - Xin Xing
- Department of Pathology, Johns Hopkins University, Baltimore, MD 21205, USA
| | - Robert J Tower
- Center for Organogenesis, Regeneration and Trauma, Department of Surgery, University of Texas Southwestern Medical Center, Dallas, TX 75390, USA
| | - Zejia Lai
- The First School of Clinical Medicine, Southern Medical University, Guangzhou, Guangdong 510515, China
| | - Jiawei Shi
- Division of Spine Surgery, Department of Orthopaedics, Nanfang Hospital, Southern Medical University, Guangzhou, Guangdong 510515, China
| | - Liheng Zhu
- The First School of Clinical Medicine, Southern Medical University, Guangzhou, Guangdong 510515, China
| | - Quan Zheng
- Department of Orthopedic Surgery, Luan Hospital Affiliated to Anhui Medical University, Luan, Anhui 237001, China
| | - Aaron W James
- Department of Pathology, Johns Hopkins University, Baltimore, MD 21205, USA.
| | - Jiajia Xu
- Division of Spine Surgery, Department of Orthopaedics, Nanfang Hospital, Southern Medical University, Guangzhou, Guangdong 510515, China; Academy of Orthopedics·Guangdong Province, Guangdong Provincial Key Laboratory of Bone and Joint Degeneration Diseases, The Third Affiliated Hospital of Southern Medical University, Guangzhou 510630, China.
| | - Zhongmin Zhang
- Division of Spine Surgery, Department of Orthopaedics, Nanfang Hospital, Southern Medical University, Guangzhou, Guangdong 510515, China.
| |
Collapse
|
2
|
Zhao R, He T, Xing Y, Luo J. COG1410 regulates microglial states and protects retinal ganglion cells in retinal ischemia-reperfusion injury. Exp Eye Res 2023; 237:109678. [PMID: 37839665 DOI: 10.1016/j.exer.2023.109678] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2023] [Revised: 09/26/2023] [Accepted: 10/12/2023] [Indexed: 10/17/2023]
Abstract
Progressive loss of retinal ganglion cells (RGCs) caused by retinal ischemia-reperfusion (IR) injury can lead to irreversible vision impairment, with neuroinflammatory responses playing an important role in this process. COG1410, a mimetic peptide of apolipoprotein E, has demonstrated protective potential in the central nervous system, but its effects on retinal IR injury remain unexplored. In this study, we established a mouse model of retinal IR injury to investigate the effects of COG1410 on retinal microglia and RGCs. We observed CD16/32-marked and CD206-marked microglia and RGCs using immunofluorescence staining, detected the expression of inflammatory factors by PCR, and evaluated retinal apoptosis with TUNEL staining. We further investigated the potential mechanism by detecting the expression of key proteins via Western blot. The results reveal that COG1410 decreased the number of CD16/32-marked microglia and increased the number of CD206-marked microglia, alleviated the expression of IL-1β and TNF-α, and reduced the loss of RGCs by inhibiting the mitochondrial-related apoptotic pathway. COG1410 was found to increase the expression of ERK1/2 and Nr4a1 but decrease the expression of NF-κB. The expression of TREM2 showed an increasing trend after COG1410 administration, but it was not statistically significant. In conclusion, COG1410 regulates microglial states and protects RGCs in retinal IR injury, showing promising potential for the treatment of eye diseases.
Collapse
Affiliation(s)
- Ru Zhao
- Department of Ophthalmology, Renmin Hospital of Wuhan University, Wuhan, 430060, China
| | - Tao He
- Department of Ophthalmology, Renmin Hospital of Wuhan University, Wuhan, 430060, China
| | - Yiqiao Xing
- Department of Ophthalmology, Renmin Hospital of Wuhan University, Wuhan, 430060, China
| | - Jinyuan Luo
- Department of Ophthalmology, Renmin Hospital of Wuhan University, Wuhan, 430060, China.
| |
Collapse
|
3
|
DiKun KM, Gudas LJ. Vitamin A and retinoid signaling in the kidneys. Pharmacol Ther 2023; 248:108481. [PMID: 37331524 PMCID: PMC10528136 DOI: 10.1016/j.pharmthera.2023.108481] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2023] [Revised: 05/18/2023] [Accepted: 06/14/2023] [Indexed: 06/20/2023]
Abstract
Vitamin A (VA, retinol) and its metabolites (commonly called retinoids) are required for the proper development of the kidney during embryogenesis, but retinoids also play key roles in the function and repair of the kidney in adults. Kidneys filter 180-200 liters of blood per day and each kidney contains approximately 1 million nephrons, which are often referred to as the 'functional units' of the kidney. Each nephron consists of a glomerulus and a series of tubules (proximal tubule, loop of Henle, distal tubule, and collecting duct) surrounded by a network of capillaries. VA is stored in the liver and converted to active metabolites, most notably retinoic acid (RA), which acts as an agonist for the retinoic acid receptors ((RARs α, β, and γ) to regulate gene transcription. In this review we discuss some of the actions of retinoids in the kidney after injury. For example, in an ischemia-reperfusion model in mice, injury-associated loss of proximal tubule (PT) differentiation markers occurs, followed by re-expression of these differentiation markers during PT repair. Notably, healthy proximal tubules express ALDH1a2, the enzyme that metabolizes retinaldehyde to RA, but transiently lose ALDH1a2 expression after injury, while nearby myofibroblasts transiently acquire RA-producing capabilities after injury. These results indicate that RA is important for renal tubular injury repair and that compensatory mechanisms exist for the generation of endogenous RA by other cell types upon proximal tubule injury. ALDH1a2 levels also increase in podocytes, epithelial cells of the glomeruli, after injury, and RA promotes podocyte differentiation. We also review the ability of exogenous, pharmacological doses of RA and receptor selective retinoids to treat numerous kidney diseases, including kidney cancer and diabetic kidney disease, and the emerging genetic evidence for the importance of retinoids and their receptors in maintaining or restoring kidney function after injury. In general, RA has a protective effect on the kidney after various types of injuries (eg. ischemia, cytotoxic actions of chemicals, hyperglycemia related to diabetes). As more research into the actions of each of the three RARs in the kidney is carried out, a greater understanding of the actions of vitamin A is likely to lead to new insights into the pathology of kidney disorders and the development of new therapies for kidney diseases.
Collapse
Affiliation(s)
- Krysta M DiKun
- Department of Pharmacology, Weill Cornell Medical College of Cornell University, New York, NY, USA; New York Presbyterian Hospital, New York, NY, USA; Weill Cornell Graduate School of Medical Sciences, New York, NY, USA
| | - Lorraine J Gudas
- Department of Pharmacology, Weill Cornell Medical College of Cornell University, New York, NY, USA; Department of Urology, Weill Cornell Medicine, New York, NY, USA; New York Presbyterian Hospital, New York, NY, USA; Weill Cornell Graduate School of Medical Sciences, New York, NY, USA.
| |
Collapse
|
4
|
Fang H, Cao Y, Zhang J, Wang X, Li M, Hong Z, Wu Z, Fang M. Lipidome remodeling activities of DPA-EA in palmitic acid-stimulated HepG2 cells and the in vivo anti-obesity effect of the DPA-EA and DHA-EA mixture prepared from algae oil. Front Pharmacol 2023; 14:1146276. [PMID: 37063272 PMCID: PMC10090563 DOI: 10.3389/fphar.2023.1146276] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2023] [Accepted: 03/15/2023] [Indexed: 03/31/2023] Open
Abstract
Background: The nuclear receptor Nur77 has been demonstrated to play a vital role in the inflammatory response and cellular metabolisms, and its ligands exhibit efficacy in the treatment of inflammation-related diseases (e.g., improving mouse acute lung injury (ALI) and obesity. Recently, ω-3 polyunsaturated fatty acid-ethanolamine derivatives (ω-3 PUFA-EAs), including DPA-EA and DHA-EA, have been reported as new Nur77-targeting anti-inflammatory agents. However, the lipid-lowering effect of ω-3 PUFA-EAs is still unknown, and lipid profile changes induced by Nur77-targeting anti-inflammatory agents also remain unclear.Objective: This study aimed to evaluate the lipid-lowering effect and the underlying mechanism of DPA-EA acting as Nur77-targeting anti-inflammatory agents. It also aimed to investigate the in vitro and in vivo lipid-lowering effects of the DPA-EA and DHA-EA mixture prepared from algae oil.Methods: The in vitro lipid-lowing effect of DPA-EA and its mixture with DHA-EA was first evaluated in palmitic acid-stimulated HepG2 Cells. To confirm the lipid-lowering effect and explore the underlying mechanism, we performed untargeted lipidomic analysis using ultra-performance liquid chromatography/triple quadrupole-time-of-flight (TOF) mass spectrometry coupled with multivariate statistical analysis, with another Nur77-targeting anti-inflammatory compound Celastrol (Cel) as a reference. Finally, we examined the anti-obesity effect of the DPA-EA and DHA-EA mixture synthesized from algae oil in a high-fat diet (HFD)-fed mice model.Results: DPA-EA significantly alleviated lipid accumulation with lower toxicity than Celastrol. Nur77-targeting compounds DPA-EA and Celastrol could simultaneously reduce 14 lipids (9 TGs, 2 PCs, 1 PA, 1 SM, and 1 LacCer) and increase 13 lipids (4 DGs, 6 LPEs, 2 PEs, and 1PC) in Pal-stimulated HepG2 cells. However, Cer lipids were more sensitive to DPA-EA, while the over-downregulation of SM lipids might be associated with the off-target toxicity of Celastrol. The mixture of DPA-EA and DHA-EA synthesized from algae oil could significantly decrease TG, TC, and LDL levels and increase HDL levels in HFD-fed mice, exerting an excellent anti-obesity effect.Conclusion: Nur77-targeting anti-inflammatory compound DAP-EA could promote the hydrolysis of PEs and TGs to ameliorate lipid accumulation. The DPA-EA and DHA-EA mixture prepared from algae oil might be a potential therapeutic agent for obesity and other inflammation-related diseases.
Collapse
Affiliation(s)
- Hua Fang
- Technical Innovation Center for Utilization of Marine Biological Resources, Third Institute of Oceanography, Ministry of Natural Resources, Xiamen, China
| | - Yin Cao
- Fujian Provincial Key Laboratory of Innovative Drug Target Research and State Key Laboratory of Cellular Stress Biology, School of Pharmaceutical Sciences, Xiamen University, Xiamen, China
| | - Jianyu Zhang
- Fujian Provincial Key Laboratory of Innovative Drug Target Research and State Key Laboratory of Cellular Stress Biology, School of Pharmaceutical Sciences, Xiamen University, Xiamen, China
| | - Xiumei Wang
- Fujian Provincial Key Laboratory of Innovative Drug Target Research and State Key Laboratory of Cellular Stress Biology, School of Pharmaceutical Sciences, Xiamen University, Xiamen, China
| | - Mengyu Li
- Technical Innovation Center for Utilization of Marine Biological Resources, Third Institute of Oceanography, Ministry of Natural Resources, Xiamen, China
- College of Ocean Food and Biological Engineering, Jimei University, Xiamen, China
| | - Zhuan Hong
- Technical Innovation Center for Utilization of Marine Biological Resources, Third Institute of Oceanography, Ministry of Natural Resources, Xiamen, China
| | - Zhen Wu
- Fujian Provincial Key Laboratory of Innovative Drug Target Research and State Key Laboratory of Cellular Stress Biology, School of Pharmaceutical Sciences, Xiamen University, Xiamen, China
| | - Meijuan Fang
- Fujian Provincial Key Laboratory of Innovative Drug Target Research and State Key Laboratory of Cellular Stress Biology, School of Pharmaceutical Sciences, Xiamen University, Xiamen, China
- *Correspondence: Meijuan Fang,
| |
Collapse
|
5
|
Birari P, Mal S, Majumder D, Sharma AK, Kumar M, Das T, Ghosh Z, Jana K, Gupta UD, Kundu M, Basu J. Nur77 influences immunometabolism to regulate the release of proinflammatory cytokines and the formation of lipid bodies during Mycobacterium tuberculosis infection of macrophages. Pathog Dis 2023; 81:ftad033. [PMID: 38017622 DOI: 10.1093/femspd/ftad033] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2023] [Revised: 10/05/2023] [Accepted: 11/27/2023] [Indexed: 11/30/2023] Open
Abstract
Infection of macrophages with Mycobacterium tuberculosis induces innate immune responses designed to clear the invading bacterium. However, bacteria often survive within the intracellular environment by exploiting these responses triggered by macrophages. Here, the role of the orphan nuclear receptor Nur77 (Nr4a1) in regulating the response of macrophages infected with M. tuberculosis (Mtb) has been delineated. Nur77 is induced early during infection, regulates metabolism by binding directly at the promoter of the TCA cycle enzyme, isocitrate dehydrogenase 2 (IDH2), to act as its repressor, and shifts the balance from a proinflammatory to an anti-inflammatory phenotype. Depletion of Nur77 increased transcription of IDH2 and, consequently, the levels of intracellular succinate, leading to enhanced levels of the proinflammatory cytokine IL-1β. Further, Nur77 inhibited the production of antibacterial nitric oxide and IL-1β in a succinate dehydrogenase (SDH)-dependent manner, suggesting that its induction favors bacterial survival by suppressing bactericidal responses. Indeed, depletion of Nur77 inhibited the intracellular survival of Mtb. On the other hand, depletion of Nur77 enhanced lipid body formation, suggesting that the fall in Nur77 levels as infection progresses likely favors foamy macrophage formation and long-term survival of Mtb in the host milieu.
Collapse
Affiliation(s)
- Pankaj Birari
- Department of Chemical Sciences, Bose Institute, 93/1 APC Road, Kolkata 700009, India
| | - Soumya Mal
- Department of Biological Sciences, Bose Institute, Unified Academic Campus, EN 80, Sector V, Bidhan Nagar, Kolkata 700091, India
| | - Debayan Majumder
- Department of Chemical Sciences, Bose Institute, 93/1 APC Road, Kolkata 700009, India
| | - Arun K Sharma
- Department of Chemical Sciences, Bose Institute, 93/1 APC Road, Kolkata 700009, India
| | - Manish Kumar
- Department of Chemical Sciences, Bose Institute, 93/1 APC Road, Kolkata 700009, India
| | - Troyee Das
- Department of Biological Sciences, Bose Institute, Unified Academic Campus, EN 80, Sector V, Bidhan Nagar, Kolkata 700091, India
| | - Zhumur Ghosh
- Department of Biological Sciences, Bose Institute, Unified Academic Campus, EN 80, Sector V, Bidhan Nagar, Kolkata 700091, India
| | - Kuladip Jana
- Department of Biological Sciences, Bose Institute, Unified Academic Campus, EN 80, Sector V, Bidhan Nagar, Kolkata 700091, India
| | - Umesh D Gupta
- National JALMA Institute of Leprosy and Other Mycobacterial Disease, Agra 282001, India
| | - Manikuntala Kundu
- Department of Chemical Sciences, Bose Institute, 93/1 APC Road, Kolkata 700009, India
| | - Joyoti Basu
- Department of Chemical Sciences, Bose Institute, 93/1 APC Road, Kolkata 700009, India
| |
Collapse
|
6
|
Bennett AK, Richner M, Mun MD, Richner JM. Type I IFN stimulates lymph node stromal cells from adult and old mice during a West Nile virus infection. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.01.05.522898. [PMID: 36711838 PMCID: PMC9881888 DOI: 10.1101/2023.01.05.522898] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
Abstract
Advanced age is a significant risk factor during viral infection due to an age-associated decline in the immune response. Older individuals are especially susceptible to severe neuroinvasive disease after West Nile virus (WNV) infection. Previous studies have characterized age-associated defects in hematopoietic immune cells during WNV infection that culminate in diminished antiviral immunity. Situated amongst immune cells in the draining lymph node (DLN) are structural networks of nonhematopoietic lymph node stromal cells (LNSCs). LNSCs are comprised of numerous, diverse subsets, with critical roles in the coordination of robust immune responses. The contributions of LNSCs to WNV immunity and immune senescence are unclear. Here, we examine LNSC responses to WNV within adult and old DLNs. Acute WNV infection triggered cellular infiltration and LNSC expansion in adult. Comparatively, aged DLNs exhibited diminished leukocyte accumulation, delayed LNSC expansion, and altered fibroblast and endothelial cell subset composition, signified by fewer LECs. We established an ex vivo culture system to probe LNSC function. Adult and old LNSCs both recognized an ongoing viral infection primarily through type I IFN signaling. Gene expression signatures were similar between adult and old LNSCs. Aged LNSCs were found to constitutively upregulate immediate early response genes. Collectively, these data suggest LNSCs uniquely respond to WNV infection. We are the first to report age-associated differences in LNSCs on the population- and gene expression-level during WNV infection. These changes may compromise antiviral immunity, leading to increased WNV disease in older individuals.
Collapse
|
7
|
The Nurr7 agonist Cytosporone B differentially regulates inflammatory responses in human polarized macrophages. Immunobiology 2022; 227:152299. [DOI: 10.1016/j.imbio.2022.152299] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2022] [Revised: 09/21/2022] [Accepted: 10/26/2022] [Indexed: 11/11/2022]
|
8
|
Ma G, Chen F, Liu Y, Zheng L, Jiang X, Tian H, Wang X, Song X, Yu Y, Wang D. Nur77 ameliorates age-related renal tubulointerstitial fibrosis by suppressing the TGF-β/Smads signaling pathway. FASEB J 2022; 36:e22124. [PMID: 34972249 DOI: 10.1096/fj.202101332r] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2021] [Revised: 12/01/2021] [Accepted: 12/13/2021] [Indexed: 01/10/2023]
Abstract
Nerve growth factor-induced gene B (Nur77) has been shown to ameliorate several biological processes in chronic diseases, including inflammatory response, cellular proliferation, and metabolism. Chronic kidney disease (CKD) is characterized by tubulointerstitial fibrosis for which no targeted therapies are available as yet. In this study, we performed in vivo and in vitro experiments to demonstrate that Nur77 targets fibrosis signals and attenuates renal tubulointerstitial fibrosis during the aging process. We observed that the TGF-β/Smads signal pathway was significantly suppressed by Nur77, suggesting that Nur77 controlled the activation of key steps in TGF-β/Smads signaling. We further showed that Nur77 interacted with Smad7, the main repressor of nuclear translocation of Smad2/3, and stabilized Smad7 protein homeostasis. Nur77 deficiency resulted in Smad7 degradation, aggravating Smad2/3 phosphorylation, and promoting transcription of its downstream target genes, ACTA2 and collagen I. Our findings demonstrate that Nur77 is a potential therapeutic target for age-related kidney diseases including CKD. Maintenance of Nur77 may be an effective strategy for blocking renal tubulointerstitial fibrosis and improving renal function in the elderly.
Collapse
Affiliation(s)
- Guojing Ma
- Department of Gerontology and Geriatrics, Shengjing Hospital of China Medical University, Shenyang, China.,Key Laboratory of Medical Cell Biology, Institute of Translational Medicine, China Medical University, Shenyang, China
| | - Feng Chen
- Department of Gerontology and Geriatrics, Shengjing Hospital of China Medical University, Shenyang, China
| | - Yixuan Liu
- Department of Gerontology and Geriatrics, Shengjing Hospital of China Medical University, Shenyang, China
| | - Lixia Zheng
- Key Laboratory of Medical Cell Biology, Institute of Translational Medicine, China Medical University, Shenyang, China.,Institute of Health Sciences, China Medical University, Shenyang, China
| | - Xuehan Jiang
- Key Laboratory of Medical Cell Biology, Institute of Translational Medicine, China Medical University, Shenyang, China.,Institute of Health Sciences, China Medical University, Shenyang, China
| | - Huanlian Tian
- Department of Health Statistics, School of Public Health, China Medical University, Shenyang, China
| | - Xiaoxun Wang
- Department of Medical Oncology, the First Hospital of China Medical University, Shenyang, China
| | - Xiaoyu Song
- Key Laboratory of Medical Cell Biology, Institute of Translational Medicine, China Medical University, Shenyang, China.,Institute of Health Sciences, China Medical University, Shenyang, China
| | - Yang Yu
- Key Laboratory of Medical Cell Biology, Institute of Translational Medicine, China Medical University, Shenyang, China.,Institute of Health Sciences, China Medical University, Shenyang, China
| | - Difei Wang
- Department of Gerontology and Geriatrics, Shengjing Hospital of China Medical University, Shenyang, China
| |
Collapse
|
9
|
Li M, Xue Y. The upregulation of Nur77 decreases ketamine-induced hippocampal neurons toxicity in rats. Neuroreport 2021; 32:1370-1378. [PMID: 34718249 DOI: 10.1097/wnr.0000000000001738] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
Abstract
Ketamine is clinically used as a narcotic. However, ketamine has certain deficits and produces toxicity to neurons. As a member of the NR4A receptor subfamily, Nur77 decreases neurodegenerative disorders. The study aims to investigate the effects of upregulated Nur77 on ketamine-induced rat hippocampal neurons damage and the active mechanism. Neurons were obtained from rat hippocampal and identified by immunofluorescence assays. The treatment groups contained ketamine group, Nur77 group, ketamine + Nur77 group and ketamine + L-cam group. Neurons apoptosis and reactive oxygen species (ROS) were determined by a related kit using flow cytometry. Enzyme NAD(P)H quinone oxidoreductase 1 (NQO1), enzyme heme oxygenase 1 (HO1), Nur77, the expression of Bax, Bcl-2 and cleaved-caspase-3 and inflammatory cytokines were measured using western blot assays and reverse transcription-quantitative PCR (RT-qPCR) assays. Ketamine-induced neurons apoptosis; however, Nur77 decreased ketamine-induced neurons apoptosis. A low level of ROS was observed in two combination groups. Neurons treated by ketamine only had the lowest levels of Nur77, NQO1 and HO1, compared with other treatment groups. The levels of Bax and cleaved-caspase-3 in two combination groups were lower than those in the ketamine group. Furthermore, the ketamine group had higher levels of tumor necrosis factor alpha, IL-1β and IL-6 but the lowest level of IL-4. Upregulated Nur77 reduced the ketamine-induced toxicity in neurons. The mechanism of Nur77 involved antioxidation, apoptosis signaling pathway and inflammation signaling pathway. Our study provides a novel therapy that could attenuate ketamine-induced toxicity.
Collapse
Affiliation(s)
- Min Li
- Department of Neurology, Taizhou First People's Hospital, Taizhou, Zhejiang, China
| | | |
Collapse
|
10
|
Fang H, Zhang J, Ao M, He F, Chen W, Qian Y, Zhang Y, Xu Y, Fang M. Synthesis and discovery of ω-3 polyunsaturated fatty acid- alkanolamine (PUFA-AA) derivatives as anti-inflammatory agents targeting Nur77. Bioorg Chem 2020; 105:104456. [PMID: 33217634 DOI: 10.1016/j.bioorg.2020.104456] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2020] [Revised: 09/07/2020] [Accepted: 11/01/2020] [Indexed: 12/16/2022]
Abstract
In this work, three series of ω-3 polyunsaturated fatty acid-alkanolamine derivatives (PUFA-AAs) were synthesized, characterized and their anti-inflammatory activity in vivo was evaluated. Compounds 4a, 4f, and 4k exhibited marked anti-inflammatory activity in LPS-stimulated RAW 264.7 cells. The most promising compound 4k dose-dependently suppressed the cytokines with IC50 values in the low micromolar range. Further, 4k exhibited potential in vitro Nur77-binding affinity (Kd = 6.99 × 10-6 M) which is consistent with the result of docking studies. Next, the anti-inflammatory mechanism of 4k was found to be through NF-κB signal pathway in a Nur77-dependent manner. Moreover, we also observed 4k significantly inhibited LPS-induced expression of cytokines (IL-6, TNF-α, and IL-1β) through suppressing NF-κB activation and attenuated LPS-induced inflammation in mouse acute lung injury (ALI) model. In conclusion, the study strongly suggests that the PUFA-AA derivatives can be particularly as new Nur77 mediators for further treatment in inflammatory diseases.
Collapse
Affiliation(s)
- Hua Fang
- Third Institute of Oceanography, Ministry of Natural Resources, Technical Innovation Center for Utilization of Marine Biological Resources, Ministry of Natural Resources, Xiamen 361005, China
| | - Jianyu Zhang
- Fujian Provincial Key Laboratory of Innovative Drug Target Research and State Key Laboratory of Cellular Stress Biology, School of Pharmaceutical Sciences, Xiamen University, Xiamen 361102, China
| | - Mingtao Ao
- Fujian Provincial Key Laboratory of Innovative Drug Target Research and State Key Laboratory of Cellular Stress Biology, School of Pharmaceutical Sciences, Xiamen University, Xiamen 361102, China
| | - Fengming He
- Fujian Provincial Key Laboratory of Innovative Drug Target Research and State Key Laboratory of Cellular Stress Biology, School of Pharmaceutical Sciences, Xiamen University, Xiamen 361102, China
| | - Weizhu Chen
- Third Institute of Oceanography, Ministry of Natural Resources, Technical Innovation Center for Utilization of Marine Biological Resources, Ministry of Natural Resources, Xiamen 361005, China
| | - Yuqing Qian
- Fujian Provincial Key Laboratory of Innovative Drug Target Research and State Key Laboratory of Cellular Stress Biology, School of Pharmaceutical Sciences, Xiamen University, Xiamen 361102, China
| | - Yuxiang Zhang
- Fujian Provincial Key Laboratory of Innovative Drug Target Research and State Key Laboratory of Cellular Stress Biology, School of Pharmaceutical Sciences, Xiamen University, Xiamen 361102, China
| | - Yang Xu
- Fujian Provincial Key Laboratory of Innovative Drug Target Research and State Key Laboratory of Cellular Stress Biology, School of Pharmaceutical Sciences, Xiamen University, Xiamen 361102, China.
| | - Meijuan Fang
- Fujian Provincial Key Laboratory of Innovative Drug Target Research and State Key Laboratory of Cellular Stress Biology, School of Pharmaceutical Sciences, Xiamen University, Xiamen 361102, China.
| |
Collapse
|
11
|
Lith SC, van Os BW, Seijkens TTP, de Vries CJM. 'Nur'turing tumor T cell tolerance and exhaustion: novel function for Nuclear Receptor Nur77 in immunity. Eur J Immunol 2020; 50:1643-1652. [PMID: 33063848 PMCID: PMC7702156 DOI: 10.1002/eji.202048869] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2020] [Revised: 08/28/2020] [Accepted: 10/14/2020] [Indexed: 12/14/2022]
Abstract
The nuclear receptor Nur77 is expressed in a multitude of tissues, regulating cell differentiation and homeostasis. Dysregulation of Nur77 signaling is associated with cancer, cardiovascular disease, and disorders of the CNS. The role of Nur77 in T cells has been studied for almost 30 years now. There is a clear appreciation that Nur77 is crucial for apoptosis of self‐reactive T cells. However, the regulation and function of Nur77 in mature T cells remains largely unclear. In an exciting development, Nur77 has been recently demonstrated to impinge on cancer immunotherapy involving chimeric antigen receptor (CAR) T cells and tumor infiltrating lymphocytes (TILs). These studies indicated that Nur77 deficiency reduced T cell tolerance and exhaustion, thus raising the effectiveness of immune therapy in mice. Based on these novel insights, it may be proposed that regulation of Nur77 activity holds promise for innovative drug development in the field of cellular immunotherapy in cancer. In this review, we therefore summarize the role of Nur77 in T cell selection and maturation; and further develop the idea of targeting its activity in these cells as a potential strategy to augment current cancer immunotherapy treatments.
Collapse
Affiliation(s)
- Sanne C Lith
- Department of Medical Biochemistry, Amsterdam UMC, Amsterdam Cardiovascular Sciences, Institute for Infection and Immunity, Amsterdam, The Netherlands
| | - Bram W van Os
- Department of Medical Biochemistry, Amsterdam UMC, Amsterdam Cardiovascular Sciences, Institute for Infection and Immunity, Amsterdam, The Netherlands
| | - Tom T P Seijkens
- Department of Medical Biochemistry, Amsterdam UMC, Amsterdam Cardiovascular Sciences, Cancer Center Amsterdam, Amsterdam, The Netherlands.,Department of Internal Medicine, Department of Hematology, Amsterdam UMC, Vrije Universiteit, Amsterdam, The Netherlands
| | - Carlie J M de Vries
- Department of Medical Biochemistry, Amsterdam UMC, Amsterdam Cardiovascular Sciences, Institute for Infection and Immunity, Amsterdam, The Netherlands
| |
Collapse
|
12
|
Lv Q, Yang A, Shi W, Chen F, Liu Y, Liu Y, Wang D. Calcipotriol and iBRD9 reduce obesity in Nur77 knockout mice by regulating the gut microbiota, improving intestinal mucosal barrier function. Int J Obes (Lond) 2020; 44:1052-1061. [PMID: 32203112 PMCID: PMC7188666 DOI: 10.1038/s41366-020-0564-0] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/31/2019] [Revised: 02/26/2020] [Accepted: 03/04/2020] [Indexed: 12/26/2022]
Abstract
Objective The orphan nuclear receptor Nur77 is an important factor regulating metabolism. Nur77 knockout mice become obese with age, but the cause of obesity in these mice has not been fully ascertained. We attempted to explain the cause of obesity in Nur77 knockout mice from the perspective of the gut microbiota and to investigate the inhibitory effect of calcipotriol combined with BRD9 inhibitor (iBRD9) on obesity. Methods Eight-week-old wild-type mice and Nur77 knockout C57BL/6J mice were treated with calcipotriol combined with iBRD9 for 12 weeks. Mouse feces were collected and the gut microbiota was assessed by analyzing 16S rRNA gene sequences. The bacterial abundance difference was analyzed, and the intestinal mucosal tight junction protein, antimicrobial peptide, and inflammatory cytokine mRNA levels of the colon and serum LPS and inflammatory cytokine levels were measured. Results Calcipotriol combined with iBRD9 treatment reduced the body weight and body fat percentage in Nur77 knockout mice. In the gut microbiota of Nur77 knockout mice, the relative abundances of Lachnospiraceae and Prevotellaceae decreased, and Rikenellaceae increased; while Rikenellaceae decreased after treatment (p < 0.05). Correspondingly, the mRNA levels of intestinal mucosal tight junction proteins (occludin (Ocln), claudin3 (Cldn3)) in the colons of Nur77 knockout mice were significantly decreased, and they increased significantly after treatment (p < 0.001). The mRNA levels of inflammatory cytokines (tumor necrosis factor-α (TNF-α), interleukin-6 (IL-6), and interleukin-1β (IL-1β)) were significantly increased in Nur77 knockout mice, and TNF-α and IL-6 levels were significantly decreased after treatment (p < 0.05, <0.01, or <0.001). The levels of serum LPS, TNF-α, and IL-1β in Nur77 knockout mice were significantly increased (p < 0.05). Serum LPS, TNF-α, and IL-6 levels were significantly decreased after treatment (p < 0.05 or <0.01). Conclusions Calcipotriol combined with iBRD9 can regulate the gut microbiota, improve intestinal mucosal barrier function, reduce LPS absorption into the blood, and alleviate obesity in Nur77 knockout mice.
Collapse
Affiliation(s)
- Qingqing Lv
- Nutrition Department, The First Hospital of China Medical University, Shenyang, Liaoning, China
| | - Aolin Yang
- Nutrition Department, The First Hospital of China Medical University, Shenyang, Liaoning, China
| | - Wanying Shi
- Nutrition Department, The First Hospital of China Medical University, Shenyang, Liaoning, China
| | - Feng Chen
- Department of Geriatric Endocrinology, The First Hospital of China Medical University, Shenyang, Liaoning, China
| | - Yixuan Liu
- Department of Geriatric Endocrinology, The First Hospital of China Medical University, Shenyang, Liaoning, China
| | - Ying Liu
- Department of Biochemistry and Molecular Biology, China Medical University, Shenyang, Liaoning, China
| | - Difei Wang
- Department of Geriatric Endocrinology, The First Hospital of China Medical University, Shenyang, Liaoning, China.
| |
Collapse
|
13
|
Koenis DS, Medzikovic L, van Loenen PB, van Weeghel M, Huveneers S, Vos M, Evers-van Gogh IJ, Van den Bossche J, Speijer D, Kim Y, Wessels L, Zelcer N, Zwart W, Kalkhoven E, de Vries CJ. Nuclear Receptor Nur77 Limits the Macrophage Inflammatory Response through Transcriptional Reprogramming of Mitochondrial Metabolism. Cell Rep 2020; 24:2127-2140.e7. [PMID: 30134173 PMCID: PMC6113932 DOI: 10.1016/j.celrep.2018.07.065] [Citation(s) in RCA: 101] [Impact Index Per Article: 20.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2017] [Revised: 04/20/2018] [Accepted: 07/18/2018] [Indexed: 11/25/2022] Open
Abstract
Activation of macrophages by inflammatory stimuli induces reprogramming of mitochondrial metabolism to support the production of pro-inflammatory cytokines and nitric oxide. Hallmarks of this metabolic rewiring are downregulation of α-ketoglutarate formation by isocitrate dehydrogenase (IDH) and accumulation of glutamine-derived succinate, which enhances the inflammatory response via the activity of succinate dehydrogenase (SDH). Here, we identify the nuclear receptor Nur77 (Nr4a1) as a key upstream transcriptional regulator of this pro-inflammatory metabolic switch in macrophages. Nur77-deficient macrophages fail to downregulate IDH expression and accumulate higher levels of succinate and other TCA cycle-derived metabolites in response to inflammatory stimulation in a glutamine-independent manner. Consequently, these macrophages produce more nitric oxide and pro-inflammatory cytokines in an SDH-dependent manner. In vivo, bone marrow Nur77 deficiency exacerbates atherosclerosis development and leads to increased circulating succinate levels. In summary, Nur77 induces an anti-inflammatory metabolic state in macrophages that protects against chronic inflammatory diseases such as atherosclerosis. Genome-wide profiling indicates that Nur77 regulates macrophage mitochondrial metabolism Nur77 inhibits IDH expression and TCA cycle activity in inflammatory macrophages Nur77-deficient macrophages produce more nitric oxide and cytokines via SDH Nur77 deficiency increases circulating succinate levels and atherosclerosis in vivo
Collapse
Affiliation(s)
- Duco Steven Koenis
- Amsterdam UMC, University of Amsterdam, Medical Biochemistry, Amsterdam Cardiovascular Sciences, Meibergdreef 9, Amsterdam 1105 AZ, The Netherlands
| | - Lejla Medzikovic
- Amsterdam UMC, University of Amsterdam, Medical Biochemistry, Amsterdam Cardiovascular Sciences, Meibergdreef 9, Amsterdam 1105 AZ, The Netherlands
| | - Pieter Bas van Loenen
- Amsterdam UMC, University of Amsterdam, Medical Biochemistry, Amsterdam Cardiovascular Sciences, Meibergdreef 9, Amsterdam 1105 AZ, The Netherlands
| | - Michel van Weeghel
- Amsterdam UMC, University of Amsterdam, Genetic Metabolic Diseases, Meibergdreef 9, Amsterdam 1105 AZ, The Netherlands
| | - Stephan Huveneers
- Amsterdam UMC, University of Amsterdam, Medical Biochemistry, Amsterdam Cardiovascular Sciences, Meibergdreef 9, Amsterdam 1105 AZ, The Netherlands
| | - Mariska Vos
- Amsterdam UMC, University of Amsterdam, Medical Biochemistry, Amsterdam Cardiovascular Sciences, Meibergdreef 9, Amsterdam 1105 AZ, The Netherlands
| | - Ingrid Johanna Evers-van Gogh
- Molecular Cancer Research and Center for Molecular Medicine, University Medical Centre Utrecht, Heidelberglaan 100, Utrecht 3584 CX, The Netherlands
| | - Jan Van den Bossche
- Amsterdam UMC, University of Amsterdam, Medical Biochemistry, Amsterdam Cardiovascular Sciences, Meibergdreef 9, Amsterdam 1105 AZ, The Netherlands
| | - Dave Speijer
- Amsterdam UMC, University of Amsterdam, Medical Biochemistry, Amsterdam Cardiovascular Sciences, Meibergdreef 9, Amsterdam 1105 AZ, The Netherlands
| | - Yongsoo Kim
- Division of Molecular Pathology, the Netherlands Cancer Institute, Plesmanlaan 121, Amsterdam 1066 CX, The Netherlands
| | - Lodewyk Wessels
- Division of Molecular Carcinogenesis, the Netherlands Cancer Institute, Plesmanlaan 121, Amsterdam 1066 CX, The Netherlands
| | - Noam Zelcer
- Amsterdam UMC, University of Amsterdam, Medical Biochemistry, Amsterdam Cardiovascular Sciences, Meibergdreef 9, Amsterdam 1105 AZ, The Netherlands
| | - Wilbert Zwart
- Division of Molecular Pathology, the Netherlands Cancer Institute, Plesmanlaan 121, Amsterdam 1066 CX, The Netherlands
| | - Eric Kalkhoven
- Molecular Cancer Research and Center for Molecular Medicine, University Medical Centre Utrecht, Heidelberglaan 100, Utrecht 3584 CX, The Netherlands
| | - Carlie Jacoba de Vries
- Amsterdam UMC, University of Amsterdam, Medical Biochemistry, Amsterdam Cardiovascular Sciences, Meibergdreef 9, Amsterdam 1105 AZ, The Netherlands.
| |
Collapse
|
14
|
Mittelstadt PR, Taves MD, Ashwell JD. Glucocorticoids Oppose Thymocyte Negative Selection by Inhibiting Helios and Nur77. THE JOURNAL OF IMMUNOLOGY 2019; 203:2163-2170. [PMID: 31527196 DOI: 10.4049/jimmunol.1900559] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/15/2019] [Accepted: 08/15/2019] [Indexed: 12/18/2022]
Abstract
Glucocorticoid (GC) signaling in thymocytes shapes the TCR repertoire by antagonizing thymocyte negative selection. The transcription factors Nur77 and Helios, which are upregulated in TCR-signaled thymocytes, have been implicated in negative selection. In this study, we found that GCs inhibited Helios and, to a lesser extent, Nur77 upregulation in TCR-stimulated mouse thymocytes. Inhibition was increased by GC preincubation, and reductions in mRNA were prevented by a protein synthesis inhibitor, suggesting that GCs suppress indirectly via an intermediary factor. Upregulation of Helios in TCR-stimulated thymocytes was unaffected by deletion of Nur77, indicating Nur77 and Helios are regulated independently. Whereas CD4+ thymocytes are positively selected in wild-type AND TCR-transgenic B6 mice, loss of GC receptor expression resulted in increased negative selection. Correspondingly, Helios and Nur77 levels were elevated in TCRhiCD4+CD8+ (TCR-signaled) thymocytes. Notably, deletion of Helios fully reversed this negative selection, whereas deletion of Nur77 had no effect on CD4+CD8+ cell numbers but reversed the loss of mature CD4+ thymocytes. Thus, Nur77 and Helios are GC targets that play nonredundant roles in setting the signaling threshold for thymocyte negative selection.
Collapse
Affiliation(s)
- Paul R Mittelstadt
- Laboratory of Immune Cell Biology, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, MD 20892
| | - Matthew D Taves
- Laboratory of Immune Cell Biology, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, MD 20892
| | - Jonathan D Ashwell
- Laboratory of Immune Cell Biology, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, MD 20892
| |
Collapse
|
15
|
Jin F, Li X, Deng Y, Timilshina M, Huang B, Kim DY, Chang JH, Ichinose H, Baek SH, Murakami M, Lee YJ, Chang HW. The orphan nuclear receptor NR4A1 promotes FcεRI-stimulated mast cell activation and anaphylaxis by counteracting the inhibitory LKB1/AMPK axis. Allergy 2019; 74:1145-1156. [PMID: 30565708 DOI: 10.1111/all.13702] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2018] [Revised: 10/26/2018] [Accepted: 11/05/2018] [Indexed: 01/31/2023]
Abstract
BACKGROUND Nuclear receptor subfamily 4 group A member 1 (NR4A1), an orphan nuclear receptor, has been implicated in several biological events such as metabolism, apoptosis, and inflammation. Recent studies indicate a potential role for NR4A1 in mast cells, yet its role in allergic responses remains largely unknown. OBJECTIVES The aim of this study was to clarify the role of NR4A1 in mast cell activation and anaphylaxis. METHODS To evaluate the function of NR4A1 in mast cells, the impacts of siRNA knockdown, gene knockout, adenoviral overexpression, and pharmacological inhibition of NR4A1 on FcεRI signaling and effector functions in mouse bone marrow-derived mast cells (BMMCs) in vitro and on anaphylactic responses in vivo were evaluated. RESULTS Knockdown or knockout of NR4A1 markedly suppressed degranulation and lipid mediator production by FcεRI-crosslinked BMMCs, while its overexpression augmented these responses. Treatment with a NR4A1 antagonist also blocked mast cell activation to a similar extent as NR4A1 knockdown or knockout. Moreover, mast cell-specific NR4A1-deficient mice displayed dampened anaphylactic responses in vivo. Mechanistically, NR4A1 promoted FcεRI signaling by counteracting the liver kinase B1 (LKB1)/adenosine monophosphate-activated protein kinase (AMPK) axis. Following FcεRI crosslinking, NR4A1 bound to the LKB1/AMPK complex and sequestered it in the nucleus, thereby promoting FcεRI downstream signaling pathways. Silencing or knockout of LKB1/AMPK largely abrogated the effect of NR4A1 on mast cell activation. Additionally, NR4A1 facilitated spleen tyrosine kinase activation independently of LKB1/AMPK. CONCLUSIONS Nuclear receptor subfamily 4 group A member 1 positively regulates mast cell activation by antagonizing the LKB1-AMPK-dependent negative regulatory axis. This finding may provide a novel therapeutic strategy for the development of anti-allergic compounds.
Collapse
Affiliation(s)
- Fansi Jin
- College of Pharmacy; Yeungnam University; Gyeongsan Korea
| | - Xian Li
- College of Pharmacy; Yeungnam University; Gyeongsan Korea
| | - Yifeng Deng
- College of Pharmacy; Yeungnam University; Gyeongsan Korea
| | | | - Bin Huang
- Department of Biochemistry and Molecular Biology; College of Medicine; Yeungnam University; Daegu Korea
| | - Dong-Young Kim
- College of Pharmacy; Yeungnam University; Gyeongsan Korea
| | - Jae-Hoon Chang
- College of Pharmacy; Yeungnam University; Gyeongsan Korea
| | - Hiroshi Ichinose
- School of Life Science and Technology; Tokyo Institute of Technology; Yokohama Japan
| | - Suk-Hwan Baek
- Department of Biochemistry and Molecular Biology; College of Medicine; Yeungnam University; Daegu Korea
| | - Makoto Murakami
- Laboratory of Microenvironmental Metabolic Health Sciences; Center for Disease Biology and Integrative Medicine; Graduate School of Medicine; The University of Tokyo; Hongo, Bunkyo-ku Japan
| | - Youn Ju Lee
- Department of Pharmacology; School of Medicine; Catholic University of Daegu; Daegu Korea
| | | |
Collapse
|
16
|
Banno A, Lakshmi SP, Reddy AT, Kim SC, Reddy RC. Key Functions and Therapeutic Prospects of Nur77 in Inflammation Related Lung Diseases. THE AMERICAN JOURNAL OF PATHOLOGY 2018; 189:482-491. [PMID: 30414411 DOI: 10.1016/j.ajpath.2018.10.002] [Citation(s) in RCA: 30] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Subscribe] [Scholar Register] [Received: 06/13/2018] [Revised: 09/06/2018] [Accepted: 10/04/2018] [Indexed: 12/14/2022]
Abstract
The transcription factor Nur77 belongs to the NR4A subfamily of nuclear hormone receptors. It features an atypical ligand-binding site that precludes canonical ligand binding, leading to the designation orphan nuclear receptor. However, recent studies show that small molecules can interact with the receptor and modulate its activity by inducing a conformational change in the Nur77 ligand-binding site. Nur77 expression and activation are rapidly induced by various physiological and pathologic stimuli. Once expressed, Nur77 initiates transcriptional activity and modulates expression of its target genes. Both in vitro and in vivo evidence shows that Nur77 dampens the immune response to proinflammatory stimuli, such as tumor necrosis factor-α, Toll-like receptor ligands, and oxidized lipids, primarily by suppressing NF-κB signaling. Although studies focusing on Nur77's role in lung pathophysiology are currently incomplete, available data support its involvement in the pathogenesis of lung diseases, including asthma, acute lung injury, and pulmonary fibrosis, and thus suggest a therapeutic potential for Nur77 activation in these diseases. This review addresses the mechanisms that control Nur77 as well as its known roles in inflammation-related lung diseases. Evidence regarding the therapeutic potential of Nur77-targeting molecules will also be presented. Although current knowledge is limited, additional research followed by clinical studies may firmly identify Nur77 as a pharmacologic target for inflammation-related lung diseases.
Collapse
Affiliation(s)
- Asoka Banno
- Division of Pulmonary, Allergy and Critical Care Medicine, Department of Medicine, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania
| | - Sowmya P Lakshmi
- Division of Pulmonary, Allergy and Critical Care Medicine, Department of Medicine, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania; Veterans Affairs Pittsburgh Healthcare System, Pittsburgh, Pennsylvania
| | - Aravind T Reddy
- Division of Pulmonary, Allergy and Critical Care Medicine, Department of Medicine, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania; Veterans Affairs Pittsburgh Healthcare System, Pittsburgh, Pennsylvania
| | - Seong C Kim
- Division of Pulmonary, Allergy and Critical Care Medicine, Department of Medicine, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania; Veterans Affairs Pittsburgh Healthcare System, Pittsburgh, Pennsylvania
| | - Raju C Reddy
- Division of Pulmonary, Allergy and Critical Care Medicine, Department of Medicine, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania; Veterans Affairs Pittsburgh Healthcare System, Pittsburgh, Pennsylvania.
| |
Collapse
|
17
|
Liebmann M, Hucke S, Koch K, Eschborn M, Ghelman J, Chasan AI, Glander S, Schädlich M, Kuhlencord M, Daber NM, Eveslage M, Beyer M, Dietrich M, Albrecht P, Stoll M, Busch KB, Wiendl H, Roth J, Kuhlmann T, Klotz L. Nur77 serves as a molecular brake of the metabolic switch during T cell activation to restrict autoimmunity. Proc Natl Acad Sci U S A 2018; 115:E8017-E8026. [PMID: 30072431 PMCID: PMC6112725 DOI: 10.1073/pnas.1721049115] [Citation(s) in RCA: 85] [Impact Index Per Article: 12.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022] Open
Abstract
T cells critically depend on reprogramming of metabolic signatures to meet the bioenergetic demands during activation and clonal expansion. Here we identify the transcription factor Nur77 as a cell-intrinsic modulator of T cell activation. Nur77-deficient T cells are highly proliferative, and lack of Nur77 is associated with enhanced T cell activation and increased susceptibility for T cell-mediated inflammatory diseases, such as CNS autoimmunity, allergic contact dermatitis and collagen-induced arthritis. Importantly, Nur77 serves as key regulator of energy metabolism in T cells, restricting mitochondrial respiration and glycolysis and controlling switching between different energy pathways. Transcriptional network analysis revealed that Nur77 modulates the expression of metabolic genes, most likely in close interaction with other transcription factors, especially estrogen-related receptor α. In summary, we identify Nur77 as a transcriptional regulator of T cell metabolism, which elevates the threshold for T cell activation and confers protection in different T cell-mediated inflammatory diseases.
Collapse
MESH Headings
- Animals
- Autoimmunity
- Central Nervous System/immunology
- Central Nervous System/metabolism
- Gene Expression Profiling
- Inflammation/genetics
- Inflammation/immunology
- Inflammation/metabolism
- Lymphocyte Activation
- Mice
- Mice, Knockout
- Mitochondria/genetics
- Mitochondria/immunology
- Mitochondria/metabolism
- Nuclear Receptor Subfamily 4, Group A, Member 1/genetics
- Nuclear Receptor Subfamily 4, Group A, Member 1/immunology
- Nuclear Receptor Subfamily 4, Group A, Member 1/metabolism
- Oxygen Consumption/immunology
- Receptors, Estrogen/genetics
- Receptors, Estrogen/immunology
- Receptors, Estrogen/metabolism
- T-Lymphocytes/immunology
- T-Lymphocytes/metabolism
- ERRalpha Estrogen-Related Receptor
Collapse
Affiliation(s)
- Marie Liebmann
- Department of Neurology with Institute of Translational Neurology, University Hospital Muenster, 48149 Muenster, Germany
| | - Stephanie Hucke
- Department of Neurology with Institute of Translational Neurology, University Hospital Muenster, 48149 Muenster, Germany
| | - Kathrin Koch
- Department of Neurology with Institute of Translational Neurology, University Hospital Muenster, 48149 Muenster, Germany
| | - Melanie Eschborn
- Department of Neurology with Institute of Translational Neurology, University Hospital Muenster, 48149 Muenster, Germany
| | - Julia Ghelman
- Institute of Neuropathology, University Hospital Muenster, 48149 Muenster, Germany
| | - Achmet I Chasan
- Institute of Immunology, University of Muenster, 48149 Muenster, Germany
| | - Shirin Glander
- Department of Genetic Epidemiology, Institute of Human Genetics, University of Muenster, 48149 Muenster, Germany
| | - Martin Schädlich
- Department of Genetic Epidemiology, Institute of Human Genetics, University of Muenster, 48149 Muenster, Germany
| | - Meike Kuhlencord
- Institute of Immunology, University of Muenster, 48149 Muenster, Germany
| | - Niklas M Daber
- Institute of Immunology, University of Muenster, 48149 Muenster, Germany
| | - Maria Eveslage
- Institute of Biostatistics and Clinical Research, University of Muenster, 48149 Muenster, Germany
| | - Marc Beyer
- Department of Genomics and Immunoregulation, Life and Medical Sciences Institute, University of Bonn, 53115 Bonn, Germany
- Molecular Immunology, German Center for Neurodegenerative Diseases, 53127 Bonn, Germany
| | - Michael Dietrich
- Department of Neurology, University of Düsseldorf, 40225 Düsseldorf, Germany
| | - Philipp Albrecht
- Department of Neurology, University of Düsseldorf, 40225 Düsseldorf, Germany
| | - Monika Stoll
- Department of Genetic Epidemiology, Institute of Human Genetics, University of Muenster, 48149 Muenster, Germany
| | - Karin B Busch
- Institute for Molecular Cell Biology, University of Muenster, 48149 Muenster, Germany
| | - Heinz Wiendl
- Department of Neurology with Institute of Translational Neurology, University Hospital Muenster, 48149 Muenster, Germany
| | - Johannes Roth
- Institute of Immunology, University of Muenster, 48149 Muenster, Germany
| | - Tanja Kuhlmann
- Institute of Neuropathology, University Hospital Muenster, 48149 Muenster, Germany
| | - Luisa Klotz
- Department of Neurology with Institute of Translational Neurology, University Hospital Muenster, 48149 Muenster, Germany;
| |
Collapse
|
18
|
Koenis DS, Medzikovic L, Vos M, Beldman TJ, van Loenen PB, van Tiel CM, Hamers AAJ, Otermin Rubio I, de Waard V, de Vries CJM. Nur77 variants solely comprising the amino-terminal domain activate hypoxia-inducible factor-1α and affect bone marrow homeostasis in mice and humans. J Biol Chem 2018; 293:15070-15083. [PMID: 30111591 DOI: 10.1074/jbc.ra118.002720] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2018] [Revised: 07/30/2018] [Indexed: 01/03/2023] Open
Abstract
Gene targeting via homologous recombination can occasionally result in incomplete disruption of the targeted gene. Here, we show that a widely used Nur77-deficient transgenic mouse model expresses a truncated protein encoding for part of the N-terminal domain of nuclear receptor Nur77. This truncated Nur77 protein is absent in a newly developed Nur77-deficient mouse strain generated using Cre-Lox recombination. Comparison of these two mouse strains using immunohistochemistry, flow cytometry, and colony-forming assays shows that homologous recombination-derived Nur77-deficient mice, but not WT or Cre-Lox-derived Nur77-deficient mice, suffer from liver immune cell infiltrates, loss of splenic architecture, and increased numbers of bone marrow hematopoietic stem cells and splenic colony-forming cells with age. Mechanistically, we demonstrate that the truncated Nur77 N-terminal domain protein maintains the stability and activity of hypoxia-inducible factor (HIF)-1, a transcription factor known to regulate bone marrow homeostasis. Additionally, a previously discovered, but uncharacterized, human Nur77 transcript variant that encodes solely for its N-terminal domain, designated TR3β, can also stabilize and activate HIF-1α. Meta-analysis of publicly available microarray data sets shows that TR3β is highly expressed in human bone marrow cells and acute myeloid leukemia samples. In conclusion, our study provides evidence that a transgenic mouse model commonly used to study the biological function of Nur77 has several major drawbacks, while simultaneously identifying the importance of nongenomic Nur77 activity in the regulation of bone marrow homeostasis.
Collapse
Affiliation(s)
- Duco S Koenis
- From the Department of Medical Biochemistry, Amsterdam Cardiovascular Sciences, Academic Medical Center, K1-113, University of Amsterdam, Meibergdreef 15, 1105 AZ Amsterdam, The Netherlands
| | - Lejla Medzikovic
- From the Department of Medical Biochemistry, Amsterdam Cardiovascular Sciences, Academic Medical Center, K1-113, University of Amsterdam, Meibergdreef 15, 1105 AZ Amsterdam, The Netherlands
| | - Mariska Vos
- From the Department of Medical Biochemistry, Amsterdam Cardiovascular Sciences, Academic Medical Center, K1-113, University of Amsterdam, Meibergdreef 15, 1105 AZ Amsterdam, The Netherlands
| | - Thijs J Beldman
- From the Department of Medical Biochemistry, Amsterdam Cardiovascular Sciences, Academic Medical Center, K1-113, University of Amsterdam, Meibergdreef 15, 1105 AZ Amsterdam, The Netherlands
| | - Pieter B van Loenen
- From the Department of Medical Biochemistry, Amsterdam Cardiovascular Sciences, Academic Medical Center, K1-113, University of Amsterdam, Meibergdreef 15, 1105 AZ Amsterdam, The Netherlands
| | - Claudia M van Tiel
- From the Department of Medical Biochemistry, Amsterdam Cardiovascular Sciences, Academic Medical Center, K1-113, University of Amsterdam, Meibergdreef 15, 1105 AZ Amsterdam, The Netherlands
| | - Anouk A J Hamers
- From the Department of Medical Biochemistry, Amsterdam Cardiovascular Sciences, Academic Medical Center, K1-113, University of Amsterdam, Meibergdreef 15, 1105 AZ Amsterdam, The Netherlands
| | - Iker Otermin Rubio
- From the Department of Medical Biochemistry, Amsterdam Cardiovascular Sciences, Academic Medical Center, K1-113, University of Amsterdam, Meibergdreef 15, 1105 AZ Amsterdam, The Netherlands
| | - Vivian de Waard
- From the Department of Medical Biochemistry, Amsterdam Cardiovascular Sciences, Academic Medical Center, K1-113, University of Amsterdam, Meibergdreef 15, 1105 AZ Amsterdam, The Netherlands
| | - Carlie J M de Vries
- From the Department of Medical Biochemistry, Amsterdam Cardiovascular Sciences, Academic Medical Center, K1-113, University of Amsterdam, Meibergdreef 15, 1105 AZ Amsterdam, The Netherlands
| |
Collapse
|
19
|
Wang LM, Zhang Y, Li X, Zhang ML, Zhu L, Zhang GX, Xu YM. Nr4a1 plays a crucial modulatory role in Th1/Th17 cell responses and CNS autoimmunity. Brain Behav Immun 2018; 68:44-55. [PMID: 28962999 DOI: 10.1016/j.bbi.2017.09.015] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/13/2017] [Revised: 09/25/2017] [Accepted: 09/25/2017] [Indexed: 12/12/2022] Open
Abstract
Nuclear receptor4 group A1 (Nr4a1), an orphan nuclear receptor, is down-regulated in peripheral blood mononuclear cells (MNCs) of individuals with multiple sclerosis (MS), and Nr4a1 deficiency results in severe experimental autoimmune encephalomyelitis (EAE), an animal model of MS, caused by increased macrophage infiltration into the central nervous system (CNS). However, the role of Nr4a1 in macrophage phenotype and T cell responses remains poorly understood. In the present study we show that macrophages/microglia of Nr4a1-/- mice, which exhibited earlier onset and more severe clinical EAE, were polarized to an enhanced type 1 (M1) phenotype and produced higher levels of IL-12 and TNF-α than wild type mice. Significantly increased numbers of CD4+ T cells and frequency of CD4+IFN-γ+ and CD4+IL-17+ T cells were observed in the CNS and spleen of Nr4a1-/- mice, with decreased percentages of apoptosis in CD4+ T cells. The percentages of CD4+Foxp3+ Treg cells in the CNS of Nr4a1-/- mice were also reduced. Furthermore, purified CD4+ T cells from naïve Nr4a1-/- mice exhibited enhanced Th1 and Th17 differentiation capacity, and MOG-reactive Th17 cells from Nr4a1-/- mice adoptively transferred more severe EAE in recipient mice. Our results, for the first time, demonstrate that Nr4a1 not only induces Type 2 macrophages/microglia phenotype, but is also a critical inhibitory molecule for Th1/Th17 cell differentiation. This finding indicates that Nr4a1-related molecule(s) may have therapeutic potential in MS and likely other autoimmune disorders.
Collapse
Affiliation(s)
- Li-Mei Wang
- Department of Neurology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan, China.
| | - Yuan Zhang
- Key Laboratory of the Ministry of Education for Medicinal Resources and Natural Pharmaceutical Chemistry, College of Life Sciences, Shanxi Normal University, Xi'an, China
| | - Xing Li
- Key Laboratory of the Ministry of Education for Medicinal Resources and Natural Pharmaceutical Chemistry, College of Life Sciences, Shanxi Normal University, Xi'an, China
| | - Ming-Liang Zhang
- Department of Pharmacy, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan, China
| | - Lin Zhu
- Department of Pharmacy, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan, China
| | - Guang-Xian Zhang
- Department of Neurology, Thomas Jefferson University, Philadelphia, PA, USA.
| | - Yu-Ming Xu
- Department of Neurology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan, China.
| |
Collapse
|
20
|
The long non-coding RNA NONHSAT062994 inhibits colorectal cancer by inactivating Akt signaling. Oncotarget 2017; 8:68696-68706. [PMID: 28978149 PMCID: PMC5620289 DOI: 10.18632/oncotarget.19827] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2017] [Accepted: 06/28/2017] [Indexed: 12/24/2022] Open
Abstract
The aberrant expression of long noncoding RNAs (lncRNAs) is implicated in cancer development and progression. However, the clinical significance and mechanism by which NONHSAT062994 regulates colorectal cancer (CRC) is unknown. We here reported that NONHSAT062994 was significantly downregulated in human CRC tissues and cell lines. Moreover, its expression was inversely correlated with tumor size and overall survival (OS) time in CRC patients. In CRC cells, the overexpression and knockdown of NONHSAT062994 inhibited and enhanced CRC cell growth, respectively, in vitro and in vivo. Mechanistically, NONHSAT062994 functioned as a tumor suppressor to inhibit CRC cell growth by inactivating Akt signaling. Notably, the NONHSAT062994 expression status was negatively correlated with the Akt downstream targets c-Myc and Cyclin D1 in clinical CRC samples. The current findings suggest that NONHSAT062994 plays a critical role in the development of CRC by regulating Akt signaling, and identified a candidate prognostic biomarker or potential therapeutic target for CRC patients.
Collapse
|
21
|
Li XM, Wang JR, Shen T, Gao SS, He XS, Li JN, Yang TY, Zhang S, Gan WJ, Li JM, Wu H. Nur77 deficiency in mice accelerates tumor invasion and metastasis by facilitating TNFα secretion and lowering CSF-1R expression. PLoS One 2017; 12:e0171347. [PMID: 28170411 PMCID: PMC5295676 DOI: 10.1371/journal.pone.0171347] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2016] [Accepted: 01/19/2017] [Indexed: 12/26/2022] Open
Abstract
Nur77, an orphan member of the nuclear receptor superfamily, plays critical roles in inflammation and immunity. However, the role of Nur77 in tumor microenvironment remains elusive. Results showed that deletion of Nur77 strikingly enhanced tumor metastasis compared to WT mice. Additionally, compared to the conditioned media derived from Nur77+/+ peritoneal macrophages (CM1), the conditioned media derived from Nur77-/- peritoneal macrophages (CM2) significantly promoted the EMT of cancer cells, and greatly enhanced the migratory and invasive abilities of cancer cells. Moreover, studies using TNF-α blocking antibody demonstrated that pro-inflammatory cytokine TNF-α was indispensable in supporting CM2-induced EMT to drive cancer cells migration and invasion. Furthermore, we found that Nur77 promoted the expression of CSF-1R, a novel downstream target gene of Nur77, and subsequently enhanced the migration of inflammatory cells. Notably, infiltration of inflammatory cells in the tumors of Nur77-/- mice was markedly abrogated compared to Nur77+/+ mice. Collectively, these results revealed that host Nur77 expression was pivotal in antitumor immune response, and in inhibiting tumor metastasis.
Collapse
Affiliation(s)
- Xiu-Ming Li
- Pathology Center and Department of Pathology, Soochow University, Suzhou, China
| | - Jing-Ru Wang
- Pathology Center and Department of Pathology, Soochow University, Suzhou, China
| | - Tong Shen
- Pathology Center and Department of Pathology, Soochow University, Suzhou, China
| | - Shang-Shang Gao
- Pathology Center and Department of Pathology, Soochow University, Suzhou, China
| | - Xiao-Shun He
- Department of Pathology, The First Affiliated Hospital of Soochow University, Suzhou, China
| | - Jiang-Nan Li
- Pathology Center and Department of Pathology, Soochow University, Suzhou, China
| | - Tian-Yu Yang
- Pathology Center and Department of Pathology, Soochow University, Suzhou, China
| | - Shen Zhang
- Pathology Center and Department of Pathology, Soochow University, Suzhou, China
| | - Wen-Juan Gan
- Department of Pathology, The First Affiliated Hospital of Soochow University, Suzhou, China
| | - Jian-Ming Li
- Department of Pathology, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou, China
- * E-mail: (HW); (JML)
| | - Hua Wu
- Pathology Center and Department of Pathology, Soochow University, Suzhou, China
- * E-mail: (HW); (JML)
| |
Collapse
|
22
|
Liu TY, Yang XY, Zheng LT, Wang GH, Zhen XC. Activation of Nur77 in microglia attenuates proinflammatory mediators production and protects dopaminergic neurons from inflammation-induced cell death. J Neurochem 2016; 140:589-604. [PMID: 27889907 DOI: 10.1111/jnc.13907] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2016] [Revised: 10/26/2016] [Accepted: 11/14/2016] [Indexed: 01/16/2023]
Abstract
Microglia-mediated neuroinflammation plays a critical role in the pathological development of Parkinson's disease (PD). Orphan nuclear receptor Nur77 (Nur77) is abundant in neurons, while its role in microglia-mediated neuroinflammation remains unclear. The present data demonstrated that the expression of Nur77 in microglia was reduced accompanied by microglia activation in response to lipopolysaccharide (LPS) in vitro and in experimental 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine-PD mouse model. Nur77 over-expression or application of Nur77 agonist cytosporone B suppressed the expression of proinflammatory genes, such as inducible nitric oxide NOS, cyclooxygenase-2, IL-1β, and tumor necrosis factor-α in the activated microglia, while silenced Nur77 exaggerated the inflammatory responses in microglia. Moreover, activation of Nur77 suppressed the LPS-induced NF-κB activation which was partly dependent on p38 MAPK activity, since inhibition of p38 MAPK by SB203580 abolished the LPS-activated NF-κB in microglia. On the other hand, inhibition of p38 MAPK attenuated LPS-induced Nur77 reduction. Furthermore, in a microglia-conditioned cultured media system, Nur77 ameliorated the cytotoxicity to MN9D dopaminergic cells. Lastly, cytosporone B attenuated microglia activation and loss of dopaminergic neuron in the substantia nigra pars compacta (SNpc) of 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine-PD mouse model. Taken together, these findings revealed the first evidence that Nur77 was an important modulator in microglia function that associated with microglia-mediated dopaminergic neurotoxicity, and thus modulation of Nur77 may represent a potential novel target for treatment for neurodegenerative disease.
Collapse
Affiliation(s)
- Tian-Ya Liu
- Jiangsu Key Laboratory of Translational Research and Therapy for Neuro-Psycho-Diseases and College of Pharmaceutical Sciences, Soochow University, Suzhou, Jiangsu, China.,College of Pharmaceutical Sciences and the Collaborative Innovation Center for Brain Science, Soochow University, Suzhou, China
| | - Xiao-Ying Yang
- Jiangsu Key Laboratory of Translational Research and Therapy for Neuro-Psycho-Diseases and College of Pharmaceutical Sciences, Soochow University, Suzhou, Jiangsu, China.,College of Pharmaceutical Sciences and the Collaborative Innovation Center for Brain Science, Soochow University, Suzhou, China
| | - Long-Tai Zheng
- Jiangsu Key Laboratory of Translational Research and Therapy for Neuro-Psycho-Diseases and College of Pharmaceutical Sciences, Soochow University, Suzhou, Jiangsu, China.,College of Pharmaceutical Sciences and the Collaborative Innovation Center for Brain Science, Soochow University, Suzhou, China
| | - Guang-Hui Wang
- Jiangsu Key Laboratory of Translational Research and Therapy for Neuro-Psycho-Diseases and College of Pharmaceutical Sciences, Soochow University, Suzhou, Jiangsu, China.,College of Pharmaceutical Sciences and the Collaborative Innovation Center for Brain Science, Soochow University, Suzhou, China
| | - Xue-Chu Zhen
- Jiangsu Key Laboratory of Translational Research and Therapy for Neuro-Psycho-Diseases and College of Pharmaceutical Sciences, Soochow University, Suzhou, Jiangsu, China.,College of Pharmaceutical Sciences and the Collaborative Innovation Center for Brain Science, Soochow University, Suzhou, China
| |
Collapse
|
23
|
Jiang Y, Zeng Y, Huang X, Qin Y, Luo W, Xiang S, Sooranna SR, Pinhu L. Nur77 attenuates endothelin-1 expression via downregulation of NF-κB and p38 MAPK in A549 cells and in an ARDS rat model. Am J Physiol Lung Cell Mol Physiol 2016; 311:L1023-L1035. [PMID: 27765761 PMCID: PMC5206403 DOI: 10.1152/ajplung.00043.2016] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2016] [Accepted: 10/03/2016] [Indexed: 02/07/2023] Open
Abstract
Acute respiratory distress syndrome (ARDS) is characterized by inflammatory injury to the alveolar and capillary barriers that results in impaired gas exchange and severe acute respiratory failure. Nuclear orphan receptor Nur77 has emerged as a regulator of gene expression in inflammation, and its role in the pathogenesis of ARDS is not clear. The objective of this study is to investigate the potential role of Nur77 and its underlying mechanism in the regulation of endothelin-1 (ET-1) expression in lipopolysaccharide (LPS)-induced A549 cells and an ARDS rat model. We demonstrate that LPS induced Nur77 expression and nuclear export in A549 cells. Overexpression of Nur77 markedly decreased basal and LPS-induced ET-1 expression in A549 cells, whereas knockdown of Nur77 increased the ET-1 expression. LPS-induced phosphorylation and nuclear translocation of NF-κB and p38 MAPK were blocked by Nur77 overexpression and augmented by Nur77 knockdown in A549 cells. In vivo, LPS induced Nur77 expression in lung in ARDS rats. Pharmacological activation of Nur77 by cytosporone B (CsnB) inhibited ET-1 expression in ARDS rats, decreased LPS-induced phosphorylation of NF-κB and p38 MAPK, and relieved lung, liver, and kidney injury. Pharmacological deactivation of Nur77 by 1,1-bis-(3'-indolyl)-1-(p-hydroxyphenyl)methane (DIM-C-pPhOH, C-DIM8) had no effect on ET-1 expression and lung injury. These results indicated that Nur77 decreases ET-1 expression by suppressing NF-κB and p38 MAPK in LPS-stimulated A549 cells in vitro, and, in an LPS-induced ARDS rat model, CsnB reduced ET-1 expression and lung injury in ARDS rats.
Collapse
MESH Headings
- A549 Cells
- Active Transport, Cell Nucleus/drug effects
- Animals
- Cell Nucleus/drug effects
- Cell Nucleus/metabolism
- Disease Models, Animal
- Down-Regulation/drug effects
- Endothelin-1/metabolism
- Kidney/drug effects
- Kidney/pathology
- Lipopolysaccharides/pharmacology
- Liver/drug effects
- Liver/pathology
- Lung/drug effects
- Lung/metabolism
- Male
- NF-kappa B/metabolism
- Nuclear Receptor Subfamily 4, Group A, Member 1/agonists
- Nuclear Receptor Subfamily 4, Group A, Member 1/genetics
- Nuclear Receptor Subfamily 4, Group A, Member 1/metabolism
- Phenylacetates/pharmacology
- RNA, Messenger/genetics
- RNA, Messenger/metabolism
- Rats, Sprague-Dawley
- Respiratory Distress Syndrome/enzymology
- Respiratory Distress Syndrome/genetics
- Respiratory Distress Syndrome/pathology
- p38 Mitogen-Activated Protein Kinases/metabolism
Collapse
Affiliation(s)
- Yujie Jiang
- The First Clinical Medical College of Jinan University, Guangzhou, Guangdong Province, China
- Department of Respiratory Medicine
| | - Yi Zeng
- Department of Central Laboratory, Youjiang Medical University for Nationalities, Baise, Guangxi, China
| | - Xia Huang
- The First Clinical Medical College of Jinan University, Guangzhou, Guangdong Province, China
- Department of Respiratory Medicine
| | - Yueqiu Qin
- Department of Digestive, Youjiang Medical University for Nationalities, Baise, Guangxi, China; Youjiang Medical University for Nationalities, Baise, Guangxi, China
| | | | - Shulin Xiang
- Department of Intensive Care Unit, the People's Hospital of Guangxi, Nanning, Guangxi, China
| | - Suren R Sooranna
- Department of Surgery and Cancer, Imperial College London, Chelsea and Westminster Hospital, London, United Kingdon; and
| | - Liao Pinhu
- Department of Intensive Care Medicine, Youjiang Medical University for Nationalities, Baise, Guangxi, China
| |
Collapse
|
24
|
Gan WJ, Wang JR, Zhu XL, He XS, Guo PD, Zhang S, Li XM, Li JM, Wu H. RARγ-induced E-cadherin downregulation promotes hepatocellular carcinoma invasion and metastasis. J Exp Clin Cancer Res 2016; 35:164. [PMID: 27756432 PMCID: PMC5069892 DOI: 10.1186/s13046-016-0441-9] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2016] [Accepted: 10/08/2016] [Indexed: 11/16/2022] Open
Abstract
BACKGROUND Aberrant expression of Retinoic acid receptor γ (RARγ) is implicated in cancer development. Our previous study identified that RARγ functions as a tumor promoter to drive hepatocellular carcinoma (HCC) growth. However, its contribution to HCC invasion and metastasis remains unclear. METHODS RARγ expression in clinical HCC samples was detected by western blot and immunohistochemistry. The relationship between RARγ expression levels and the clinical characteristics were evaluated. HCC cell line MHCC-97H were stably knocked down RARγ using a lentivirus vector-based shRNA technique. The cells were analyzed by migration and invasion assays, and injected into nude mice to assess tumor metastasis. E-cadherin expression regulated by RARγ was examined by qPCR, western blot and immunofluorescence staining. RESULTS The expression of RARγ is significantly upregulated in human HCC tissues. Moreover, its expression positively correlates with tumor size, distant metastasis and TNM stage, and negatively correlates with length of survival of HCC patients. Knockdown of RARγ markedly inhibits HCC cell invasion and metastasis both in vitro and in vivo. Mechanistic investigations reveal that RARγ functions through regulation of NF-κB-mediated E-cadherin downregulation to promote HCC invasion and metastasis. Notably, RARγ expression status negatively correlates with E-cadherin expression in HCC cell lines and clinical HCC samples. CONCLUSIONS These findings demonstrate that RARγ could promote HCC invasion and metastasis by regulating E-cadherin reduction, and implicate new strategies to aggressively treat HCC through targeting RARγ/E-cadherin signaling axis.
Collapse
Affiliation(s)
- Wen-Juan Gan
- Pathology Center and Department of Pathology, Soochow University, Suzhou, 215123 China
- The First Affiliated Hospital of Soochow University, Suzhou, 215006 China
| | - Jing-Ru Wang
- Pathology Center and Department of Pathology, Soochow University, Suzhou, 215123 China
| | - Xiao-Li Zhu
- The First Affiliated Hospital of Soochow University, Suzhou, 215006 China
| | - Xiao-Shun He
- The First Affiliated Hospital of Soochow University, Suzhou, 215006 China
| | - Peng-Da Guo
- Pathology Center and Department of Pathology, Soochow University, Suzhou, 215123 China
| | - Shen Zhang
- Pathology Center and Department of Pathology, Soochow University, Suzhou, 215123 China
| | - Xiu-Ming Li
- Pathology Center and Department of Pathology, Soochow University, Suzhou, 215123 China
| | - Jian-Ming Li
- Pathology Center and Department of Pathology, Soochow University, Suzhou, 215123 China
| | - Hua Wu
- Pathology Center and Department of Pathology, Soochow University, Suzhou, 215123 China
| |
Collapse
|
25
|
Guo PD, Lu XX, Gan WJ, Li XM, He XS, Zhang S, Ji QH, Zhou F, Cao Y, Wang JR, Li JM, Wu H. RARγ Downregulation Contributes to Colorectal Tumorigenesis and Metastasis by Derepressing the Hippo-Yap Pathway. Cancer Res 2016; 76:3813-25. [PMID: 27325643 DOI: 10.1158/0008-5472.can-15-2882] [Citation(s) in RCA: 43] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2015] [Accepted: 03/15/2016] [Indexed: 11/16/2022]
Abstract
The Hippo-Yap pathway conveys oncogenic signals, but its regulation during cancer development is not well understood. Here, we identify the nuclear receptor RARγ as a regulator of the Hippo-Yap pathway in colorectal tumorigenesis and metastasis. RARγ is downregulated in human colorectal cancer tissues, where its expression correlates inversely with tumor size, TNM stage, and distant metastasis. Functional studies established that silencing of RARγ drove colorectal cancer cell growth, invasion, and metastatic properties both in vitro and in vivo Mechanistically, RARγ controlled Hippo-Yap signaling to inhibit colorectal cancer development, acting to promote phosphorylation and binding of Lats1 to its transcriptional coactivator Yap and thereby inactivating Yap target gene expression. In clinical specimens, RARγ expression correlated with overall survival outcomes and expression of critical Hippo-Yap pathway effector molecules in colorectal cancer patients. Collectively, our results defined RARγ as tumor suppressor in colorectal cancer that acts by restricting oncogenic signaling by the Hippo-Yap pathway, with potential implications for new approaches to colorectal cancer therapy. Cancer Res; 76(13); 3813-25. ©2016 AACR.
Collapse
MESH Headings
- Adaptor Proteins, Signal Transducing/genetics
- Adaptor Proteins, Signal Transducing/metabolism
- Animals
- Apoptosis
- Biomarkers, Tumor/genetics
- Biomarkers, Tumor/metabolism
- Blotting, Western
- Cell Movement
- Cell Proliferation
- Cell Transformation, Neoplastic/genetics
- Cell Transformation, Neoplastic/metabolism
- Cell Transformation, Neoplastic/pathology
- Colorectal Neoplasms/genetics
- Colorectal Neoplasms/metabolism
- Colorectal Neoplasms/pathology
- Hippo Signaling Pathway
- Humans
- Immunoenzyme Techniques
- Lymphatic Metastasis
- Male
- Mice, Inbred BALB C
- Mice, Nude
- Neoplasm Staging
- Phosphoproteins/genetics
- Phosphoproteins/metabolism
- Prognosis
- Protein Serine-Threonine Kinases/genetics
- Protein Serine-Threonine Kinases/metabolism
- RNA, Messenger/genetics
- Real-Time Polymerase Chain Reaction
- Receptors, Retinoic Acid/genetics
- Receptors, Retinoic Acid/metabolism
- Reverse Transcriptase Polymerase Chain Reaction
- Survival Rate
- Transcription Factors
- Tumor Cells, Cultured
- Xenograft Model Antitumor Assays
- YAP-Signaling Proteins
- Retinoic Acid Receptor gamma
Collapse
Affiliation(s)
- Peng-Da Guo
- Pathology Center and Department of Pathology, Soochow University, Suzhou, China
| | - Xing-Xing Lu
- Pathology Center and Department of Pathology, Soochow University, Suzhou, China
| | - Wen-Juan Gan
- Pathology Center and Department of Pathology, Soochow University, Suzhou, China. The First Affiliated Hospital of Soochow University, Suzhou, China
| | - Xiu-Ming Li
- Pathology Center and Department of Pathology, Soochow University, Suzhou, China
| | - Xiao-Shun He
- Pathology Center and Department of Pathology, Soochow University, Suzhou, China. The First Affiliated Hospital of Soochow University, Suzhou, China
| | - Shen Zhang
- Pathology Center and Department of Pathology, Soochow University, Suzhou, China
| | - Qing-Hua Ji
- Pathology Center and Department of Pathology, Soochow University, Suzhou, China
| | - Feng Zhou
- Pathology Center and Department of Pathology, Soochow University, Suzhou, China
| | - Yue Cao
- Pathology Center and Department of Pathology, Soochow University, Suzhou, China
| | - Jing-Ru Wang
- Pathology Center and Department of Pathology, Soochow University, Suzhou, China
| | - Jian-Ming Li
- Pathology Center and Department of Pathology, Soochow University, Suzhou, China.
| | - Hua Wu
- Pathology Center and Department of Pathology, Soochow University, Suzhou, China.
| |
Collapse
|
26
|
Li XM, Zhang S, He XS, Guo PD, Lu XX, Wang JR, Li JM, Wu H. Nur77-mediated TRAF6 signalling protects against LPS-induced sepsis in mice. JOURNAL OF INFLAMMATION-LONDON 2016; 13:4. [PMID: 26839514 PMCID: PMC4735956 DOI: 10.1186/s12950-016-0112-9] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/15/2015] [Accepted: 01/25/2016] [Indexed: 12/20/2022]
Abstract
Background Nur77, a key member of the NR4A receptor subfamily, is involved in the regulation of inflammation and immunity. However, the in vivo regulatory roles of Nur77 in sepsis and the mechanisms involved remains largely elusive. In this study, we used Nur77-deficient (Nur77−/−) mice and investigated the function of Nur77 in sepsis. Findings Compared to wild-type (Nur77+/+) mice, Nur77−/− mice are more susceptible to LPS-induced sepsis and acute liver inflammation. Mechanistically, we observed that Nur77 can interact with TRAF6, a crucial adaptor molecule in the Toll-like receptor-interleukin 1 receptor (TLR-IL-1R) signalling pathway, in in vivo mouse model of sepsis. The interaction may affect TRAF6 auto-ubiquitination, thereby inhibiting NF-κB activation and pro-inflammatory cytokines production. Conclusions These in vivo observations reveals an important protective role for Nur77 in LPS-induced sepsis through its regulation to TRAF6 signalling, and highlights the potential clinical application of Nur77 as a molecular target in prevention and/or treatment of sepsis. Electronic supplementary material The online version of this article (doi:10.1186/s12950-016-0112-9) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Xiu-Ming Li
- Pathology Center and Department of Pathology, Soochow University, Suzhou, 215123 China
| | - Shen Zhang
- Pathology Center and Department of Pathology, Soochow University, Suzhou, 215123 China
| | - Xiao-Shun He
- The First Affiliated Hospital of Soochow University, Suzhou, 215006 China
| | - Peng-Da Guo
- Pathology Center and Department of Pathology, Soochow University, Suzhou, 215123 China
| | - Xing-Xing Lu
- Pathology Center and Department of Pathology, Soochow University, Suzhou, 215123 China
| | - Jing-Ru Wang
- Pathology Center and Department of Pathology, Soochow University, Suzhou, 215123 China
| | - Jian-Ming Li
- Pathology Center and Department of Pathology, Soochow University, Suzhou, 215123 China
| | - Hua Wu
- Pathology Center and Department of Pathology, Soochow University, Suzhou, 215123 China
| |
Collapse
|
27
|
Wu H, Li XM, Wang JR, Gan WJ, Jiang FQ, Liu Y, Zhang XD, He XS, Zhao YY, Lu XX, Guo YB, Zhang XK, Li JM. NUR77 exerts a protective effect against inflammatory bowel disease by negatively regulating the TRAF6/TLR-IL-1R signalling axis. J Pathol 2015; 238:457-69. [PMID: 26564988 DOI: 10.1002/path.4670] [Citation(s) in RCA: 67] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2015] [Revised: 11/02/2015] [Accepted: 11/06/2015] [Indexed: 01/05/2023]
Abstract
Nur77, an immediate-early response gene, participates in a wide range of biological functions. Its human homologue, NUR77, is known by several names and has the HGNC-approved gene symbol NR4A1. However, the role of Nur77 in inflammatory bowel disease (IBD) and its underlying mechanisms remain elusive. Here, using public data from the International Inflammatory Bowel Disease Genetics Consortium (IIBDGC) on the most recent genome-wide association studies (GWAS) for ulcerative colitis (UC) and Crohn's disease (CD), we found that genetic variants of the NUR77 gene are associated with increased risk for both UC and CD. Accordingly, Nur77 expression was significantly reduced in colon tissues from patients with UC or CD and mice treated with DSS. Nur77 deficiency increased the susceptibility of mice to DSS-induced experimental colitis and prevented intestinal recovery, whereas treatment with cytosporone B (Csn-B), an agonist for Nur77, significantly attenuated excessive inflammatory response in the DSS-induced colitis mouse model. Mechanistically, NUR77 acts as a negative regulator of TLR-IL-1R signalling by interacting with TRAF6. This interaction prevented auto-ubiquitination and oligomerization of TRAF6 and subsequently inhibited NF-κB activation and pro-inflammatory cytokine production. Taken together, our GWAS-based analysis and in vitro and in vivo studies have demonstrated that Nur77 is an important regulator of TRAF6/TLR-IL-1R-initiated inflammatory signalling, and loss of Nur77 may contribute to the development of IBD, suggesting Nur77 as a potential target for the prevention and treatment of IBD.
Collapse
Affiliation(s)
- Hua Wu
- Pathology Centre and Department of Pathology, Soochow University, Suzhou, People's Republic of China
| | - Xiu-Ming Li
- Pathology Centre and Department of Pathology, Soochow University, Suzhou, People's Republic of China
| | - Jing-Ru Wang
- Pathology Centre and Department of Pathology, Soochow University, Suzhou, People's Republic of China
| | - Wen-Juan Gan
- Pathology Centre and Department of Pathology, Soochow University, Suzhou, People's Republic of China.,First Affiliated Hospital of Soochow University, Suzhou, People's Republic of China
| | - Fu-Quan Jiang
- School of Pharmaceutical Sciences, Xiamen University, People's Republic of China
| | - Yao Liu
- Pathology Centre and Department of Pathology, Soochow University, Suzhou, People's Republic of China
| | - Xin-Dao Zhang
- School of Pharmaceutical Sciences, Xiamen University, People's Republic of China
| | - Xiao-Shun He
- Pathology Centre and Department of Pathology, Soochow University, Suzhou, People's Republic of China
| | - Yuan-Yuan Zhao
- Pathology Centre and Department of Pathology, Soochow University, Suzhou, People's Republic of China
| | - Xing-Xing Lu
- Pathology Centre and Department of Pathology, Soochow University, Suzhou, People's Republic of China
| | - Yan-Bing Guo
- School of Pharmaceutical Sciences, Xiamen University, People's Republic of China.,Sanford-Burnham Medical Research Institute, Cancer Center, La Jolla, CA, USA
| | - Xiao-Kun Zhang
- School of Pharmaceutical Sciences, Xiamen University, People's Republic of China.,Sanford-Burnham Medical Research Institute, Cancer Center, La Jolla, CA, USA
| | - Jian-Ming Li
- Pathology Centre and Department of Pathology, Soochow University, Suzhou, People's Republic of China
| |
Collapse
|