1
|
Abalymov AA, Asadi Heris N, Skirtach AG, Parakhonskiy BV. Macro-Calcium Carbonate-Hydrogel Hybrid Spheroids: Design and Biomedical Applications. ACS APPLIED BIO MATERIALS 2024; 7:5201-5210. [PMID: 39077865 DOI: 10.1021/acsabm.4c00372] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/31/2024]
Abstract
In advancing tissue engineering, we introduce a particle system combining the strength of calcium carbonate with the flexibility of hydrogels enhanced with alkaline phosphatase (ALP) for improved bone regeneration. Our innovation lies in creating large hybrid macrospheroids by bonding mineral nanostructured microparticles loaded with ALP through hydrogel polymerization. These composite macrospheroids address critical challenges in cell seeding, growth, and handling within three-dimensional (3D) environments. We conducted extensive characterization of these particles using scanning electron microscopy (SEM), Fourier-transform infrared spectroscopy (FTIR), mechanical property assessment, and fluorescence microscopy. The results demonstrate that the hybrid macrospheroids significantly enhance cell manipulation and growth in three-dimensional structures. Specifically, ALP-loaded macrospheroids showed a marked improvement in osteogenic activity, promoting effective bone tissue regeneration. This study not only showcases a unique approach to overcoming the limitations of traditional hydrogels in tissue engineering but also opens pathways for bone tissue regeneration. Our findings offer a promising tool for cell seeding and growth in 3D structures, potentially revolutionizing practices in tissue engineering and regenerative medicine.
Collapse
Affiliation(s)
- Anatolii A Abalymov
- Biotechnology Department, Ghent University, Proeftuinstraat 86, Ghent 9000, Belgium
- Department of Environmental Sciences, Jozef Stefan Institute, Jamova cesta 39, 1000 Ljubljana, Slovenia
| | - Nooshin Asadi Heris
- Biotechnology Department, Ghent University, Proeftuinstraat 86, Ghent 9000, Belgium
| | - Andre G Skirtach
- Biotechnology Department, Ghent University, Proeftuinstraat 86, Ghent 9000, Belgium
| | | |
Collapse
|
2
|
Arabuli KV, Kopoleva E, Akenoun A, Mikhailova LV, Petrova E, Muslimov AR, Senichkina DA, Tsymbal S, Shakirova AI, Ignatiev AI, Lepik KV, Zyuzin MV. On-chip fabrication of calcium carbonate nanoparticles loaded with various compounds using microfluidic approach. BIOMATERIALS ADVANCES 2024; 161:213904. [PMID: 38805763 DOI: 10.1016/j.bioadv.2024.213904] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/08/2024] [Revised: 04/27/2024] [Accepted: 05/20/2024] [Indexed: 05/30/2024]
Abstract
Engineered calcium carbonate (CaCO3) particles are extensively used as drug delivery systems due to their availability, biological compatibility, biodegradability, and cost-effective production. The synthesis procedure of CaCO3 particles, however, suffers from poor reproducibility. Furthermore, reducing the size of CaCO3 particles to <100 nm requires the use of additives in the reaction, which increases the total reaction time. Here we propose on-chip synthesis and loading of nanoscaled CaCO3 particles using microfluidics. After the development and fabrication of a microfluidic device, we optimized the synthesis of CaCO3 NPs by varying different parameters such as flow rates in the microfluidic channels, concentration of reagents, and the reaction time. To prove the versatility of the used synthesis route, we performed single and double loading of CaCO3 NPs with various compounds (Doxorubicin, Cy5 or FITC conjugated with BSA, and DNA) using the same microfluidic device. Further, the on-chip loaded CaCO3 NPs were used as carriers to transfer compounds to model cells. We have developed a microfluidic synthesis method that opens up a new pathway for easy on-chip fabrication of functional nanoparticles for clinical use.
Collapse
Affiliation(s)
- Konstantin V Arabuli
- School of Physics and Engineering, ITMO University, 191002 St. Petersburg, Russian Federation
| | - Elena Kopoleva
- School of Physics and Engineering, ITMO University, 191002 St. Petersburg, Russian Federation
| | - Anas Akenoun
- School of Physics and Engineering, ITMO University, 191002 St. Petersburg, Russian Federation
| | - Lidia V Mikhailova
- School of Physics and Engineering, ITMO University, 191002 St. Petersburg, Russian Federation
| | - Elena Petrova
- School of Physics and Engineering, ITMO University, 191002 St. Petersburg, Russian Federation
| | - Albert R Muslimov
- RM Gorbacheva Research Institute of Pediatric Oncology, Hematology and Transplantation, Pavlov University, 197022 St. Petersburg, Russian Federation
| | - Dina A Senichkina
- RM Gorbacheva Research Institute of Pediatric Oncology, Hematology and Transplantation, Pavlov University, 197022 St. Petersburg, Russian Federation
| | - Sergey Tsymbal
- International Institute "Solution Chemistry of Advanced Materials and Technologies", ITMO University, St. Petersburg 197101, Russian Federation
| | - Alena I Shakirova
- RM Gorbacheva Research Institute of Pediatric Oncology, Hematology and Transplantation, Pavlov University, 197022 St. Petersburg, Russian Federation
| | - Alexander I Ignatiev
- Research and Educational Centre of Photonics and Optoinformatics, ITMO University, Saint-Petersburg 199034, Russian Federation
| | - Kirill V Lepik
- RM Gorbacheva Research Institute of Pediatric Oncology, Hematology and Transplantation, Pavlov University, 197022 St. Petersburg, Russian Federation
| | - Mikhail V Zyuzin
- School of Physics and Engineering, ITMO University, 191002 St. Petersburg, Russian Federation; Qingdao Innovation and Development Center, Harbin Engineering University, Qingdao 266000, Shandong, China.
| |
Collapse
|
3
|
Martins SA, Costa RR, Brito A, Reis RL, Alves NM, Pashkuleva I, Soares da Costa D. Multifunctional calcium-based nanocarriers for synergistic treatment of triple-negative breast cancer. J Colloid Interface Sci 2024; 674:500-512. [PMID: 38943911 DOI: 10.1016/j.jcis.2024.06.159] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2024] [Revised: 06/14/2024] [Accepted: 06/22/2024] [Indexed: 07/01/2024]
Abstract
Targeted breast cancer therapies hold the potential to improve the efficiency of drug delivery to the pathology site without impacting the viability and function of healthy cells. Herein, we developed multifunctional nanocarriers that target simultaneously several downstream signaling processes in triple negative breast cancer cells. The system comprises pH sensitive CaCO3 nanoparticles (NPs) as carriers of the anticancer drug doxorubicin (DOX). The NPs were coated in a layer-by-layer (LbL) fashion using poly-l-lysine and hyaluronic acid to target receptors overexpressed in breast cancer (e.g. CD44, RHAMM). Spheroids of the triple-negative Hs578T cell line were used as a 3D model to assess the therapeutic potential of this system. Our results showed that the NPs act via a synergistic mechanism that combines Ca2+ overload causing cell calcification and DNA damage by DOX. The LbL coating was crucial for the protection of the healthy cells, i.e. it provides NPs with targeting capacity. The overall data suggests that the LbL-coated NPs loaded with DOX hold great potential for the treatment of breast cancer.
Collapse
Affiliation(s)
- Sara A Martins
- 3B's Research Group, I3Bs - Research Institute On Biomaterials, Biodegradables and Biomimetics, University of Minho, Headquarters of the European Institute of Excellence On Tissue Engineering and Regenerative Medicine, AvePark, Parque de Ciência e Tecnologia, 4805-017, Barco Guimarães, Portugal; ICVS/3Bs - PT Government Associate Laboratory, Braga/Guimarães, Portugal.
| | - Rui R Costa
- 3B's Research Group, I3Bs - Research Institute On Biomaterials, Biodegradables and Biomimetics, University of Minho, Headquarters of the European Institute of Excellence On Tissue Engineering and Regenerative Medicine, AvePark, Parque de Ciência e Tecnologia, 4805-017, Barco Guimarães, Portugal; ICVS/3Bs - PT Government Associate Laboratory, Braga/Guimarães, Portugal.
| | - Alexandra Brito
- 3B's Research Group, I3Bs - Research Institute On Biomaterials, Biodegradables and Biomimetics, University of Minho, Headquarters of the European Institute of Excellence On Tissue Engineering and Regenerative Medicine, AvePark, Parque de Ciência e Tecnologia, 4805-017, Barco Guimarães, Portugal; ICVS/3Bs - PT Government Associate Laboratory, Braga/Guimarães, Portugal.
| | - Rui L Reis
- 3B's Research Group, I3Bs - Research Institute On Biomaterials, Biodegradables and Biomimetics, University of Minho, Headquarters of the European Institute of Excellence On Tissue Engineering and Regenerative Medicine, AvePark, Parque de Ciência e Tecnologia, 4805-017, Barco Guimarães, Portugal; ICVS/3Bs - PT Government Associate Laboratory, Braga/Guimarães, Portugal.
| | - Natália M Alves
- 3B's Research Group, I3Bs - Research Institute On Biomaterials, Biodegradables and Biomimetics, University of Minho, Headquarters of the European Institute of Excellence On Tissue Engineering and Regenerative Medicine, AvePark, Parque de Ciência e Tecnologia, 4805-017, Barco Guimarães, Portugal; ICVS/3Bs - PT Government Associate Laboratory, Braga/Guimarães, Portugal.
| | - Iva Pashkuleva
- 3B's Research Group, I3Bs - Research Institute On Biomaterials, Biodegradables and Biomimetics, University of Minho, Headquarters of the European Institute of Excellence On Tissue Engineering and Regenerative Medicine, AvePark, Parque de Ciência e Tecnologia, 4805-017, Barco Guimarães, Portugal; ICVS/3Bs - PT Government Associate Laboratory, Braga/Guimarães, Portugal.
| | - Diana Soares da Costa
- 3B's Research Group, I3Bs - Research Institute On Biomaterials, Biodegradables and Biomimetics, University of Minho, Headquarters of the European Institute of Excellence On Tissue Engineering and Regenerative Medicine, AvePark, Parque de Ciência e Tecnologia, 4805-017, Barco Guimarães, Portugal; ICVS/3Bs - PT Government Associate Laboratory, Braga/Guimarães, Portugal.
| |
Collapse
|
4
|
Yau J, Chukwu P, Jedlicka SS, Ramamurthi A. Assessing trans-endothelial transport of nanoparticles for delivery to abdominal aortic aneurysms. J Biomed Mater Res A 2024; 112:881-894. [PMID: 38192169 DOI: 10.1002/jbm.a.37667] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2023] [Revised: 12/19/2023] [Accepted: 12/27/2023] [Indexed: 01/10/2024]
Abstract
Abdominal aortic aneurysms (AAAs) are localized, rupture-prone expansions of the abdominal aorta wall. In this condition, structural extracellular matrix (ECM) proteins of the aorta wall, elastic fibers and collagen fibers, that impart elasticity and stiffness respectively, are slowly degraded by overexpressed matrix metalloproteinases (MMPs) following an injury stimulus. We are seeking to deliver therapeutics to the AAA wall using polymer nanoparticles (NPs) that are capable of stimulating on-site matrix regeneration and repair. This study aimed to determine how NP shape and size impacts endocytosis and transmigration past the endothelial cell (EC) layer from circulation into the medial layer of the AAA wall. First, rod-shaped NPs were shown to be created based mechanical stretching of PLGA NPs while embedded in a PVA film with longer rod-shaped NPs created based of the degree in which the PVA films are stretched. Live/dead assay reveals that our PLGA NPs are safe and do not cause cell death. Immunofluorescence staining reveal cytokine activation causes endothelial dysfunction in ECs by increasing expression of inflammatory marker Integrin αVβ3 and decreasing expression of adhesion protein vascular endothelial (VE)-cadherin. We showed this disruption enable greater EC uptake and translocation of NPs. Fluorescence studies demonstrate high endothelial transmigration and endocytosis with rod-shaped NPs in cytokine activated ECs compared to healthy control cells, arguing for the benefits of using higher aspect ratio (AR) NPs for accumulation at the aneurysm site. We also demonstrated that the mechanisms of NP transmigration across an activated EC layer depend on NP AR. These results show the potential of using shape as a modality for enhancing permeation of NPs into the aneurysm wall. These studies are also significance to understanding the mechanisms that are likely engaged by NPs for penetrating the endothelial lining of aneurysmal wall segments.
Collapse
Affiliation(s)
- Jimmy Yau
- Department of Bioengineering, Lehigh University, Bethlehem, Pennsylvania, USA
| | - Patience Chukwu
- Department of Bioengineering, Lehigh University, Bethlehem, Pennsylvania, USA
| | - Sabrina S Jedlicka
- Department of Bioengineering, Lehigh University, Bethlehem, Pennsylvania, USA
| | - Anand Ramamurthi
- Department of Bioengineering, Lehigh University, Bethlehem, Pennsylvania, USA
| |
Collapse
|
5
|
Kudryavtseva V, Sukhorukov GB. Features of Anisotropic Drug Delivery Systems. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2024; 36:e2307675. [PMID: 38158786 DOI: 10.1002/adma.202307675] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/31/2023] [Revised: 12/17/2023] [Indexed: 01/03/2024]
Abstract
Natural materials are anisotropic. Delivery systems occurring in nature, such as viruses, blood cells, pollen, and many others, do have anisotropy, while delivery systems made artificially are mostly isotropic. There is apparent complexity in engineering anisotropic particles or capsules with micron and submicron sizes. Nevertheless, some promising examples of how to fabricate particles with anisotropic shapes or having anisotropic chemical and/or physical properties are developed. Anisotropy of particles, once they face biological systems, influences their behavior. Internalization by the cells, flow in the bloodstream, biodistribution over organs and tissues, directed release, and toxicity of particles regardless of the same chemistry are all reported to be factors of anisotropy of delivery systems. Here, the current methods are reviewed to introduce anisotropy to particles or capsules, including loading with various therapeutic cargo, variable physical properties primarily by anisotropic magnetic properties, controlling directional motion, and making Janus particles. The advantages of combining different anisotropy in one entity for delivery and common problems and limitations for fabrication are under discussion.
Collapse
Affiliation(s)
- Valeriya Kudryavtseva
- School of Engineering and Materials Science, Queen Mary University of London, London, E1 4NS, UK
| | - Gleb B Sukhorukov
- School of Engineering and Materials Science, Queen Mary University of London, London, E1 4NS, UK
- Skolkovo Institute of Science and Technology, Moscow, 121205, Russia
| |
Collapse
|
6
|
Alaoui Selsouli Y, Rho HS, Eischen-Loges M, Galván-Chacón VP, Stähli C, Viecelli Y, Döbelin N, Bohner M, Tahmasebi Birgani Z, Habibović P. Optimization of a tunable process for rapid production of calcium phosphate microparticles using a droplet-based microfluidic platform. Front Bioeng Biotechnol 2024; 12:1352184. [PMID: 38600949 PMCID: PMC11004461 DOI: 10.3389/fbioe.2024.1352184] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2023] [Accepted: 03/08/2024] [Indexed: 04/12/2024] Open
Abstract
Calcium phosphate (CaP) biomaterials are amongst the most widely used synthetic bone graft substitutes, owing to their chemical similarities to the mineral part of bone matrix and off-the-shelf availability. However, their ability to regenerate bone in critical-sized bone defects has remained inferior to the gold standard autologous bone. Hence, there is a need for methods that can be employed to efficiently produce CaPs with different properties, enabling the screening and consequent fine-tuning of the properties of CaPs towards effective bone regeneration. To this end, we propose the use of droplet microfluidics for rapid production of a variety of CaP microparticles. Particularly, this study aims to optimize the steps of a droplet microfluidic-based production process, including droplet generation, in-droplet CaP synthesis, purification and sintering, in order to obtain a library of CaP microparticles with fine-tuned properties. The results showed that size-controlled, monodisperse water-in-oil microdroplets containing calcium- and phosphate-rich solutions can be produced using a flow-focusing droplet-generator microfluidic chip. We optimized synthesis protocols based on in-droplet mineralization to obtain a range of CaP microparticles without and with inorganic additives. This was achieved by adjusting synthesis parameters, such as precursor concentration, pH value, and aging time, and applying heat treatment. In addition, our results indicated that the synthesis and fabrication parameters of CaPs in this method can alter the microstructure and the degradation behavior of CaPs. Overall, the results highlight the potential of the droplet microfluidic platform for engineering CaP microparticle biomaterials with fine-tuned properties.
Collapse
Affiliation(s)
- Y. Alaoui Selsouli
- Department of Instructive Biomaterials Engineering, MERLN Institute for Technology-Inspired Regenerative Medicine, Maastricht University, Maastricht, Netherlands
| | - H. S. Rho
- Department of Instructive Biomaterials Engineering, MERLN Institute for Technology-Inspired Regenerative Medicine, Maastricht University, Maastricht, Netherlands
| | - M. Eischen-Loges
- Department of Instructive Biomaterials Engineering, MERLN Institute for Technology-Inspired Regenerative Medicine, Maastricht University, Maastricht, Netherlands
| | - V. P. Galván-Chacón
- Department of Instructive Biomaterials Engineering, MERLN Institute for Technology-Inspired Regenerative Medicine, Maastricht University, Maastricht, Netherlands
| | - C. Stähli
- RMS Foundation, Bettlach, Switzerland
| | | | | | - M. Bohner
- RMS Foundation, Bettlach, Switzerland
| | - Z. Tahmasebi Birgani
- Department of Instructive Biomaterials Engineering, MERLN Institute for Technology-Inspired Regenerative Medicine, Maastricht University, Maastricht, Netherlands
| | - P. Habibović
- Department of Instructive Biomaterials Engineering, MERLN Institute for Technology-Inspired Regenerative Medicine, Maastricht University, Maastricht, Netherlands
| |
Collapse
|
7
|
Abalymov AA, Anisimov RA, Demina PA, Kildisheva VA, Kalinova AE, Serdobintsev AA, Novikova NG, Petrenko DB, Sadovnikov AV, Voronin DV, Lomova MV. Time-Delayed Anticancer Effect of an Extremely Low Frequency Alternating Magnetic Field and Multimodal Protein-Tannin-Mitoxantrone Carriers with Brillouin Microspectroscopy Visualization In Vitro. Biomedicines 2024; 12:443. [PMID: 38398045 PMCID: PMC10887239 DOI: 10.3390/biomedicines12020443] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2023] [Revised: 02/09/2024] [Accepted: 02/09/2024] [Indexed: 02/25/2024] Open
Abstract
The effect of an extremely low frequency alternating magnetic field (ELF AMF) at frequencies of 17, 48, and 95 Hz at 100 mT on free and internalized 4T1 breast cancer cell submicron magnetic mineral carriers with an anticancer drug, mitoxantrone, was shown. The alternating magnetic field (100 mT; 17, 48, 95 Hz; time of treatment-10.5 min with a 30 s delay) does not lead to the significant destruction of carrier shells and release of mitoxantrone or bovine serum albumin from them according to the data of spectrophotometry, or the heating of carriers in the process of exposure to magnetic fields. The most optimal set of factors that would lead to the suppression of proliferation and survival of cells with anticancer drug carriers on the third day (in comparison with the control and first day) is exposure to an alternating magnetic field of 100 mT in a pulsed mode with a frequency of 95 Hz. The presence of magnetic nanocarriers in cell lines was carried out by a direct label-free method, space-resolved Brillouin light scattering (BLS) spectrometry, which was realized for the first time. The analysis of the series of integrated BLS spectra showed an increase in the magnetic phase in cells with a growth in the number of particles per cell (from 10 to 100) after their internalization. The safety of magnetic carriers in the release of their constituent ions has been evaluated using atomic absorption spectrometry.
Collapse
Affiliation(s)
- Anatolii A. Abalymov
- Science Medical Centre, Saratov State University, 83 Astrakhanskayast, Saratov 410012, Russia
| | - Roman A. Anisimov
- Science Medical Centre, Saratov State University, 83 Astrakhanskayast, Saratov 410012, Russia
| | - Polina A. Demina
- Science Medical Centre, Saratov State University, 83 Astrakhanskayast, Saratov 410012, Russia
- Institute of Chemistry, Saratov State University, 83 Astrakhanskayast, Saratov 410012, Russia
| | - Veronika A. Kildisheva
- Science Medical Centre, Saratov State University, 83 Astrakhanskayast, Saratov 410012, Russia
| | - Alexandra E. Kalinova
- Institute of Physics, Saratov State University, 83 Astrakhanskayast, Saratov 410012, Russia
| | - Alexey A. Serdobintsev
- Institute of Physics, Saratov State University, 83 Astrakhanskayast, Saratov 410012, Russia
| | - Nadezhda G. Novikova
- Institute of Comprehensive Exploitation, Mineral Resources Russian Academy of Sciences, Moscow 111020, Russia
- The Core Shared Research Facility “Industrial Biotechnologies”, Aleksei Nikolayevich Bach Institute of Biochemistry, Russian Academy of Sciences, Moscow 119071, Russia
| | - Dmitry B. Petrenko
- Geological Institute, Russian Academy of Sciences, Moscow 119017, Russia
- Faculty of Natural Sciences, Department of Theoretical and Applied Chemistry, Federal State University of Education, Mytischi 141014, Russia
| | - Alexandr V. Sadovnikov
- Institute of Physics, Saratov State University, 83 Astrakhanskayast, Saratov 410012, Russia
| | - Denis V. Voronin
- Department of Physical and Colloid Chemistry, National University of Oil and Gas “Gubkin University”, Moscow 119991, Russia
| | - Maria V. Lomova
- Science Medical Centre, Saratov State University, 83 Astrakhanskayast, Saratov 410012, Russia
| |
Collapse
|
8
|
Lin C, Akhtar M, Li Y, Ji M, Huang R. Recent Developments in CaCO 3 Nano-Drug Delivery Systems: Advancing Biomedicine in Tumor Diagnosis and Treatment. Pharmaceutics 2024; 16:275. [PMID: 38399329 PMCID: PMC10893456 DOI: 10.3390/pharmaceutics16020275] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/27/2023] [Revised: 02/06/2024] [Accepted: 02/13/2024] [Indexed: 02/25/2024] Open
Abstract
Calcium carbonate (CaCO3), a natural common inorganic material with good biocompatibility, low toxicity, pH sensitivity, and low cost, has a widespread use in the pharmaceutical and chemical industries. In recent years, an increasing number of CaCO3-based nano-drug delivery systems have been developed. CaCO3 as a drug carrier and the utilization of CaCO3 as an efficient Ca2+ and CO2 donor have played a critical role in tumor diagnosis and treatment and have been explored in increasing depth and breadth. Starting from the CaCO3-based nano-drug delivery system, this paper systematically reviews the preparation of CaCO3 nanoparticles and the mechanisms of CaCO3-based therapeutic effects in the internal and external tumor environments and summarizes the latest advances in the application of CaCO3-based nano-drug delivery systems in tumor therapy. In view of the good biocompatibility and in vivo therapeutic mechanisms, they are expected to become an advancing biomedicine in the field of tumor diagnosis and treatment.
Collapse
Affiliation(s)
- Chenteng Lin
- School of Pharmacy, Key Laboratory of Smart Drug Delivery (Ministry of Education), Huashan Hospital, Minhang Hospital, Fudan University, Shanghai 201203, China;
| | - Muhammad Akhtar
- Department of Pharmaceutics, Faculty of Pharmacy, The Islamia University of Bahawalpur, Bahawalpur 63100, Pakistan;
| | - Yingjie Li
- Shanghai Yangpu District Mental Health Center, Shanghai 200090, China;
| | - Min Ji
- Shanghai Yangpu District Mental Health Center, Shanghai 200090, China;
| | - Rongqin Huang
- School of Pharmacy, Key Laboratory of Smart Drug Delivery (Ministry of Education), Huashan Hospital, Minhang Hospital, Fudan University, Shanghai 201203, China;
| |
Collapse
|
9
|
Ermakov AV, Chapek SV, Lengert EV, Konarev PV, Volkov VV, Artemov VV, Soldatov MA, Trushina DB. Microfluidically Assisted Synthesis of Calcium Carbonate Submicron Particles with Improved Loading Properties. MICROMACHINES 2023; 15:16. [PMID: 38276844 PMCID: PMC10818696 DOI: 10.3390/mi15010016] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/04/2023] [Revised: 12/14/2023] [Accepted: 12/19/2023] [Indexed: 01/27/2024]
Abstract
The development of advanced methods for the synthesis of nano- and microparticles in the field of biomedicine is of high interest due to a range of reasons. The current synthesis methods may have limitations in terms of efficiency, scalability, and uniformity of the particles. Here, we investigate the synthesis of submicron calcium carbonate using a microfluidic chip with a T-shaped oil supply for droplet-based synthesis to facilitate control over the formation of submicron calcium carbonate particles. The design of the chip allowed for the precise manipulation of reaction parameters, resulting in improved porosity while maintaining an efficient synthesis rate. The pore size distribution within calcium carbonate particles was estimated via small-angle X-ray scattering. This study showed that the high porosity and reduced size of the particles facilitated the higher loading of a model peptide: 16 vs. 9 mass.% for the particles synthesized in a microfluidic device and in bulk, correspondingly. The biosafety of the developed particles in the concentration range of 0.08-0.8 mg per plate was established by the results of the cytotoxicity study using mouse fibroblasts. This innovative approach of microfluidically assisted synthesis provides a promising avenue for future research in the field of particle synthesis and drug delivery systems.
Collapse
Affiliation(s)
- Alexey V. Ermakov
- Institute of Molecular Theranostics, First Moscow State Medical University, 119991 Moscow, Russia; (E.V.L.); (D.B.T.)
| | - Sergei V. Chapek
- The Smart Materials Research Institute, Southern Federal University, Sladkova 178/24, 344090 Rostov-on-Don, Russia; (S.V.C.); (M.A.S.)
| | - Ekaterina V. Lengert
- Institute of Molecular Theranostics, First Moscow State Medical University, 119991 Moscow, Russia; (E.V.L.); (D.B.T.)
| | - Petr V. Konarev
- Federal Scientific Research Centre “Crystallography and Photonics”, Russian Academy of Sciences, 119333 Moscow, Russia; (P.V.K.); (V.V.V.); (V.V.A.)
| | - Vladimir V. Volkov
- Federal Scientific Research Centre “Crystallography and Photonics”, Russian Academy of Sciences, 119333 Moscow, Russia; (P.V.K.); (V.V.V.); (V.V.A.)
| | - Vladimir V. Artemov
- Federal Scientific Research Centre “Crystallography and Photonics”, Russian Academy of Sciences, 119333 Moscow, Russia; (P.V.K.); (V.V.V.); (V.V.A.)
| | - Mikhail A. Soldatov
- The Smart Materials Research Institute, Southern Federal University, Sladkova 178/24, 344090 Rostov-on-Don, Russia; (S.V.C.); (M.A.S.)
| | - Daria B. Trushina
- Institute of Molecular Theranostics, First Moscow State Medical University, 119991 Moscow, Russia; (E.V.L.); (D.B.T.)
- Federal Scientific Research Centre “Crystallography and Photonics”, Russian Academy of Sciences, 119333 Moscow, Russia; (P.V.K.); (V.V.V.); (V.V.A.)
| |
Collapse
|
10
|
Sheng X, Chen S, Zhao Z, Li L, Zou Y, Shi H, Shao P, Yang L, Wu J, Tan Y, Lai X, Luo X, Cui F. Rationally designed calcium carbonate multifunctional trap for contaminants adsorption. THE SCIENCE OF THE TOTAL ENVIRONMENT 2023; 903:166142. [PMID: 37574061 DOI: 10.1016/j.scitotenv.2023.166142] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/18/2023] [Revised: 08/06/2023] [Accepted: 08/06/2023] [Indexed: 08/15/2023]
Abstract
Adsorption technology has been widely developed to control environmental pollution, which plays an important role in the sustainable development of modern society. Calcium carbonate (CaCO3) is characterized by its flexible pore design and functional group modification, which meet the high capacity and targeting requirements of adsorption. Therefore, its charm of "small materials for great use" makes it a suitable candidate for adsorption. Firstly, we comprehensively review the research progress of controlled synthesis and surface modification of CaCO3, and its application for adsorbing contaminants from water and air. Then, we systematically examine the structure-effect relationship between CaCO3 adsorbents and contaminants, while also intrinsic mechanism of remarkable capacity and targeted adsorption. Finally, from the perspective of material design and engineering application, we offer insightful discussion on the prospects and challenges of calcium carbonate adsorbents, providing a valuable reference for the further research in this field.
Collapse
Affiliation(s)
- Xin Sheng
- Key Laboratory of Eco-environments in Three Gorges Reservoir Region, Ministry of Education, College of Environment and Ecology, Chongqing University, Chongqing 400045, PR China
| | - Shengnan Chen
- Key Laboratory of Eco-environments in Three Gorges Reservoir Region, Ministry of Education, College of Environment and Ecology, Chongqing University, Chongqing 400045, PR China
| | - Zhiwei Zhao
- Key Laboratory of Eco-environments in Three Gorges Reservoir Region, Ministry of Education, College of Environment and Ecology, Chongqing University, Chongqing 400045, PR China.
| | - Li Li
- Key Laboratory of Eco-environments in Three Gorges Reservoir Region, Ministry of Education, College of Environment and Ecology, Chongqing University, Chongqing 400045, PR China
| | - Yuanpeng Zou
- School of Foreign Languages and Cultures, Chongqing University, 400044, PR China
| | - Hui Shi
- National-Local Joint Engineering Research Center of Heavy Metals Pollutants Control and Resource utilization, Nanchang Hangkong University, Nanchang 330063, PR China
| | - Penghui Shao
- National-Local Joint Engineering Research Center of Heavy Metals Pollutants Control and Resource utilization, Nanchang Hangkong University, Nanchang 330063, PR China
| | - Liming Yang
- National-Local Joint Engineering Research Center of Heavy Metals Pollutants Control and Resource utilization, Nanchang Hangkong University, Nanchang 330063, PR China
| | - Jingsheng Wu
- Key Laboratory of Eco-environments in Three Gorges Reservoir Region, Ministry of Education, College of Environment and Ecology, Chongqing University, Chongqing 400045, PR China
| | - Yaofu Tan
- Key Laboratory of Eco-environments in Three Gorges Reservoir Region, Ministry of Education, College of Environment and Ecology, Chongqing University, Chongqing 400045, PR China
| | - Xinyuan Lai
- Key Laboratory of Eco-environments in Three Gorges Reservoir Region, Ministry of Education, College of Environment and Ecology, Chongqing University, Chongqing 400045, PR China
| | - Xubiao Luo
- National-Local Joint Engineering Research Center of Heavy Metals Pollutants Control and Resource utilization, Nanchang Hangkong University, Nanchang 330063, PR China; School of Life Science, Jinggangshan University, Ji'an 343009, PR China
| | - Fuyi Cui
- Key Laboratory of Eco-environments in Three Gorges Reservoir Region, Ministry of Education, College of Environment and Ecology, Chongqing University, Chongqing 400045, PR China
| |
Collapse
|
11
|
Suwannasom N, Sriaksorn N, Thepmalee C, Khoothiam K, Prapan A, Bäumler H, Thephinlap C. Curcumin-loaded albumin submicron particles with potential as a cancer therapy: an in vitro study. BEILSTEIN JOURNAL OF NANOTECHNOLOGY 2023; 14:1127-1140. [PMID: 38034473 PMCID: PMC10682534 DOI: 10.3762/bjnano.14.93] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 07/25/2023] [Accepted: 10/24/2023] [Indexed: 12/02/2023]
Abstract
Curcumin (CUR), a polyphenolic compound, shows promising biological properties, particularly antioxidant activity. However, its medical applications are limited due to its low water solubility, bioavailability, and pH-instability. CUR-loaded albumin microparticles (CUR-HSA-MPs) of submicron size in the range of 800 to 900 nm and a zeta potential of -15 mV were prepared. The CUR loading efficiency was up to 65%. A maximum release of 37% of the encapsulated CUR was observed within 6 h when the CUR-HSA-MPs were dispersed in 50% ethanol in PBS at pH 7, while in RPMI 1640 medium the release was 7%. This demonstrates a sustainable release. The in vitro cytotoxicity of CUR-HSA-MPs showed promising anticancer potential against human hepatocellular carcinoma (Huh-7) and human breast adenocarcinoma (MCF-7) cell lines, although this effect was less pronounced in human dermal fibroblasts (HDFB) and human cholangiocyte (MMN) cell lines. Confocal microscopy was used to confirm the uptake of CUR-HSA-MPs by cancer cells. Our studies revealed that HSA-MPs are potentially promising vehicles for increasing the solubility and bioavailability of CUR.
Collapse
Affiliation(s)
- Nittiya Suwannasom
- Division of Biochemistry, School of Medical Sciences, University of Phayao 56000, Thailand
| | - Netsai Sriaksorn
- Division of Biochemistry, School of Medical Sciences, University of Phayao 56000, Thailand
| | - Chutamas Thepmalee
- Division of Biochemistry, School of Medical Sciences, University of Phayao 56000, Thailand
| | - Krissana Khoothiam
- Department of Radiological Technology, Faculty of Allied Health Sciences, Naresuan University, Phitsanulok 65000, Thailand
| | - Ausanai Prapan
- Division of Microbiology, School of Medical Sciences, University of Phayao 56000, Thailand
| | - Hans Bäumler
- Institute of Transfusion Medicine, Charité-Universitätsmedizin Berlin, 10117 Berlin, Germany
| | - Chonthida Thephinlap
- Division of Biochemistry, School of Medical Sciences, University of Phayao 56000, Thailand
| |
Collapse
|
12
|
Bastos FR, Soares da Costa D, Reis RL, Alves NM, Pashkuleva I, Costa RR. Layer-by-layer coated calcium carbonate nanoparticles for targeting breast cancer cells. BIOMATERIALS ADVANCES 2023; 153:213563. [PMID: 37487456 DOI: 10.1016/j.bioadv.2023.213563] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/09/2023] [Revised: 07/10/2023] [Accepted: 07/17/2023] [Indexed: 07/26/2023]
Abstract
Breast cancer is resistant to conventional treatments due to the specific tumour microenvironment, the associated acidic pH and the overexpression of receptors that enhance cells tumorigenicity. Herein, we optimized the synthesis of acidic resorbable calcium carbonate (CaCO3) nanoparticles and the encapsulation of a low molecular weight model molecule (Rhodamine). The addition of ethylene glycol during the synthetic process resulted in a particle size decrease: we obtained homogeneous CaCO3 particles with an average size of 564 nm. Their negative charge enabled the assembly of layer-by-layer (LbL) coatings with surface-exposed hyaluronic acid (HA), a ligand of tumour-associated receptor CD44. The coating decreased Rhodamine release by two-fold compared to uncoated nanoparticles. We demonstrated the effect of nanoparticles on two breast cancer cell lines with different aggressiveness - SK-BR-3 and the more aggressive MDA-MB-231 - and compared them with the normal breast cell line MCF10A. CaCO3 nanoparticles (coated and uncoated) significantly decreased the metabolic activity of the breast cancer cells. The interactions between LbL-coated nanoparticles and cells depended on HA expression on the cell surface: more particles were observed on the surface of MDA-MB-231 cells, which had the thickest endogenous HA coating. We concluded that CaCO3 nanoparticles are potential candidates to carry low molecular weight chemotherapeutics and deliver them to aggressive breast cancer sites with an HA-abundant pericellular matrix.
Collapse
Affiliation(s)
- Filipa R Bastos
- 3B's Research Group, I3Bs - Research Institute on Biomaterials, Biodegradables and Biomimetics, University of Minho, Headquarters of the European Institute of Excellence on Tissue Engineering and Regenerative Medicine, AvePark, Parque de Ciência e Tecnologia, Zona Industrial da Gandra, 4805-017 Barco, Guimarães, Portugal; ICVS/3B's - PT Government Associate Laboratory, Braga/Guimarães, Portugal
| | - Diana Soares da Costa
- 3B's Research Group, I3Bs - Research Institute on Biomaterials, Biodegradables and Biomimetics, University of Minho, Headquarters of the European Institute of Excellence on Tissue Engineering and Regenerative Medicine, AvePark, Parque de Ciência e Tecnologia, Zona Industrial da Gandra, 4805-017 Barco, Guimarães, Portugal; ICVS/3B's - PT Government Associate Laboratory, Braga/Guimarães, Portugal
| | - Rui L Reis
- 3B's Research Group, I3Bs - Research Institute on Biomaterials, Biodegradables and Biomimetics, University of Minho, Headquarters of the European Institute of Excellence on Tissue Engineering and Regenerative Medicine, AvePark, Parque de Ciência e Tecnologia, Zona Industrial da Gandra, 4805-017 Barco, Guimarães, Portugal; ICVS/3B's - PT Government Associate Laboratory, Braga/Guimarães, Portugal
| | - Natália M Alves
- 3B's Research Group, I3Bs - Research Institute on Biomaterials, Biodegradables and Biomimetics, University of Minho, Headquarters of the European Institute of Excellence on Tissue Engineering and Regenerative Medicine, AvePark, Parque de Ciência e Tecnologia, Zona Industrial da Gandra, 4805-017 Barco, Guimarães, Portugal; ICVS/3B's - PT Government Associate Laboratory, Braga/Guimarães, Portugal
| | - Iva Pashkuleva
- 3B's Research Group, I3Bs - Research Institute on Biomaterials, Biodegradables and Biomimetics, University of Minho, Headquarters of the European Institute of Excellence on Tissue Engineering and Regenerative Medicine, AvePark, Parque de Ciência e Tecnologia, Zona Industrial da Gandra, 4805-017 Barco, Guimarães, Portugal; ICVS/3B's - PT Government Associate Laboratory, Braga/Guimarães, Portugal.
| | - Rui R Costa
- 3B's Research Group, I3Bs - Research Institute on Biomaterials, Biodegradables and Biomimetics, University of Minho, Headquarters of the European Institute of Excellence on Tissue Engineering and Regenerative Medicine, AvePark, Parque de Ciência e Tecnologia, Zona Industrial da Gandra, 4805-017 Barco, Guimarães, Portugal; ICVS/3B's - PT Government Associate Laboratory, Braga/Guimarães, Portugal.
| |
Collapse
|
13
|
Lin YH, Singuru MMR, Marpaung DSS, Liao WC, Chuang MC. Ethylene Glycol-Manipulated Syntheses of Calcium Carbonate Particles and DNA Capsules toward Efficient ATP-Responsive Cargo Release. ACS APPLIED BIO MATERIALS 2023; 6:3351-3360. [PMID: 37466412 DOI: 10.1021/acsabm.3c00410] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/20/2023]
Abstract
Cargo molecule-encapsulated DNA capsules synthesized with a solid sacrificial template have elicited significant interest in the last decade and have been used for active materials in applications ranging from biosensors to drug delivery. However, the correlation between template properties and the subsequent assembly and triggered release behavior of the resultant carriers remain uninvestigated. In this study, ethylene glycol (EG) was added during the CaCO3 precipitation synthesis to yield particles of various sizes and surface properties, and the adenosine triphosphate (ATP)-responsive release characteristics of the fabricated DNA capsules affected by these particle properties were investigated. The geometry, crystallization, and surface morphology of the CaCO3 particles co-precipitated at various EG concentrations were characterized. We discuss the integrity of cross-linking hybridization, fluorescent molecule internalization, degree of leakage, and release efficiency of the resulting DNA capsules and their relevance brought by particle properties. To achieve efficient encapsulation and cargo release, the surface roughness of the CaCO3 particles was explored and was deemed a key determinant of the compactness of the DNA shell after template removal. This effect was particularly strong in CaCO3 particles in connection with high EG concentrations. The DNA capsules fabricated using 83% EG exhibited low leakage, high loading, and moderate release efficiencies as well as a greater apparent association constant with ATP due to their small particle size and the high-integrity DNA shells.
Collapse
Affiliation(s)
- Yu-Hsuan Lin
- Department of Chemistry, Tunghai University, Taichung 407224, Taiwan
| | | | - David Septian Sumanto Marpaung
- International Ph.D. Program in Biomedical and Materials Science, Tunghai University, Taichung 407224, Taiwan
- Department of Biosystems Engineering, Institut Teknologi Sumatera, Lampung Selatan 35365, Indonesia
| | - Wei-Ching Liao
- Institute of Biochemistry and Molecular Biology, National Yang Ming Chiao Tung University, Taipei 112304, Taiwan
| | - Min-Chieh Chuang
- Department of Chemistry, Tunghai University, Taichung 407224, Taiwan
- International Ph.D. Program in Biomedical and Materials Science, Tunghai University, Taichung 407224, Taiwan
| |
Collapse
|
14
|
Campbell J, Taghavi A, Preis A, Martin S, Skirtach AG, Franke J, Volodkin D, Vikulina A. Spontaneous shrinkage drives macromolecule encapsulation into layer-by-layer assembled biopolymer microgels. J Colloid Interface Sci 2023; 635:12-22. [PMID: 36577351 DOI: 10.1016/j.jcis.2022.12.115] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2022] [Revised: 12/12/2022] [Accepted: 12/20/2022] [Indexed: 12/24/2022]
Abstract
HYPOTHESIS Recently, the anomalous shrinkage of surface-supported hyaluronate/poly-l-lysine (HA/PLL) microgels (µ-gels), which exceeds that reported for any other multilayer-based systems, has been reported [1]. The current study investigates the capability of these unique µ-gels for the encapsulation and retention of macromolecules, and proposes the shrinkage-driven assembly of biopolymer-based µ-gels as a novel tool for one-step surface biofunctionalization. EXPERIMENTS A set of dextrans (DEX) and their charged derivatives - carboxymethyl (CM)-DEX and diethylaminoethyl (DEAE)-DEX - has been utilized to evaluate the effects of macromolecular mass and net charge on µ-gel shrinkage and macromolecule entrapment. µ-gels formation on the surface of silicone catheters exemplifies their potential to tailor biointerfaces. FINDINGS Shrinkage-driven µ-gel formation strongly depends on the net charge and mass content of encapsulated macromolecules. Inclusion of neutral DEX decreases the degree of shrinkage several times, whilst charged DEXs adopt to the backbone of oppositely charged polyelectrolytes, resulting in shrinkage comparable to that of non-loaded µ-gels. Retention of CM-DEX in µ-gels is significantly higher compared to DEAE-DEX. These insights into the mechanisms of macromolecular entrapment into biopolymer-based µ-gels promotes fundamental understanding of molecular dynamics within the multilayer assemblies. Organization of biodegradable µ-gels at biomaterial surfaces opens avenues for their further exploitation in a diverse array of bioapplications.
Collapse
Affiliation(s)
- Jack Campbell
- Department of Chemistry and Forensics, School of Science and Technology, Nottingham Trent University, Clifton Lane, Nottingham NG11 8NS, United Kingdom; Bavarian Polymer Institute, Friedrich-Alexander-Universität Erlangen-Nürnberg, Dr.-Mack-Straße 77, 90762 Fürth, Germany
| | - Aaron Taghavi
- Department of Chemistry and Forensics, School of Science and Technology, Nottingham Trent University, Clifton Lane, Nottingham NG11 8NS, United Kingdom
| | - Alexander Preis
- Institute for Factory Automation and Production Systems (FAPS), Friedrich-Alexander-Universität Erlangen-Nürnberg, Egerlandstr. 7-9, 91058 Erlangen, Germany
| | - Sina Martin
- Institute for Factory Automation and Production Systems (FAPS), Friedrich-Alexander-Universität Erlangen-Nürnberg, Egerlandstr. 7-9, 91058 Erlangen, Germany
| | - Andre G Skirtach
- Nano-Biotechnology Laboratory, Faculty of Bioscience Engineering, Ghent University, 9000 Ghent, Belgium
| | - Jörg Franke
- Institute for Factory Automation and Production Systems (FAPS), Friedrich-Alexander-Universität Erlangen-Nürnberg, Egerlandstr. 7-9, 91058 Erlangen, Germany
| | - Dmitry Volodkin
- Department of Chemistry and Forensics, School of Science and Technology, Nottingham Trent University, Clifton Lane, Nottingham NG11 8NS, United Kingdom.
| | - Anna Vikulina
- Bavarian Polymer Institute, Friedrich-Alexander-Universität Erlangen-Nürnberg, Dr.-Mack-Straße 77, 90762 Fürth, Germany.
| |
Collapse
|
15
|
Violatto MB, Sitia G, Talamini L, Morelli A, Tran NL, Zhang Q, Masood A, Pelaz B, Chakraborty I, Cui D, Parak WJ, Salmona M, Bastús NG, Puntes V, Bigini P. Variations in Biodistribution and Acute Response of Differently Shaped Titania Nanoparticles in Healthy Rodents. NANOMATERIALS (BASEL, SWITZERLAND) 2023; 13:1174. [PMID: 37049267 PMCID: PMC10097059 DOI: 10.3390/nano13071174] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 03/07/2023] [Revised: 03/22/2023] [Accepted: 03/23/2023] [Indexed: 06/19/2023]
Abstract
Titanium dioxide nanoparticles (TiO2 NPs) are one of the main sources of the nanoparticulate matter exposure to humans. Although several studies have demonstrated their potential toxic effects, the real nature of the correlation between NP properties and their interaction with biological targets is still far from being fully elucidated. Here, engineered TiO2 NPs with various geometries (bipyramids, plates, and rods) have been prepared, characterized and intravenously administered in healthy mice. Parameters such as biodistribution, accumulation, and toxicity have been assessed in the lungs and liver. Our data show that the organ accumulation of TiO2 NPs, measured by ICP-MS, is quite low, and this is only partially and transiently affected by the NP geometries. The long-lasting permanence is exclusively restricted to the lungs. Here, bipyramids and plates show a higher accumulation, and interestingly, rod-shaped NPs are the most toxic, leading to histopathological pulmonary alterations. In addition, they are also able to induce a transient increase in serum markers related to hepatocellular injury. These results indicate that rods, more than bipyramidal and spherical geometries, lead to a stronger and more severe biological effect. Overall, small physico-chemical differences can dramatically modify both accumulation and safety.
Collapse
Affiliation(s)
- Martina B. Violatto
- Department of Molecular Biochemistry and Pharmacology, Istituto di Ricerche Farmacologiche Mario Negri IRCCS, Via Mario Negri 2, 20156 Milano, Italy; (M.B.V.); (L.T.); (A.M.); (M.S.)
| | - Giovanni Sitia
- Experimental Hepatology Unit, Division of Immunology, Transplantation and Infectious Diseases, IRCCS San Raffaele Scientific Institute, Via Olgettina 58, 20132 Milano, Italy; (G.S.); (N.L.T.)
| | - Laura Talamini
- Department of Molecular Biochemistry and Pharmacology, Istituto di Ricerche Farmacologiche Mario Negri IRCCS, Via Mario Negri 2, 20156 Milano, Italy; (M.B.V.); (L.T.); (A.M.); (M.S.)
| | - Annalisa Morelli
- Department of Molecular Biochemistry and Pharmacology, Istituto di Ricerche Farmacologiche Mario Negri IRCCS, Via Mario Negri 2, 20156 Milano, Italy; (M.B.V.); (L.T.); (A.M.); (M.S.)
| | - Ngoc Lan Tran
- Experimental Hepatology Unit, Division of Immunology, Transplantation and Infectious Diseases, IRCCS San Raffaele Scientific Institute, Via Olgettina 58, 20132 Milano, Italy; (G.S.); (N.L.T.)
| | - Qian Zhang
- Department of Instrument Science and Engineering, School of Electronic Information and Electrical Engineering, Institute of Nano Biomedicine and Engineering, Shanghai Jiao Tong University, 800 Dongchuan RD, Shanghai 200240, China; (Q.Z.); (D.C.)
| | - Atif Masood
- Karachi Institute of Radiotherapy and Nuclear Medicine (KIRAN), 75530 Karachi, Pakistan;
| | - Beatriz Pelaz
- Centro Singular de Investigación en Química Biolóxica e Materiais Moleculares (CiQUS), Departamento de Química Inorgánica, Universidade de Santiago de Compostela, 15782 Santiago de Compostela, Spain;
| | - Indranath Chakraborty
- School of Nano Science and Technology, Indian Institute of Technology Kharagpur, Kharagpur 721302, India;
| | - Daxiang Cui
- Department of Instrument Science and Engineering, School of Electronic Information and Electrical Engineering, Institute of Nano Biomedicine and Engineering, Shanghai Jiao Tong University, 800 Dongchuan RD, Shanghai 200240, China; (Q.Z.); (D.C.)
| | - Wolfgang J. Parak
- Center for Hybrid Nanostructures (CHyN), Universität Hamburg, Luruper Chaussee 149, 22607 Hamburg, Germany;
| | - Mario Salmona
- Department of Molecular Biochemistry and Pharmacology, Istituto di Ricerche Farmacologiche Mario Negri IRCCS, Via Mario Negri 2, 20156 Milano, Italy; (M.B.V.); (L.T.); (A.M.); (M.S.)
| | - Neus G. Bastús
- Vall d’Hebron Institut de Recerca (VHIR), 08035 Barcelona, Spain; (N.G.B.); (V.P.)
- Institució Catalana de Recerca i Estudis Avançats (ICREA), 08010 Barcelona, Spain
| | - Victor Puntes
- Vall d’Hebron Institut de Recerca (VHIR), 08035 Barcelona, Spain; (N.G.B.); (V.P.)
- Institució Catalana de Recerca i Estudis Avançats (ICREA), 08010 Barcelona, Spain
- Institut Català de Nanociència i Nanotecnologia (ICN2), Consejo Superior de Investigaciones Científicas CSIC and the Barcelona Institute of Science and Technology (BIST), Campus UAB, Bellaterra, 08036 Barcelona, Spain
- CIBER en Bioingeniería, Biomateriales y Nanomedicina, CIBER-BBN, 28029 Madrid, Spain
| | - Paolo Bigini
- Department of Molecular Biochemistry and Pharmacology, Istituto di Ricerche Farmacologiche Mario Negri IRCCS, Via Mario Negri 2, 20156 Milano, Italy; (M.B.V.); (L.T.); (A.M.); (M.S.)
| |
Collapse
|
16
|
Harpaz D, Barhom H, Veltman B, Ginzburg P, Eltzov E. Biocompatibility characterization of vaterite with a bacterial whole-cell biosensor. Colloids Surf B Biointerfaces 2023; 222:113104. [PMID: 36584449 DOI: 10.1016/j.colsurfb.2022.113104] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2022] [Revised: 11/28/2022] [Accepted: 12/14/2022] [Indexed: 12/24/2022]
Abstract
The growing biomedical challenges impose the continuous development of novel platforms. Ensuring the biocompatibility of drug delivery and implantable biomedical devices is an essential requirement. Calcium carbonate (CaCO3) in the form of vaterite nanoparticles is a promising platform, which has demonstrated distinctive optical and biochemical properties, including high porosity and metastability. In this study, the biocompatibility of differently shaped CaCO3 vaterite particles (toroids, ellipsoids, and spheroids) are evaluated by bacterial toxicity mode-of-action with a whole-cell biosensor. Different Escherichia coli (E. coli) strains were used in the bioluminescent assay, including cytotoxicity, genotoxicity and quorum-sensing. Firstly, both scanning electron microscopy (SEM) and fluorescence microscopy characterizations were conducted. Bacterial cell death and aggregates were observed only in the highest tested concentration of the vaterite particles, especially in toroids 15-25 µm. After, the bioluminescent bacterial panel was exposed to the vaterite particles, and their bioluminescent signal reflected their toxicity mode-of-action. The vaterite particles resulted in an induction factor (IF > 1) on the bacterial panel, which was higher after exposure to the toroids (1.557 ≤ IF ≤ 2.271) and ellipsoids particles (1.712 ≤ IF ≤ 2.018), as compared to the spheroids particles (1.134 ≤ IF ≤ 1.494), in all the tested bacterial strains. Furthermore, the vaterite particles did not affect the viability of the bacterial cells. The bacterial monitoring demonstrated the biofriendly nature of especially spheroids vaterite nanoparticles.
Collapse
Affiliation(s)
- Dorin Harpaz
- Institute of Postharvest and Food Science, Department of Postharvest Science, Volcani Institute, Agricultural Research Organization, Rishon LeZion 7505101, Israel; Institute of Biochemistry, Food Science and Nutrition, Faculty of Agriculture, Food and Environment, The Hebrew University of Jerusalem, Rehovot 76100, Israel.
| | - Hani Barhom
- School of Electrical Engineering, Tel Aviv University, Tel Aviv 69978, Israel.
| | - Boris Veltman
- Institute of Postharvest and Food Science, Department of Postharvest Science, Volcani Institute, Agricultural Research Organization, Rishon LeZion 7505101, Israel; Institute of Biochemistry, Food Science and Nutrition, Faculty of Agriculture, Food and Environment, The Hebrew University of Jerusalem, Rehovot 76100, Israel.
| | - Pavel Ginzburg
- School of Electrical Engineering, Tel Aviv University, Tel Aviv 69978, Israel.
| | - Evgeni Eltzov
- Institute of Postharvest and Food Science, Department of Postharvest Science, Volcani Institute, Agricultural Research Organization, Rishon LeZion 7505101, Israel; Agro-Nanotechnology and Advanced Materials Research Center, Volcani Institute, Agricultural Research Organization, Rishon LeZion 7505101, Israel.
| |
Collapse
|
17
|
Stepankova H, Michalkova H, Splichal Z, Richtera L, Svec P, Vaculovic T, Pribyl J, Kormunda M, Rex S, Adam V, Heger Z. Unveiling the nanotoxicological aspects of Se nanomaterials differing in size and morphology. Bioact Mater 2023; 20:489-500. [PMID: 35800405 PMCID: PMC9237951 DOI: 10.1016/j.bioactmat.2022.06.014] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2021] [Revised: 03/08/2022] [Accepted: 06/17/2022] [Indexed: 11/26/2022] Open
Abstract
Although the general concept of nanotechnology relies on exploitation of size-dependent properties of nanoscaled materials, the relation between the size/morphology of nanoparticles with their biological activity remains not well understood. Therefore, we aimed at investigating the biological activity of Se nanoparticles, one of the most promising candidates of nanomaterials for biomedicine, possessing the same crystal structure, but differing in morphology (nanorods vs. spherical particles) and aspect ratios (AR, 11.5 vs. 22.3 vs. 1.0) in human cells and BALB/c mice. Herein, we report that in case of nanorod-shaped Se nanomaterials, AR is a critical factor describing their cytotoxicity and biocompatibility. However, spherical nanoparticles (AR 1.0) do not fit this statement and exhibit markedly higher cytotoxicity than lower-AR Se nanorods. Beside of cytotoxicity, we also show that morphology and size substantially affect the uptake and intracellular fate of Se nanomaterials. In line with in vitro data, in vivo i.v. administration of Se nanomaterials revealed the highest toxicity for higher-AR nanorods followed by spherical nanoparticles and lower-AR nanorods. Moreover, we revealed that Se nanomaterials are able to alter intracellular redox homeostasis, and affect the acidic intracellular vesicles and cytoskeletal architecture in a size- and morphology-dependent manner. Although the tested nanoparticles were produced from the similar sources, their behavior differs markedly, since each type is promising for several various application scenarios, and the presented testing protocol could serve as a concept standardizing the biological relevance of the size and morphology of the various types of nanomaterials and nanoparticles.
Collapse
Affiliation(s)
- Hana Stepankova
- Department of Chemistry and Biochemistry, Mendel University in Brno, Zemedelska 1, Brno, CZ-613 00, Czech Republic
| | - Hana Michalkova
- Department of Chemistry and Biochemistry, Mendel University in Brno, Zemedelska 1, Brno, CZ-613 00, Czech Republic
- Central European Institute of Technology, Brno University of Technology, Purkynova 123, Brno, CZ-612 00, Czech Republic
| | - Zbynek Splichal
- Department of Chemistry and Biochemistry, Mendel University in Brno, Zemedelska 1, Brno, CZ-613 00, Czech Republic
- Central European Institute of Technology, Brno University of Technology, Purkynova 123, Brno, CZ-612 00, Czech Republic
| | - Lukas Richtera
- Department of Chemistry and Biochemistry, Mendel University in Brno, Zemedelska 1, Brno, CZ-613 00, Czech Republic
- Central European Institute of Technology, Brno University of Technology, Purkynova 123, Brno, CZ-612 00, Czech Republic
| | - Pavel Svec
- Department of Chemistry and Biochemistry, Mendel University in Brno, Zemedelska 1, Brno, CZ-613 00, Czech Republic
- Central European Institute of Technology, Brno University of Technology, Purkynova 123, Brno, CZ-612 00, Czech Republic
| | - Tomas Vaculovic
- Department of Chemistry, Masaryk University, Kamenice 5, Brno, CZ-625 00, Czech Republic
- Institute of Laboratory Research on Geomaterials, Faculty of Natural Sciences, Comenius University in Bratislava, Mlynska dolina, Ilkovicova 6, 842 15 Bratislava, Slovak Republic
| | - Jan Pribyl
- Central European Institute of Technology, Masaryk University, Kamenice 5, Brno, CZ-625 00, Czech Republic
| | - Martin Kormunda
- Department of Physics, Faculty of Science, J. E. Purkyne University, Pasteurova 1, Usti nad Labem, CZ-400 96, Czech Republic
| | - Simona Rex
- Department of Chemistry and Biochemistry, Mendel University in Brno, Zemedelska 1, Brno, CZ-613 00, Czech Republic
- Central European Institute of Technology, Brno University of Technology, Purkynova 123, Brno, CZ-612 00, Czech Republic
| | - Vojtech Adam
- Department of Chemistry and Biochemistry, Mendel University in Brno, Zemedelska 1, Brno, CZ-613 00, Czech Republic
- Central European Institute of Technology, Brno University of Technology, Purkynova 123, Brno, CZ-612 00, Czech Republic
| | - Zbynek Heger
- Department of Chemistry and Biochemistry, Mendel University in Brno, Zemedelska 1, Brno, CZ-613 00, Czech Republic
- Central European Institute of Technology, Brno University of Technology, Purkynova 123, Brno, CZ-612 00, Czech Republic
| |
Collapse
|
18
|
Abed AS, Khalaf YH, Mishaal Mohammed A. Green Synthesis of Gold Nanoparticles as an Effective Opportunity for Cancer Treatment. RESULTS IN CHEMISTRY 2023. [DOI: 10.1016/j.rechem.2023.100848] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/13/2023] Open
|
19
|
Mikhalchik E, Basyreva LY, Gusev SA, Panasenko OM, Klinov DV, Barinov NA, Morozova OV, Moscalets AP, Maltseva LN, Filatova LY, Pronkin EA, Bespyatykh JA, Balabushevich NG. Activation of Neutrophils by Mucin–Vaterite Microparticles. Int J Mol Sci 2022; 23:ijms231810579. [PMID: 36142492 PMCID: PMC9501559 DOI: 10.3390/ijms231810579] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2022] [Revised: 09/04/2022] [Accepted: 09/07/2022] [Indexed: 11/16/2022] Open
Abstract
Nano- and microparticles enter the body through the respiratory airways and the digestive system, or form as biominerals in the gall bladder, salivary glands, urinary bladder, kidney, or diabetic pancreas. Calcium, magnesium, and phosphate ions can precipitate from biological fluids in the presence of mucin as hybrid nanoparticles. Calcium carbonate nanocrystallites also trap mucin and are assembled into hybrid microparticles. Both mucin and calcium carbonate polymorphs (calcite, aragonite, and vaterite) are known to be components of such biominerals as gallstones which provoke inflammatory reactions. Our study was aimed at evaluation of neutrophil activation by hybrid vaterite–mucin microparticles (CCM). Vaterite microparticles (CC) and CCM were prepared under standard conditions. The diameter of CC and CCM was 3.3 ± 0.8 µm and 5.8 ± 0.7 µm, with ƺ-potentials of −1 ± 1 mV and −7 ± 1 mV, respectively. CC microparticles injured less than 2% of erythrocytes in 2 h at 1.5 mg mL−1, and no hemolysis was detected with CCM; this let us exclude direct damage of cellular membranes by microparticles. Activation of neutrophils was analyzed by luminol- and lucigenin-dependent chemiluminescence (Lum-CL and Luc-CL), by cytokine gene expression (IL-6, IL-8, IL-10) and release (IL-1β, IL-6, IL-8, IL-10, TNF-α), and by light microscopy of stained smears. There was a 10-fold and higher increase in the amplitude of Lum-CL and Luc-CL after stimulation of neutrophils with CCM relative to CC. Adsorption of mucin onto prefabricated CC microparticles also contributed to activation of neutrophil CL, unlike mucin adsorption onto yeast cell walls (zymosan); adsorbed mucin partially suppressed zymosan-stimulated production of oxidants by neutrophils. Preliminary treatment of CCM with 0.1–10 mM NaOCl decreased subsequent activation of Lum-CL and Luc-CL of neutrophils depending on the used NaOCl concentration, presumably because of the surface mucin oxidation. Based on the results of ELISA, incubation of neutrophils with CCM downregulated IL-6 production but upregulated that of IL-8. IL-6 and IL-8 gene expression in neutrophils was not affected by CC or CCM according to RT2-PCR data, which means that post-translational regulation was involved. Light microscopy revealed adhesion of CC and CCM microparticles onto the neutrophils; CCM increased neutrophil aggregation with a tendency to form neutrophil extracellular traps (NETs). We came to the conclusion that the main features of neutrophil reaction to mucin–vaterite hybrid microparticles are increased oxidant production, cell aggregation, and NET-like structure formation, but without significant cytokine release (except for IL-8). This effect of mucin is not anion-specific since particles of powdered kidney stone (mainly calcium oxalate) in the present study or calcium phosphate nanowires in our previous report also activated Lum-CL and Luc-CL response of neutrophils after mucin sorption.
Collapse
Affiliation(s)
- Elena Mikhalchik
- Federal Research and Clinical Center of Physical-Chemical Medicine of Federal Medical Biological Agency, 119435 Moscow, Russia
- Correspondence: ; Tel.: +7-4-99-2464352
| | - Liliya Yu. Basyreva
- Federal Research and Clinical Center of Physical-Chemical Medicine of Federal Medical Biological Agency, 119435 Moscow, Russia
| | - Sergey A. Gusev
- Federal Research and Clinical Center of Physical-Chemical Medicine of Federal Medical Biological Agency, 119435 Moscow, Russia
| | - Oleg M. Panasenko
- Federal Research and Clinical Center of Physical-Chemical Medicine of Federal Medical Biological Agency, 119435 Moscow, Russia
| | - Dmitry V. Klinov
- Federal Research and Clinical Center of Physical-Chemical Medicine of Federal Medical Biological Agency, 119435 Moscow, Russia
- Laboratory of Biomaterials, Sirius University of Science and Technology, 354340 Sochi, Russia
| | - Nikolay A. Barinov
- Federal Research and Clinical Center of Physical-Chemical Medicine of Federal Medical Biological Agency, 119435 Moscow, Russia
- Laboratory of Biomaterials, Sirius University of Science and Technology, 354340 Sochi, Russia
| | - Olga V. Morozova
- Federal Research and Clinical Center of Physical-Chemical Medicine of Federal Medical Biological Agency, 119435 Moscow, Russia
- National Research Center of Epidemiology and Microbiology of N.F. Gamaleya, 123098 Moscow, Russia
| | - Alexander P. Moscalets
- Federal Research and Clinical Center of Physical-Chemical Medicine of Federal Medical Biological Agency, 119435 Moscow, Russia
- Laboratory of Biomaterials, Sirius University of Science and Technology, 354340 Sochi, Russia
| | - Liliya N. Maltseva
- Faculty of Chemistry, Lomonosov Moscow State University, 119991 Moscow, Russia
| | - Lyubov Yu. Filatova
- Faculty of Chemistry, Lomonosov Moscow State University, 119991 Moscow, Russia
| | - Evgeniy A. Pronkin
- Federal Research and Clinical Center of Physical-Chemical Medicine of Federal Medical Biological Agency, 119435 Moscow, Russia
| | - Julia A. Bespyatykh
- Federal Research and Clinical Center of Physical-Chemical Medicine of Federal Medical Biological Agency, 119435 Moscow, Russia
- Expertise Department in Anti-Doping and Drug Control, Mendeleev University of Chemical Technology of Russia, 125047 Moscow, Russia
| | | |
Collapse
|
20
|
Niu YQ, Liu JH, Aymonier C, Fermani S, Kralj D, Falini G, Zhou CH. Calcium carbonate: controlled synthesis, surface functionalization, and nanostructured materials. Chem Soc Rev 2022; 51:7883-7943. [PMID: 35993776 DOI: 10.1039/d1cs00519g] [Citation(s) in RCA: 40] [Impact Index Per Article: 20.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
Abstract
Calcium carbonate (CaCO3) is an important inorganic mineral in biological and geological systems. Traditionally, it is widely used in plastics, papermaking, ink, building materials, textiles, cosmetics, and food. Over the last decade, there has been rapid development in the controlled synthesis and surface modification of CaCO3, the stabilization of amorphous CaCO3 (ACC), and CaCO3-based nanostructured materials. In this review, the controlled synthesis of CaCO3 is first examined, including Ca2+-CO32- systems, solid-liquid-gas carbonation, water-in-oil reverse emulsions, and biomineralization. Advancing insights into the nucleation and crystallization of CaCO3 have led to the development of efficient routes towards the controlled synthesis of CaCO3 with specific sizes, morphologies, and polymorphs. Recently-developed surface modification methods of CaCO3 include organic and inorganic modifications, as well as intensified surface reactions. The resultant CaCO3 can then be further engineered via template-induced biomineralization and layer-by-layer assembly into porous, hollow, or core-shell organic-inorganic nanocomposites. The introduction of CaCO3 into nanostructured materials has led to a significant improvement in the mechanical, optical, magnetic, and catalytic properties of such materials, with the resultant CaCO3-based nanostructured materials showing great potential for use in biomaterials and biomedicine, environmental remediation, and energy production and storage. The influences that the preparation conditions and additives have on ACC preparation and stabilization are also discussed. Studies indicate that ACC can be used to construct environmentally-friendly hybrid films, supramolecular hydrogels, and drug vehicles. Finally, the existing challenges and future directions of the controlled synthesis and functionalization of CaCO3 and its expanding applications are highlighted.
Collapse
Affiliation(s)
- Yu-Qin Niu
- Research Group for Advanced Materials & Sustainable Catalysis (AMSC), State Key Laboratory Breeding Base of Green Chemistry-Synthesis Technology, College of Chemical Engineering, Zhejiang University of Technology, Hangzhou 310032, China. .,Qing Yang Institute for Industrial Minerals, You Hua, Qing Yang, Chi Zhou 242804, China
| | - Jia-Hui Liu
- Research Group for Advanced Materials & Sustainable Catalysis (AMSC), State Key Laboratory Breeding Base of Green Chemistry-Synthesis Technology, College of Chemical Engineering, Zhejiang University of Technology, Hangzhou 310032, China. .,Qing Yang Institute for Industrial Minerals, You Hua, Qing Yang, Chi Zhou 242804, China
| | - Cyril Aymonier
- Univ Bordeaux, ICMCB, Bordeaux INP, UMR 5026, CNRS, F-33600 Pessac, France
| | - Simona Fermani
- Department of Chemistry "Giacomo Ciamician", University of Bologna, Via Selmi 2, I-40126 Bologna, Italy. .,Interdepartmental Centre for Industrial Research Health Sciences & Technologies, University of Bologna, 40064 Bologna, Italy
| | - Damir Kralj
- Laboratory for Precipitation Processes, Ruđer Bošković Institute, P. O. Box 1016, HR-10001 Zagreb, Croatia
| | - Giuseppe Falini
- Department of Chemistry "Giacomo Ciamician", University of Bologna, Via Selmi 2, I-40126 Bologna, Italy.
| | - Chun-Hui Zhou
- Research Group for Advanced Materials & Sustainable Catalysis (AMSC), State Key Laboratory Breeding Base of Green Chemistry-Synthesis Technology, College of Chemical Engineering, Zhejiang University of Technology, Hangzhou 310032, China. .,Qing Yang Institute for Industrial Minerals, You Hua, Qing Yang, Chi Zhou 242804, China
| |
Collapse
|
21
|
Nifontova G, Tsoi T, Karaulov A, Nabiev I, Sukhanova A. Structure-function relationships in polymeric multilayer capsules designed for cancer drug delivery. Biomater Sci 2022; 10:5092-5115. [PMID: 35894444 DOI: 10.1039/d2bm00829g] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
The targeted delivery of cancer drugs to tumor-specific molecular targets represents a major challenge in modern personalized cancer medicine. Engineering of micron and submicron polymeric multilayer capsules allows the obtaining of multifunctional theranostic systems serving as controllable stimulus-responsive tools with a high clinical potential to be used in cancer therapy and detection. The functionalities of such theranostic systems are determined by the design and structural properties of the capsules. This review (1) describes the current issues in designing cancer cell-targeting polymeric multilayer capsules, (2) analyzes the effects of the interactions of the capsules with the cellular and molecular constituents of biological fluids, and (3) presents the key structural parameters determining the effectiveness of capsule targeting. The influence of the morphological and physicochemical parameters and the origin of the structural components and surface ligands on the functional activity of polymeric multilayer capsules at the molecular, cellular, and whole-body levels are summarized. The basic structural and functional principles determining the future trends of theranostic capsule development are established and discussed.
Collapse
Affiliation(s)
- Galina Nifontova
- Laboratoire de Recherche en Nanosciences, LRN-EA4682, Université de Reims Champagne-Ardenne, 51100 Reims, France.
| | - Tatiana Tsoi
- National Research Nuclear University MEPhI (Moscow Engineering Physics Institute), 115409 Moscow, Russia
| | - Alexander Karaulov
- Sechenov First Moscow State Medical University (Sechenov University), 119146 Moscow, Russia
| | - Igor Nabiev
- Laboratoire de Recherche en Nanosciences, LRN-EA4682, Université de Reims Champagne-Ardenne, 51100 Reims, France. .,National Research Nuclear University MEPhI (Moscow Engineering Physics Institute), 115409 Moscow, Russia.,Sechenov First Moscow State Medical University (Sechenov University), 119146 Moscow, Russia
| | - Alyona Sukhanova
- Laboratoire de Recherche en Nanosciences, LRN-EA4682, Université de Reims Champagne-Ardenne, 51100 Reims, France.
| |
Collapse
|
22
|
Huang Y, Cao L, Parakhonskiy BV, Skirtach AG. Hard, Soft, and Hard- and-Soft Drug Delivery Carriers Based on CaCO 3 and Alginate Biomaterials: Synthesis, Properties, Pharmaceutical Applications. Pharmaceutics 2022; 14:909. [PMID: 35631494 PMCID: PMC9146629 DOI: 10.3390/pharmaceutics14050909] [Citation(s) in RCA: 22] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2022] [Revised: 03/26/2022] [Accepted: 04/01/2022] [Indexed: 02/01/2023] Open
Abstract
Because free therapeutic drug molecules often have adverse effects on normal tissues, deliver scanty drug concentrations and exhibit a potentially low efficacy at pathological sites, various drug carriers have been developed for preclinical and clinical trials. Their physicochemical and toxicological properties are the subject of extensive research. Inorganic calcium carbonate particles are promising candidates as drug delivery carriers owning to their hardness, porous internal structure, high surface area, distinctive pH-sensitivity, low degradability, etc, while soft organic alginate hydrogels are also widely used because of their special advantages such as a high hydration, bio-adhesiveness, and non-antigenicity. Here, we review these two distinct substances as well as hybrid structures encompassing both types of carriers. Methods of their synthesis, fundamental properties and mechanisms of formation, and their respective applications are described. Furthermore, we summarize and compare similarities versus differences taking into account unique advantages and disadvantages of these drug delivery carriers. Moreover, rational combination of both carrier types due to their performance complementarity (yin-&yang properties: in general, yin is referred to for definiteness as hard, and yang is broadly taken as soft) is proposed to be used in the so-called hybrid carriers endowing them with even more advanced properties envisioned to be attractive for designing new drug delivery systems.
Collapse
Affiliation(s)
| | - Lin Cao
- NanoBio Technology Group, Faculty of Bioscience Engineering, Ghent University, 9000 Ghent, Belgium;
| | - Bogdan V. Parakhonskiy
- NanoBio Technology Group, Faculty of Bioscience Engineering, Ghent University, 9000 Ghent, Belgium;
| | - Andre G. Skirtach
- NanoBio Technology Group, Faculty of Bioscience Engineering, Ghent University, 9000 Ghent, Belgium;
| |
Collapse
|
23
|
Timin AS, Postovalova AS, Karpov TE, Antuganov D, Bukreeva AS, Akhmetova DR, Rogova AS, Muslimov AR, Rodimova SA, Kuznetsova DS, Zyuzin MV. Calcium carbonate carriers for combined chemo- and radionuclide therapy of metastatic lung cancer. J Control Release 2022; 344:1-11. [PMID: 35181413 DOI: 10.1016/j.jconrel.2022.02.021] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2021] [Revised: 02/05/2022] [Accepted: 02/14/2022] [Indexed: 12/13/2022]
Abstract
Considering the clinical limitations of individual approaches against metastatic lung cancer, the use of combined therapy can potentially improve the therapeutic effect of treatment. However, determination of the appropriate strategy of combined treatment can be challenging. In this study, combined chemo- and radionuclide therapy has been realized using radionuclide carriers (177Lu-labeled core-shell particles, 177Lu-MPs) and chemotherapeutic drug (cisplatin, CDDP) for treatment of lung metastatic cancer. The developed core-shell particles can be effectively loaded with 177Lu therapeutic radionuclide and exhibit good radiochemical stability for a prolonged period of time. In vivo biodistribution experiments have demonstrated the accumulation of the developed carriers predominantly in lungs. Direct radiometry analysis did not reveal an increased absorbance of radiation by healthy organs. It has been shown that the radionuclide therapy with 177Lu-MPs in mono-regime is able to inhibit the number of metastatic nodules (untreated mice = 120 ± 12 versus177Lu-MPs = 50 ± 7). The combination of chemo- and radionuclide therapy when using 177Lu-MPs and CDDP further enhanced the therapeutic efficiency of tumor treatment compared to the single therapy (177Lu-MPs = 50 ± 7 and CDDP = 65 ± 10 versus177Lu-MPs + CDDP = 37 ± 5). Thus, this work is a systematic research on the applicability of the combination of chemo- and radionuclide therapy to treat metastatic lung cancer.
Collapse
Affiliation(s)
- Alexander S Timin
- Granov Russian Research Center of Radiology & Surgical Technologies, Leningradskaya Street 70 Pesochny, St. Petersburg 197758, Russian Federation; Peter The Great St. Petersburg Polytechnic University, Polytechnicheskaya 29, St. Petersburg 195251, Russian Federation; Research School of Chemical and Biomedical Engineering, National Research Tomsk Polytechnic University, Lenin Avenue 30, Tomsk 634050, Russian Federation.
| | - Alisa S Postovalova
- Granov Russian Research Center of Radiology & Surgical Technologies, Leningradskaya Street 70 Pesochny, St. Petersburg 197758, Russian Federation; Peter The Great St. Petersburg Polytechnic University, Polytechnicheskaya 29, St. Petersburg 195251, Russian Federation
| | - Timofey E Karpov
- Granov Russian Research Center of Radiology & Surgical Technologies, Leningradskaya Street 70 Pesochny, St. Petersburg 197758, Russian Federation; Peter The Great St. Petersburg Polytechnic University, Polytechnicheskaya 29, St. Petersburg 195251, Russian Federation
| | - Dmitrii Antuganov
- Granov Russian Research Center of Radiology & Surgical Technologies, Leningradskaya Street 70 Pesochny, St. Petersburg 197758, Russian Federation
| | - Anastasia S Bukreeva
- Peter The Great St. Petersburg Polytechnic University, Polytechnicheskaya 29, St. Petersburg 195251, Russian Federation
| | - Darya R Akhmetova
- Peter The Great St. Petersburg Polytechnic University, Polytechnicheskaya 29, St. Petersburg 195251, Russian Federation
| | - Anna S Rogova
- Peter The Great St. Petersburg Polytechnic University, Polytechnicheskaya 29, St. Petersburg 195251, Russian Federation
| | - Albert R Muslimov
- Peter The Great St. Petersburg Polytechnic University, Polytechnicheskaya 29, St. Petersburg 195251, Russian Federation
| | - Svetlana A Rodimova
- N.I. Lobachevsky Nizhny Novgorod National Research State University, 23 Gagarina ave., Nizhny Novgorod 603022, Russian Federation; Institute of Experimental Oncology and Biomedical Technologies, Privolzhsky research medical university, 10/1 Minin and Pozharsky sq., Nizhny Novgorod 603022, Russian Federation
| | - Daria S Kuznetsova
- N.I. Lobachevsky Nizhny Novgorod National Research State University, 23 Gagarina ave., Nizhny Novgorod 603022, Russian Federation; Institute of Experimental Oncology and Biomedical Technologies, Privolzhsky research medical university, 10/1 Minin and Pozharsky sq., Nizhny Novgorod 603022, Russian Federation
| | - Mikhail V Zyuzin
- School of Physics and Engineering, ITMO University, Lomonosova 9, St. Petersburg 191002, Russian Federation
| |
Collapse
|
24
|
Abalymov A, Lengert E, Van der Meeren L, Saveleva M, Ivanova A, Douglas TEL, Skirtach AG, Volodkin D, Parakhonskiy B. The influence of Ca/Mg ratio on autogelation of hydrogel biomaterials with bioceramic compounds. MATERIALS SCIENCE & ENGINEERING. C, MATERIALS FOR BIOLOGICAL APPLICATIONS 2022; 133:112632. [PMID: 35034815 DOI: 10.1016/j.msec.2021.112632] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/20/2021] [Revised: 12/14/2021] [Accepted: 12/20/2021] [Indexed: 12/28/2022]
Abstract
Hydrogels, which are versatile three-dimensional structures containing polymers and water, are very attractive for use in biomedical fields, but they suffer from rather weak mechanical properties. In this regard, biocompatible particles can be used to enhance their mechanical properties. The possibility of loading such particles with drugs (e.g. enzymes) makes them a particularly useful component in hydrogels. In this study, micro/nanoparticles containing various ratios of Ca2+/Mg2+ with sizes ranging from 1 to 8 μm were prepared and mixed with gellan gum (GG) solution to study the in-situ formation of hydrogel-particle composites. The particles provide multiple functionalities: 1) they efficiently crosslink GG to induce hydrogel formation through the release of the divalent cations (Ca2+/Mg2+) known to bind to GG polymer chains; 2) they enhance mechanical properties of the hydrogel from 2 up to 100 kPa; 3) the samples most efficiently promoting cell growth were found to contain two types of minerals: vaterite and hydroxymagnesite, which enhanced cells proliferation and hydroxyapatite formation. The results demonstrate that such composite materials are attractive candidates for applications in bone regeneration.
Collapse
Affiliation(s)
| | - Ekaterina Lengert
- Department of Biotechnology, Ghent University, 9000 Ghent, Belgium; First Moscow State Medical University (Sechenov University), Moscow 119992, Russia; Central Research Laboratory, Saratov State Medical University of V. I. Razumovsky, Ministry of Health of the Russian Federation, 410012 Saratov, Russia
| | | | - Mariia Saveleva
- Department of Biotechnology, Ghent University, 9000 Ghent, Belgium; Saratov State University, 410012 Saratov, Russia
| | - Anna Ivanova
- FSRC "Crystallography and Photonics", Shubnikov Institute of Crystallography, RAS, Moscow, Russia
| | - Timothy E L Douglas
- Engineering Department, Lancaster University, Gillow Avenue, Lancaster LA1 4YX, United Kingdom; Materials Science Institute (MSI), Lancaster University, United Kingdom
| | - Andre G Skirtach
- Department of Biotechnology, Ghent University, 9000 Ghent, Belgium
| | - Dmitry Volodkin
- Nottingham Trent University, NG11 8NS, Clifton Lane, United Kingdom
| | | |
Collapse
|
25
|
Yan H, Cacioppo M, Megahed S, Arcudi F, Đorđević L, Zhu D, Schulz F, Prato M, Parak WJ, Feliu N. Influence of the chirality of carbon nanodots on their interaction with proteins and cells. Nat Commun 2021; 12:7208. [PMID: 34893594 PMCID: PMC8664908 DOI: 10.1038/s41467-021-27406-1] [Citation(s) in RCA: 24] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2021] [Accepted: 11/11/2021] [Indexed: 12/26/2022] Open
Abstract
Carbon nanodots with opposite chirality possess the same major physicochemical properties such as optical features, hydrodynamic diameter, and colloidal stability. Here, a detailed analysis about the comparison of the concentration of both carbon nanodots is carried out, putting a threshold to when differences in biological behavior may be related to chirality and may exclude effects based merely on differences in exposure concentrations due to uncertainties in concentration determination. The present study approaches this comparative analysis evaluating two basic biological phenomena, the protein adsorption and cell internalization. We find how a meticulous concentration error estimation enables the evaluation of the differences in biological effects related to chirality.
Collapse
Affiliation(s)
- Huijie Yan
- Fachbereich Physik, Center for Hybrid Nanostructures (CHyN), Universitat Hamburg, 22607, Hamburg, Germany
| | - Michele Cacioppo
- Fachbereich Physik, Center for Hybrid Nanostructures (CHyN), Universitat Hamburg, 22607, Hamburg, Germany
- Department of Chemical and Pharmaceutical Sciences, INSTM UdR Trieste, University of Trieste, Via Licio Giorgieri 1, 34127, Trieste, Italy
| | - Saad Megahed
- Fachbereich Physik, Center for Hybrid Nanostructures (CHyN), Universitat Hamburg, 22607, Hamburg, Germany
- Physics Department, Faculty of Science, Al-Azhar University, Cairo, Egypt
| | - Francesca Arcudi
- Department of Chemical and Pharmaceutical Sciences, INSTM UdR Trieste, University of Trieste, Via Licio Giorgieri 1, 34127, Trieste, Italy
| | - Luka Đorđević
- Department of Chemical and Pharmaceutical Sciences, INSTM UdR Trieste, University of Trieste, Via Licio Giorgieri 1, 34127, Trieste, Italy
| | - Dingcheng Zhu
- Fachbereich Physik, Center for Hybrid Nanostructures (CHyN), Universitat Hamburg, 22607, Hamburg, Germany
- College of Material, Chemistry and Chemical Engineering, Hangzhou Normal University, Hangzhou, PR China
| | - Florian Schulz
- Fachbereich Physik, Center for Hybrid Nanostructures (CHyN), Universitat Hamburg, 22607, Hamburg, Germany
| | - Maurizio Prato
- Department of Chemical and Pharmaceutical Sciences, INSTM UdR Trieste, University of Trieste, Via Licio Giorgieri 1, 34127, Trieste, Italy.
- Center for Cooperative Research in Biomaterials (CIC biomaGUNE), Basque Research and Technology Alliance (BRTA), Paseo de Miramon 182, 20014, Donostia San Sebastian, Spain.
- Basque Foundation for Science, Ikerbasque, 48013, Bilbao, Spain.
| | - Wolfgang J Parak
- Fachbereich Physik, Center for Hybrid Nanostructures (CHyN), Universitat Hamburg, 22607, Hamburg, Germany.
- Center for Cooperative Research in Biomaterials (CIC biomaGUNE), Basque Research and Technology Alliance (BRTA), Paseo de Miramon 182, 20014, Donostia San Sebastian, Spain.
| | - Neus Feliu
- Fachbereich Physik, Center for Hybrid Nanostructures (CHyN), Universitat Hamburg, 22607, Hamburg, Germany.
- Fraunhofer Center for Applied Nanotechnology (CAN), 20146, Hamburg, Germany.
| |
Collapse
|
26
|
Yashchenok AM, Gusliakova OI, Konovalova EV, Novoselova MV, Shipunova VO, Abakumova TO, Efimova OI, Kholodenko R, Schulga AA, Zatsepin TS, Gorin DA, Deyev SM. Barnase encapsulation into submicron porous CaCO 3 particles: studies of loading and enzyme activity. J Mater Chem B 2021; 9:8823-8831. [PMID: 34633027 DOI: 10.1039/d1tb01315g] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
The present study focuses on the immobilization of the bacterial ribonuclease barnase (Bn) into submicron porous calcium carbonate (CaCO3) particles. For encapsulation, we apply adsorption, freezing-induced loading and co-precipitation methods and study the effects of adsorption time, enzyme concentration and anionic polyelectrolytes on the encapsulation efficiency of Bn. We show that the use of negatively charged dextran sulfate (DS) and ribonucleic acid from yeast (RNA) increases the loading capacity (LC) of the enzyme on CaCO3 particles by about 3-fold as compared to the particles with Bn itself. The ribonuclease (RNase) activity of encapsulated enzyme depends on the LC of the particles and transformation of metastable vaterite to stable calcite, as studied by the assessment of enzyme activities in particles.
Collapse
Affiliation(s)
- Alexey M Yashchenok
- Center for Photonics and Quantum Materials, Skolkovo Institute of Science and Technology, 121205 Moscow, Russia.
| | - Olga I Gusliakova
- Remote Controlled Theranostic Systems Lab, Saratov State University, 410012 Saratov, Russia
| | - Elena V Konovalova
- Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry, Russian Academy of Sciences, Miklukho-Maklaya Street 16/10, 117997 Moscow, Russia
| | - Marina V Novoselova
- Center for Photonics and Quantum Materials, Skolkovo Institute of Science and Technology, 121205 Moscow, Russia.
| | - Victoria O Shipunova
- Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry, Russian Academy of Sciences, Miklukho-Maklaya Street 16/10, 117997 Moscow, Russia
| | - Tatiana O Abakumova
- Center for Life Science, Skolkovo Institute of Science and Technology, 121205 Moscow, Russia
| | - Olga I Efimova
- Center for Neurobiology and Brain Restoration, Skolkovo Institute of Science and Technology, 121205 Moscow, Russia
| | - Roman Kholodenko
- Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry, Russian Academy of Sciences, Miklukho-Maklaya Street 16/10, 117997 Moscow, Russia
| | - Alexey A Schulga
- Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry, Russian Academy of Sciences, Miklukho-Maklaya Street 16/10, 117997 Moscow, Russia
| | - Timofei S Zatsepin
- Center for Life Science, Skolkovo Institute of Science and Technology, 121205 Moscow, Russia
| | - Dmitry A Gorin
- Center for Photonics and Quantum Materials, Skolkovo Institute of Science and Technology, 121205 Moscow, Russia.
| | - Sergey M Deyev
- Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry, Russian Academy of Sciences, Miklukho-Maklaya Street 16/10, 117997 Moscow, Russia
| |
Collapse
|
27
|
Sovova S, Abalymov A, Pekar M, Skirtach AG, Parakhonskiy B. Calcium carbonate particles: synthesis, temperature and time influence on the size, shape, phase, and their impact on cell hydroxyapatite formation. J Mater Chem B 2021; 9:8308-8320. [PMID: 34518864 DOI: 10.1039/d1tb01072g] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
To develop materials for drug delivery and tissue engineering and to study their efficiency with respect to ossification, it is necessary to apply physicochemical and biological analyses. The major challenge is labor-intensive data mining during synthesis and the reproducibility of the obtained data. In this work, we investigated the influence of time and temperature on the reaction yield, the reaction rate, and the size, shape, and phase of the obtained product in the completely controllable synthesis of calcium carbonate. We show that calcium carbonate particles can be synthesized in large quantities, i.e., in gram quantities, which is a substantial advantage over previously reported synthesis methods. We demonstrated that the presence of vaterite particles can dramatically stimulate hydroxyapatite (HA) production by providing the continued release of the main HA component - calcium ions - depending on the following particle parameters: size, shape, and phase. To understand the key parameters influencing the efficiency of HA production by cells, we created a predictive model by means of principal component analysis. We found that smaller particles in the vaterite state are best suited for HA growth (HA growth was 8 times greater than that in the control). We also found that the reported dependence of cell adhesion on colloidal particles can be extended to other types of particles that contain calcium ions.
Collapse
Affiliation(s)
- Sarka Sovova
- Institute of Physical and Applied Chemistry, Brno University of Technology, Brno, Czech Republic
| | - Anatolii Abalymov
- Science Medical Center, Saratov State University, Saratov 410012, Russian Federation.,Center for Photonics and Quantum Materials, Skolkovo Institute of Science and Technology, 121205 Moscow, Russia
| | - Miloslav Pekar
- Institute of Physical and Applied Chemistry, Brno University of Technology, Brno, Czech Republic
| | - Andre G Skirtach
- NanoBioTechnology laboratory. Faculty of Bioscience Engineering, Ghent University, 9000 Ghent, Belgium.
| | - Bogdan Parakhonskiy
- NanoBioTechnology laboratory. Faculty of Bioscience Engineering, Ghent University, 9000 Ghent, Belgium.
| |
Collapse
|
28
|
Kapate N, Clegg JR, Mitragotri S. Non-spherical micro- and nanoparticles for drug delivery: Progress over 15 years. Adv Drug Deliv Rev 2021; 177:113807. [PMID: 34023331 DOI: 10.1016/j.addr.2021.05.017] [Citation(s) in RCA: 45] [Impact Index Per Article: 15.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2021] [Revised: 05/13/2021] [Accepted: 05/16/2021] [Indexed: 12/11/2022]
Abstract
Shape of particulate drug carries has been identified as a key parameter in determining their biological outcome. In this review, we analyze the field of particle shape as it shifts from fundamental investigations to contemporary applications for disease treatment, while highlighting outstanding remaining questions. We summarize fabrication and characterization methods and discuss in depth how particle shape influences biological interactions with cells, transport in the vasculature, targeting in the body, and modulation of the immune response. As the field moves from discoveries to applications, further attention needs to be paid to factors such as characterization and quality control, selection of model organisms, and disease models. Taken together, these aspects will provide a conceptual foundation for designing future non-spherical drug carriers to overcome biological barriers and improve therapeutic efficacy.
Collapse
Affiliation(s)
- Neha Kapate
- Harvard-MIT Division of Health Sciences and Technology, Massachusetts Institute of Technology, Cambridge, MA 02139, USA; John A. Paulson School of Engineering and Applied Sciences, Harvard University, Cambridge, MA 02138, USA; Wyss Institute for Biologically Inspired Engineering, Harvard University, Boston, MA 02115, USA
| | - John R Clegg
- John A. Paulson School of Engineering and Applied Sciences, Harvard University, Cambridge, MA 02138, USA; Wyss Institute for Biologically Inspired Engineering, Harvard University, Boston, MA 02115, USA
| | - Samir Mitragotri
- John A. Paulson School of Engineering and Applied Sciences, Harvard University, Cambridge, MA 02138, USA; Wyss Institute for Biologically Inspired Engineering, Harvard University, Boston, MA 02115, USA.
| |
Collapse
|
29
|
Tremi I, Spyratou E, Souli M, Efstathopoulos EP, Makropoulou M, Georgakilas AG, Sihver L. Requirements for Designing an Effective Metallic Nanoparticle (NP)-Boosted Radiation Therapy (RT). Cancers (Basel) 2021; 13:cancers13133185. [PMID: 34202342 PMCID: PMC8269428 DOI: 10.3390/cancers13133185] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2021] [Revised: 06/23/2021] [Accepted: 06/24/2021] [Indexed: 12/12/2022] Open
Abstract
Simple Summary Recent advances in nanotechnology gave rise to trials with various types of metallic nanoparticles (NPs) to enhance the radiosensitization of cancer cells while reducing or maintaining the normal tissue complication probability during radiation therapy. This work reviews the physical and chemical mechanisms leading to the enhancement of ionizing radiation’s detrimental effects on cells and tissues, as well as the plethora of experimental procedures to study these effects of the so-called “NPs’ radiosensitization”. The paper presents the need to a better understanding of all the phases of actions before applying metallic-based NPs in clinical practice to improve the effect of IR therapy. More physical and biological experiments especially in vivo must be performed and simulation Monte Carlo or mathematical codes based on more accurate models for all phases must be developed. Abstract Many different tumor-targeted strategies are under development worldwide to limit the side effects and improve the effectiveness of cancer therapies. One promising method is to enhance the radiosensitization of the cancer cells while reducing or maintaining the normal tissue complication probability during radiation therapy using metallic nanoparticles (NPs). Radiotherapy with MV photons is more commonly available and applied in cancer clinics than high LET particle radiotherapy, so the addition of high-Z NPs has the potential to further increase the efficacy of photon radiotherapy in terms of NP radiosensitization. Generally, when using X-rays, mainly the inner electron shells are ionized, which creates cascades of both low and high energy Auger electrons. When using high LET particles, mainly the outer shells are ionized, which give electrons with lower energies than when using X-rays. The amount of the produced low energy electrons is higher when exposing NPs to heavy charged particles than when exposing them to X-rays. Since ions traverse the material along tracks, and therefore give rise to a much more inhomogeneous dose distributions than X-rays, there might be a need to introduce a higher number of NPs when using ions compared to when using X-rays to create enough primary and secondary electrons to get the desired dose escalations. This raises the questions of toxicity. This paper provides a review of the fundamental processes controlling the outcome of metallic NP-boosted photon beam and ion beam radiation therapy and presents some experimental procedures to study the biological effects of NPs’ radiosensitization. The overview shows the need for more systematic studies of the behavior of NPs when exposed to different kinds of ionizing radiation before applying metallic-based NPs in clinical practice to improve the effect of IR therapy.
Collapse
Affiliation(s)
- Ioanna Tremi
- DNA Damage Laboratory, Department of Physics, School of Applied Mathematical and Physical Sciences, Zografou Campus, National Technical University of Athens (NTUA), 15780 Athens, Greece; (I.T.); (M.S.); (M.M.)
| | - Ellas Spyratou
- 2nd Department of Radiology, Medical School, National and Kapodistrian University of Athens, 11517 Athens, Greece; (E.S.); (E.P.E.)
| | - Maria Souli
- DNA Damage Laboratory, Department of Physics, School of Applied Mathematical and Physical Sciences, Zografou Campus, National Technical University of Athens (NTUA), 15780 Athens, Greece; (I.T.); (M.S.); (M.M.)
- Atominstitut, Technische Universität Wien, Stadionallee 2, 1020 Vienna, Austria
| | - Efstathios P. Efstathopoulos
- 2nd Department of Radiology, Medical School, National and Kapodistrian University of Athens, 11517 Athens, Greece; (E.S.); (E.P.E.)
| | - Mersini Makropoulou
- DNA Damage Laboratory, Department of Physics, School of Applied Mathematical and Physical Sciences, Zografou Campus, National Technical University of Athens (NTUA), 15780 Athens, Greece; (I.T.); (M.S.); (M.M.)
| | - Alexandros G. Georgakilas
- DNA Damage Laboratory, Department of Physics, School of Applied Mathematical and Physical Sciences, Zografou Campus, National Technical University of Athens (NTUA), 15780 Athens, Greece; (I.T.); (M.S.); (M.M.)
- Correspondence: (A.G.G.); (L.S.)
| | - Lembit Sihver
- Atominstitut, Technische Universität Wien, Stadionallee 2, 1020 Vienna, Austria
- Department of Physics, Chalmers University of Technology, SE-412 96 Gothenburg, Sweden
- Correspondence: (A.G.G.); (L.S.)
| |
Collapse
|
30
|
Zhao R, Cao J, Yang X, Zhang Q, Iqbal MZ, Lu J, Kong X. Inorganic material based macrophage regulation for cancer therapy: basic concepts and recent advances. Biomater Sci 2021; 9:4568-4590. [PMID: 34113942 DOI: 10.1039/d1bm00508a] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
Macrophages with the M1 phenotype are a type of immune cell with exciting prospects for cancer therapy; however, when these macrophages infiltrate into tumours, many of them are induced by the tumour microenvironment to transform into the M2 type, which can enable tumour defence against external therapeutic strategies, assisting in tumour development. Macrophages have strong plasticity and functional heterogeneity, and their phenotypic transformation is complex and still poorly understood in relation to cancer therapy. Recent material advances in inorganic nanomaterials, especially inorganic elements in vivo, have accelerated the development of macrophage regulation-based cancer treatments. This review summarizes the basics of recent research on macrophage phenotype transformation and discusses the current challenges in macrophage type regulation. Then, the current achievements involving inorganic material-based macrophage regulation and the related anticancer effects of induced macrophages and their extracellular secretions are reviewed systematically. Importantly, inorganic nanomaterial-based macrophage phenotype regulation is flexible and can be adapted for different types of cancer therapies, presenting a possible novel approach for the generation of immune materials for cancer therapy.
Collapse
Affiliation(s)
- Ruibo Zhao
- Institute of Smart Biomaterials, School of Materials Science and Engineering, Zhejiang Sci-Tech University, Hangzhou 310018, Zhejiang, China. and Zhejiang-Mauritius Joint Research Center for Biomaterials and Tissue Engineering, Zhejiang Sci-Tech University, Hangzhou 310018, Zhejiang, China
| | - Jinping Cao
- Institute of Smart Biomaterials, School of Materials Science and Engineering, Zhejiang Sci-Tech University, Hangzhou 310018, Zhejiang, China. and Zhejiang-Mauritius Joint Research Center for Biomaterials and Tissue Engineering, Zhejiang Sci-Tech University, Hangzhou 310018, Zhejiang, China
| | - Xinyan Yang
- School of Bioengineering, Hangzhou Medical College, Hangzhou 310013, Zhejiang, China
| | - Quan Zhang
- Institute of Smart Biomaterials, School of Materials Science and Engineering, Zhejiang Sci-Tech University, Hangzhou 310018, Zhejiang, China. and Zhejiang-Mauritius Joint Research Center for Biomaterials and Tissue Engineering, Zhejiang Sci-Tech University, Hangzhou 310018, Zhejiang, China
| | - Muhammad Zubair Iqbal
- Institute of Smart Biomaterials, School of Materials Science and Engineering, Zhejiang Sci-Tech University, Hangzhou 310018, Zhejiang, China. and Zhejiang-Mauritius Joint Research Center for Biomaterials and Tissue Engineering, Zhejiang Sci-Tech University, Hangzhou 310018, Zhejiang, China
| | - Jiaju Lu
- Institute of Smart Biomaterials, School of Materials Science and Engineering, Zhejiang Sci-Tech University, Hangzhou 310018, Zhejiang, China. and Zhejiang-Mauritius Joint Research Center for Biomaterials and Tissue Engineering, Zhejiang Sci-Tech University, Hangzhou 310018, Zhejiang, China
| | - Xiangdong Kong
- Institute of Smart Biomaterials, School of Materials Science and Engineering, Zhejiang Sci-Tech University, Hangzhou 310018, Zhejiang, China. and Zhejiang-Mauritius Joint Research Center for Biomaterials and Tissue Engineering, Zhejiang Sci-Tech University, Hangzhou 310018, Zhejiang, China
| |
Collapse
|
31
|
Muslimov AR, Antuganov DO, Tarakanchikova YV, Zhukov MV, Nadporojskii MA, Zyuzin MV, Timin AS. Calcium Carbonate Core-Shell Particles for Incorporation of 225Ac and Their Application in Local α-Radionuclide Therapy. ACS APPLIED MATERIALS & INTERFACES 2021; 13:25599-25610. [PMID: 34028266 DOI: 10.1021/acsami.1c02155] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/12/2023]
Abstract
Actinium-225 (225Ac) radiolabeled submicrometric core-shell particles (SPs) made of calcium carbonate (CaCO3) coated with biocompatible polymers [tannic acid-human serum albumin (TA/HSA)] have been developed to improve the efficiency of local α-radionuclide therapy in melanoma models (B16-F10 tumor-bearing mice). The developed 225Ac-SPs possess radiochemical stability and demonstrate effective retention of 225Ac and its daughter isotopes. The SPs have been additionally labeled with zirconium-89 (89Zr) to perform the biodistribution studies using positron emission tomography-computerized tomography (PET/CT) imaging for 14 days after intratumoral injection. According to the PET/CT analysis, a significant accumulation of 89Zr-SPs in the tumor area is revealed for the whole investigation period, which correlates with the direct radiometry analysis after intratumoral administration of 225Ac-SPs. The histological analysis has revealed no abnormal changes in healthy tissue organs after treatment with 225Ac-SPs (e.g., no acute pathologic findings are detected in the liver and kidneys). At the same time, the inhibition of tumor growth has been observed as compared with control samples [nonradiolabeled SPs and phosphate-buffered saline (PBS)]. The treatment of mice with 225Ac-SPs has resulted in prolonged survival compared to the control samples. Thus, our study validates the application of 225Ac-doped core-shell submicron CaCO3 particles for local α-radionuclide therapy.
Collapse
Affiliation(s)
- Albert R Muslimov
- Granov Russian Research Center of Radiology & Surgical Technologies, 197758 St. Petersburg, Russian Federation
- Nanobiotechnology Laboratory, St. Petersburg Academic University, 194021 St. Petersburg, Russian Federation
| | - Dmitrii O Antuganov
- Granov Russian Research Center of Radiology & Surgical Technologies, 197758 St. Petersburg, Russian Federation
| | - Yana V Tarakanchikova
- Granov Russian Research Center of Radiology & Surgical Technologies, 197758 St. Petersburg, Russian Federation
- Nanobiotechnology Laboratory, St. Petersburg Academic University, 194021 St. Petersburg, Russian Federation
- Peter The Great St. Petersburg Polytechnic University, 195251 St. Petersburg, Russian Federation
| | - Mikhail V Zhukov
- Department of Physics and Engineering, ITMO University, 191002 St. Petersburg, Russian Federation
| | - Michail A Nadporojskii
- Granov Russian Research Center of Radiology & Surgical Technologies, 197758 St. Petersburg, Russian Federation
| | - Mikhail V Zyuzin
- Granov Russian Research Center of Radiology & Surgical Technologies, 197758 St. Petersburg, Russian Federation
- Department of Physics and Engineering, ITMO University, 191002 St. Petersburg, Russian Federation
| | - Alexander S Timin
- Granov Russian Research Center of Radiology & Surgical Technologies, 197758 St. Petersburg, Russian Federation
- Peter The Great St. Petersburg Polytechnic University, 195251 St. Petersburg, Russian Federation
- Research School of Chemical and Biomedical Engineering, National Research Tomsk Polytechnic University, 634050 Tomsk, Russian Federation
| |
Collapse
|
32
|
Tarakanchikova YV, Linnik DS, Mashel T, Muslimov AR, Pavlov S, Lepik KV, Zyuzin MV, Sukhorukov GB, Timin AS. Boosting transfection efficiency: A systematic study using layer-by-layer based gene delivery platform. MATERIALS SCIENCE & ENGINEERING. C, MATERIALS FOR BIOLOGICAL APPLICATIONS 2021; 126:112161. [PMID: 34082966 DOI: 10.1016/j.msec.2021.112161] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/17/2021] [Revised: 04/26/2021] [Accepted: 04/28/2021] [Indexed: 12/24/2022]
Abstract
Nowadays, the nanoparticle-based delivery approach is becoming more and more attractive in gene therapy due to its low toxicity and immunogenicity, sufficient packaging capacity, targeting, and straightforward, low-cost, large-scale good manufacturing practice (GMP) production. A number of research works focusing on multilayer structures have explored different factors and parameters that can affect the delivery efficiency of pDNA. However, there are no systematic studies on the performance of these structures for enhanced gene delivery regarding the gene loading methods, the use of additional organic components and cell/particle incubation conditions. Here, we conducted a detailed analysis of different parameters such as (i) strategy for loading pDNA into carriers, (ii) incorporating both pDNA and organic additives within one carrier and (iii) variation of cell/particle incubation conditions, to evaluate their influence on the efficiency of pDNA delivery with multilayer structures consisting of inorganic cores and polymer layers. Our results reveal that an appropriate combination of all these parameters leads to the development of optimized protocols for high transfection efficiency, compared to the non-optimized process (> 70% vs. < 7%), and shows a good safety profile. In conclusion, we provide the proof-of-principle that these multilayer structures with the developed parameters are a promising non-viral platform for an efficient delivery of nucleic acids.
Collapse
Affiliation(s)
- Yana V Tarakanchikova
- Peter the Great St. Petersburg Polytechnic University, Polytechnicheskaya, 29, 195251 St. Petersburg, Russian Federation; Nanobiotechnology Laboratory, St. Petersburg Academic University, 194021 St. Petersburg, Russian Federation
| | - Dmitrii S Linnik
- Peter the Great St. Petersburg Polytechnic University, Polytechnicheskaya, 29, 195251 St. Petersburg, Russian Federation
| | - Tatiana Mashel
- Peter the Great St. Petersburg Polytechnic University, Polytechnicheskaya, 29, 195251 St. Petersburg, Russian Federation; Department of Applied Optics, ITMO University, Kronverkskiy pr. 49, 197101 St. Petersburg, Russian Federation
| | - Albert R Muslimov
- Nanobiotechnology Laboratory, St. Petersburg Academic University, 194021 St. Petersburg, Russian Federation
| | - Sergey Pavlov
- Ioffe Institute, Politekhnicheskaya Ulitsa, 26, 194021 St. Petersburg, Russian Federation
| | - Kirill V Lepik
- R.M. Gorbacheva Research Institute for Pediatric Oncology, Hematology and Transplantation, Pavlov University, Lev Tolstoy str., 6/8, 197022 St. Petersburg, Russian Federation
| | - Mikhail V Zyuzin
- Department of Physics and Engineering, ITMO University, Lomonosova 9, 191002 St. Petersburg, Russian Federation
| | - Gleb B Sukhorukov
- Skolkovo Institute of Science and Technology, 143026 Moscow, Russian Federation; School of Engineering and Material Science, Queen Mary University of London, London, United Kingdom.
| | - Alexander S Timin
- Peter the Great St. Petersburg Polytechnic University, Polytechnicheskaya, 29, 195251 St. Petersburg, Russian Federation; National Research Tomsk Polytechnic University, Lenin Avenue, 30, 634050 Tomsk, Russian Federation.
| |
Collapse
|
33
|
Post-synthesis nanostructuration of BSA-Capsaicin nanoparticles generated by sucrose excipient. Sci Rep 2021; 11:7549. [PMID: 33824363 PMCID: PMC8024356 DOI: 10.1038/s41598-021-87241-8] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2020] [Accepted: 03/25/2021] [Indexed: 01/17/2023] Open
Abstract
In the pharmaceutical industry nano-hydrocolloid systems frequently coalesce or present nanoparticle aggregation after a long storage periods. Besides, the lyophilization process used to dry nanoparticles (NPs) produces loss of their original properties after dispersion. In this work we evaluated the effect on morphology and physicochemical properties of different protective excipients during drying of bovine serum albumin (BSA) NPs loaded with different concentrations of capsaicin. Capsaicin concentrations of 0, 812, 1625, 2437, and 3250 µg mL−1 were used; subsequently, NPs were dried with deionized water (DW), NaCl (DN), sucrose (DS), and not dried (ND). We found that ND, DW, and DN treatments showed a negative effect on the NPs properties; while, DS reduced the aggregation and produced the formation of isolated nanoparticles at higher concentrations of capsaicin (3250 µg mL−1), improving their circular shape, morphometrical parameters, and ζ-potential. The stability of the BSA-capsaicin NPs was associated to complex capsaicin/amino acid/water, in which GLY/GLN, ALA/HIS, ARG, THR, TYR, and Iso/CYS amino acids are involved in the restructuration of capsaicin molecules into the surface of nanoparticles during the drying process. The secondary nanostructuration in the post-synthesis stage can improve the molecular stability of the particles and the capacity of entrapping hydrophobic drugs, like capsaicin.
Collapse
|
34
|
Erlichman JS, Leiter JC. Complexity of the Nano-Bio Interface and the Tortuous Path of Metal Oxides in Biological Systems. Antioxidants (Basel) 2021; 10:antiox10040547. [PMID: 33915992 PMCID: PMC8066112 DOI: 10.3390/antiox10040547] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2021] [Revised: 03/11/2021] [Accepted: 03/23/2021] [Indexed: 01/12/2023] Open
Abstract
Metal oxide nanoparticles (NPs) have received a great deal of attention as potential theranostic agents. Despite extensive work on a wide variety of metal oxide NPs, few chemically active metal oxide NPs have received Food and Drug Administration (FDA) clearance. The clinical translation of metal oxide NP activity, which often looks so promising in preclinical studies, has not progressed as rapidly as one might expect. The lack of FDA approval for metal oxide NPs appears to be a consequence of the complex transformation of NP chemistry as any given NP passes through multiple extra- and intracellular environments and interacts with a variety of proteins and transport processes that may degrade or transform the chemical properties of the metal oxide NP. Moreover, the translational models frequently used to study these materials do not represent the final therapeutic environment well, and studies in reduced preparations have, all too frequently, predicted fundamentally different physico-chemical properties from the biological activity observed in intact organisms. Understanding the evolving pharmacology of metal oxide NPs as they interact with biological systems is critical to establish translational test systems that effectively predict future theranostic activity.
Collapse
Affiliation(s)
- Joseph S. Erlichman
- Department of Biology, St. Lawrence University, Canton, NY 13617, USA
- Correspondence: ; Tel.: +1-(315)-229-5639
| | - James C. Leiter
- White River Junction VA Medical Center, White River Junction, VT 05009, USA;
| |
Collapse
|
35
|
Das D, Alhusaini QFM, Kaur K, Raoufi M, Schönherr H. Enzyme-Responsive Biopolymeric Nanogel Fibers by Extrusion: Engineering of High-Surface-Area Hydrogels and Application in Bacterial Enzyme Detection. ACS APPLIED MATERIALS & INTERFACES 2021; 13:12928-12940. [PMID: 33709691 DOI: 10.1021/acsami.1c00136] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/12/2023]
Abstract
The fabrication of covalently cross-linked high-surface-area biopolymeric nanogel fibers by nanopore extrusion is reported for the first time. The biopolymer pullulan was functionalized with tert-butyl acetoacetate via a transesterification reaction to synthesize the water-soluble ketone-rich precursor pullulan acetoacetate (PUAA). PUAA and carbonic dihydrazide (CDH) as cross-linker were extruded through anodic aluminum oxide (AAO) nanoporous membranes, which possessed an average pore diameter of 61 ± 2 nm. By changing the concentration of PUAA, the flow rate, and extrusion time, the step polymerization cross-linking reaction was controlled so that the polymer can be extruded gradually during cross-linking through the membrane, avoiding the formation of macroscopic bulk hydrogels and rupture of the AAO membrane. Fibers with diameters on the order of 250 nm were obtained. This approach was also expanded to functionalized PUAA derivatives together with the fluorogenic substrate 4-methylumbelliferyl-β-d-glucuronide MUGlcU in (PUAA-MUGlcU), which exhibited a mean equilibrium swelling ratio of 5.7 and 9.0 in Milli-Q water and in phosphate-buffered saline, respectively. β-Glucuronidase was sensitively detected via fluorescence of 4-methylumbelliferone, which was liberated in the enzymatic hydrolysis reaction of PUAA-MUGlcU. Compared to hydrogel slabs, the rate of the hydrolysis was >20% higher in the nanogel fibers, facilitating the rapid detection of β-glucuronidase-producing Escherichia coli (E. coli Mach1-T1). Nanopore extruded nanogel fibers are therefore considered a viable approach to enhance the functionality of hydrogels in surface-dominated processes.
Collapse
Affiliation(s)
- Dipankar Das
- Physical Chemistry I, Department of Chemistry and Biology & Research Center of Micro and Nanochemistry and Engineering (Cμ), University of Siegen, 57076 Siegen, Germany
| | - Qasim F M Alhusaini
- Physical Chemistry I, Department of Chemistry and Biology & Research Center of Micro and Nanochemistry and Engineering (Cμ), University of Siegen, 57076 Siegen, Germany
| | - Kawaljit Kaur
- Physical Chemistry I, Department of Chemistry and Biology & Research Center of Micro and Nanochemistry and Engineering (Cμ), University of Siegen, 57076 Siegen, Germany
| | - Mohammad Raoufi
- Physical Chemistry I, Department of Chemistry and Biology & Research Center of Micro and Nanochemistry and Engineering (Cμ), University of Siegen, 57076 Siegen, Germany
- Nanotechnology Research Center, Faculty of Pharmacy, Tehran University of Medical Sciences, Tehran 13169-43551, Iran
| | - Holger Schönherr
- Physical Chemistry I, Department of Chemistry and Biology & Research Center of Micro and Nanochemistry and Engineering (Cμ), University of Siegen, 57076 Siegen, Germany
| |
Collapse
|
36
|
Lishchynskyi O, Stetsyshyn Y, Raczkowska J, Awsiuk K, Orzechowska B, Abalymov A, Skirtach AG, Bernasik A, Nastyshyn S, Budkowski A. Fabrication and Impact of Fouling-Reducing Temperature-Responsive POEGMA Coatings with Embedded CaCO 3 Nanoparticles on Different Cell Lines. MATERIALS (BASEL, SWITZERLAND) 2021; 14:1417. [PMID: 33804043 PMCID: PMC8001162 DOI: 10.3390/ma14061417] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/11/2021] [Revised: 02/28/2021] [Accepted: 03/10/2021] [Indexed: 12/11/2022]
Abstract
In the present work, we have successfully prepared and characterized novel nanocomposite material exhibiting temperature-dependent surface wettability changes, based on grafted brush coatings of non-fouling poly(di(ethylene glycol)methyl ether methacrylate) (POEGMA) with the embedded CaCO3 nanoparticles. Grafted polymer brushes attached to the glass surface were prepared in a three-step process using atom transfer radical polymerization (ATRP). Subsequently, uniform CaCO3 nanoparticles (NPs) embedded in POEGMA-grafted brush coatings were synthesized using biomineralized precipitation from solutions of CaCl2 and Na2CO3. An impact of the low concentration of the embedded CaCO3 NPs on cell adhesion and growth depends strongly on the type of studied cell line: keratinocytes (HaCaT), melanoma (WM35) and osteoblastic (MC3T3-e1). Based on the temperature-responsive properties of grafted brush coatings and CaCO3 NPs acting as biologically active substrate, we hope that our research will lead to a new platform for tissue engineering with modified growth of the cells due to the release of biologically active substances from CaCO3 NPs and the ability to detach the cells in a controlled manner using temperature-induced changes of the brush.
Collapse
Affiliation(s)
- Ostap Lishchynskyi
- Department of Organic Chemistry, Lviv Polytechnic National University, St. George’s Square 2, 79-013 Lviv, Ukraine;
| | - Yurij Stetsyshyn
- Department of Organic Chemistry, Lviv Polytechnic National University, St. George’s Square 2, 79-013 Lviv, Ukraine;
| | - Joanna Raczkowska
- Department of Organic Chemistry, Lviv Polytechnic National University, St. George’s Square 2, 79-013 Lviv, Ukraine;
- Smoluchowski Institute of Physics, Jagiellonian University, Łojasiewicza 11, 30-348 Kraków, Poland; (K.A.); (S.N.); (A.B.)
| | - Kamil Awsiuk
- Smoluchowski Institute of Physics, Jagiellonian University, Łojasiewicza 11, 30-348 Kraków, Poland; (K.A.); (S.N.); (A.B.)
| | - Barbara Orzechowska
- Institute of Nuclear Physics Polish Academy of Sciences, Radzikowskiego 152, 31-342 Kraków, Poland;
| | - Anatolii Abalymov
- Department of Biotechnology, Ghent University, Coupure Links 653, 9000 Ghent, Belgium; (A.A.); (A.G.S.)
| | - Andre G. Skirtach
- Department of Biotechnology, Ghent University, Coupure Links 653, 9000 Ghent, Belgium; (A.A.); (A.G.S.)
| | - Andrzej Bernasik
- Faculty of Physics and Applied Computer Science, AGH—University of Science and Technology, Al. Mickiewicza 30, 30-049 Kraków, Poland;
| | - Svyatoslav Nastyshyn
- Smoluchowski Institute of Physics, Jagiellonian University, Łojasiewicza 11, 30-348 Kraków, Poland; (K.A.); (S.N.); (A.B.)
| | - Andrzej Budkowski
- Smoluchowski Institute of Physics, Jagiellonian University, Łojasiewicza 11, 30-348 Kraków, Poland; (K.A.); (S.N.); (A.B.)
| |
Collapse
|
37
|
Sudareva N, Suvorova O, Saprykina N, Vlasova H, Vilesov A. Doxorubicin delivery systems based on doped CaCO 3 cores and polyanion drug conjugates. J Microencapsul 2021; 38:164-176. [PMID: 33430666 DOI: 10.1080/02652048.2021.1872724] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/22/2022]
Abstract
In order to prolong the release and reduce the toxicity of anticancer drug - doxorubicin (DOX), delivery systems (DS) using different polyanions have been developed. Structural (size, morphological stability) and functional (encapsulation efficiency, DOX release) characteristics of three types of DS are compared: CaCO3 porous vaterites doped with polyanions by co-precipitation and coating techniques, and DOX-polyanion conjugates. Using scanning electron microscopy (SEM) and energy dispersive X-ray spectroscopy (EDS), it was shown that the doping enhances the morphological stability of CaCO3-based DS during the DOC loading. Doping of CaCO3 cores by co-precipitation reduces its sizes (up to 1 µm) and DOX encapsulation efficiency. Polyanion-coated CaCO3 cores and polyanion drug conjugates show about 98 w/w% DOX encapsulation. For the first time, it was shown that the release of DOX from developed DS into human blood plasma is more intense (from 1.3 to 3.0 times for different DS) than into model tumour environment.
Collapse
Affiliation(s)
- Natalia Sudareva
- FSBIS Institute of Macromolecular Compounds of the Russian Academy of Sciences, Saint-Petersburg, Russia.,Pavlov Saint-Petersburg Medical University, Saint-Petersburg, Russia
| | - Olga Suvorova
- FSBIS Institute of Macromolecular Compounds of the Russian Academy of Sciences, Saint-Petersburg, Russia
| | - Natalia Saprykina
- FSBIS Institute of Macromolecular Compounds of the Russian Academy of Sciences, Saint-Petersburg, Russia
| | - Helen Vlasova
- FSBIS Institute of Macromolecular Compounds of the Russian Academy of Sciences, Saint-Petersburg, Russia
| | - Alexander Vilesov
- FSBIS Institute of Macromolecular Compounds of the Russian Academy of Sciences, Saint-Petersburg, Russia.,Pavlov Saint-Petersburg Medical University, Saint-Petersburg, Russia
| |
Collapse
|
38
|
Chernozem RV, Surmeneva MA, Abalymov AA, Parakhonskiy BV, Rigole P, Coenye T, Surmenev RA, Skirtach AG. Piezoelectric hybrid scaffolds mineralized with calcium carbonate for tissue engineering: Analysis of local enzyme and small-molecule drug delivery, cell response and antibacterial performance. MATERIALS SCIENCE & ENGINEERING. C, MATERIALS FOR BIOLOGICAL APPLICATIONS 2021; 122:111909. [PMID: 33641905 DOI: 10.1016/j.msec.2021.111909] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/05/2020] [Revised: 01/09/2021] [Accepted: 01/22/2021] [Indexed: 12/12/2022]
Abstract
As the next generation of materials for bone reconstruction, we propose a multifunctional bioactive platform based on biodegradable piezoelectric polyhydroxybutyrate (PHB) fibrous scaffolds for tissue engineering with drug delivery capabilities. To use the entire surface area for local drug delivery, the scaffold surface was uniformly biomineralized with biocompatible calcium carbonate (CaCO3) microparticles in a vaterite-calcite polymorph mixture. CaCO3-coated PHB scaffolds demonstrated a similar elastic modulus compared to that of pristine one. However, reduced tensile strength and failure strain of 31% and 67% were observed, respectively. The biomimetic immobilization of enzyme alkaline phosphatase (ALP) and glycopeptide antibiotic vancomycin (VCM) preserved the CaCO3-mineralized PHB scaffold morphology and resulted in partial recrystallization of vaterite to calcite. In comparison to pristine scaffolds, the loading efficiency of CaCO3-mineralized PHB scaffolds was 4.6 and 3.5 times higher for VCM and ALP, respectively. Despite the increased number of cells incubated with ALP-immobilized scaffolds (up to 61% for non-mineralized and up to 36% for mineralized), the CaCO3-mineralized PHB scaffolds showed cell adhesion; those containing both VCM and ALP molecules had the highest cell density. Importantly, no toxicity for pre-osteoblastic cells was detected, even in the VCM-immobilized scaffolds. In contrast with antibiotic-free scaffolds, the VCM-immobilized ones had a pronounced antibacterial effect against gram-positive bacteria Staphylococcus aureus. Thus, piezoelectric hybrid PHB scaffolds modified with CaCO3 layers and immobilized VCM/ALP are promising materials in bone tissue engineering.
Collapse
Affiliation(s)
- Roman V Chernozem
- Physical Materials Science and Composite Materials Centre, Research School of Chemistry & Applied Biomedical Sciences, National Research Tomsk Polytechnic University, 634050 Tomsk, Russia; Department of Biotechnology, Ghent University, 9000 Ghent, Belgium
| | - Maria A Surmeneva
- Physical Materials Science and Composite Materials Centre, Research School of Chemistry & Applied Biomedical Sciences, National Research Tomsk Polytechnic University, 634050 Tomsk, Russia
| | - Anatolii A Abalymov
- Department of Biotechnology, Ghent University, 9000 Ghent, Belgium; Department of Nano- and Biomedical Technologies, Saratov State University, Saratov 410012, Russia
| | | | - Petra Rigole
- Laboratory of Pharmaceutical Microbiology, Ghent University, 9000 Ghent, Belgium
| | - Tom Coenye
- Laboratory of Pharmaceutical Microbiology, Ghent University, 9000 Ghent, Belgium
| | - Roman A Surmenev
- Physical Materials Science and Composite Materials Centre, Research School of Chemistry & Applied Biomedical Sciences, National Research Tomsk Polytechnic University, 634050 Tomsk, Russia.
| | - Andre G Skirtach
- Department of Biotechnology, Ghent University, 9000 Ghent, Belgium.
| |
Collapse
|
39
|
Kudryavtseva V, Boi S, Read J, Guillemet R, Zhang J, Udalov A, Shesterikov E, Tverdokhlebov S, Pastorino L, Gould DJ, Sukhorukov GB. Biodegradable Defined Shaped Printed Polymer Microcapsules for Drug Delivery. ACS APPLIED MATERIALS & INTERFACES 2021; 13:2371-2381. [PMID: 33404209 DOI: 10.1021/acsami.0c21607] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/12/2023]
Abstract
This work describes the preparation and characterization of printed biodegradable polymer (polylactic acid) capsules made in two different shapes: pyramid and rectangular capsules about 1 and 11 μm in size. Obtained core-shell capsules are described in terms of their morphology, loading efficiency, cargo release profile, cell cytotoxicity, and cell uptake. Both types of capsules showed monodisperse size and shape distribution and were found to provide sufficient stability to encapsulate small water-soluble molecules and to retain them for several days and ability for intracellular delivery. Capsules of 1 μm size can be internalized by HeLa cells without causing any toxicity effect. Printed capsules show unique characteristics compared with other drug delivery systems such as a wide range of possible cargoes, triggered release mechanism, and highly controllable shape and size.
Collapse
Affiliation(s)
- Valeriya Kudryavtseva
- Nanoforce Technology Ltd, School of Engineering and Materials Science, Queen Mary University of London, London E1 4NS, United Kingdom
- National Research Tomsk Polytechnic University, 30 Lenin Avenue, Tomsk 634050, Russian Federation
| | - Stefania Boi
- Department of Informatics, Bioengineering, Robotics and Systems Engineering, University of Genoa, Via all'Opera Pia 13, 16145 Genoa, Italy
| | - Jordan Read
- Biochemical Pharmacology, William Harvey Research Institute, Queen Mary University of London, London EC1M 6BQ, United Kingdom
| | - Raphael Guillemet
- THALES Research & Technology, 1 Avenue Augustin Fresnel, 91767 Palaiseau, France
| | - Jiaxin Zhang
- Nanoforce Technology Ltd, School of Engineering and Materials Science, Queen Mary University of London, London E1 4NS, United Kingdom
| | - Andrei Udalov
- V.E. Zuev Institute of Atmospheric Optics SB RAS, 1 Academician Zuev Square, Tomsk 634055, Russian Federation
| | - Evgeny Shesterikov
- National Research Tomsk Polytechnic University, 30 Lenin Avenue, Tomsk 634050, Russian Federation
- V.E. Zuev Institute of Atmospheric Optics SB RAS, 1 Academician Zuev Square, Tomsk 634055, Russian Federation
- Tomsk State University of Control Systems and Radioelectronics, 40 Lenin Avenue, Tomsk 634050, Russian Federation
| | - Sergei Tverdokhlebov
- National Research Tomsk Polytechnic University, 30 Lenin Avenue, Tomsk 634050, Russian Federation
| | - Laura Pastorino
- Department of Informatics, Bioengineering, Robotics and Systems Engineering, University of Genoa, Via all'Opera Pia 13, 16145 Genoa, Italy
| | - David J Gould
- Biochemical Pharmacology, William Harvey Research Institute, Queen Mary University of London, London EC1M 6BQ, United Kingdom
| | - Gleb B Sukhorukov
- Nanoforce Technology Ltd, School of Engineering and Materials Science, Queen Mary University of London, London E1 4NS, United Kingdom
- Skolkovo Institute of Science and Technology, Bolshoy Boulevard 30, Bld. 1, Moscow 143025, Russian Federation
| |
Collapse
|
40
|
Gusliakova O, Verkhovskii R, Abalymov A, Lengert E, Kozlova A, Atkin V, Nechaeva O, Morrison A, Tuchin V, Svenskaya Y. Transdermal platform for the delivery of the antifungal drug naftifine hydrochloride based on porous vaterite particles. MATERIALS SCIENCE & ENGINEERING. C, MATERIALS FOR BIOLOGICAL APPLICATIONS 2020; 119:111428. [PMID: 33321579 DOI: 10.1016/j.msec.2020.111428] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/18/2020] [Revised: 08/13/2020] [Accepted: 08/20/2020] [Indexed: 12/20/2022]
Abstract
Development of a skin-targeted particulate delivery system providing an extended or sustained release of the payload and a localized therapeutic effect is one of the main challenges in the treatment of fungal skin infections. In the topical administration of antifungals, the drug should penetrate into the stratum corneum and lower layers of the skin in effective concentrations. Here, we introduce biodegradable calcium carbonate carriers containing 4.9% (w/w) of naftifine hydrochloride antimycotic allowing the efficient accumulation into the skin appendages. The proposed particulate formulation ensures the enhancement of the local drug concentration, prolongation of the payload release, and control over its rate. Furthermore, it provides a highly efficient cellular uptake and excellent bioavailability in vitro and enables a deep penetration during transfollicular delivery in vivo. The enhanced fungi growth inhibition efficiency of naftifine-loaded calcium carbonate carriers compared to naftifine solution makes them a promising alternative to creams and gels currently existing on the market.
Collapse
Affiliation(s)
- Olga Gusliakova
- Saratov State University, Astrakhanskaya str. 83, 410012 Saratov, Russia
| | - Roman Verkhovskii
- Saratov State University, Astrakhanskaya str. 83, 410012 Saratov, Russia
| | | | - Ekaterina Lengert
- Saratov State University, Astrakhanskaya str. 83, 410012 Saratov, Russia
| | - Anastasiia Kozlova
- Saratov State University, Astrakhanskaya str. 83, 410012 Saratov, Russia
| | - Vsevolod Atkin
- Saratov State University, Astrakhanskaya str. 83, 410012 Saratov, Russia
| | - Olga Nechaeva
- Yuri Gagarin State Technical University of Saratov, Politekhnicheskaya str. 77, 410054 Saratov, Russia
| | - Anna Morrison
- Saratov State Medical University, Bolshaya Kazachaya str. 112, 410012 Saratov, Russia
| | - Valery Tuchin
- Saratov State University, Astrakhanskaya str. 83, 410012 Saratov, Russia; Institute of Precision Mechanics and Control of the RAS, Rabochaya str. 24, 410028 Saratov, Russia; National Research Tomsk State University, Lenin Ave. 36, 634050 Tomsk, Russia
| | - Yulia Svenskaya
- Saratov State University, Astrakhanskaya str. 83, 410012 Saratov, Russia.
| |
Collapse
|
41
|
Zyuzin MV, Zhu D, Parak WJ, Feliu N, Escudero A. Development of Silica-Based Biodegradable Submicrometric Carriers and Investigating Their Characteristics as in Vitro Delivery Vehicles. Int J Mol Sci 2020; 21:E7563. [PMID: 33066289 PMCID: PMC7590072 DOI: 10.3390/ijms21207563] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2020] [Revised: 09/24/2020] [Accepted: 10/03/2020] [Indexed: 12/11/2022] Open
Abstract
Nanostructured silica (SiO2)-based materials are attractive carriers for the delivery of bioactive compounds into cells. In this study, we developed hollow submicrometric particles composed of SiO2 capsules that were separately loaded with various bioactive molecules such as dextran, proteins, and nucleic acids. The structural characterization of the reported carriers was conducted using transmission and scanning electron microscopies (TEM/SEM), confocal laser scanning microscopy (CLSM), and dynamic light scattering (DLS). Moreover, the interaction of the developed carriers with cell lines was studied using standard viability, proliferation, and uptake assays. The submicrometric SiO2-based capsules loaded with DNA plasmid encoding green fluorescence proteins (GFP) were used to transfect cell lines. The obtained results were compared with studies made with similar capsules composed of polymers and show that SiO2-based capsules provide better transfection rates on the costs of higher toxicity.
Collapse
Affiliation(s)
- Mikhail V. Zyuzin
- Department of Physics and Engineering, ITMO University, Lomonosova 9, St. Petersburg 191002, Russia;
| | - Dingcheng Zhu
- Center for Hybrid Nanostructures (CHyN), Universität Hamburg, 22607 Hamburg, Germany; (D.Z.); (W.J.P.)
| | - Wolfgang J. Parak
- Center for Hybrid Nanostructures (CHyN), Universität Hamburg, 22607 Hamburg, Germany; (D.Z.); (W.J.P.)
| | - Neus Feliu
- Center for Hybrid Nanostructures (CHyN), Universität Hamburg, 22607 Hamburg, Germany; (D.Z.); (W.J.P.)
- Fraunhofer Center for Applied Nanotechnology (CAN), 20146 Hamburg, Germany
| | - Alberto Escudero
- Departamento de Química Inorgánica. Facultad de Química, Universidad de Sevilla, Calle Profesor García González 1, E–41012 Seville, Spain
- Instituto de Investigaciones Químicas (IIQ), Universidad de Sevilla–CSIC, Calle Américo Vespucio 49, E–41092 Seville, Spain
| |
Collapse
|
42
|
Kurshanov DA, Khavlyuk PD, Baranov MA, Dubavik A, Rybin AV, Fedorov AV, Baranov AV. Magneto-Fluorescent Hybrid Sensor CaCO 3-Fe 3O 4-AgInS 2/ZnS for the Detection of Heavy Metal Ions in Aqueous Media. MATERIALS (BASEL, SWITZERLAND) 2020; 13:E4373. [PMID: 33008133 PMCID: PMC7579003 DOI: 10.3390/ma13194373] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/31/2020] [Revised: 09/28/2020] [Accepted: 09/29/2020] [Indexed: 02/07/2023]
Abstract
Heavy metal ions are not subject to biodegradation and could cause the environmental pollution of natural resources and water. Many of the heavy metals are highly toxic and dangerous to human health, even at a minimum amount. This work considered an optical method for detecting heavy metal ions using colloidal luminescent semiconductor quantum dots (QDs). Over the past decade, QDs have been used in the development of sensitive fluorescence sensors for ions of heavy metal. In this work, we combined the fluorescent properties of AgInS2/ZnS ternary QDs and the magnetism of superparamagnetic Fe3O4 nanoparticles embedded in a matrix of porous calcium carbonate microspheres for the detection of toxic ions of heavy metal: Co2+, Ni2+, and Pb2+. We demonstrate a relationship between the level of quenching of the photoluminescence of sensors under exposure to the heavy metal ions and the concentration of these ions, allowing their detection in aqueous solutions at concentrations of Co2+, Ni2+, and Pb2+ as low as ≈0.01 ppm, ≈0.1 ppm, and ≈0.01 ppm, respectively. It also has importance for application of the ability to concentrate and extract the sensor with analytes from the solution using a magnetic field.
Collapse
Affiliation(s)
| | | | | | | | | | | | - Alexander V. Baranov
- Center of Information Optical Technology, ITMO University, 49 Kronverksky Prospekt, 197101 St. Petersburg, Russia; (D.A.K.); (P.D.K.); (M.A.B.); (A.D.); (A.V.R.); (A.V.F.)
| |
Collapse
|
43
|
PEG-b-PLGA Nanoparticles Loaded with Geraniin from Phyllanthus Watsonii Extract as a Phytochemical Delivery Model. APPLIED SCIENCES-BASEL 2020. [DOI: 10.3390/app10144891] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
Abstract
The study outlined a standardized double emulsion method for simple poly(ethylene glycol)-block-poly(lactic-co-glycolic acid) (PEG-b-PLGA) nanoparticle (NP) synthesis. The PEG-b-PLGA NP was also used for entrapment of geraniin as a simple model system for phytochemical delivery. PEG-b-PLGA NPs were prepared using the double emulsion method. The yields and particle sizes of PEG-b-PLGA NPs obtained with and without encapsulation of geraniin were 57.6% and 134.20 ± 1.45 nm and 66.7% and 102.70 ± 12.36 nm, respectively. High-performance liquid chromatography of geraniin that was extracted from Phyllanthus watsonii was detected at 64 min. Geraniin burst release began at 40 min and fully released at 3 h. PEG-b-PLGA NP was non-cytotoxic, while cytotoxicity of geraniin was dose dependant towards normal human epithelial colon cells, CCD 841 CoN cells.
Collapse
|
44
|
Zyuzin MV, Antuganov D, Tarakanchikova YV, Karpov TE, Mashel TV, Gerasimova EN, Peltek OO, Alexandre N, Bruyere S, Kondratenko YA, Muslimov AR, Timin AS. Radiolabeling Strategies of Micron- and Submicron-Sized Core-Shell Carriers for In Vivo Studies. ACS APPLIED MATERIALS & INTERFACES 2020; 12:31137-31147. [PMID: 32551479 DOI: 10.1021/acsami.0c06996] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/11/2023]
Abstract
Core-shell particles made of calcium carbonate and coated with biocompatible polymers using the Layer-by-Layer technique can be considered as a unique drug-delivery platform that enables us to load different therapeutic compounds, exhibits a high biocompatibility, and can integrate several stimuli-responsive mechanisms for drug release. However, before implementation for diagnostic or therapeutic purposes, such core-shell particles require a comprehensive in vivo evaluation in terms of physicochemical and pharmacokinetic properties. Positron emission tomography (PET) is an advanced imaging technique for the evaluation of in vivo biodistribution of drug carriers; nevertheless, an incorporation of positron emitters in these carriers is needed. Here, for the first time, we demonstrate the radiolabeling approaches of calcium carbonate core-shell particles with different sizes (CaCO3 micron-sized core-shell particles (MicCSPs) and CaCO3 submicron-sized core-shell particles (SubCSPs)) to precisely determine their in vivo biodistribution after intravenous administration in rats. For this, several methods of radiolabeling have been developed, where the positron emitter (68Ga) was incorporated into the particle's core (co-precipitation approach) or onto the surface of the shell (either layer coating or adsorption approaches). According to the obtained data, radiochemical bounding and stability of 68Ga strongly depend on the used radiolabeling approach, and the co-precipitation method has shown the best radiochemical stability in human serum (96-98.5% for both types of core-shell particles). Finally, we demonstrate the size-dependent effect of core-shell particles' distribution on the specific organ uptake, using a combination of imaging techniques, PET, and computerized tomography (CT), as well as radiometry of separate organs. Thus, our findings open up new perspectives of CaCO3-radiolabeled core-shell particles for their further implementation into clinical practice.
Collapse
Affiliation(s)
- Mikhail V Zyuzin
- Granov Russian Research Center of Radiology & Surgical Technologies, Leningradskaya Street 70 Pesochny, St. Petersburg 197758, Russian Federation
- Department of Physics and Engineering, ITMO University, Lomonosova 9, St. Petersburg 191002, Russian Federation
| | - Dmitrii Antuganov
- Granov Russian Research Center of Radiology & Surgical Technologies, Leningradskaya Street 70 Pesochny, St. Petersburg 197758, Russian Federation
| | - Yana V Tarakanchikova
- Granov Russian Research Center of Radiology & Surgical Technologies, Leningradskaya Street 70 Pesochny, St. Petersburg 197758, Russian Federation
- Nanobiotechnology Laboratory, St. Petersburg Academic University, St. Petersburg 194021, Russian Federation
| | - Timofey E Karpov
- Granov Russian Research Center of Radiology & Surgical Technologies, Leningradskaya Street 70 Pesochny, St. Petersburg 197758, Russian Federation
- Peter The Great St. Petersburg Polytechnic University, Polytechnicheskaya 29, St. Petersburg 195251, Russian Federation
| | - Tatiana V Mashel
- Department of Applied Optics, ITMO University, Grivtsova 14-16, St. Petersburg 190000, Russian Federation
| | - Elena N Gerasimova
- Department of Physics and Engineering, ITMO University, Lomonosova 9, St. Petersburg 191002, Russian Federation
| | - Oleksii O Peltek
- Department of Physics and Engineering, ITMO University, Lomonosova 9, St. Petersburg 191002, Russian Federation
| | - Nominé Alexandre
- Department of Physics and Engineering, ITMO University, Lomonosova 9, St. Petersburg 191002, Russian Federation
- Universite de Lorraine CNRS, Institut Jean Lamour, F-54000 Nancy, France
| | - Stéphanie Bruyere
- Universite de Lorraine CNRS, Institut Jean Lamour, F-54000 Nancy, France
| | - Yulia A Kondratenko
- Laboratory of Organosilicon Compounds and Materials, Grebenshchikov Institute of Silicate Chemistry RAS, nab. Makarova, 2, St. Petersburg 199034, Russia
| | - Albert R Muslimov
- Granov Russian Research Center of Radiology & Surgical Technologies, Leningradskaya Street 70 Pesochny, St. Petersburg 197758, Russian Federation
- Nanobiotechnology Laboratory, St. Petersburg Academic University, St. Petersburg 194021, Russian Federation
| | - Alexander S Timin
- Granov Russian Research Center of Radiology & Surgical Technologies, Leningradskaya Street 70 Pesochny, St. Petersburg 197758, Russian Federation
- Peter The Great St. Petersburg Polytechnic University, Polytechnicheskaya 29, St. Petersburg 195251, Russian Federation
- Research School of Chemical and Biomedical Engineering, National Research Tomsk Polytechnic University, Lenin Avenue 30, Tomsk 634050, Russia
| |
Collapse
|
45
|
Nakayama M, Kajiyama S, Kumamoto A, Ikuhara Y, Kato T. Bioinspired selective synthesis of liquid-crystalline nanocomposites: formation of calcium carbonate-based composite nanodisks and nanorods. NANOSCALE ADVANCES 2020; 2:2326-2332. [PMID: 36133376 PMCID: PMC9417261 DOI: 10.1039/d0na00130a] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/16/2020] [Accepted: 05/04/2020] [Indexed: 06/01/2023]
Abstract
Here we report new organic/inorganic hybrid colloidal liquid crystals that consist of colloidal calcium carbonate (CaCO3)/poly(acrylic acid) (PAA) hybrid nanodisks. We selectively synthesized anisotropic liquid-crystalline CaCO3-based nanodisk and nanorod composites in water/methanol mixtures, which formed discotic and calamitic nematic liquid crystals in their colloidal dispersions, respectively. The vaterite nanodisks and calcite nanorods were selectively synthesized in methanol-rich and water-rich solutions, respectively. The observation of these materials with transmission electron microscopy clarified the atomic-scale structures of these nanodisks and nanorods, revealing the self-organized CaCO3/PAA hybrid structures with the ability to form colloidal liquid crystals. The liquid crystals were prepared under mild and aqueous conditions by methods using acidic polymers inspired by the biomineralization process. The present approach provides new insights into the design of organic/inorganic hybrid colloidal liquid crystals and development of environmentally friendly functional hybrid materials.
Collapse
Affiliation(s)
- Masanari Nakayama
- Department of Chemistry and Biotechnology, School of Engineering, The University of Tokyo 7-3-1 Hongo, Bunkyo-ku Tokyo 113-8656 Japan
| | - Satoshi Kajiyama
- Department of Chemistry and Biotechnology, School of Engineering, The University of Tokyo 7-3-1 Hongo, Bunkyo-ku Tokyo 113-8656 Japan
| | - Akihito Kumamoto
- Institute of Engineering Innovation, School of Engineering, The University of Tokyo 2-11-16 Yayoi, Bunkyo-ku Tokyo 113-8656 Japan
| | - Yuichi Ikuhara
- Institute of Engineering Innovation, School of Engineering, The University of Tokyo 2-11-16 Yayoi, Bunkyo-ku Tokyo 113-8656 Japan
| | - Takashi Kato
- Department of Chemistry and Biotechnology, School of Engineering, The University of Tokyo 7-3-1 Hongo, Bunkyo-ku Tokyo 113-8656 Japan
| |
Collapse
|
46
|
Manzanares D, Ceña V. Endocytosis: The Nanoparticle and Submicron Nanocompounds Gateway into the Cell. Pharmaceutics 2020; 12:pharmaceutics12040371. [PMID: 32316537 PMCID: PMC7238190 DOI: 10.3390/pharmaceutics12040371] [Citation(s) in RCA: 236] [Impact Index Per Article: 59.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2020] [Revised: 04/10/2020] [Accepted: 04/15/2020] [Indexed: 12/11/2022] Open
Abstract
Nanoparticles (NPs) and submicron particles are increasingly used as carriers for delivering therapeutic compounds to cells. Their entry into the cell represents the initial step in this delivery process, being most of the nanoparticles taken up by endocytosis, although other mechanisms can contribute to the uptake. To increase the delivery efficiency of therapeutic compounds by NPs and submicron particles is very relevant to understand the mechanisms involved in the uptake process. This review covers the proposed pathways involved in the cellular uptake of different NPs and submicron particles types as well as the role that some of the physicochemical nanoparticle characteristics play in the uptake pathway preferentially used by the nanoparticles to gain access and deliver their cargo inside the cell.
Collapse
Affiliation(s)
- Darío Manzanares
- Unidad Asociada Neurodeath, Universidad de Castilla-La Mancha, 02006 Albacete, Spain;
- CIBERNED, Instituto de Salud Carlos III, 28031 Madrid, Spain
| | - Valentín Ceña
- Unidad Asociada Neurodeath, Universidad de Castilla-La Mancha, 02006 Albacete, Spain;
- CIBERNED, Instituto de Salud Carlos III, 28031 Madrid, Spain
- Correspondence:
| |
Collapse
|
47
|
Abalymov A, Van Poelvoorde L, Atkin V, Skirtach AG, Konrad M, Parakhonskiy B. Alkaline Phosphatase Delivery System Based on Calcium Carbonate Carriers for Acceleration of Ossification. ACS APPLIED BIO MATERIALS 2020; 3:2986-2996. [DOI: 10.1021/acsabm.0c00053] [Citation(s) in RCA: 23] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Affiliation(s)
- Anatolii Abalymov
- Department of Biotechnology, University of Ghent, 9000 Ghent, Belgium
- Department of Nano- and Biomedical Technologies, Saratov State University, 410012 Saratov, Russia
| | | | - Vsevolod Atkin
- Department of Nano- and Biomedical Technologies, Saratov State University, 410012 Saratov, Russia
| | - Andre G. Skirtach
- Department of Biotechnology, University of Ghent, 9000 Ghent, Belgium
| | - Manfred Konrad
- Max Planck Institute for Biophysical Chemistry, 37077 Göttingen, Germany
| | | |
Collapse
|
48
|
Sabharwal P, Sushmitha C, Amritha CK, Natraj U, Murthy MRN, Savithri HS. Development of pepper vein banding virus chimeric virus-like particles for potential diagnostic and therapeutic applications. Arch Virol 2020; 165:1163-1176. [DOI: 10.1007/s00705-020-04581-y] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2019] [Accepted: 02/05/2020] [Indexed: 12/18/2022]
|
49
|
Ashraf S, Hassan Said A, Hartmann R, Assmann M, Feliu N, Lenz P, Parak WJ. Quantitative Particle Uptake by Cells as Analyzed by Different Methods. Angew Chem Int Ed Engl 2020; 59:5438-5453. [PMID: 31657113 PMCID: PMC7155048 DOI: 10.1002/anie.201906303] [Citation(s) in RCA: 43] [Impact Index Per Article: 10.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2019] [Revised: 10/21/2019] [Indexed: 12/21/2022]
Abstract
There is a large number of two-dimensional static in vitro studies about the uptake of colloidal nano- and microparticles, which has been published in the last decade. In this Minireview, different methods used for such studies are summarized and critically discussed. Supplementary experimental data allow for a direct comparison of the different techniques. Emphasis is given on how quantitative parameters can be extracted from studies in which different experimental techniques have been used, with the goal of allowing better comparison.
Collapse
Affiliation(s)
- Sumaira Ashraf
- Fachbereich PhysikPhilipps Universität Marburg35037MarburgGermany
- Institute of Industrial BiotechnologyGovernment College University LahorePunjab54000Pakistan
| | - Alaa Hassan Said
- Fachbereich PhysikPhilipps Universität Marburg35037MarburgGermany
- Electronics and Nano Devices lab (END)Department of PhysicsFaculty of SciencesSouth Valley University83523QenaEgypt
| | - Raimo Hartmann
- Fachbereich PhysikPhilipps Universität Marburg35037MarburgGermany
| | - Marcus‐Alexander Assmann
- Fachbereich PhysikPhilipps Universität Marburg35037MarburgGermany
- Fraunhofer Institute for High-Speed DynamicsErnst Mach Institute79104FreiburgGermany
| | - Neus Feliu
- Fachbereich Physik und Chemie, CHyNUniversität Hamburg20146HamburgGermany
| | - Peter Lenz
- Fachbereich PhysikPhilipps Universität Marburg35037MarburgGermany
| | - Wolfgang J. Parak
- Fachbereich Physik und Chemie, CHyNUniversität Hamburg20146HamburgGermany
- Institute of Nano Biomedicine and EngineeringKey Laboratory for Thin Film and Microfabrication Technology of the Ministry of EducationDepartment of Instrument Science and EngineeringSchool of Electronic Information and Electrical EngineeringShanghai Jiao Tong UniversityShanghaiChina
| |
Collapse
|
50
|
Analyse quantitativer Partikelaufnahme von Zellen über verschiedene Messmethoden. Angew Chem Int Ed Engl 2020. [DOI: 10.1002/ange.201906303] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
|