1
|
Patel KD, Keskin-Erdogan Z, Sawadkar P, Nik Sharifulden NSA, Shannon MR, Patel M, Silva LB, Patel R, Chau DYS, Knowles JC, Perriman AW, Kim HW. Oxidative stress modulating nanomaterials and their biochemical roles in nanomedicine. NANOSCALE HORIZONS 2024; 9:1630-1682. [PMID: 39018043 DOI: 10.1039/d4nh00171k] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/18/2024]
Abstract
Many pathological conditions are predominantly associated with oxidative stress, arising from reactive oxygen species (ROS); therefore, the modulation of redox activities has been a key strategy to restore normal tissue functions. Current approaches involve establishing a favorable cellular redox environment through the administration of therapeutic drugs and redox-active nanomaterials (RANs). In particular, RANs not only provide a stable and reliable means of therapeutic delivery but also possess the capacity to finely tune various interconnected components, including radicals, enzymes, proteins, transcription factors, and metabolites. Here, we discuss the roles that engineered RANs play in a spectrum of pathological conditions, such as cancer, neurodegenerative diseases, infections, and inflammation. We visualize the dual functions of RANs as both generator and scavenger of ROS, emphasizing their profound impact on diverse cellular functions. The focus of this review is solely on inorganic redox-active nanomaterials (inorganic RANs). Additionally, we deliberate on the challenges associated with current RANs-based approaches and propose potential research directions for their future clinical translation.
Collapse
Affiliation(s)
- Kapil D Patel
- John Curtin School of Medical Research, Australian National University, Canberra, ACT 2601, Australia.
- Research School of Chemistry, Australian National University, Canberra, ACT 2601, Australia
- School of Cellular and Molecular Medicine, University of Bristol, BS8 1TD, UK
- Institute of Tissue Regeneration Engineering (ITREN), Dankook University, Cheonan, 31116, Republic of Korea.
- Department of Nanobiomedical Science & BK21 PLUS NBM Global Research Center for Regenerative Medicine Research Center, Dankook University, Cheonan, 31116, Republic of Korea
- UCL Eastman-Korea Dental Medicine Innovation Centre, Dankook University, Cheonan, 31116, Republic of Korea
| | - Zalike Keskin-Erdogan
- UCL Eastman-Korea Dental Medicine Innovation Centre, Dankook University, Cheonan, 31116, Republic of Korea
- Division of Biomaterials and Tissue Engineering, UCL Eastman Dental Institute, University College London, Royal Free Hospital, Rowland Hill Street, NW3 2PF, London, UK
- Department of Chemical Engineering, Imperial College London, Exhibition Rd, South Kensington, SW7 2BX, London, UK
| | - Prasad Sawadkar
- Division of Surgery and Interventional Science, UCL, London, UK
- The Griffin Institute, Northwick Park Institute for Medical Research, Northwick Park and St Mark's Hospitals, London, HA1 3UJ, UK
| | - Nik Syahirah Aliaa Nik Sharifulden
- Division of Biomaterials and Tissue Engineering, UCL Eastman Dental Institute, University College London, Royal Free Hospital, Rowland Hill Street, NW3 2PF, London, UK
| | - Mark Robert Shannon
- John Curtin School of Medical Research, Australian National University, Canberra, ACT 2601, Australia.
- Research School of Chemistry, Australian National University, Canberra, ACT 2601, Australia
- School of Cellular and Molecular Medicine, University of Bristol, BS8 1TD, UK
| | - Madhumita Patel
- Department of Chemistry and Nanoscience, Ewha Women University, 52 Ewhayeodae-gil, Seodaemun-gu, Seoul 03760, Republic of Korea
| | - Lady Barrios Silva
- Division of Biomaterials and Tissue Engineering, UCL Eastman Dental Institute, University College London, Royal Free Hospital, Rowland Hill Street, NW3 2PF, London, UK
| | - Rajkumar Patel
- Energy & Environment Sciences and Engineering (EESE), Integrated Sciences and Engineering Division (ISED), Underwood International College, Yonsei University, 85 Songdongwahak-ro, Yeonsungu, Incheon 21938, Republic of Korea
| | - David Y S Chau
- Division of Biomaterials and Tissue Engineering, UCL Eastman Dental Institute, University College London, Royal Free Hospital, Rowland Hill Street, NW3 2PF, London, UK
| | - Jonathan C Knowles
- Department of Nanobiomedical Science & BK21 PLUS NBM Global Research Center for Regenerative Medicine Research Center, Dankook University, Cheonan, 31116, Republic of Korea
- UCL Eastman-Korea Dental Medicine Innovation Centre, Dankook University, Cheonan, 31116, Republic of Korea
- Division of Biomaterials and Tissue Engineering, UCL Eastman Dental Institute, University College London, Royal Free Hospital, Rowland Hill Street, NW3 2PF, London, UK
| | - Adam W Perriman
- John Curtin School of Medical Research, Australian National University, Canberra, ACT 2601, Australia.
- Research School of Chemistry, Australian National University, Canberra, ACT 2601, Australia
- School of Cellular and Molecular Medicine, University of Bristol, BS8 1TD, UK
| | - Hae-Won Kim
- Institute of Tissue Regeneration Engineering (ITREN), Dankook University, Cheonan, 31116, Republic of Korea.
- Department of Nanobiomedical Science & BK21 PLUS NBM Global Research Center for Regenerative Medicine Research Center, Dankook University, Cheonan, 31116, Republic of Korea
- UCL Eastman-Korea Dental Medicine Innovation Centre, Dankook University, Cheonan, 31116, Republic of Korea
- Department of Biomaterials Science, School of Dentistry, Dankook University, Cheonan 31116, Republic of Korea
- Cell & Matter Institute, Dankook University, Cheonan 31116, Republic of Korea
| |
Collapse
|
2
|
Wu B, Ga L, Wang Y, Ai J. Recent Advances in the Application of Bionanosensors for the Analysis of Heavy Metals in Aquatic Environments. Molecules 2023; 29:34. [PMID: 38202619 PMCID: PMC10780001 DOI: 10.3390/molecules29010034] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2023] [Revised: 11/21/2023] [Accepted: 11/29/2023] [Indexed: 01/12/2024] Open
Abstract
Heavy-metal ions (HMIs) as a pollutant, if not properly processed, used, and disposed of, will not only have an influence on the ecological environment but also pose significant health hazards to humans, making them a primary factor that endangers human health and harms the environment. Heavy metals come from a variety of sources, the most common of which are agriculture, industry, and sewerage. As a result, there is an urgent demand for portable, low-cost, and effective analytical tools. Bionanosensors have been rapidly developed in recent years due to their advantages of speed, mobility, and high sensitivity. To accomplish effective HMI pollution control, it is important not only to precisely pinpoint the source and content of pollution but also to perform real-time and speedy in situ detection of its composition. This study summarizes heavy-metal-ion (HMI) sensing research advances over the last five years (2019-2023), describing and analyzing major examples of electrochemical and optical bionanosensors for Hg2+, Cu2+, Pb2+, Cd2+, Cr6+, and Zn2+.
Collapse
Affiliation(s)
- Bin Wu
- College of Chemistry and Enviromental Science, Inner Mongolia Key Laboratory of Environmental Chemistry, Inner Mongolia Normal University, 81 zhaowudalu, Hohhot 010022, China;
| | - Lu Ga
- College of Pharmacy, Inner Mongolia Medical University, Jinchuankaifaqu, Hohhot 010110, China;
| | - Yong Wang
- College of Geographical Science, Inner Mongolia Normal University, 81 Zhaowudalu, Hohhot 010022, China
| | - Jun Ai
- College of Chemistry and Enviromental Science, Inner Mongolia Key Laboratory of Environmental Chemistry, Inner Mongolia Normal University, 81 zhaowudalu, Hohhot 010022, China;
| |
Collapse
|
3
|
Ghoniem SM, ElZorkany HE, Hagag NM, El-Deeb AH, Shahein MA, Hussein HA. Development of multiplex gold nanoparticles biosensors for ultrasensitive detection and genotyping of equine herpes viruses. Sci Rep 2023; 13:15140. [PMID: 37704638 PMCID: PMC10500010 DOI: 10.1038/s41598-023-41918-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2023] [Accepted: 09/04/2023] [Indexed: 09/15/2023] Open
Abstract
Gold nanoparticles (GNPs) biosensors can detect low viral loads and differentiate between viruses types, enabling early diagnosis and effective disease management. In the present study, we developed GNPs biosensors with two different capping agent, citrate-GNPs biosensors and polyvinylpyrrolidone (PVP)-GNPs biosensors for detection of EHV-1 and EHV-4 in multiplex real time PCR (rPCR). Citrate-GNPs and PVP-GNPs biosensors can detect dilution 1010 of EHV-1 with mean Cycle threshold (Ct) 11.7 and 9.6, respectively and one copy as limit of detection, while citrate-GNPs and PVP-GNPs biosensors can detect dilution 1010 of EHV-4 with mean Ct 10.5 and 9.2, respectively and one copy as limit of detection. These findings were confirmed by testing 87 different clinical samples, 4 more samples were positive with multiplex GNPs biosensors rPCR than multiplex rPCR. Multiplex citrate-GNPs and PVP-GNPs biosensors for EHV-1 and EHV-4 are a significant breakthrough in the diagnosis of these virus types. These biosensors offer high sensitivity and specificity, allowing for the accurate detection of the target viruses at very low concentrations and improve the early detection of EHV-1 and EHV-4, leading to faster control of infected animals to prevent the spread of these viruses.
Collapse
Affiliation(s)
- Shimaa M Ghoniem
- Department of Virology, Animal Health Research Institute, Agriculture Research Center, Giza, 12618, Egypt
| | - Heba E ElZorkany
- Nanotechnology and Advanced Materials Central Lab, Agriculture Research Center, Giza, 12619, Egypt
| | - Naglaa M Hagag
- Genome Research Unit, Animal Health Research Institute, Agriculture Research Center, Giza, 12618, Egypt
| | - Ayman H El-Deeb
- Department of Virology, Faculty of Veterinary Medicine, Cairo University, P.O. Box 12211, Giza, Egypt
- Department of Virology, Faculty of Veterinary Medicine, King Salman International University, South Sinai, Egypt
| | - Momtaz A Shahein
- Department of Virology, Animal Health Research Institute, Agriculture Research Center, Giza, 12618, Egypt
| | - Hussein A Hussein
- Department of Virology, Faculty of Veterinary Medicine, Cairo University, P.O. Box 12211, Giza, Egypt.
| |
Collapse
|
4
|
Centane S, Nyokong T. Co phthalocyanine mediated electrochemical detection of the HER2 in the presence of Au and CeO2 nanoparticles and graphene quantum dots. Bioelectrochemistry 2023; 149:108301. [DOI: 10.1016/j.bioelechem.2022.108301] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2022] [Revised: 10/03/2022] [Accepted: 10/08/2022] [Indexed: 11/06/2022]
|
5
|
Gholizadeh O, Yasamineh S, Amini P, Afkhami H, Delarampour A, Akbarzadeh S, Karimi Matloub R, Zahedi M, Hosseini P, Hajiesmaeili M, Poortahmasebi V. Therapeutic and diagnostic applications of nanoparticles in the management of COVID-19: a comprehensive overview. Virol J 2022; 19:206. [PMID: 36463213 PMCID: PMC9719161 DOI: 10.1186/s12985-022-01935-7] [Citation(s) in RCA: 20] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2022] [Accepted: 11/25/2022] [Indexed: 12/04/2022] Open
Abstract
In December 2019, Coronavirus Disease 2019 (COVID-19) was reported in Wuhan, China. Comprehensive strategies for quick identification, prevention, control, and remedy of COVID-19 have been implemented until today. Advances in various nanoparticle-based technologies, including organic and inorganic nanoparticles, have created new perspectives in this field. These materials were extensively used to control COVID-19 because of their specific attribution to preparing antiviral face masks, various safety sensors, etc. In this review, the most current nanoparticle-based technologies, applications, and achievements against the coronavirus were summarized and highlighted. This paper also offers nanoparticle preventive, diagnostic, and treatment options to combat this pandemic.
Collapse
Affiliation(s)
- Omid Gholizadeh
- Department of Bacteriology and Virology, Faculty of Medical Sciences, Tabriz University of Medical Sciences, Tabriz, Iran
- Research Center for Clinical Virology, Tehran University of Medical Sciences, Tehran, Iran
| | - Saman Yasamineh
- Young Researchers and Elite Club, Tabriz Branch, Islamic Azad University, Tabriz, Iran
| | - Parya Amini
- Department of Microbiology, School of Medicine, Yasuj University of Medical Sciences, Yasuj, Iran
| | - Hamed Afkhami
- Department of Medical Microbiology, Faculty of Medicine, Shahed University of Medical Science, Tehran, Iran
| | - Abbasali Delarampour
- Microbiology Department, School of Medicine, Zahedan University of Medical Sciences, Zahedan, Iran
| | - Sama Akbarzadeh
- Department of Animal Biology, Faculty of Natural Science, University of Tabriz, Tabriz, Iran
| | | | - Mahlagha Zahedi
- Department of Pathology, Faculty of Medicine, Shahid Sadoughi University of Medical Sciences, Yazd, Iran
| | - Parastoo Hosseini
- Research Center for Clinical Virology, Tehran University of Medical Sciences, Tehran, Iran
- Department of Virology, School of Public Health, Tehran University of Medical Sciences, Tehran, Iran
| | - Mehrnaz Hajiesmaeili
- Department of Microbiology, Faculty of Medicine, Babol University of Medical Sciences, Babol, Iran
| | - Vahdat Poortahmasebi
- Department of Bacteriology and Virology, Faculty of Medical Sciences, Tabriz University of Medical Sciences, Tabriz, Iran.
- Research Center for Clinical Virology, Tehran University of Medical Sciences, Tehran, Iran.
| |
Collapse
|
6
|
Dhahi TS, Adam T, Gopinath SCB, Hashim U. Gold nanogap impedimetric biosensor for precise and selective Ganoderma boninense detection. 3 Biotech 2022; 12:299. [PMID: 36276457 PMCID: PMC9522946 DOI: 10.1007/s13205-022-03368-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2022] [Accepted: 09/17/2022] [Indexed: 11/01/2022] Open
Abstract
Ganoderma species are common wood-rotting fungi that cause root and stem rot in most monocots, dicots, and gymnosperms. It influences plantation crops such as oil palm and rubber in Malaysia, but the effects vary greatly within the genus. Because of the complex chemistry of Ganoderma, extracting and identifying the physiologically active chemicals is often time-consuming and necessitates extensive bioassays. This study investigated the specific identification of the most infectious Ganoderma species using a sub-20-nm gold electrode. Three electrodes were created using chemically controlled etching (2, 10, and 20 nm). An AutoCAD mask containing nanogap pad electrodes was used to create a chrome glass surface, which was then translated and built. Following the successful construction of the device, the sensor was evaluated using a combination of conventional photolithography and a size reduction technique to imprint the nanogap design onto the gold surface. Ganoderma boninense target DNA was synthesised and surface-modified to enable interaction at extremely low molecular concentrations. The proposed device has a detection limit of 0.001 mol/L, which is seven times lower than the detection limits of currently available devices. The capacitance, conductivity, and permittivity of complementary, non-complementary, single mismatched, and targeted biomolecules changed during hybridization. This sensor correctly differentiated between all samples. The sensor's performance is further validated by comparing experimental data from the sensor to theoretical data from the sensor's corresponding circuit model. The two data sets are very similar.
Collapse
Affiliation(s)
- Thikra S. Dhahi
- Electronics Technical Department, Southern Technical University, Basra, Iraq
- Faculty of Electronic Engineering & Technology, Universiti Malaysia Perlis, 02600 Arau, Perlis Malaysia
| | - Tijjani Adam
- Faculty of Electronic Engineering & Technology, Universiti Malaysia Perlis, 02600 Arau, Perlis Malaysia
- Institute of Nano Electronic Engineering, Universiti Malaysia Perlis, 01000 Kangar, Perlis Malaysia
| | - Subash C. B. Gopinath
- Faculty of Chemical Engineering & Technology, Universiti Malaysia Perlis, 02600 Arau, Perlis Malaysia
- Institute of Nano Electronic Engineering, Universiti Malaysia Perlis, 01000 Kangar, Perlis Malaysia
- Centre of Excellence for Nanobiotechnology and Nanomedicine (CoExNano), Faculty of Applied Sciences, AIMST University, Semeling, 08100 Kedah, Malaysia
| | - U. Hashim
- Institute of Nano Electronic Engineering, Universiti Malaysia Perlis, 01000 Kangar, Perlis Malaysia
| |
Collapse
|
7
|
Khan J, Rasmi Y, Kırboğa KK, Ali A, Rudrapal M, Patekar RR. Development of gold nanoparticle-based biosensors for COVID-19 diagnosis. BENI-SUEF UNIVERSITY JOURNAL OF BASIC AND APPLIED SCIENCES 2022; 11:111. [PMID: 36092513 PMCID: PMC9444098 DOI: 10.1186/s43088-022-00293-1] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2022] [Accepted: 08/30/2022] [Indexed: 11/10/2022] Open
Abstract
Abstract
Background
Severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) is the causative organism of coronavirus disease 2019 (COVID-19) which poses a significant threat to public health worldwide. Though there are certain recommended drugs that can cure COVID-19, their therapeutic efficacy is limited. Therefore, the early and rapid detection without compromising the test accuracy is necessary in order to provide an appropriate treatment for the disease suppression.
Main body
Nanoparticles (NPs) can closely mimic the virus and interact strongly with its proteins due to their morphological similarities. NPs have been widely applied in a variety of medical applications, including biosensing, drug delivery, antimicrobial treatment, and imaging. Recently, NPs-based biosensors have attracted great interest for their biological activities and specific sensing properties, which allows the detection of analytes such as nucleic acids (DNA or RNA), aptamers, and proteins in clinical samples. Further, the advances of nanotechnologies have enabled the development of miniaturized detection systems for point-of-care biosensors, a new strategy for detecting human viral diseases. Among the various NPs, the specific physicochemical properties of gold NPs (AuNPs) are being widely used in the field of clinical diagnostics. As a result, several AuNP-based colorimetric detection methods have been developed.
Short conclusion
The purpose of this review is to provide an overview of the development of AuNPs-based biosensors by virtue of its powerful characteristics as a signal amplifier or enhancer that target pathogenic RNA viruses that provide a reliable and effective strategy for detecting of the existing or newly emerging SARS-CoV-2.
Collapse
|
8
|
Xia J, Bu T, Jia P, He K, Wang X, Sun X, Wang L. Polydopamine nanospheres-assisted direct PCR for rapid detection of Escherichia coli O157:H7. Anal Biochem 2022; 654:114797. [DOI: 10.1016/j.ab.2022.114797] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2022] [Accepted: 06/22/2022] [Indexed: 11/01/2022]
|
9
|
Abstract
The effect of the on-going COVID-19 pandemic on global healthcare systems has underlined the importance of timely and cost-effective point-of-care diagnosis of viruses. The need for ultrasensitive easy-to-use platforms has culminated in an increased interest for rapid response equipment-free alternatives to conventional diagnostic methods such as polymerase chain reaction, western-blot assay, etc. Furthermore, the poor stability and the bleaching behavior of several contemporary fluorescent reporters is a major obstacle in understanding the mechanism of viral infection thus retarding drug screening and development. Owing to their extraordinary surface-to-volume ratio as well as their quantum confinement and charge transfer properties, nanomaterials are desirable additives to sensing and imaging systems to amplify their signal response as well as temporal resolution. Their large surface area promotes biomolecular integration as well as efficacious signal transduction. Due to their hole mobility, photostability, resistance to photobleaching, and intense brightness, nanomaterials have a considerable edge over organic dyes for single virus tracking. This paper reviews the state-of-the-art of combining carbon-allotrope, inorganic and organic-based nanomaterials with virus sensing and tracking methods, starting with the impact of human pathogenic viruses on the society. We address how different nanomaterials can be used in various virus sensing platforms (e.g. lab-on-a-chip, paper, and smartphone-based point-of-care systems) as well as in virus tracking applications. We discuss the enormous potential for the use of nanomaterials as simple, versatile, and affordable tools for detecting and tracing viruses infectious to humans, animals, plants as well as bacteria. We present latest examples in this direction by emphasizing major advantages and limitations.
Collapse
Affiliation(s)
- Muqsit Pirzada
- Technical University of Berlin, Faculty of Natural Sciences and Maths, Straße des 17. Juni 124, Berlin 10623, Germany. .,Institute of Materials Science, Faculty of Engineering, Kiel University, Kaiserstr 2, 24143 Kiel, Germany
| | - Zeynep Altintas
- Technical University of Berlin, Faculty of Natural Sciences and Maths, Straße des 17. Juni 124, Berlin 10623, Germany. .,Institute of Materials Science, Faculty of Engineering, Kiel University, Kaiserstr 2, 24143 Kiel, Germany
| |
Collapse
|
10
|
Wang W, Wang X, Liu J, Lin C, Liu J, Wang J. The Integration of Gold Nanoparticles with Polymerase Chain Reaction for Constructing Colorimetric Sensing Platforms for Detection of Health-Related DNA and Proteins. BIOSENSORS 2022; 12:bios12060421. [PMID: 35735568 PMCID: PMC9220820 DOI: 10.3390/bios12060421] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/24/2022] [Revised: 06/13/2022] [Accepted: 06/14/2022] [Indexed: 05/02/2023]
Abstract
Polymerase chain reaction (PCR) is the standard tool in genetic information analysis, and the desirable detection merits of PCR have been extended to disease-related protein analysis. Recently, the combination of PCR and gold nanoparticles (AuNPs) to construct colorimetric sensing platforms has received considerable attention due to its high sensitivity, visual detection, capability for on-site detection, and low cost. However, it lacks a related review to summarize and discuss the advances in this area. This perspective gives an overview of established methods based on the combination of PCR and AuNPs for the visual detection of health-related DNA and proteins. Moreover, this work also addresses the future trends and perspectives for PCR-AuNP hybrid biosensors.
Collapse
Affiliation(s)
- Wanhe Wang
- Institute of Medical Research, Northwestern Polytechnical University, 127 West Youyi Road, Xi’an 710072, China; (W.W.); (X.W.); (J.L.); (C.L.); (J.L.)
- Research & Development Institute of Northwestern Polytechnical University in Shenzhen, 45 South Gaoxin Road, Shenzhen 518057, China
- Collaborative Innovation Center of NPU, Shanghai 201100, China
- Innovation Center NPU Chongqing, Northwestern Polytechnical University, Chongqing 400000, China
| | - Xueliang Wang
- Institute of Medical Research, Northwestern Polytechnical University, 127 West Youyi Road, Xi’an 710072, China; (W.W.); (X.W.); (J.L.); (C.L.); (J.L.)
- Research & Development Institute of Northwestern Polytechnical University in Shenzhen, 45 South Gaoxin Road, Shenzhen 518057, China
- Collaborative Innovation Center of NPU, Shanghai 201100, China
- Innovation Center NPU Chongqing, Northwestern Polytechnical University, Chongqing 400000, China
| | - Jingqi Liu
- Institute of Medical Research, Northwestern Polytechnical University, 127 West Youyi Road, Xi’an 710072, China; (W.W.); (X.W.); (J.L.); (C.L.); (J.L.)
- Research & Development Institute of Northwestern Polytechnical University in Shenzhen, 45 South Gaoxin Road, Shenzhen 518057, China
- Collaborative Innovation Center of NPU, Shanghai 201100, China
| | - Chuankai Lin
- Institute of Medical Research, Northwestern Polytechnical University, 127 West Youyi Road, Xi’an 710072, China; (W.W.); (X.W.); (J.L.); (C.L.); (J.L.)
- Research & Development Institute of Northwestern Polytechnical University in Shenzhen, 45 South Gaoxin Road, Shenzhen 518057, China
- Collaborative Innovation Center of NPU, Shanghai 201100, China
| | - Jianhua Liu
- Institute of Medical Research, Northwestern Polytechnical University, 127 West Youyi Road, Xi’an 710072, China; (W.W.); (X.W.); (J.L.); (C.L.); (J.L.)
- Research & Development Institute of Northwestern Polytechnical University in Shenzhen, 45 South Gaoxin Road, Shenzhen 518057, China
- Collaborative Innovation Center of NPU, Shanghai 201100, China
| | - Jing Wang
- Institute of Medical Research, Northwestern Polytechnical University, 127 West Youyi Road, Xi’an 710072, China; (W.W.); (X.W.); (J.L.); (C.L.); (J.L.)
- Research & Development Institute of Northwestern Polytechnical University in Shenzhen, 45 South Gaoxin Road, Shenzhen 518057, China
- Collaborative Innovation Center of NPU, Shanghai 201100, China
- Innovation Center NPU Chongqing, Northwestern Polytechnical University, Chongqing 400000, China
- Correspondence: ; Tel.: +86-13268283561
| |
Collapse
|
11
|
Silva PBD, Silva JRD, Rodrigues MC, Vieira JA, Andrade IAD, Nagata T, Santos AS, Silva SWD, Rocha MCOD, Báo SN, Moraes-Vieira PM, Proença-Modena J, Angelim MK, de Souza GF, Muraro SP, de Barros ALB, de Souza Martins GA, Ribeiro-Dias F, Machado G, Fessel MR, Chudzinski-Tavassi AM, Ronconi CM, Gonçalves D, Curi R, Oliveira ON, Azevedo RB. Detection of SARS-CoV-2 virus via dynamic light scattering using antibody-gold nanoparticle bioconjugates against viral spike protein. Talanta 2022; 243:123355. [PMID: 35272155 PMCID: PMC8895652 DOI: 10.1016/j.talanta.2022.123355] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2021] [Revised: 02/25/2022] [Accepted: 03/01/2022] [Indexed: 12/12/2022]
Abstract
Mass testing for the diagnosis of COVID-19 has been hampered in many countries owing to the high cost of genetic material detection. This study reports on a low-cost immunoassay for detecting SARS-CoV-2 within 30 min using dynamic light scattering (DLS). The immunosensor comprises 50-nm gold nanoparticles (AuNPs) functionalized with antibodies against SARS-CoV-2 spike glycoprotein, whose bioconjugation was confirmed using transmission electron microscopy (TEM), UV-Vis spectroscopy, Fourier transform infrared spectroscopy (FTIR), and surface-enhanced Raman scattering spectroscopy (SERS). The specific binding of the bioconjugates to the spike protein led to an increase in bioconjugate size, with a limit of detection (LOD) 5.29 × 103 TCID50/mL (Tissue Culture Infectious Dose). The immunosensor was also proven to be selective upon interaction with influenza viruses once no increase in size was observed after DLS measurement. The strategy proposed here aimed to use antibodies conjugated to AuNPs as a generic platform that can be extended to other detection principles, enabling technologies for low-cost mass testing for COVID-19.
Collapse
|
12
|
Hu A, Kong L, Lu Z, Qiao J, Lv F, Meng F, Bie X. Research on nanogold-assisted HRM-qPCR technology for highly sensitive and accurate detection of Vibrio parahaemolyticus. Lebensm Wiss Technol 2022. [DOI: 10.1016/j.lwt.2022.113488] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
|
13
|
Internal heating method of loop-mediated isothermal amplification for detection of HPV-6 DNA. Mikrochim Acta 2022; 189:212. [PMID: 35507110 PMCID: PMC9065241 DOI: 10.1007/s00604-022-05283-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2022] [Accepted: 03/14/2022] [Indexed: 11/02/2022]
Abstract
Loop-mediated isothermal amplification (LAMP) is a promising diagnostic tool for genetic amplification, which is known for its rapid process, simple operation, high amplification efficiency, and excellent sensitivity. However, most of the existing heating methods are external for completion of molecular amplification with possibility of contamination of specimens. The present research provided an internal heating method for LAMP using magnetic nanoparticles (MNPs), which is called nano-LAMP. Near-infrared light with an excitation wavelength of 808 nm was employed as the heating source; hydroxy naphthol blue (HNB) was used as an indicator to conduct methodological research. We demonstrate that the best temperature was controlled at a working power of 2 W and 4.8 µg/µL concentration of nanoparticles. The lowest limit for the detection of HPV by the nano-LAMP method is 102 copies/mL, which was confirmed by a gel electrophoresis assay. In the feasibility investigation of validated clinical samples, all 10 positive HPV-6 specimens amplified by nano-LAMP were consistent with conventional LAMP methods. Therefore, the nano-LAMP detection method using internal heating of MNPs may bring a new vision to the exploration of thermostatic detection in the future.
Collapse
|
14
|
El Bagoury GF, Elhabashy R, Mahmoud AH, Hagag NM, El Zowalaty ME. Development and evaluation of one-step real-time RT-PCR assay for improved detection of foot-and-mouth-disease virus serotypes circulating in Egypt. J Virol Methods 2022; 306:114525. [PMID: 35337855 DOI: 10.1016/j.jviromet.2022.114525] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2021] [Revised: 03/10/2022] [Accepted: 03/16/2022] [Indexed: 11/17/2022]
Abstract
Foot-and-mouth disease (FMD) is an extremely contagious and economically important viral disease affecting livestock. Rapid and precise diagnosis of FMD is critical for efficient control and surveillance strategies of the disease. In this study, one-step real-time reverse transcription-polymerase chain reaction (RT-qPCR) assays using newly designed primers/probe sets in the conserved regions within the VP1 coding sequence were developed for specific detection of FMDV serotypes SAT 2 and O with their different lineage circulating in Egypt. The assays were validated for the efficacy to detect different lineages of these endemic serotypes in Egypt; the detection limit was 10 genomic copies for serotype SAT 2 and one genomic copy for serotype O, with no cross-reactivity observed. These findings were confirmed by the specific and sensitive detection of FMDV in clinical samples obtained from different regions in Egypt and representing a range of subtypes within the SAT 2 and O serotypes. The results illustrate the potential of tailored RT-qPCR tools for the rapid detection and serotyping of FMDV belonging to different lineages of serotypes SAT 2 and O circulating in Egypt with high sensitivity and specificity. The developed assays could be easily deployed for routine surveillance and hence improving the disease control measures.
Collapse
Affiliation(s)
- Gabr F El Bagoury
- Department of Virology, Faculty of Veterinary Medicine, Benha University, Toukh 13736, Egypt
| | - Rawan Elhabashy
- Biotechnology Research Unit, Animal Health Research Institute, Agricultural Research Center, Dokki 12618, Giza, Egypt.
| | - Ayman H Mahmoud
- Biotechnology Research Unit, Animal Health Research Institute, Agricultural Research Center, Dokki 12618, Giza, Egypt
| | - Naglaa M Hagag
- Genome Research Unit, Animal Health Research Institute, Agricultural Research Center, Dokki 12618, Giza, Egypt.
| | - Mohamed E El Zowalaty
- Department of Microbiology and Immunology, Faculty of Pharmacy, El Saleheya El Gadida University, El Saleheya El Gadida, 44813, Ash Sharqia, Egypt; Zoonosis Science Center, Department of Medical Biochemistry and Microbiology, Uppsala University, Uppsala, Sweden.
| |
Collapse
|
15
|
Deb R, Pal P, Chaudhary P, Bhadsavle S, Behera M, Parmanand, Gautam D, Roshan M, Vats A, Ludri A, Gupta VK, De S. Development of gold nanoparticle-based visual assay for rapid detection of Escherichia coli specific DNA in milk of cows affected with mastitis. Lebensm Wiss Technol 2022. [DOI: 10.1016/j.lwt.2021.112901] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/19/2022]
|
16
|
Fabrication of AuNPs/MWCNTS/Chitosan Nanocomposite for the Electrochemical Aptasensing of Cadmium in Water. SENSORS 2021; 22:s22010105. [PMID: 35009645 PMCID: PMC8747752 DOI: 10.3390/s22010105] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/20/2021] [Revised: 12/11/2021] [Accepted: 12/20/2021] [Indexed: 12/16/2022]
Abstract
Cadmium (Cd2+) is one of the most toxic heavy metals causing serious health problems; thus, designing accurate analytical methods for monitoring such pollutants is highly urgent. Herein, we report a label-free electrochemical aptasensor for cadmium detection in water. For this, a nanocomposite combining the advantages of gold nanoparticles (AuNPs), carbon nanotubes (CNTs) and chitosan (Cs) was constructed and used as immobilization support for the cadmium aptamer. First, the surface of a glassy carbon electrode (GCE) was modified with CNTs-CS. Then, AuNPs were deposited on CNTs-CS/GCE using chrono-amperometry. Finally, the immobilization of the amino-modified Cd-aptamer was achieved via glutaraldehyde cross-linking. The different synthesis steps of the AuNPs/CNTs/CS nano assembly were characterized by cyclic voltammetry (CV). Electrochemical impedance spectroscopy (EIS) was employed for cadmium determination. The proposed biosensor exhibited excellent performances for cadmium detection at a low applied potential (−0.5 V) with a high sensitivity (1.2 KΩ·M−1), a detection limit of 0.02 pM and a wide linear range (10−13–10−4 M). Moreover, the aptasensor showed a good selectivity against the interfering ions: Pb2+; Hg2+ and Zn2+. Our electrochemical biosensor provides a simple and sensitive approach for Cd2+ detection in aqueous solutions, with promising applications in the monitoring of trace amounts of heavy metals in real samples.
Collapse
|
17
|
Teeparuksapun K, Hedström M, Mattiasson B. A Sensitive Capacitive Biosensor for Protein a Detection Using Human IgG Immobilized on an Electrode Using Layer-by-Layer Applied Gold Nanoparticles. SENSORS (BASEL, SWITZERLAND) 2021; 22:99. [PMID: 35009642 PMCID: PMC8747357 DOI: 10.3390/s22010099] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 10/24/2021] [Revised: 11/20/2021] [Accepted: 11/23/2021] [Indexed: 06/14/2023]
Abstract
A capacitive biosensor for the detection of protein A was developed. Gold electrodes were fabricated by thermal evaporation and patterned by photoresist photolithography. A layer-by-layer (LbL) assembly of thiourea (TU) and HAuCl4 and chemical reduction was utilized to prepare a probe with a different number of layers of TU and gold nanoparticles (AuNPs). The LbL-modified electrodes were used for the immobilization of human IgG. The binding interaction between human IgG and protein A was detected as a decrease in capacitance signal, and that change was used to investigate the correlation between the height of the LbL probe and the sensitivity of the capacitive measurement. The results showed that the initial increase in length of the LbL probe can enhance the amount of immobilized human IgG, leading to a more sensitive assay. However, with thicker LbL layers, a reduction of the sensitivity of the measurement was registered. The performance of the developed system under optimum set-up showed a linearity in response from 1 × 10-16 to 1 × 10-13 M, with the limit detection of 9.1 × 10-17 M, which could be interesting for the detection of trace amounts of protein A from affinity isolation of therapeutic monoclonal antibodies.
Collapse
Affiliation(s)
- Kosin Teeparuksapun
- Science Program, Department of General Education, Faculty of Liberal Arts, Rajamangala University of Technology Srivijaya, Songkhla 90000, Thailand;
- Division of Biotechnology, Lund University, P.O. Box 124, 221 00 Lund, Sweden;
| | - Martin Hedström
- Division of Biotechnology, Lund University, P.O. Box 124, 221 00 Lund, Sweden;
| | - Bo Mattiasson
- Division of Biotechnology, Lund University, P.O. Box 124, 221 00 Lund, Sweden;
| |
Collapse
|
18
|
Nasri N, Rusli A, Teramoto N, Jaafar M, Ku Ishak KM, Shafiq MD, Abdul Hamid ZA. Past and Current Progress in the Development of Antiviral/Antimicrobial Polymer Coating towards COVID-19 Prevention: A Review. Polymers (Basel) 2021; 13:4234. [PMID: 34883737 PMCID: PMC8659939 DOI: 10.3390/polym13234234] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2021] [Revised: 11/04/2021] [Accepted: 11/08/2021] [Indexed: 01/10/2023] Open
Abstract
The astonishing outbreak of SARS-CoV-2 coronavirus, known as COVID-19, has attracted numerous research interests, particularly regarding fabricating antimicrobial surface coatings. This initiative is aimed at overcoming and minimizing viral and bacterial transmission to the human. When contaminated droplets from an infected individual land onto common surfaces, SARS-CoV-2 coronavirus is able to survive on various surfaces for up to 9 days. Thus, the possibility of virus transmission increases after touching or being in contact with contaminated surfaces. Herein, we aim to provide overviews of various types of antiviral and antimicrobial coating agents, such as antimicrobial polymer-based coating, metal-based coating, functional nanomaterial, and nanocomposite-based coating. The action mode for each type of antimicrobial agent against pathogens is elaborated. In addition, surface properties of the designed antiviral and antimicrobial polymer coating with their influencing factors are discussed in this review. This paper also exhibits several techniques on surface modification to improve surface properties. Various developed research on the development of antiviral/antimicrobial polymer coating to curb the COVID-19 pandemic are also presented in this review.
Collapse
Affiliation(s)
- Nazihah Nasri
- School of Materials & Mineral Resources Engineering, Universiti Sains Malaysia, Engineering Campus, Nibong Tebal 14300, Pulau Pinang, Malaysia; (N.N.); (A.R.); (M.J.); (K.M.K.I.); (M.D.S.)
| | - Arjulizan Rusli
- School of Materials & Mineral Resources Engineering, Universiti Sains Malaysia, Engineering Campus, Nibong Tebal 14300, Pulau Pinang, Malaysia; (N.N.); (A.R.); (M.J.); (K.M.K.I.); (M.D.S.)
| | - Naozumi Teramoto
- Department of Applied Chemistry, Faculty of Engineering, Chiba Institute of Technology, 2-17-1 Tsudanuma, Narashino 275-0016, Chiba, Japan;
| | - Mariatti Jaafar
- School of Materials & Mineral Resources Engineering, Universiti Sains Malaysia, Engineering Campus, Nibong Tebal 14300, Pulau Pinang, Malaysia; (N.N.); (A.R.); (M.J.); (K.M.K.I.); (M.D.S.)
| | - Ku Marsilla Ku Ishak
- School of Materials & Mineral Resources Engineering, Universiti Sains Malaysia, Engineering Campus, Nibong Tebal 14300, Pulau Pinang, Malaysia; (N.N.); (A.R.); (M.J.); (K.M.K.I.); (M.D.S.)
| | - Mohamad Danial Shafiq
- School of Materials & Mineral Resources Engineering, Universiti Sains Malaysia, Engineering Campus, Nibong Tebal 14300, Pulau Pinang, Malaysia; (N.N.); (A.R.); (M.J.); (K.M.K.I.); (M.D.S.)
| | - Zuratul Ain Abdul Hamid
- School of Materials & Mineral Resources Engineering, Universiti Sains Malaysia, Engineering Campus, Nibong Tebal 14300, Pulau Pinang, Malaysia; (N.N.); (A.R.); (M.J.); (K.M.K.I.); (M.D.S.)
| |
Collapse
|
19
|
Ozcicek I, Aysit N, Cakici C, Aydeger A. The effects of surface functionality and size of gold nanoparticles on neuronal toxicity, apoptosis, ROS production and cellular/suborgan biodistribution. MATERIALS SCIENCE & ENGINEERING. C, MATERIALS FOR BIOLOGICAL APPLICATIONS 2021; 128:112308. [PMID: 34474859 DOI: 10.1016/j.msec.2021.112308] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/19/2021] [Revised: 06/15/2021] [Accepted: 07/07/2021] [Indexed: 12/19/2022]
Abstract
Gold nanoparticles are emerging as promising nanomaterials to create nanoscale therapeutic delivery systems. The aim of the study was to synthesis of highly monodisperse and stable gold nanoparticles functionalized with polyethyleneimine (PEI) and polyethylene glycol (PEG), multiparametric investigation of their neuronal toxicological effects and evaluation of the cellular/suborgan biodistribution. Gold nanoparticles (AuNP20 and AuNP50) were synthesized and their surfaces were electrostatically modified by PEI and PEG. Dorsal root ganglion (DRG) sensory neurones were isolated from BALB/c mice. Cell viability, apoptosis and ROS production were evaluated in vitro. Cellular and suborgan biodisribution of the AuNPs were investigated using inductively coupled plasma mass spectrometry (ICP-MS) technique. PEI and PEG surface coating increased both biocompatibility and biodistribution of the AuNPs. ICP-MS measurements showed the presence of gold in liver, spleen, kidney, heart, blood and brain within a 30 days period. The size and surface chemistry of the AuNPs are important parameters for potential nanoteranostic applications in the future studies.
Collapse
Affiliation(s)
- Ilyas Ozcicek
- Department of Medical Biology, School of Medicine, Istanbul Medipol University, Istanbul, Turkey; Health Science and Technologies Research Institute (SABITA), Istanbul Medipol University, Istanbul, Turkey.
| | - Nese Aysit
- Department of Medical Biology, School of Medicine, Istanbul Medipol University, Istanbul, Turkey; Health Science and Technologies Research Institute (SABITA), Istanbul Medipol University, Istanbul, Turkey
| | - Cagri Cakici
- Department of Medical Biochemistry, School of Medicine, Istanbul Medipol University, Istanbul, Turkey
| | - Asel Aydeger
- Graduate School of Health Sciences, Istanbul Medipol University, Istanbul, Turkey
| |
Collapse
|
20
|
Filik H, Avan AA. Nanotechnology-based Colorimetric Approaches for Pathogenic Virus Sensing: A review. Curr Med Chem 2021; 29:2691-2718. [PMID: 34269661 DOI: 10.2174/0929867328666210714154051] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2021] [Revised: 05/22/2021] [Accepted: 05/26/2021] [Indexed: 11/22/2022]
Abstract
Fast and inexpensive virus identification protocols are paramount to hinder the further extent of pandemic diseases, minimize economic and social damages, and expedite proper clinical rehabilitation. Until now, various biosensors have been fabricated for the identification of pathogenic particles. But, they offer many difficulties. Nanotechnology resolves these difficulties and offers direct identification of pathogenic species in real-time. Among them, nanomaterial based-colorimetric sensing approach of pathogenic viruses by the naked eye has attracted much awareness because of their simplicity, speed, and low cost. In this review, the latest tendencies and advancements are overviewed in detecting pathogenic viruses using colorimetric concepts. We focus on and reconsider the use of distinctive nanomaterials such as metal nanoparticles, carbon nanotubes, graphene oxide, and conducting polymer to form colorimetric pathogenic virus sensors.
Collapse
Affiliation(s)
- Hayati Filik
- Istanbul University-Cerrahpaşa, Faculty of Engineering, Department of Chemistry, 34320 Avcılar, Istanbul, Turkey
| | - Asiye Aslıhan Avan
- Istanbul University-Cerrahpaşa, Faculty of Engineering, Department of Chemistry, 34320 Avcılar, Istanbul, Turkey
| |
Collapse
|
21
|
Ahmadi S, Rabiee N, Fatahi Y, Hooshmand SE, Bagherzadeh M, Rabiee M, Jajarmi V, Dinarvand R, Habibzadeh S, Saeb MR, Varma RS, Shokouhimehr M, Hamblin MR. Green chemistry and coronavirus. SUSTAINABLE CHEMISTRY AND PHARMACY 2021; 21:100415. [PMID: 33686371 PMCID: PMC7927595 DOI: 10.1016/j.scp.2021.100415] [Citation(s) in RCA: 24] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/12/2020] [Revised: 02/11/2021] [Accepted: 02/17/2021] [Indexed: 05/05/2023]
Abstract
The novel coronavirus pandemic has rapidly spread around the world since December 2019. Various techniques have been applied in identification of SARS-CoV-2 or COVID-19 infection including computed tomography imaging, whole genome sequencing, and molecular methods such as reverse transcription polymerase chain reaction (RT-PCR). This review article discusses the diagnostic methods currently being deployed for the SARS-CoV-2 identification including optical biosensors and point-of-care diagnostics that are on the horizon. These innovative technologies may provide a more accurate, sensitive and rapid diagnosis of SARS-CoV-2 to manage the present novel coronavirus outbreak, and could be beneficial in preventing any future epidemics. Furthermore, the use of green synthesized nanomaterials in the optical biosensor devices could leads to sustainable and environmentally-friendly approaches for addressing this crisis.
Collapse
Affiliation(s)
- Sepideh Ahmadi
- Student Research Committee, Department of Medical Biotechnology, School of Advanced Technologies in Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Navid Rabiee
- Department of Chemistry, Sharif University of Technology, Tehran, Iran
| | - Yousef Fatahi
- Department of Pharmaceutical Nanotechnology, Faculty of Pharmacy, Tehran University of Medical Sciences, Tehran, Iran
- Nanotechnology Research Centre, Faculty of Pharmacy, Tehran University of Medical Sciences, Tehran, Iran
- Universal Scientific Education and Research Center (USERN), Tehran, Iran
| | - Seyyed Emad Hooshmand
- Department of Medical Nanotechnology, Faculty of Advanced Technologies in Medicine, Iran University of Medical Sciences, Tehran, Iran
| | | | - Mohammad Rabiee
- Biomaterial Group, Department of Biomedical Engineering, Amirkabir University of Technology, Tehran, Iran
| | - Vahid Jajarmi
- Department of Medical Biotechnology, School of Advanced Technologies in Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran
- Cellular and Molecular Biology Research Center, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Rassoul Dinarvand
- Department of Pharmaceutical Nanotechnology, Faculty of Pharmacy, Tehran University of Medical Sciences, Tehran, Iran
- Nanotechnology Research Centre, Faculty of Pharmacy, Tehran University of Medical Sciences, Tehran, Iran
| | - Sajjad Habibzadeh
- Department of Chemical Engineering, Amirkabir University of Technology, Tehran, Iran
| | | | - Rajender S Varma
- Regional Centre of Advanced Technologies and Materials, Palacky University, Šlechtitelů 27, 783 71, Olomouc, Czech Republic
| | - Mohammadreza Shokouhimehr
- Department of Materials Science and Engineering, Research Institute of Advanced Materials, Seoul National University, Seoul, 08826, Republic of Korea
| | - Michael R Hamblin
- Laser Research Centre, Faculty of Health Science, University of Johannesburg, Doornfontein, 2028, South Africa
| |
Collapse
|
22
|
Solis-Marcano NE, Morales-Cruz M, Vega-Hernández G, Gómez-Moreno R, Binder C, Baerga-Ortiz A, Priest C, Cabrera CR. PCR-assisted impedimetric biosensor for colibactin-encoding pks genomic island detection in E. coli samples. Anal Bioanal Chem 2021; 413:4673-4680. [PMID: 34046698 PMCID: PMC8159250 DOI: 10.1007/s00216-021-03404-6] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2021] [Revised: 05/03/2021] [Accepted: 05/10/2021] [Indexed: 11/30/2022]
Abstract
A fast PCR-assisted impedimetric biosensor was developed for the selective detection of the clbN gene from the polyketide synthase (pks) genomic island in real Escherichia coli samples. This genomic island is responsible for the production of colibactin, a harmful genotoxin that has been associated with colorectal cancer. The experimental protocol consisted of immobilizing the designated forward primer onto an Au electrode surface to create the sensing probe, followed by PCR temperature cycling in blank, positive, and negative DNA controls. Target DNA identification was possible by monitoring changes in the system’s charge transfer resistance values (Rct) before and after PCR treatment through electrochemical impedance spectroscopy (EIS) analysis. Custom-made, flexible gold electrodes were fabricated using chemical etching optical lithography. A PCR cycle study determined the optimum conditions to be at 6 cycles providing fast results while maintaining a good sensitivity. EIS data for the DNA recognition process demonstrated the successful distinction between target interaction resulting in an increase in resistance to charge transfer (Rct) percentage change of 176% for the positive DNA control vs. 21% and 20% for the negative and non-DNA-containing controls, respectively. Results showed effective fabrication of a fast, PCR-based electrochemical biosensor for the detection of pks genomic island with a calculated limit of detection of 17 ng/μL.
Collapse
Affiliation(s)
- Nadja E Solis-Marcano
- Department of Chemistry, Molecular Sciences Research Center, University of Puerto Rico, Río Piedras Campus, San Juan, 00925-2537, Puerto Rico
| | - Myreisa Morales-Cruz
- Department of Chemistry, Molecular Sciences Research Center, University of Puerto Rico, Río Piedras Campus, San Juan, 00925-2537, Puerto Rico
| | - Gabriela Vega-Hernández
- Department of Chemistry, Molecular Sciences Research Center, University of Puerto Rico, Río Piedras Campus, San Juan, 00925-2537, Puerto Rico
| | - Ramón Gómez-Moreno
- Department of Biochemistry, Molecular Sciences Research Center, University of Puerto Rico, Medical Sciences Campus, San Juan, 00936-5067, Puerto Rico
| | - Claudia Binder
- Future Industries Institute, University of South Australia, Mawson Lakes Campus, Mawson Lakes, Adelaide, South Australia, 5095, Australia
| | - Abel Baerga-Ortiz
- Department of Biochemistry, Molecular Sciences Research Center, University of Puerto Rico, Medical Sciences Campus, San Juan, 00936-5067, Puerto Rico
| | - Craig Priest
- Future Industries Institute, University of South Australia, Mawson Lakes Campus, Mawson Lakes, Adelaide, South Australia, 5095, Australia
| | - Carlos R Cabrera
- Department of Chemistry, Molecular Sciences Research Center, University of Puerto Rico, Río Piedras Campus, San Juan, 00925-2537, Puerto Rico.
| |
Collapse
|
23
|
Liu B, Liu G, Zhang B. Decoration of gold and silver nanoparticles by neuroprotective gabapentin drug and studying the release behavior by surface plasmon resonance. CHEMICAL PAPERS 2021. [DOI: 10.1007/s11696-021-01661-4] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
|
24
|
Minakshi P, Ghosh M, Kumar R, Brar B, Lambe UP, Banerjee S, Ranjan K, Kumar B, Goel P, Malik YS, Prasad G. An Insight into Nanomedicinal Approaches to Combat Viral Zoonoses. Curr Top Med Chem 2021; 20:915-962. [PMID: 32209041 DOI: 10.2174/1568026620666200325114400] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2019] [Revised: 12/31/2019] [Accepted: 12/31/2019] [Indexed: 12/12/2022]
Abstract
BACKGROUND Emerging viral zoonotic diseases are one of the major obstacles to secure the "One Health" concept under the current scenario. Current prophylactic, diagnostic and therapeutic approaches often associated with certain limitations and thus proved to be insufficient for customizing rapid and efficient combating strategy against the highly transmissible pathogenic infectious agents leading to the disastrous socio-economic outcome. Moreover, most of the viral zoonoses originate from the wildlife and poor knowledge about the global virome database renders it difficult to predict future outbreaks. Thus, alternative management strategy in terms of improved prophylactic vaccines and their delivery systems; rapid and efficient diagnostics and effective targeted therapeutics are the need of the hour. METHODS Structured literature search has been performed with specific keywords in bibliographic databases for the accumulation of information regarding current nanomedicine interventions along with standard books for basic virology inputs. RESULTS Multi-arrayed applications of nanomedicine have proved to be an effective alternative in all the aspects regarding the prevention, diagnosis, and control of zoonotic viral diseases. The current review is focused to outline the applications of nanomaterials as anti-viral vaccines or vaccine/drug delivery systems, diagnostics and directly acting therapeutic agents in combating the important zoonotic viral diseases in the recent scenario along with their potential benefits, challenges and prospects to design successful control strategies. CONCLUSION This review provides significant introspection towards the multi-arrayed applications of nanomedicine to combat several important zoonotic viral diseases.
Collapse
Affiliation(s)
- Prasad Minakshi
- Department of Animal Biotechnology, LLR University of Veterinary and Animal Sciences, Hisar-125001, Haryana, 125004, India
| | - Mayukh Ghosh
- Department of Veterinary Physiology and Biochemistry, RGSC, Banaras Hindu University, Mirzapur (UP) - 231001, India
| | - Rajesh Kumar
- Department of Veterinary Physiology and Biochemistry, Lala Lajpat Rai University of Veterinary and Animal Sciences, Hisar-125001, Haryana, 125004, India
| | - Basanti Brar
- Department of Animal Biotechnology, LLR University of Veterinary and Animal Sciences, Hisar-125001, Haryana, 125004, India
| | - Upendra P Lambe
- Department of Animal Biotechnology, LLR University of Veterinary and Animal Sciences, Hisar-125001, Haryana, 125004, India
| | - Somesh Banerjee
- Department of Veterinary Microbiology, Immunology Section, LUVAS, Hisar-125004, India
| | - Koushlesh Ranjan
- Department of Veterinary Physiology and Biochemistry, Sardar Vallabhbhai Patel University of Agriculture and Technology, Meerut, 250110, India
| | | | - Parveen Goel
- Department of Veterinary Medicine, LLR University of Veterinary and Animal Sciences, Hisar, Haryana, 125004, India
| | - Yashpal S Malik
- Division of Standardisation, Indian Veterinary Research Institute Izatnagar - Bareilly (UP) - 243122, India
| | - Gaya Prasad
- Sardar Vallabhbhai Patel University of Agriculture and Technology, Meerut, UP, 250110, India
| |
Collapse
|
25
|
Sengupta J, Hussain CM. Graphene-based field-effect transistor biosensors for the rapid detection and analysis of viruses: A perspective in view of COVID-19. CARBON TRENDS 2021; 2:100011. [PMID: 38620735 PMCID: PMC7834279 DOI: 10.1016/j.cartre.2020.100011] [Citation(s) in RCA: 56] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/13/2020] [Revised: 11/17/2020] [Accepted: 11/19/2020] [Indexed: 05/03/2023]
Abstract
Current situation of COVID-19 demands a rapid, reliable, cost-effective, facile detection strategy to break the transmission chain and biosensor has emerged as a feasible solution for this purpose. Introduction of nanomaterials has undoubtedly improved the performance of biosensor and the addition of graphene enhanced the sensing ability to a peerless level. Amongst different graphene-based biosensing schemes, graphene field-effect transistor marked its unique presence owing to its ability of ultrasensitive and low-noise detection thereby facilitating instantaneous measurements even in the presence of small amounts of analytes. Recently, graphene field-effect transistor type biosensor is even successfully employed in rapid detection of SARS-CoV-2 and this triggers the interest of the scientific community in reviewing the current developments in graphene field-effect transistor. Subsequently, in this article, the recent progress in graphene field-effect transistor type biosensors for the detection of the virus is reviewed and challenges along with their strengths are discussed.
Collapse
Affiliation(s)
- Joydip Sengupta
- Department of Electronic Science, Jogesh Chandra Chaudhuri College (Affiliated to University of Calcutta), Kolkata 700 033, W.B., India
| | - Chaudhery Mustansar Hussain
- Department of Chemistry and Environmental Science, New Jersey Institute of Technology, Newark, New Jersey, USA
| |
Collapse
|
26
|
Li J, Li H, Xu J, Zhao X, Song S, Zhang H. Myocardial infarction biomarker C-reactive protein detection on nanocomposite aptasensor. Biotechnol Appl Biochem 2020; 69:166-171. [PMID: 33370481 DOI: 10.1002/bab.2093] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2020] [Accepted: 12/22/2020] [Indexed: 11/12/2022]
Abstract
Myocardial infarction (MI) is considered as one of the major life-threatening health issues worldwide. Growing number of cases every year is demanding rapid, portable, and early detection by the sensing devices for the identification of MI. This research work introduces a modified interdigitated electrode (IDE) sensing surface constructed with single-walled carbon nanotube (SWCN) to detect the cardiac biomarker, C-reactive protein (CRP). CRP-specific aptamer was conjugated with gold nanoparticle and attached on SWCN-constructed IDE surface. This probe-modified sensing surface has reached the limit of CRP detection to 10 pM on a linear regression curve with the regression coefficient of R² = 0.9223 [y = 0.9198x - 0.4326]. Further, control molecules, such as random aptamer sequence and nontarget cardiac biomarker (Troponin I), did not show the current response, indicating the specific CRP detection. This sensing strategy helps to detect the lower level of CRP and diagnose the MI at its earlier stages.
Collapse
Affiliation(s)
- Jing Li
- Department of Second Cardiology, Affiliated Hospital of Hebei University, Baoding, Hebei, People's Republic of China
| | - Haitao Li
- Department of Cardiology, Xushui Huayi hospital, Baoding, Hebei, People's Republic of China
| | - Jinpeng Xu
- Department of Second Cardiology, Affiliated Hospital of Hebei University, Baoding, Hebei, People's Republic of China
| | - Xingzhou Zhao
- Department of Second Cardiology, Affiliated Hospital of Hebei University, Baoding, Hebei, People's Republic of China
| | - Shujiang Song
- Department of Second Cardiology, Affiliated Hospital of Hebei University, Baoding, Hebei, People's Republic of China
| | - Huitao Zhang
- Department of Third Emergency, Baoding First Central Hospital West Hospital, Baoding, Hebei, People's Republic of China
| |
Collapse
|
27
|
de Jesus JR, de Araújo Andrade T. Understanding the relationship between viral infections and trace elements from a metallomics perspective: implications for COVID-19. Metallomics 2020; 12:1912-1930. [PMID: 33295922 PMCID: PMC7928718 DOI: 10.1039/d0mt00220h] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2020] [Accepted: 11/13/2020] [Indexed: 12/11/2022]
Abstract
Recently, the World Health Organization (WHO) declared a pandemic situation due to a new viral infection (COVID-19) caused by a novel virus (Sars-CoV-2). COVID-19 is today the leading cause of death from viral infections in the world. It is known that many elements play important roles in viral infections, both in virus survival, and in the activation of the host's immune system, which depends on the presence of micronutrients to maintain the integrity of its functions. In this sense, the metallome can be an important object of study for understanding viral infections. Therefore, this work presents an overview of the role of trace elements in the immune system and the state of the art in metallomics, highlighting the challenges found in studies focusing on viral infections.
Collapse
Affiliation(s)
- Jemmyson Romário de Jesus
- University of Campinas, Institute of Chemistry, Dept of Analytical Chemistry, Campinas, São Paulo, Brazil.
| | | |
Collapse
|
28
|
Patra S, Kerry RG, Maurya GK, Panigrahi B, Kumari S, Rout JR. Emerging Molecular Prospective of SARS-CoV-2: Feasible Nanotechnology Based Detection and Inhibition. Front Microbiol 2020; 11:2098. [PMID: 33193115 PMCID: PMC7606273 DOI: 10.3389/fmicb.2020.02098] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2020] [Accepted: 08/10/2020] [Indexed: 12/13/2022] Open
Abstract
The rapid dissemination of SARS-CoV-2 demonstrates how vulnerable it can make communities and is why it has attained the status of global pandemic. According to the estimation from Worldometer, the SARS-CoV-2 affected cases and deaths are exponentially increasing worldwide, marking the mortality rate as ∼3.8% with no probability of its cessation till now. Despite massive attempts and races among scientific communities in search of proper therapeutic options, the termination of this breakneck outbreak of COVID-19 has still not been made possible. Therefore, this review highlights the diverse molecular events induced by a viral infection, such as autophagy, unfolded protein response (UPR), and inflammasome, illustrating the intracellular cascades regulating viral replication inside the host cell. The SARS-CoV-2-mediated endoplasmic reticulum stress and apoptosis are also emphasized in the review. Additionally, host's immune response associated with SARS-CoV-2 infection, as well as the genetic and epigenetic changes, have been demonstrated, which altogether impart a better understanding of its epidemiology. Considering the drawbacks of available diagnostics and medications, herein we have presented the most sensitive nano-based biosensors for the rapid detection of viral components. Moreover, conceptualizing the viral-induced molecular changes inside its target cells, nano-based antiviral systems have also been proposed in this review.
Collapse
Affiliation(s)
- Sushmita Patra
- Department of Biotechnology, North Orissa University, Baripada, India
| | | | - Ganesh Kumar Maurya
- Zoology Section, Mahila Mahavidyalaya, Banaras Hindu University, Varanasi, India
| | - Bijayananda Panigrahi
- School of Biotechnology, Kalinga Institute of Industrial Technology, Bhubaneswar, India
| | - Swati Kumari
- School of Biotechnology, Kalinga Institute of Industrial Technology, Bhubaneswar, India
| | | |
Collapse
|
29
|
Şenel S. Nanotechnology and Animal Health. Pharm Nanotechnol 2020; 9:26-35. [PMID: 32912131 DOI: 10.2174/2211738508666200910101504] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2020] [Revised: 06/22/2020] [Accepted: 08/07/2020] [Indexed: 01/09/2023]
Abstract
Nanotechnology has been a rapidly expanding area of research with huge potential in many sectors, including animal healthcare. It promises to revolutionize drug and vaccine delivery, diagnostics, and theranostics, which has become an important tool in personalized medicine by integrating therapeutics and diagnostics. Nanotechnology has also been used successfully in animal nutrition. In this review, the application of nanotechnology in animal health will be reviewed with its pros and cons.
Collapse
Affiliation(s)
- Sevda Şenel
- Department of Pharmaceutical Technology, Faculty of Pharmacy, Hacettepe University, 06100-Ankara, Turkey
| |
Collapse
|
30
|
Cavalcanti IDL, Cajubá de Britto Lira Nogueira M. Pharmaceutical nanotechnology: which products are been designed against COVID-19? JOURNAL OF NANOPARTICLE RESEARCH : AN INTERDISCIPLINARY FORUM FOR NANOSCALE SCIENCE AND TECHNOLOGY 2020; 22:276. [PMID: 32922162 PMCID: PMC7480001 DOI: 10.1007/s11051-020-05010-6] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/12/2020] [Accepted: 09/02/2020] [Indexed: 05/14/2023]
Abstract
The current pandemic COVID-19, caused by the SARS-CoV-2 virus, has been affecting thousands of people worldwide, promoting high numbers of deaths. With this, the world population is going through a process of changing habits, with social distance, improvement of hygiene techniques, to reduce the spread of the SARS-CoV-2 virus and, consequently, reduce the number of hospitalized people in serious condition, as well as the mortality rate. This scenario has been promoting a continuous search for researchers, in the most varied areas, for possible methods of prevention or cure. Specifically, in the field of pharmaceutical nanotechnology, a variety of products are being developed against SARS-CoV-2. Under these circumstances, we propose here an exposition of some of the nanotechnological products (nanoscale between 1 to 1000 nm) currently designed for the detection of the virus, for the prevention and treatment of COVID-19, in addition to equipment for personal protection. We believe that pharmaceutical nanotechnology will be a valuable tool in the disease from the development of products that guarantee our protection against the SARS-CoV-2 virus.
Collapse
Affiliation(s)
- Iago Dillion Lima Cavalcanti
- Laboratório de Imunopatologia Keizo-Asami (LIKA), Universidade Federal de Pernambuco (UFPE), Av. Prof. Moraes Rego, 1235, Cidade Universitária, Recife, PE 50670-901 Brazil
- Laboratório de Nanotecnologia, Biotecnologia e Cultura de Células, Centro Acadêmico de Vitória (CAV), Universidade Federal de Pernambuco (UFPE), Rua Alto do Reservatório, s/n, Vitória de Santo Antão, 55608-680 PE Brazil
| | - Mariane Cajubá de Britto Lira Nogueira
- Laboratório de Imunopatologia Keizo-Asami (LIKA), Universidade Federal de Pernambuco (UFPE), Av. Prof. Moraes Rego, 1235, Cidade Universitária, Recife, PE 50670-901 Brazil
- Laboratório de Nanotecnologia, Biotecnologia e Cultura de Células, Centro Acadêmico de Vitória (CAV), Universidade Federal de Pernambuco (UFPE), Rua Alto do Reservatório, s/n, Vitória de Santo Antão, 55608-680 PE Brazil
| |
Collapse
|
31
|
Multifunctional Fe 3O 4-Au Nanoparticles for the MRI Diagnosis and Potential Treatment of Liver Cancer. NANOMATERIALS 2020; 10:nano10091646. [PMID: 32825748 PMCID: PMC7558883 DOI: 10.3390/nano10091646] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/18/2020] [Revised: 08/12/2020] [Accepted: 08/19/2020] [Indexed: 12/16/2022]
Abstract
Heterodimeric nanoparticles comprising materials with different functionalities are of great interest for fundamental research and biomedical/industrial applications. In this work, Fe3O4-Au nano-heterostructures were synthesized by a one-step thermal decomposition method. The hybrid nanoparticles comprise a highly crystalline 12 nm magnetite octahedron decorated with a single noble metal sphere of 6 nm diameter. Detailed analysis of the nanoparticles was performed by UV-visible spectroscopy, magnetometry, calorimetry and relaxometry studies. The cytotoxic effect of the nanoparticles in the human hepatic cell line Huh7 and PLC/PRF/5-Alexander was also assessed. These Fe3O4-Au bifunctional nanoparticles showed no significant cytotoxicity in these two cell lines. The nanoparticles showed a good theranostic potential for liver cancer treatment, since the r2 relaxivity (166.5 mM−1·s−1 and 99.5 mM−1·s−1 in water and HepG2 cells, respectively) is higher than the corresponding values for commercial T2 contrast agents and the Specific Absorption Rate (SAR) value obtained (227 W/gFe) is enough to make them suitable as heat mediators for Magnetic Fluid Hyperthermia. The gold counterpart can further allow the conjugation with different biomolecules and the optical sensing.
Collapse
|
32
|
Kurgan N, Karbivskyy V. Properties of nanowires based on the tobacco mosaic virus and gold nanoparticles. APPLIED NANOSCIENCE 2020. [DOI: 10.1007/s13204-019-01010-8] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
|
33
|
Green Synthesized Montmorillonite/Carrageenan/Fe 3O 4 Nanocomposites for pH-Responsive Release of Protocatechuic Acid and Its Anticancer Activity. Int J Mol Sci 2020; 21:ijms21144851. [PMID: 32659939 PMCID: PMC7402292 DOI: 10.3390/ijms21144851] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2020] [Revised: 05/14/2020] [Accepted: 05/15/2020] [Indexed: 12/15/2022] Open
Abstract
Discovery of a novel anticancer drug delivery agent is important to replace conventional cancer therapies which are often accompanied by undesired side effects. This study demonstrated the synthesis of superparamagnetic magnetite nanocomposites (Fe3O4-NCs) using a green method. Montmorillonite (MMT) was used as matrix support, while Fe3O4 nanoparticles (NPs) and carrageenan (CR) were used as filler and stabilizer, respectively. The combination of these materials resulted in a novel nanocomposite (MMT/CR/Fe3O4-NCs). A series of characterization experiments was conducted. The purity of MMT/CR/Fe3O4-NCs was confirmed by X-ray diffraction (XRD) analysis. High resolution transmission electron microscopy (HRTEM) analysis revealed the uniform and spherical shape of Fe3O4 NPs with an average particle size of 9.3 ± 1.2 nm. Vibrating sample magnetometer (VSM) analysis showed an Ms value of 2.16 emu/g with negligible coercivity which confirmed the superparamagnetic properties. Protocatechuic acid (PCA) was loaded onto the MMT/CR/Fe3O4-NCs and a drug release study showed that 15% and 92% of PCA was released at pH 7.4 and 4.8, respectively. Cytotoxicity assays showed that both MMT/CR/Fe3O4-NCs and MMT/CR/Fe3O4-PCA effectively killed HCT116 which is a colorectal cancer cell line. Dose-dependent inhibition was seen and the killing was enhanced two-fold by the PCA-loaded NCs (IC50–0.734 mg/mL) compared to the unloaded NCs (IC50–1.5 mg/mL). This study highlights the potential use of MMT/CR/Fe3O4-NCs as a biologically active pH-responsive drug delivery agent. Further investigations are warranted to delineate the mechanism of cell entry and cancer cell killing as well as to improve the therapeutic potential of MMT/CR/Fe3O4-NCs.
Collapse
|
34
|
Uskoković V. Why have nanotechnologies been underutilized in the global uprising against the coronavirus pandemic? Nanomedicine (Lond) 2020; 15:1719-1734. [PMID: 32462968 PMCID: PMC7265684 DOI: 10.2217/nnm-2020-0163] [Citation(s) in RCA: 33] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2020] [Accepted: 05/07/2020] [Indexed: 12/11/2022] Open
Abstract
Prior research on nanotechnologies in diagnostics, prevention and treatment of coronavirus infections is reviewed. Gold nanoparticles and semiconductor quantum dots in colorimetric and immunochromatographic assays, silica nanoparticles in the polymerase chain reaction and spike protein nanospheres as antigen carriers and adjuvants in vaccine formulations present notable examples in diagnostics and prevention, while uses of nanoparticles in coronavirus infection treatments have been merely sporadic. The current absence of antiviral therapeutics that specifically target human coronaviruses, including SARS-CoV-2, might be largely due to the underuse of nanotechnologies. Elucidating the interface between nanoparticles and coronaviruses is timely, but presents the only route to the rational design of precisely targeted therapeutics for coronavirus infections. Such a fundamental approach is also a viable prophylaxis against future pandemics of this type.
Collapse
Affiliation(s)
- Vuk Uskoković
- Department of Mechanical & Aerospace Engineering, University of California Irvine, Engineering Gateway 4200, Irvine, CA 92697, USA
| |
Collapse
|
35
|
Li W, Cao Z, Liu R, Liu L, Li H, Li X, Chen Y, Lu C, Liu Y. AuNPs as an important inorganic nanoparticle applied in drug carrier systems. ARTIFICIAL CELLS NANOMEDICINE AND BIOTECHNOLOGY 2019; 47:4222-4233. [DOI: 10.1080/21691401.2019.1687501] [Citation(s) in RCA: 46] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Affiliation(s)
- Wen Li
- School of Chinese Materia Medica, Beijing University of Chinese Medicine, Beijing, China
| | - Zhiwen Cao
- School of Chinese Materia Medica, Beijing University of Chinese Medicine, Beijing, China
| | - Rui Liu
- School of Chinese Materia Medica, Beijing University of Chinese Medicine, Beijing, China
| | - Linlin Liu
- School of Chinese Materia Medica, Beijing University of Chinese Medicine, Beijing, China
| | - Hui Li
- School of Chinese Materia Medica, Beijing University of Chinese Medicine, Beijing, China
| | - Xiang Li
- School of Chinese Materia Medica, Beijing University of Chinese Medicine, Beijing, China
| | - Youwen Chen
- School of Chinese Materia Medica, Beijing University of Chinese Medicine, Beijing, China
| | - Cheng Lu
- Institute of Basic Research in Clinical Medicine, China Academy of Chinese Medical Sciences, Beijing, China
| | - Yuanyan Liu
- School of Chinese Materia Medica, Beijing University of Chinese Medicine, Beijing, China
| |
Collapse
|
36
|
Siehr A, Xu B, Siegel RA, Shen W. Colloidal stability versus self-assembly of nanoparticles controlled by coiled-coil protein interactions. SOFT MATTER 2019; 15:7122-7126. [PMID: 31498366 PMCID: PMC6760969 DOI: 10.1039/c9sm01314h] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/10/2023]
Abstract
Orientational discrimination of biomolecular recognition is exploited here as a molecular engineering tool to regulate nanoparticle self-assembly or stability. Nanoparticles are conjugated with the heterodimerizing coiled-coils, A and B, which associate in parallel orientation. Simply flipping the orientation of one coiled-coil results in either self-assembling or colloidally stable nanoparticles.
Collapse
Affiliation(s)
- Allison Siehr
- Department of Biomedical Engineering, University of Minnesota, 312 Church St. SE, 7-105 Nils Hasselmo Hall, Minneapolis, Minnesota 55455, USA.
| | | | | | | |
Collapse
|
37
|
Recent developments in biosensors to combat agricultural challenges and their future prospects. Trends Food Sci Technol 2019. [DOI: 10.1016/j.tifs.2019.03.024] [Citation(s) in RCA: 48] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
|