1
|
Long P, Guo C, Wen T, Luo T, Yang L, Li Y, Wen A, Wang W, Wen X, He M. Therapeutic effects of Mudan granules on diabetic retinopathy: Mitigating fibrogenesis caused by FBN2 deficiency and inflammation associated with TNF-α elevation. JOURNAL OF ETHNOPHARMACOLOGY 2025; 337:118963. [PMID: 39490708 DOI: 10.1016/j.jep.2024.118963] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/22/2024] [Revised: 10/11/2024] [Accepted: 10/16/2024] [Indexed: 11/05/2024]
Abstract
ETHNOPHARMACOLOGICAL RELEVANCE Mudan granules (MuD), a time-honored traditional Chinese patent medicine (TCPM), are widely utilized in the clinical treatment of diabetic peripheral neuropathy (DPN). In the field of biomedical diagnostics, both diabetic retinopathy (DR) and DPN are recognized as critical microvascular complications associated with diabetes. According to the principles of traditional Chinese medicine (TCM), these conditions are primarily attributed to a deficiency in Qi and the obstruction of collaterals. Despite this, the protective effects of MuD on DR and the underlying mechanisms remain to be comprehensively elucidated. AIMS OF THE STUDY The purpose of this study was to investigate the effect of MuD on DR and to further explore the promising therapeutic targets. METHODS A diabetic mouse model was established by administering 60 mg/kg of streptozotocin (STZ) via intraperitoneal injection for five consecutive days. The therapeutic efficacy of MuD was evaluated using a comprehensive approach, which included electroretinogram (ERG) analysis, histopathological examination, and assessment of serum biochemical markers. Then, the pharmacodynamic mechanisms of MuD were systematically analyzed using Tandem Mass Tags-based proteomics. Meanwhile, the candidate compounds of MuD were analyzed by ultra-performance liquid chromatography-quadrupole time-of-flight mass spectrometry (UPLC-Q-TOF-MS) and molecular docking was applied to estimate the affinity of the active ingredient to their potential key targets. In addition, the functional mechanisms identified through bioinformatics analysis were confirmed by molecular biological methods. RESULTS We demonstrated that MuD provided significant protection to retinal function and effectively mitigated the reduction in retinal thickness observed in the animal model. Through proteomic analysis, we identified a substantial regulation by MuD of 70 biomarkers associated with diabetic retinal damage. These proteins were notably enriched in the tumor necrosis factor (TNF) signaling pathway, a critical mediator in inflammatory processes. A particularly intriguing finding was the significant downregulation of fibrillin-2 (FBN2) in the diabetic retina compared to the control group (0.36 times the level), and its most pronounced upregulation (3.26 times) in the MuD treatment group. This suggests that FBN2 may play a pivotal role in the protective effects of MuD. Molecular docking analyses have unveiled a robust interplay between the components of MuD and TNF-α. Further corroboration was provided by molecular biological methods, which confirmed that MuD could suppress TNF-mediated inflammation and prevent retinal neovascularization and fibrogenesis. CONCLUSION MuD have the potential to alleviate diabetic retinal dysfunction by effectively curbing the fibrogenesis-associated neoangiogenesis and mitigating the inflammatory response, thereby restoring retinal health and function.
Collapse
Affiliation(s)
- Pan Long
- The Academy of Chinese Health Risks, West China Hospital, Sichuan University, Chengdu, China; Department of Ophthalmology, The General Hospital of Western Theater Command, Chengdu, Sichuan, China.
| | - Chao Guo
- Department of Pharmacy, Xijing Hospital, Fourth Military Medical University, Xi'an, Shaanxi, China.
| | - Ting Wen
- Department of Outpatient, The General Hospital of Western Theater Command, Chengdu, Sichuan, China.
| | - Tao Luo
- Department of Ophthalmology, The General Hospital of Western Theater Command, Chengdu, Sichuan, China.
| | - Ling Yang
- Department of Ophthalmology, The General Hospital of Western Theater Command, Chengdu, Sichuan, China.
| | - Yubo Li
- Department of Ophthalmology, The General Hospital of Western Theater Command, Chengdu, Sichuan, China.
| | - Aidong Wen
- Department of Pharmacy, Xijing Hospital, Fourth Military Medical University, Xi'an, Shaanxi, China.
| | - Wenjun Wang
- State Key Laboratory of Southwestern Chinese Medicine Resources, School of Ethnic Medicine, Chengdu University of Traditional Chinese Medicine, Chengdu, China.
| | - Xudong Wen
- Department of Gastroenterology and Hepatology, Chengdu First People's Hospital, Chengdu, Sichuan, China.
| | - Mengshan He
- The Academy of Chinese Health Risks, West China Hospital, Sichuan University, Chengdu, China.
| |
Collapse
|
2
|
Sun Y, Chen Y, Wu B, Li H, Wang Y, Wang X, Deng L, Yang K, Wang X, Cheng W. Synergistic SDT/cuproptosis therapy for liver hepatocellular carcinoma: enhanced antitumor efficacy and specific mechanisms. J Nanobiotechnology 2024; 22:762. [PMID: 39696275 DOI: 10.1186/s12951-024-02995-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2024] [Accepted: 11/06/2024] [Indexed: 12/20/2024] Open
Abstract
The efficacy of sonodynamic therapy (SDT), an emerging approach for tumor treatment, is hindered by the high levels of the antioxidant glutathione (GSH) in the tumor microenvironment (TME). In this study, we constructed nanobubbles loaded with the sonosensitizer HMME and the tumor-targeting peptide RGD (HMME-RGD@C3F8 NBs) for synergistic SDT/cuproptosis therapy of liver hepatocellular carcinoma (LIHC) in combination with Elesclomol-Cu as cuproptosis inducers. Endogenous GSH is consumed by Cu2+ to modulate the complex TME, thereby amplifying oxidative stress and further improving SDT performance. Additionally, intracellular Cu2+ overload can induce cuproptosis, which is further amplified by SDT, to initiate irreversible protein toxicity. The specific mechanism of synergistic SDT/cuproptosis therapy in LIHC was investigated by RNA sequencing analysis. The synergistic SDT/cuproptosis therapy reprogrammed the TME to improve the efficacy of immune checkpoint inhibitor-based immunotherapy. Furthermore, a risk-scoring model was created and displayed significant promise in the prognosis of LIHC.
Collapse
Affiliation(s)
- Yucao Sun
- Department of Ultrasound, Department of Interventional Ultrasound, Harbin Medical University Cancer Hospital, No. 150, Haping Road, Nangang District, Harbin, 150081, Heilongjiang, China
| | - Yichi Chen
- Department of Ultrasound, Department of Interventional Ultrasound, Harbin Medical University Cancer Hospital, No. 150, Haping Road, Nangang District, Harbin, 150081, Heilongjiang, China
| | - Bolin Wu
- Department of Ultrasound, Department of Interventional Ultrasound, Harbin Medical University Cancer Hospital, No. 150, Haping Road, Nangang District, Harbin, 150081, Heilongjiang, China
| | - Helin Li
- Department of Ultrasound, Department of Interventional Ultrasound, Harbin Medical University Cancer Hospital, No. 150, Haping Road, Nangang District, Harbin, 150081, Heilongjiang, China
| | - Yijun Wang
- Department of Ultrasound, Department of Interventional Ultrasound, Harbin Medical University Cancer Hospital, No. 150, Haping Road, Nangang District, Harbin, 150081, Heilongjiang, China
| | - Xiaodong Wang
- Department of Ultrasound, Department of Interventional Ultrasound, Harbin Medical University Cancer Hospital, No. 150, Haping Road, Nangang District, Harbin, 150081, Heilongjiang, China
| | - Liwen Deng
- Department of Ultrasound, Department of Interventional Ultrasound, Harbin Medical University Cancer Hospital, No. 150, Haping Road, Nangang District, Harbin, 150081, Heilongjiang, China
| | - Kuikun Yang
- School of Life Science and Technology, Harbin Institute of Technology, No. 92, Xidazhi Street, Nangang District, Harbin, 150081, Heilongjiang, China.
| | - Xiuhong Wang
- Department of Biochemistry and Molecular Biology, Heilongjiang Provincial Science and Technology Innovation Team in Higher Education Institutes for Infection and Immunity, Harbin Medical University, No. 157, Baojian Road, Nangang District, Harbin, 150081, Heilongjiang, China.
| | - Wen Cheng
- Department of Ultrasound, Department of Interventional Ultrasound, Harbin Medical University Cancer Hospital, No. 150, Haping Road, Nangang District, Harbin, 150081, Heilongjiang, China.
| |
Collapse
|
3
|
Zhang M, Lu X, Luo L, Dou J, Zhang J, Li G, Zhao L, Sun F. Targeting glutamine synthetase with AS1411-modified exosome-liposome hybrid nanoparticles for inhibition of choroidal neovascularization. J Nanobiotechnology 2024; 22:703. [PMID: 39533430 PMCID: PMC11559141 DOI: 10.1186/s12951-024-02943-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2024] [Accepted: 10/20/2024] [Indexed: 11/16/2024] Open
Abstract
Choroidal neovascularization (CNV) is a leading cause of visual impairment in wet age-related macular degeneration (wAMD). Recent investigations have validated the potential of reducing glutamine synthetase (GS) to inhibit neovascularization formation, offering prospects for treating various neovascularization-related diseases. In this study, we devised a CRISPR/Cas9 delivery system employing the nucleic acid aptamer AS1411 as a targeting moiety and exosome-liposome hybrid nanoparticles as carriers (CAELN). Exploiting the binding affinity between AS1411 and nucleolin on endothelial cell surfaces, the delivery system was engineered to specifically target the glutamine synthetase gene (GLUL), thereby attenuating GS levels and continuously suppressing CNV. CAELN exhibited spherical and uniform dispersion. In vitro cellular investigations demonstrated gene editing efficiencies of CAELN ranging from 42.05 to 55.02% and its capacity to inhibit neovascularization in HUVEC cells. Moreover, in vivo pharmacodynamic studies conducted in CNV rabbits revealed efficacy of CAELN in restoring the thickness of intra- and extranuclear tissues. The findings suggest that GS is a novel target for the inhibition of pathological CNV, while the development of AS1411-modified exosome-liposome hybrid nanoparticles represents a novel delivery method for the treatment of neovascular-related diseases.
Collapse
Affiliation(s)
- Miaomiao Zhang
- Key Laboratory for Molecular Enzymology and Engineering of Ministry of Education, School of Life Sciences, Jilin University, Changchun, 130012, China
| | - Xinyue Lu
- Key Laboratory for Molecular Enzymology and Engineering of Ministry of Education, School of Life Sciences, Jilin University, Changchun, 130012, China
| | - Lifu Luo
- Department of Ophthalmology, The Second Hospital of Jilin University, Jilin University, Changchun, 130041, China
| | - Jinqiu Dou
- Key Laboratory for Molecular Enzymology and Engineering of Ministry of Education, School of Life Sciences, Jilin University, Changchun, 130012, China
| | - Jingbo Zhang
- Key Laboratory for Molecular Enzymology and Engineering of Ministry of Education, School of Life Sciences, Jilin University, Changchun, 130012, China
| | - Ge Li
- Key Laboratory for Molecular Enzymology and Engineering of Ministry of Education, School of Life Sciences, Jilin University, Changchun, 130012, China
| | - Li Zhao
- Key Laboratory for Molecular Enzymology and Engineering of Ministry of Education, School of Life Sciences, Jilin University, Changchun, 130012, China
| | - Fengying Sun
- Key Laboratory for Molecular Enzymology and Engineering of Ministry of Education, School of Life Sciences, Jilin University, Changchun, 130012, China.
| |
Collapse
|
4
|
Liu X, Huang K, Zhang F, Huang G, Wang L, Wu G, Ren H, Yang G, Lin Z. Multifunctional nano-in-micro delivery systems for targeted therapy in fundus neovascularization diseases. J Nanobiotechnology 2024; 22:354. [PMID: 38902775 PMCID: PMC11191225 DOI: 10.1186/s12951-024-02614-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2024] [Accepted: 06/03/2024] [Indexed: 06/22/2024] Open
Abstract
Fundus neovascularization diseases are a series of blinding eye diseases that seriously impair vision worldwide. Currently, the means of treating these diseases in clinical practice are continuously evolving and have rapidly revolutionized treatment opinions. However, key issues such as inadequate treatment effectiveness, high rates of recurrence, and poor patient compliance still need to be urgently addressed. Multifunctional nanomedicine can specifically respond to both endogenous and exogenous microenvironments, effectively deliver drugs to specific targets and participate in activities such as biological imaging and the detection of small molecules. Nano-in-micro (NIM) delivery systems such as metal, metal oxide and up-conversion nanoparticles (NPs), quantum dots, and carbon materials, have shown certain advantages in overcoming the presence of physiological barriers within the eyeball and are widely used in the treatment of ophthalmic diseases. Few studies, however, have evaluated the efficacy of NIM delivery systems in treating fundus neovascular diseases (FNDs). The present study describes the main clinical treatment strategies and the adverse events associated with the treatment of FNDs with NIM delivery systems and summarizes the anatomical obstacles that must be overcome. In this review, we wish to highlight the principle of intraocular microenvironment normalization, aiming to provide a more rational approach for designing new NIM delivery systems to treat specific FNDs.
Collapse
Affiliation(s)
- Xin Liu
- Department of Ophthalmology, The Third Affiliated Hospital of Chongqing Medical University, Chongqing, 401120, China
| | - Keke Huang
- Department of Ophthalmology, The Third People's Hospital of Chengdu, The Affiliated Hospital of Southwest Jiaotong University, Chengdu, 610031, China
| | - Fuxiao Zhang
- Department of Ophthalmology, The Second People's Hospital of Chengdu, The Affiliated Hospital of Chengdu Medical College, Chengdu, 610031, China
| | - Ge Huang
- Department of Ophthalmology, The Second People's Hospital of Chengdu, The Affiliated Hospital of Chengdu Medical College, Chengdu, 610031, China
| | - Lu Wang
- Department of Ophthalmology, The Second People's Hospital of Chengdu, The Affiliated Hospital of Chengdu Medical College, Chengdu, 610031, China
| | - Guiyu Wu
- Department of Ophthalmology, The Second People's Hospital of Chengdu, The Affiliated Hospital of Chengdu Medical College, Chengdu, 610031, China
| | - Hui Ren
- Department of Ophthalmology, The Second People's Hospital of Chengdu, The Affiliated Hospital of Chengdu Medical College, Chengdu, 610031, China.
| | - Guang Yang
- Department of Ophthalmology, The Second People's Hospital of Chengdu, The Affiliated Hospital of Chengdu Medical College, Chengdu, 610031, China.
| | - Zhiqing Lin
- Department of Ophthalmology, The Second People's Hospital of Chengdu, The Affiliated Hospital of Chengdu Medical College, Chengdu, 610031, China.
| |
Collapse
|
5
|
Liu C, Su W, Jiang X, Lv Y, Kong F, Chen Q, Zhang Q, Zhang H, Liu Y, Li X, Xu X, Chen Y, Qu D. A Sustainable Retinal Drug Co-Delivery for Boosting Therapeutic Efficacy in wAMD: Unveiling Multifaceted Evidence and Synergistic Mechanisms. Adv Healthc Mater 2024; 13:e2303659. [PMID: 38386849 DOI: 10.1002/adhm.202303659] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2023] [Revised: 02/01/2024] [Indexed: 02/24/2024]
Abstract
Sustainable retinal codelivery poses significant challenges technically, although it is imperative for synergistic treatment of wet age-related macular degeneration (wAMD). Here, a microemulsion-doped hydrogel (Bor/PT-M@TRG) is engineered as an intravitreal depot composing of temperature-responsive hydrogel (TRG) and borneol-decorated paeoniflorin (PF) & tetramethylpyrazine (TMP)-coloaded microemulsions (Bor/PT-M). Bor/PT-M@TRG, functioning as the "ammunition depot", resides in the vitreous and continuously releases Bor/PT-M as the therapeutic "bullet", enabling deep penetration into the retina for 21 days. A single intravitreal injection of Bor/PT-M@TRG yields substantial reductions in choroidal neovascularization (CNV, a hallmark feature of wAMD) progression and mitigates oxidative stress-induced damage in vivo. Combinational PF&TMP regulates the "reactive oxygen species/nuclear factor erythroid-2-related factor 2/heme oxygenase-1" pathway and blocks the "hypoxia inducible factor-1α/vascular endothelial growth factor" signaling in retina, synergistically cutting off the loop of CNV formation. Utilizing fluorescence resonance energy transfer and liquid chromatography-mass spectrometry techniques, they present compelling multifaceted evidence of sustainable retinal codelivery spanning formulations, ARPE-19 cells, in vivo eye balls, and ex vivo section/retina-choroid complex cell levels. Such codelivery approach is elucidated as the key driving force behind the exceptional therapeutic outcomes of Bor/PT-M@TRG. These findings highlight the significance of sustainable retinal drug codelivery and rational combination for effective treatment of wAMD.
Collapse
Affiliation(s)
- Congyan Liu
- Affiliated Hospital of Integrated Traditional Chinese and Western Medicine, Nanjing University of Chinese Medicine, 100 Hongshan Road, Nanjing, 210028, P. R. China
- Jiangsu Provincial Academy of Traditional Chinese Medicine, 100 Hongshan Road, Nanjing, 210028, P. R. China
| | - Wenting Su
- Affiliated Hospital of Integrated Traditional Chinese and Western Medicine, Nanjing University of Chinese Medicine, 100 Hongshan Road, Nanjing, 210028, P. R. China
- Jiangsu Provincial Academy of Traditional Chinese Medicine, 100 Hongshan Road, Nanjing, 210028, P. R. China
| | - Xi Jiang
- Affiliated Hospital of Integrated Traditional Chinese and Western Medicine, Nanjing University of Chinese Medicine, 100 Hongshan Road, Nanjing, 210028, P. R. China
- Jiangsu Provincial Academy of Traditional Chinese Medicine, 100 Hongshan Road, Nanjing, 210028, P. R. China
| | - Yanli Lv
- Affiliated Hospital of Integrated Traditional Chinese and Western Medicine, Nanjing University of Chinese Medicine, 100 Hongshan Road, Nanjing, 210028, P. R. China
- Jiangsu Provincial Academy of Traditional Chinese Medicine, 100 Hongshan Road, Nanjing, 210028, P. R. China
| | - Fei Kong
- Affiliated Hospital of Integrated Traditional Chinese and Western Medicine, Nanjing University of Chinese Medicine, 100 Hongshan Road, Nanjing, 210028, P. R. China
- Jiangsu Provincial Academy of Traditional Chinese Medicine, 100 Hongshan Road, Nanjing, 210028, P. R. China
| | - Qin Chen
- Department of Ophthalmology, Nanjing Drum Tower Hospital, the Affiliated Hospital of Nanjing University Medical School, 321 Zhongshan Road, Nanjing, 210008, P. R. China
| | - Qun Zhang
- Affiliated Hospital of Integrated Traditional Chinese and Western Medicine, Nanjing University of Chinese Medicine, 100 Hongshan Road, Nanjing, 210028, P. R. China
- Jiangsu Provincial Academy of Traditional Chinese Medicine, 100 Hongshan Road, Nanjing, 210028, P. R. China
| | - Huangqin Zhang
- Affiliated Hospital of Integrated Traditional Chinese and Western Medicine, Nanjing University of Chinese Medicine, 100 Hongshan Road, Nanjing, 210028, P. R. China
- Jiangsu Provincial Academy of Traditional Chinese Medicine, 100 Hongshan Road, Nanjing, 210028, P. R. China
| | - Yuping Liu
- Affiliated Hospital of Integrated Traditional Chinese and Western Medicine, Nanjing University of Chinese Medicine, 100 Hongshan Road, Nanjing, 210028, P. R. China
- Jiangsu Provincial Academy of Traditional Chinese Medicine, 100 Hongshan Road, Nanjing, 210028, P. R. China
| | - Xiaoqi Li
- Affiliated Hospital of Integrated Traditional Chinese and Western Medicine, Nanjing University of Chinese Medicine, 100 Hongshan Road, Nanjing, 210028, P. R. China
- Jiangsu Provincial Academy of Traditional Chinese Medicine, 100 Hongshan Road, Nanjing, 210028, P. R. China
| | - Xinrong Xu
- Department of Ophthalmology, Jiangsu Province Hospital of Chinese Medicine, Affiliated Hospital of Nanjing University of Chinese Medicine, 155 Hanzhong Road, Nanjing, 210029, P. R. China
| | - Yan Chen
- Affiliated Hospital of Integrated Traditional Chinese and Western Medicine, Nanjing University of Chinese Medicine, 100 Hongshan Road, Nanjing, 210028, P. R. China
- Jiangsu Provincial Academy of Traditional Chinese Medicine, 100 Hongshan Road, Nanjing, 210028, P. R. China
| | - Ding Qu
- Affiliated Hospital of Integrated Traditional Chinese and Western Medicine, Nanjing University of Chinese Medicine, 100 Hongshan Road, Nanjing, 210028, P. R. China
- Jiangsu Provincial Academy of Traditional Chinese Medicine, 100 Hongshan Road, Nanjing, 210028, P. R. China
| |
Collapse
|
6
|
Shafiq M, Rafique M, Cui Y, Pan L, Do CW, Ho EA. An insight on ophthalmic drug delivery systems: Focus on polymeric biomaterials-based carriers. J Control Release 2023; 362:446-467. [PMID: 37640109 DOI: 10.1016/j.jconrel.2023.08.041] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2023] [Revised: 08/18/2023] [Accepted: 08/21/2023] [Indexed: 08/31/2023]
Abstract
Presently, different types of eye diseases, such as glaucoma, myopia, infection, and dry eyes are treated with topical eye drops. However, due to ocular surface barriers, eye drops require multiple administrations, which may cause several risks, thereby necessitating additional strategies. Some of the key characteristics of an ideal ocular drug delivery system are as follows: (a) good penetration into cornea, (b) high drug retention in the ocular tissues, (c) targetability to the desired regions of the eye, and (d) good bioavailability. It is worthy to note that the corneal epithelial tight junctions hinder the permeation of therapeutics through the cornea. Therefore, it is necessary to design nanocarriers that can overcome these barriers and enhance drug penetration into the inner parts of the eye. Moreover, intelligent multifunctional nanocarriers can be designed to include cavities, which may help encapsulate sufficient amount of the drug. In addition, nanocarriers can be modified with the targeting moieties. Different types of nanocarriers have been developed for ocular drug delivery applications, including emulsions, liposomes, micelles, and nanoparticles. However, these formulations may be rapidly cleared from the eye. The therapeutic use of the nanoparticles (NPs) is also hindered by the non-specific adsorption of proteins on NPs, which may limit their interaction with the cellular moieties or other targeted biological factors. Functional drug delivery systems (DDS), which can offer targeted ocular drug delivery while avoiding the non-specific protein adsorption could exhibit great potential. This could be further realized by the on-demand DDS, which can respond to the stimuli in a spatio-temporal fashion. The cell-mediated DDS offer another valuable platform for ophthalmological drug delivery.
Collapse
Affiliation(s)
- Muhammad Shafiq
- Department of Chemical Engineering, Faculty of Engineering, Graduate School, Kyushu University, 744 Motooka, Nishi-ku, Fukuoka 819-0395, Japan; United Graduate School of Drug Discovery and Medical Information Sciences, Gifu University, 1-1 Yanagido, Gifu 501-1193, Japan
| | - Muhammad Rafique
- Key Laboratory of Bioactive Materials (Ministry of Education), State Key Laboratory of Medicinal Chemical Biology, College of Life Sciences, Nankai University, Tianjin 300071, China
| | - Yingkun Cui
- School of Optometry, The Hong Kong Polytechnic University, Hong Kong, China
| | - Li Pan
- School of Optometry, The Hong Kong Polytechnic University, Hong Kong, China; First College of Clinical Medicine, Nanjing University of Chinese Medicine, Nanjing, Jiangsu 210029, China
| | - Chi-Wai Do
- School of Optometry, The Hong Kong Polytechnic University, Hong Kong, China; Research Institute of Smart Ageing (RISA), The Hong Kong Polytechnic University, Hong Kong, China; Centre for Eye and Vision Research (CEVR), 17W Hong Kong Science Park, Hong Kong
| | - Emmanuel A Ho
- School of Pharmacy, University of Waterloo, Waterloo, Canada; Waterloo Institute for Nanotechnology, Waterloo, Canada; Centre for Eye and Vision Research (CEVR), 17W Hong Kong Science Park, Hong Kong.
| |
Collapse
|
7
|
Silva Nieto R, Samaniego López C, Moretton MA, Lizarraga L, Chiappetta DA, Alaimo A, Pérez OE. Chitosan-Based Nanogels Designed for Betanin-Rich Beetroot Extract Transport: Physicochemical and Biological Aspects. Polymers (Basel) 2023; 15:3875. [PMID: 37835924 PMCID: PMC10574865 DOI: 10.3390/polym15193875] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2023] [Revised: 09/15/2023] [Accepted: 09/18/2023] [Indexed: 10/15/2023] Open
Abstract
Nanotechnology has emerged as a possible solution to improve phytochemicals' limitations. The objective of the present study was to encapsulate beetroot extract (BR Ext) within a chitosan (CS)-based nanogel (NG) designed via ionic crosslinking with tripolyphosphate (TPP) for betanin (Bet) delivery, mainly in the ophthalmic environment. BR Ext is rich in betanin (Bet) according to thin layer chromatography (TLC), UV-visible spectroscopy, and HPLC analysis. NG presented a monodisperse profile with a size of 166 ± 6 nm and low polydispersity (0.30 ± 0.03). ζ potential (ζ-Pot) of +28 ± 1 is indicative of a colloidally stable system. BR Ext encapsulation efficiency (EE) was 45 ± 3%. TEM, with the respective 3D-surface plots and AFM, showed spherical-elliptical-shaped NG. The BR Ext release profile was biphasic with a burst release followed by slow and sustained phase over 12 h. Mucoadhesion assay demonstrated interactions between NG with mucin. Moreover, NG provided photoprotection and pH stability to BR Ext. FRAP and ABTS assays confirmed that BR Ext maintained antioxidant activity into NG. Furthermore, in vitro assays using human retinal cells displayed absence of cytotoxicity as well as an efficient protection against injury agents (LPS and H2O2). NGs are a promising platform for BR Ext encapsulation, exerting controlled release for ophthalmological use.
Collapse
Affiliation(s)
- Ramón Silva Nieto
- Departamento de Química Biológica, Facultad de Ciencias Exactas y Naturales, Universidad de Buenos Aires, Buenos Aires C1428EGA, Argentina; (R.S.N.); (A.A.)
| | - Cecilia Samaniego López
- Instituto de Química Biológica de la Facultad de Ciencias Exactas y Naturales-Consejo Nacional de Investigaciones Científicas y Técnicas (IQUIBICEN-CONICET), Buenos Aires C1428EGA, Argentina;
| | - Marcela A. Moretton
- Departamento de Tecnología Farmacéutica, Facultad de Farmacia y Bioquímica, Universidad de Buenos Aires, Buenos Aires C1113AAD, Argentina; (M.A.M.); (D.A.C.)
- Instituto de Tecnología Farmacéutica y Biofarmacia (InTecFyB), Buenos Aires C1113AAD, Argentina
| | - Leonardo Lizarraga
- Centro de Investigaciones en Bionanociencias-Consejo Nacional de Investigaciones Científicas y Técnicas (CIBION-CONICET), Buenos Aires C1425FQD, Argentina;
| | - Diego A. Chiappetta
- Departamento de Tecnología Farmacéutica, Facultad de Farmacia y Bioquímica, Universidad de Buenos Aires, Buenos Aires C1113AAD, Argentina; (M.A.M.); (D.A.C.)
- Instituto de Tecnología Farmacéutica y Biofarmacia (InTecFyB), Buenos Aires C1113AAD, Argentina
| | - Agustina Alaimo
- Departamento de Química Biológica, Facultad de Ciencias Exactas y Naturales, Universidad de Buenos Aires, Buenos Aires C1428EGA, Argentina; (R.S.N.); (A.A.)
- Instituto de Química Biológica de la Facultad de Ciencias Exactas y Naturales-Consejo Nacional de Investigaciones Científicas y Técnicas (IQUIBICEN-CONICET), Buenos Aires C1428EGA, Argentina;
| | - Oscar E. Pérez
- Departamento de Química Biológica, Facultad de Ciencias Exactas y Naturales, Universidad de Buenos Aires, Buenos Aires C1428EGA, Argentina; (R.S.N.); (A.A.)
- Instituto de Química Biológica de la Facultad de Ciencias Exactas y Naturales-Consejo Nacional de Investigaciones Científicas y Técnicas (IQUIBICEN-CONICET), Buenos Aires C1428EGA, Argentina;
| |
Collapse
|
8
|
Lee H, Noh H. Advancements in Nanogels for Enhanced Ocular Drug Delivery: Cutting-Edge Strategies to Overcome Eye Barriers. Gels 2023; 9:718. [PMID: 37754399 PMCID: PMC10529109 DOI: 10.3390/gels9090718] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2023] [Revised: 08/29/2023] [Accepted: 09/02/2023] [Indexed: 09/28/2023] Open
Abstract
Nanomedicine in gel or particle formation holds considerable potential for enhancing passive and active targeting within ocular drug delivery systems. The complex barriers of the eye, exemplified by the intricate network of closely connected tissue structures, pose significant challenges for drug administration. Leveraging the capability of engineered nanomedicine offers a promising approach to enhance drug penetration, particularly through active targeting agents such as protein peptides and aptamers, which facilitate targeted release and heightened bioavailability. Simultaneously, DNA carriers have emerged as a cutting-edge class of active-targeting structures, connecting active targeting agents and illustrating their potential in ocular drug delivery applications. This review aims to consolidate recent findings regarding the optimization of various nanoparticles, i.e., hydrogel-based systems, incorporating both passive and active targeting agents for ocular drug delivery, thereby identifying novel mechanisms and strategies. Furthermore, the review delves into the potential application of DNA nanostructures, exploring their role in the development of targeted drug delivery approaches within the field of ocular therapy.
Collapse
Affiliation(s)
| | - Hyeran Noh
- Department of Optometry, Seoul National University of Science and Technology, Gongnung-ro 232, Nowon-gu, Seoul 01811, Republic of Korea;
| |
Collapse
|
9
|
Yao H, Xu H, Wu M, Lei W, Li L, Liu D, Wang Z, Ran H, Ma H, Zhou X. Targeted long-term noninvasive treatment of choroidal neovascularization by biodegradable nanoparticles. Acta Biomater 2023; 166:536-551. [PMID: 37196903 DOI: 10.1016/j.actbio.2023.05.021] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2022] [Revised: 04/24/2023] [Accepted: 05/10/2023] [Indexed: 05/19/2023]
Abstract
Choroidal neovascularization (CNV) is the main cause of vision loss in patients with wet age-related macular degeneration (AMD). Currently, treatment of these conditions requires repeated intravitreal injections, which may lead to complications such as infection and hemorrhage. So, we have developed a noninvasive method for treating CNV with nanoparticles, namely, Angiopoietin1-anti CD105-PLGA nanoparticles (AAP NPs), which targets the CNV to enhance drug accumulation at the site. These nanoparticles, with PLGA as a carrier, can slowly release encapsulated Angiopoietin 1 (Ang 1) and target the choroidal neovascularization marker CD105 to enhance drug accumulation, increases vascular endothelial cadherin (VE-cadherin) expression between vascular endothelial cells, effectively reduce neovascularization leakage and inhibit Angiopoietin 2(Ang 2) secretion by endothelial cells. In a rat model of laser-induced CNV, intravenous injection of AAP NPs exerted a good therapeutic effect in reducing CNV leakage and area. In short, these synthetic AAP NPs provide an effective alternative treatment for AMD and meet the urgent need for noninvasive treatment in neovascular ophthalmopathy. STATEMENT OF SIGNIFICANCE: This work describes the synthesis, injection-mediated delivery, in vitro and in vivo efficacy of targeted nanoparticles with encapsulated Ang1; via these nanoparticles, the drug can be targeted to choroidal neovascularization lesions for continuous treatment. The release of Ang1 can effectively reduce neovascularization leakage, maintain vascular stability, and inhibit Ang2 secretion and inflammation. This study provides a new approach for the treatment of wet age-related macular degeneration.
Collapse
Affiliation(s)
- Hao Yao
- Department of Ophthalmology, the Second Affiliated Hospital of Chongqing Medical University, Chongqing 400012, China; Chongqing Key Laboratory of Ophthalmology, the First Affiliated Hospital of Chongqing Medical University, Chongqing 400042, China
| | - Huan Xu
- Chongqing Key Laboratory of Ophthalmology, the First Affiliated Hospital of Chongqing Medical University, Chongqing 400042, China
| | - Mingxing Wu
- Department of Ophthalmology, the Second Affiliated Hospital of Chongqing Medical University, Chongqing 400012, China
| | - Wulong Lei
- Chongqing Key Laboratory of Ophthalmology, the First Affiliated Hospital of Chongqing Medical University, Chongqing 400042, China
| | - Lanjiao Li
- Department of Ophthalmology, the Second Affiliated Hospital of Chongqing Medical University, Chongqing 400012, China; Chongqing Key Laboratory of Ophthalmology, the First Affiliated Hospital of Chongqing Medical University, Chongqing 400042, China
| | - Danning Liu
- Department of Ophthalmology, the Second Affiliated Hospital of Chongqing Medical University, Chongqing 400012, China
| | - Zhigang Wang
- Chongqing Key Laboratory of Ultrasound Molecular Imaging, Institute of Ultrasound Imaging, the Second Affiliated Hospital of Chongqing Medical University, Chongqing 400010, China
| | - Haitao Ran
- Chongqing Key Laboratory of Ultrasound Molecular Imaging, Institute of Ultrasound Imaging, the Second Affiliated Hospital of Chongqing Medical University, Chongqing 400010, China
| | - Huafeng Ma
- Department of Ophthalmology, the Second Affiliated Hospital of Chongqing Medical University, Chongqing 400012, China.
| | - Xiyuan Zhou
- Department of Ophthalmology, the Second Affiliated Hospital of Chongqing Medical University, Chongqing 400012, China; Chongqing Key Laboratory of Ophthalmology, the First Affiliated Hospital of Chongqing Medical University, Chongqing 400042, China.
| |
Collapse
|
10
|
Li Y, Li F, Pan H, Huang X, Yu J, Liu X, Zhang Q, Xiao C, Zhang H, Zhang L. Targeted OUM1/PTPRZ1 silencing and synergetic CDT/enhanced chemical therapy toward uveal melanoma based on a dual-modal imaging-guided manganese metal–organic framework nanoparticles. J Nanobiotechnology 2022; 20:472. [PMCID: PMC9636818 DOI: 10.1186/s12951-022-01643-y] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2022] [Accepted: 09/23/2022] [Indexed: 11/08/2022] Open
Abstract
Metastasis and chemical resistance are the most serious problems in the treatment of highly aggressive uveal melanoma (UM). The newly identified lncRNA OUM1 is overexpressed in UM, functions as a catalyst and regulates protein tyrosine phosphatase (PTP) activity by binding to PTP receptor type Z1 (PTPRZ1), which plays an important role in cell proliferation, metastasis and chemotherapy resistance in the UM microenvironment. Hence, siRNAs that selectively knocking down the lncRNA OUM1 (siOUM1) and its target gene PTPRZ1 (siPTPRZ1) were designed to inhibit the OUM1/PTPRZ1 pathway to reduce PTP activity, and this reduction in activity interrupts protein tyrosine phosphorylation, suppresses UM proliferation and metastasis and improves cisplatin sensitivity in UM cells. Then, to overcome the limitations of the difficulty of drug administration and traditional therapeutics, the indocyanine green (ICG)-labeled manganese metal–organic framework (MOF) nanoparticles (NPs) were fabricated and linked with arginine-glycine-aspartate (RGD) peptide to carry siOUM1/siPTPRZ1 and cisplatin to achieve targeted siRNA interference-mediated therapy, enhanced cisplatin therapy and chemodynamic therapy. This NP system also has a dual-modal imaging ability because ICG is a near-infrared region fluorescent dye and manganese has the potential to be used in magnetic resonance imaging. This study verifies the significance of the newly discovered lncRNA OUM1 as a new therapeutic target for aggressive UM and provides a drug delivery NP system for precise treatment of UM accompanied with a dual-modal imaging ability.
Collapse
Affiliation(s)
- Yue Li
- grid.16821.3c0000 0004 0368 8293Department of Ophthalmology, Shanghai Ninth People’s Hospital Afflicted to Shanghai Jiao Tong University School of Medicine, Shanghai, 200011 China ,grid.16821.3c0000 0004 0368 8293Shanghai Key Laboratory of Orbital Diseases and Ocular Oncology, Shanghai, 200011 China
| | - Fang Li
- grid.16821.3c0000 0004 0368 8293Department of Ophthalmology, Shanghai Ninth People’s Hospital Afflicted to Shanghai Jiao Tong University School of Medicine, Shanghai, 200011 China ,grid.16821.3c0000 0004 0368 8293Shanghai Key Laboratory of Orbital Diseases and Ocular Oncology, Shanghai, 200011 China
| | - Hui Pan
- grid.16821.3c0000 0004 0368 8293Department of Ophthalmology, Shanghai Ninth People’s Hospital Afflicted to Shanghai Jiao Tong University School of Medicine, Shanghai, 200011 China ,grid.16821.3c0000 0004 0368 8293Shanghai Key Laboratory of Orbital Diseases and Ocular Oncology, Shanghai, 200011 China
| | - Xiaolin Huang
- grid.16821.3c0000 0004 0368 8293Department of Ophthalmology, Shanghai Ninth People’s Hospital Afflicted to Shanghai Jiao Tong University School of Medicine, Shanghai, 200011 China ,grid.16821.3c0000 0004 0368 8293Shanghai Key Laboratory of Orbital Diseases and Ocular Oncology, Shanghai, 200011 China
| | - Jie Yu
- grid.16821.3c0000 0004 0368 8293Department of Ophthalmology, Shanghai Ninth People’s Hospital Afflicted to Shanghai Jiao Tong University School of Medicine, Shanghai, 200011 China ,grid.16821.3c0000 0004 0368 8293Shanghai Key Laboratory of Orbital Diseases and Ocular Oncology, Shanghai, 200011 China
| | - Xueru Liu
- grid.16821.3c0000 0004 0368 8293Department of Ophthalmology, Shanghai Ninth People’s Hospital Afflicted to Shanghai Jiao Tong University School of Medicine, Shanghai, 200011 China ,grid.16821.3c0000 0004 0368 8293Shanghai Key Laboratory of Orbital Diseases and Ocular Oncology, Shanghai, 200011 China
| | - Qinghao Zhang
- grid.28056.390000 0001 2163 4895East China University of Science and Technology, Shanghai, 200237 China
| | - Caiwen Xiao
- grid.16821.3c0000 0004 0368 8293Department of Ophthalmology, Shanghai Ninth People’s Hospital Afflicted to Shanghai Jiao Tong University School of Medicine, Shanghai, 200011 China ,grid.16821.3c0000 0004 0368 8293Shanghai Key Laboratory of Orbital Diseases and Ocular Oncology, Shanghai, 200011 China
| | - He Zhang
- grid.24516.340000000123704535School of Life Science and Technology, Tongji University, Shanghai, 200092 China
| | - Leilei Zhang
- grid.16821.3c0000 0004 0368 8293Department of Ophthalmology, Shanghai Ninth People’s Hospital Afflicted to Shanghai Jiao Tong University School of Medicine, Shanghai, 200011 China ,grid.16821.3c0000 0004 0368 8293Shanghai Key Laboratory of Orbital Diseases and Ocular Oncology, Shanghai, 200011 China
| |
Collapse
|
11
|
Huang Q, Zhang C, Tang S, Wu X, Peng X. Network Pharmacology Analyses of the Pharmacological Targets and Therapeutic Mechanisms of Salvianolic Acid A in Myocardial Infarction. EVIDENCE-BASED COMPLEMENTARY AND ALTERNATIVE MEDICINE : ECAM 2022; 2022:8954035. [PMID: 36248430 PMCID: PMC9556248 DOI: 10.1155/2022/8954035] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/13/2022] [Revised: 06/25/2022] [Accepted: 06/30/2022] [Indexed: 11/05/2022]
Abstract
Objective Salvianolic acid A, a natural polyphenolic ingredient extracted from traditional Chinese medicine, possesses an excellent pharmacological activity against cardiovascular diseases. Herein, therapeutic mechanisms of salvianolic acid A in myocardial infarction were explored through systematic and comprehensive network pharmacology analyses. Methods The chemical structure of salvianolic acid A was retrieved from PubChem database. Targets of salvianolic acid A were estimated through SwissTargetPrediction, HERB, and TargetNet databases. Additionally, by GeneCards, OMIM, DisGeNET, and TTD online tools, myocardial infarction-relevant targets were predicted. Following intersection, therapeutic targets were determined. The interaction of their products was evaluated with STRING database, and hub therapeutic targets were selected. GO and KEGG enrichment analyses of therapeutic targets were then implemented. H9C2 cells were exposed to oxygen-glucose deprivation/reoxygenation (OGD/R) to mimic myocardial infarction and administrated with salvianolic acid A. Cellular proliferation was assayed via CCK-8 assay, and hub therapeutic targets were verified with RT-qPCR. Results In total, 120 therapeutic targets of salvianolic acid A in myocardial infarction were identified. There were close interactions between their products. Ten hub therapeutic targets were determined, covering SRC, CTNNB1, PIK3CA, AKT1, RELA, EGFR, FYN, ITGB1, MAPK8, and NFKB1. Therapeutic targets were significantly correlated to myocardial infarction-relevant pathways, especially PI3K-Akt signaling pathway. Salvianolic acid A administration remarkably ameliorated the viability of OGD/R-induced H9C2 cells, and altered the expression of hub therapeutic targets. Conclusion Our work uncovers therapeutic mechanisms of salvianolic acid A for the treatment of myocardial infarction, providing a new insight into further research on salvianolic acid A.
Collapse
Affiliation(s)
- Qing Huang
- Department of Cardiology, Wuhan Fourth Hospital, Wuhan, Hubei, China
| | - Chao Zhang
- Heart Function Testing Center of Cardiovascular Medicine, Zhongnan Hospital of Wuhan University, Wuhan, Hubei, China
| | - Shaoyong Tang
- Department of Cardiology, Wuhan Fourth Hospital, Wuhan, Hubei, China
| | - Xiaoyan Wu
- Department of Cardiology, Zhongnan Hospital of Wuhan University, Wuhan, Hubei, China
| | - Xiong Peng
- Department of Cardiology, Wuhan Fourth Hospital, Wuhan, Hubei, China
| |
Collapse
|
12
|
Liu L, Yang Z, Liu C, Wang M, Chen X. Preparation of PEI-modified nanoparticles by dopamine self-polymerization for efficient DNA delivery. Biotechnol Appl Biochem 2022; 70:824-834. [PMID: 36070708 DOI: 10.1002/bab.2402] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2022] [Accepted: 08/27/2022] [Indexed: 11/09/2022]
Abstract
Achieving efficient and safe gene delivery is great of significance to promote the development of gene therapy. In this work, a polydopamine (PDA) layer was coated on the surface of Fe3 O4 nanoparticles (NPs) by dopamine (DA) self-polymerization, and then magnetic Fe3 O4 NPs were prepared by the Michael addition between amino groups in polyethyleneimine (PEI) and PDA. The prepared Fe3 O4 NPs (named Fe3 O4 @PDA@PEI) were characterized by FTIR, atomic force microscopy (AFM) and scanning electron microscope (SEM). As an efficient and safe gene carrier, the potential of Fe3 O4 @PDA@PEI was evaluated by agarose gel electrophoresis, MTT assay, fluorescence microscopy, flow cytometry. The results shows that the Fe3 O4 @PDA@PEI NPs is stable hydrophilic nanoparticles with a particle size of 50-150 nm. It can efficiently condense DNA at low N/P ratios and protect it from nuclease degradation. In addition, the Fe3 O4 @PDA@PEI NPs has higher safety than PEI. Further, the Fe3 O4 @PDA@PEI/DNA polyplexes could be effectively absorbed by cells and successfully transfected, and exhibit higher cellular uptake and gene transfection efficiency than PEI/DNA polyplexes. The findings indicate that the Fe3 O4 @PDA@PEI NPs has the potential to be developed into a novel gene vector. This article is protected by copyright. All rights reserved.
Collapse
Affiliation(s)
- Liang Liu
- School of Life and Biology, Wuhan Polytechnic University, Wuhan, 430023, China
| | - Zhaojun Yang
- School of Life and Biology, Wuhan Polytechnic University, Wuhan, 430023, China
| | - Chaobing Liu
- School of Life and Biology, Wuhan Polytechnic University, Wuhan, 430023, China
| | - Mengying Wang
- School of Life and Biology, Wuhan Polytechnic University, Wuhan, 430023, China
| | - Xin Chen
- School of Life and Biology, Wuhan Polytechnic University, Wuhan, 430023, China
| |
Collapse
|
13
|
Pollalis D, Kim D, Nair GKG, Kang C, Nanda AV, Lee SY. Intraocular RGD-Engineered Exosomes and Active Targeting of Choroidal Neovascularization (CNV). Cells 2022; 11:cells11162573. [PMID: 36010651 PMCID: PMC9406786 DOI: 10.3390/cells11162573] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2022] [Revised: 08/02/2022] [Accepted: 08/12/2022] [Indexed: 11/16/2022] Open
Abstract
Purpose: To assess the transretinal penetration of intravitreally injected retinal multicell-derived exosomes and to develop exosome-based active targeting of choroidal neovascularization (CNV) by bioengineering with ASL, which is composed of a membrane Anchor (BODIPY), Spacer (PEG), and targeting Ligands (cyclic RGD peptide). Methods: Retinal multicell-derived exosomes were recovered from a whole mouse retina using differential ultracentrifugation. Their size, number, and morphology were characterized using nanoparticle tracking analysis (NTA) and transmission electron microscopy (TEM). Exosome markers were confirmed using an exosome detection antibody array. Intravitreal injection of fluorescent (PKH-26)-labeled or engineered ASL exosomes (1 × 106 exosomes/μL) were given to the wild-type mouse or laser-induced CNV mouse model. Retinal uptake of exosomes was assessed by in vivo retinal imaging microscopy and histological staining with DAPI, GSA, and anti-integrin αv for retinal sections or choroid/RPE flat mounts. Active targeting of CNV was assessed by comparing retinal uptake between areas with and without CNV and by colocalization analysis of ASL exosomes with integrin αv within CNV. Staining with anti-F4/80, anti-ICAM-1, and anti-GFAP antibodies on retinal sections were performed to identify intracellular uptake of exosomes and immediate reactive retinal gliosis after exosome treatment. Results: An average of 2.1 × 109 particles/mL with a peak size of 140 nm exosomes were recovered. Rapid retinal penetration of intravitreally injected exosomes was confirmed by retinal imaging microscopy at 3 and 24 h post-injection. Intravitreally delivered PKH-26-labeled exosomes reached inner and outer retinal layers including IPL, INL, OPL, and ONL at 1 and 7 days post-injection. Intravitreally injected ASL exosomes were predominantly delivered to the area of CNV including ONL, RPE, and choroid in laser-induced CNV mouse models with 89.5% of colocalization with integrin αv. Part of exosomes was also taken intracellularly to vascular endothelial cells and macrophages. After intravitreal injection, neither naive exosomes nor ASL exosomes induced immediate reactive gliosis. Conclusions: Intravitreally delivered retinal multicell-derived exosomes have good retinal penetration, and ASL modification of exosomes actively targets CNV with no immediate reactive gliosis. ASL exosomes have a great potential to serve as an intraocular drug delivery vehicle, allowing an active targeting strategy.
Collapse
Affiliation(s)
- Dimitrios Pollalis
- USC Roski Eye Institute, USC Ginsburg Institute for Biomedical Therapeutics, Department of Ophthalmology, Keck School of Medicine, University of Southern California, Los Angeles, CA 90033, USA
| | - Dongin Kim
- Department of Pharmaceutical Sciences, College of Pharmacy, University of Oklahoma Health Science Center, Oklahoma City, OK 73104, USA
| | - Gopa Kumar Gopinadhan Nair
- Department of Ophthalmology, Dean McGee Eye Institute, University of Oklahoma Health Science Center, Oklahoma City, OK 73104, USA
| | - Changsun Kang
- Department of Pharmaceutical Sciences, College of Pharmacy, University of Oklahoma Health Science Center, Oklahoma City, OK 73104, USA
| | - Arjun V. Nanda
- College of Medicine, University of Oklahoma Health Science Center, Oklahoma City, OK 73104, USA
| | - Sun Young Lee
- USC Roski Eye Institute, USC Ginsburg Institute for Biomedical Therapeutics, Department of Ophthalmology, Keck School of Medicine, University of Southern California, Los Angeles, CA 90033, USA
- Department of Ophthalmology, Dean McGee Eye Institute, University of Oklahoma Health Science Center, Oklahoma City, OK 73104, USA
- Department of Physiology, University of Oklahoma Health Science Center, Oklahoma City, OK 73104, USA
- Correspondence:
| |
Collapse
|
14
|
Protective Effect of Salvianolic Acid A against N-Methyl-N-Nitrosourea-Induced Retinal Degeneration. EVIDENCE-BASED COMPLEMENTARY AND ALTERNATIVE MEDICINE 2022; 2022:1219789. [PMID: 35668785 PMCID: PMC9166948 DOI: 10.1155/2022/1219789] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/16/2022] [Revised: 04/22/2022] [Accepted: 04/25/2022] [Indexed: 11/17/2022]
Abstract
Objective Retinal degeneration (RD) is a serious, irreversible, and blinding eye disease, which seriously affects the visual function and quality of life of patients. At present, there is no effective method to treat RD. The final outcome of its development is photoreceptor cell oxidation and apoptosis. Therefore, looking for safe, convenient, and effective antioxidant therapy is still the key research field of Rd. In this study, the mice model of RD was induced by N-methyl-N-nitrosourea (MNU) in vivo to explore the therapeutic effect and mechanism of salvianolic acids (Sal A) on RD. In vitro, the protective effect of Sal A on MNU injured 661 W cell line of mouse retina photoreceptor cone cells was investigated preliminarily. Methods Male C57BL/6 mice (7–8 weeks old) received a single intraperitoneal injection (ip) of 60 mg/kg MNU or vehicle control. Treatment groups then received Sal-A 0.5 mg/kg and 1.0 mg/kg via daily intravenous injections. On day 7, functional and morphological examinations were performed, including photopic and scotopic electroretinography (ERG) and hematological analyses to observe functional changes and damage to the outer nuclear layer (ONL). On the 3rd and 7th days, the levels of superoxide dismutase (SOD) activity and malondialdehyde (MDA) content were determined. The expression of retinal Bax, Bcl-2, and caspase-3 was quantified by Western blot and RT-PCR assays. 661 W strain of mice retinal photoreceptor cone cells were cultured in vitro and treated with 1 µm MNU. The cells in the treatment group were given 50 μM Sal A as an intervention. The growth of 661 W cells was observed and recorded under an inverted light microscope, and the activity of cells was detected by the MTT method. Results Sal A treatment was effective against MNU-induced RD in mice at both 0.5 mg/kg/d and 1.0 mg/kg/d doses, and the protective effect was dose-dependent. Sal A can alleviate MNU-mediated alterations to retinal ERG activity and can support maintenance of the thickness of the ONL layer. Sal A treatment increases the expression of retinal SOD and reduces the lipid peroxidation product MDA, suggesting that its protective effect is related to the oxidation resistance. It can offset changes to the expression of apoptotic factors in the retina caused by MNU treatment. Sal A mitigates MNU-mediated damage to cultured mice photoreceptor cone cells 661 W in vitro. Conclusion Sal A alleviates the damage caused by MNU to retinal photoreceptor cells in vivo and in vivo, and its protective effect is related to its antioxidant and antiapoptotic activities.
Collapse
|
15
|
Milošević N, Rütter M, David A. Endothelial Cell Adhesion Molecules- (un)Attainable Targets for Nanomedicines. FRONTIERS IN MEDICAL TECHNOLOGY 2022; 4:846065. [PMID: 35463298 PMCID: PMC9021548 DOI: 10.3389/fmedt.2022.846065] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2021] [Accepted: 02/15/2022] [Indexed: 01/21/2023] Open
Abstract
Endothelial cell adhesion molecules have long been proposed as promising targets in many pathologies. Despite promising preclinical data, several efforts to develop small molecule inhibitors or monoclonal antibodies (mAbs) against cell adhesion molecules (CAMs) ended in clinical-stage failure. In parallel, many well-validated approaches for targeting CAMs with nanomedicine (NM) were reported over the years. A wide range of potential applications has been demonstrated in various preclinical studies, from drug delivery to the tumor vasculature, imaging of the inflamed endothelium, or blocking immune cells infiltration. However, no NM drug candidate emerged further into clinical development. In this review, we will summarize the most advanced examples of CAM-targeted NMs and juxtapose them with known traditional drugs against CAMs, in an attempt to identify important translational hurdles. Most importantly, we will summarize the proposed strategies to enhance endothelial CAM targeting by NMs, in an attempt to offer a catalog of tools for further development.
Collapse
|
16
|
Luo Y, Yin J, Fang R, Liu J, Wang L, Zhang H, Zhang M, Lei Z, Liang S, Cui W, Zhang Z, Wu K, Hui X. The tumour neovasculature-homing dimeric peptide GX1 demonstrates antiangiogenic activity in the retinal neovasculature. Eur J Pharmacol 2021; 912:174574. [PMID: 34662566 DOI: 10.1016/j.ejphar.2021.174574] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2020] [Revised: 10/12/2021] [Accepted: 10/13/2021] [Indexed: 12/13/2022]
Abstract
Identification of molecules specific to the retinal neovasculature will promote antiangiogenic therapy with enhanced targeting ability. The specificity of phage-displayed peptide GX1 (a cyclic 7-mer peptide motif CGNSNPKSC) to gastric cancer neovasculature has been extensively confirmed both in vitro and in vivo. To investigate the potential application of GX1 in antiangiogenic therapy targeting retinal angiogenesis-related diseases, we performed immunohistochemistry and immunofluorescence analyses. GX1 demonstrated positive staining in the retinal neovasculature in an oxygen-induced mouse model of retinopathy (OIR) as well as in rat retinal microvasculature endothelial cells (RMECs), confirming the major role of the GX1 receptor during retinal angiogenesis. Dimeric GX1 was synthesized to increase the binding affinity to the GX1 receptor, and the antiangiogenic effects were examined in RMECs in vitro and the retinal neovasculature in the OIR in vivo. Cell proliferation was evaluated using a Cell Counting Kit-8 (CCK-8) assay, revealing that compared with the GX1 monomer, dimeric GX1 significantly inhibited RMEC proliferation (P < 0.05). This finding may be attributed to the enhanced (P < 0.05) apoptosis induced by dimeric GX1 in RMECs based on results obtained from TUNEL, flow cytometric and cell cycle analyses. In RMECs, in vitro cell migration and tube formation were significantly inhibited following exposure to dimeric GX1. Intravitreal administration of dimeric GX1 resulted in a greater reduction in the retinal neovascularization in vivo than administration of the GX1 monomer (P < 0.05). In conclusion, dimeric GX1 showed greater inhibition of angiogenesis than monomeric GX1 and could be a promising agent for antiangiogenic therapy in retinal angiogenesis-related diseases.
Collapse
Affiliation(s)
- Yingying Luo
- Department of Geriatric Endocrinology, The First Affiliated Hospital of Xi'an Jiaotong University, Shaanxi Xi'an, 710061, China
| | - Jipeng Yin
- State Key Laboratory of Cancer Biology & Xijing Hospital of Digestive Diseases, Fourth Military Medical University, Shaanxi Xi'an, 710032, China
| | - Rutang Fang
- State Key Laboratory of Cancer Biology & Xijing Hospital of Digestive Diseases, Fourth Military Medical University, Shaanxi Xi'an, 710032, China; Department of Gastroenterology, Affiliated No. 986 Hospital of Xijing Hospital, Fourth Military Medical University, Shaanxi Xi'an, 710032, China
| | - Jingtao Liu
- Department of Geriatric Endocrinology, The First Affiliated Hospital of Xi'an Jiaotong University, Shaanxi Xi'an, 710061, China; Department of Nuclear Medicine, Affiliated No. 986 Hospital of Xijing Hospital, Fourth Military Medical University, Shaanxi Xi'an, 710032, China
| | - Lu Wang
- Department of Geriatric Endocrinology, The First Affiliated Hospital of Xi'an Jiaotong University, Shaanxi Xi'an, 710061, China
| | - Haiping Zhang
- Department of Geriatric Endocrinology, The First Affiliated Hospital of Xi'an Jiaotong University, Shaanxi Xi'an, 710061, China
| | - Ming Zhang
- Department of Ophthalmology, The First Affiliated Hospital of Xi'an Jiaotong University, Shaanxi Xi'an, 710061, China
| | - Zhijie Lei
- State Key Laboratory of Cancer Biology & Xijing Hospital of Digestive Diseases, Fourth Military Medical University, Shaanxi Xi'an, 710032, China
| | - Shuhui Liang
- State Key Laboratory of Cancer Biology & Xijing Hospital of Digestive Diseases, Fourth Military Medical University, Shaanxi Xi'an, 710032, China
| | - Wei Cui
- Department of Geriatric Endocrinology, The First Affiliated Hospital of Xi'an Jiaotong University, Shaanxi Xi'an, 710061, China
| | - Zhiyong Zhang
- Department of Gastroenterology, The First Affiliated Hospital of Xi'an Jiaotong University, Shaanxi Xi'an, 710061, China.
| | - Kaichun Wu
- State Key Laboratory of Cancer Biology & Xijing Hospital of Digestive Diseases, Fourth Military Medical University, Shaanxi Xi'an, 710032, China.
| | - Xiaoli Hui
- Department of Geriatric Endocrinology, The First Affiliated Hospital of Xi'an Jiaotong University, Shaanxi Xi'an, 710061, China.
| |
Collapse
|