1
|
Wu W, Li H, Chen W, Hu Y, Wang Z, She W, Huang L, Liu Y, Jiang P. CAR T Cell Membrane Camouflaged Nanocatalyst Augments CAR T Cell Therapy Efficacy Against Solid Tumor. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2024; 20:e2401299. [PMID: 38746996 DOI: 10.1002/smll.202401299] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/19/2024] [Revised: 04/28/2024] [Indexed: 10/01/2024]
Abstract
The immunosuppressive tumor microenvironment (TME) reduces the chimeric antigen receptor (CAR) T-cell therapy against solid tumors. Here, a CAR T cell membrane-camouflaged nanocatalyst (ACSP@TCM) is prepared to augment CAR T cell therapy efficacy against solid tumors. ACSP@TCM is prepared by encapsulating core/shell Au/Cu2- xSe and 3-bromopyruvate with a CAR T cell membrane. It is demonstrated that the CAR T cell membrane camouflaging has much better-targeting effect than the homologous tumors cell membrane camouflaging. ACSP@TCM has an appealing synergistic chemodynamic/photothermal therapy (CDT/PTT) effect that can induce the immunogenic cell death (ICD) of NALM 6 cells. Moreover, 3-bromopyruvate can inhibit the efflux of lactic acid by inhibiting the glycolysis process, regulating the acidity of TME, and providing a more favorable environment for the survival of CAR T cells. In addition, the photoacoustic (PA) imaging and computed tomography (CT) imaging performance can guide the ACSP@TCM-mediated tumor therapy. The results demonstrated that the ACSP@TCM significantly enhanced the CAR T cell therapy efficacy against NALM 6 solid tumor mass, and completely eliminated tumors. This work provides an effective tumor strategy for CAR T cell therapy in solid tumors.
Collapse
Affiliation(s)
- Wenjing Wu
- College of Chemistry and Molecular Sciences, Wuhan University, Wuhan, 430072, P. R. China
| | - Haimei Li
- Department of Orthopedics Trauma and Microsurgery, School of Pharmaceutical Sciences, Zhongnan Hospital of Wuhan University, Wuhan University, Wuhan, 430071, P. R. China
| | - Wenqi Chen
- College of Chemistry and Molecular Sciences, Wuhan University, Wuhan, 430072, P. R. China
| | - Yulin Hu
- Department of Orthopedics Trauma and Microsurgery, School of Pharmaceutical Sciences, Zhongnan Hospital of Wuhan University, Wuhan University, Wuhan, 430071, P. R. China
| | - Zichen Wang
- College of Chemistry and Molecular Sciences, Wuhan University, Wuhan, 430072, P. R. China
| | - Wenyan She
- College of Chemistry and Molecular Sciences, Wuhan University, Wuhan, 430072, P. R. China
| | - Liang Huang
- State Key Laboratory of Experimental Hematology, National Clinical Research Center for Blood Diseases, Haihe Laboratory of Cell Ecosystem, Institute of Hematology & Blood Diseases Hospital, Chinese Academy of Medical Science & Peking Union Medical College, Tianjin, 300020, P. R. China
- Tianjin Institutes of Health Science, Tianjin, 301600, P. R. China
| | - Yi Liu
- College of Chemistry and Molecular Sciences, Wuhan University, Wuhan, 430072, P. R. China
- School of Chemical and Environmental Engineering, Wuhan Polytechnic University, Wuhan, 430023, P. R. China
- Hubei Key Laboratory of Radiation Chemistry and Functional Materials School of Nuclear Technology and Chemistry and Biology, Hubei University of Science and Technology, Xianning, 437100, China
| | - Peng Jiang
- Department of Orthopedics Trauma and Microsurgery, School of Pharmaceutical Sciences, Zhongnan Hospital of Wuhan University, Wuhan University, Wuhan, 430071, P. R. China
- Key Laboratory of Combinatorial Biosynthesis and Drug Discovery (MOE), Wuhan University, Wuhan, 430071, P. R. China
| |
Collapse
|
2
|
Apriyanto DK, Mitrayana, Setiawan A, Widyaningrum R. Therapeutic and Contrast Agents for Photoacoustic Imaging-Guided Photothermal Therapy: A Narrative Review. Nanotheranostics 2024; 8:506-520. [PMID: 39135728 PMCID: PMC11317210 DOI: 10.7150/ntno.96286] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2024] [Accepted: 06/29/2024] [Indexed: 08/15/2024] Open
Abstract
Photoacoustic imaging is a hybrid modality that combines high-contrast and spectroscopy-based optical imaging specificity with the high spatial resolution of ultrasonography. This review highlights the development and progress of photoacoustic imaging technology over the past decade. This imaging technology has evolved to be more user-friendly, cost-effective, and portable, demonstrating its potential for diverse clinical applications. A potential clinical application lies in the use of photoacoustic imaging as a guiding tool for photothermal therapy. This review was conducted by initially filtering through three databases, namely, Google Scholar, PubMed, and Scopus, resulting in 460 articles published between 2019 and May 2023. Of these, 54 articles were deemed suitable for review after identification. The selected articles were research papers focusing on the development of therapeutic agents that enhance contrast in photoacoustic imaging. All reviewed articles tested these agents both in vitro and in vivo. This review focuses on wavelength absorption and radiation sources for photothermal therapy. The developed agents predominantly used NIR-I wavelengths, whereas the NIR-II region has been less explored, indicating significant potential for future research. This review provides comprehensive insights into the advancement of compounds serving as therapeutic agents and contrast agents in photoacoustic imaging-guided photothermal therapy.
Collapse
Affiliation(s)
- Donni Kis Apriyanto
- Department of Physics, Faculty of Mathematics and Natural Sciences, Universitas Gadjah Mada, Yogyakarta 55281, Indonesia
- Department of Physics, Faculty of Mathematics and Natural Sciences, Universitas Lampung, Bandar Lampung 35141, Indonesia
| | - Mitrayana
- Department of Physics, Faculty of Mathematics and Natural Sciences, Universitas Gadjah Mada, Yogyakarta 55281, Indonesia
| | - Andreas Setiawan
- Department of Physics, Faculty of Science and Mathematics, Universitas Kristen Satya Wacana, Salatiga 50711, Indonesia
| | - Rini Widyaningrum
- Department of Dentomaxillofacial Radiology, Faculty of Dentistry, Universitas Gadjah Mada, Yogyakarta 55281, Indonesia
| |
Collapse
|
3
|
Huang H, Zheng Y, Chang M, Song J, Xia L, Wu C, Jia W, Ren H, Feng W, Chen Y. Ultrasound-Based Micro-/Nanosystems for Biomedical Applications. Chem Rev 2024; 124:8307-8472. [PMID: 38924776 DOI: 10.1021/acs.chemrev.4c00009] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/28/2024]
Abstract
Due to the intrinsic non-invasive nature, cost-effectiveness, high safety, and real-time capabilities, besides diagnostic imaging, ultrasound as a typical mechanical wave has been extensively developed as a physical tool for versatile biomedical applications. Especially, the prosperity of nanotechnology and nanomedicine invigorates the landscape of ultrasound-based medicine. The unprecedented surge in research enthusiasm and dedicated efforts have led to a mass of multifunctional micro-/nanosystems being applied in ultrasound biomedicine, facilitating precise diagnosis, effective treatment, and personalized theranostics. The effective deployment of versatile ultrasound-based micro-/nanosystems in biomedical applications is rooted in a profound understanding of the relationship among composition, structure, property, bioactivity, application, and performance. In this comprehensive review, we elaborate on the general principles regarding the design, synthesis, functionalization, and optimization of ultrasound-based micro-/nanosystems for abundant biomedical applications. In particular, recent advancements in ultrasound-based micro-/nanosystems for diagnostic imaging are meticulously summarized. Furthermore, we systematically elucidate state-of-the-art studies concerning recent progress in ultrasound-based micro-/nanosystems for therapeutic applications targeting various pathological abnormalities including cancer, bacterial infection, brain diseases, cardiovascular diseases, and metabolic diseases. Finally, we conclude and provide an outlook on this research field with an in-depth discussion of the challenges faced and future developments for further extensive clinical translation and application.
Collapse
Affiliation(s)
- Hui Huang
- School of Environmental and Chemical Engineering, Shanghai University, Shanghai 200444, P. R. China
- Materdicine Lab, School of Life Sciences, Shanghai University, Shanghai 200444, P. R. China
| | - Yi Zheng
- Department of Ultrasound, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200080, P. R. China
| | - Meiqi Chang
- Laboratory Center, Shanghai Municipal Hospital of Traditional Chinese Medicine, Shanghai University of Traditional Chinese Medicine, Shanghai 200071, P. R. China
| | - Jun Song
- Materdicine Lab, School of Life Sciences, Shanghai University, Shanghai 200444, P. R. China
| | - Lili Xia
- Materdicine Lab, School of Life Sciences, Shanghai University, Shanghai 200444, P. R. China
| | - Chenyao Wu
- Materdicine Lab, School of Life Sciences, Shanghai University, Shanghai 200444, P. R. China
| | - Wencong Jia
- Materdicine Lab, School of Life Sciences, Shanghai University, Shanghai 200444, P. R. China
| | - Hongze Ren
- Materdicine Lab, School of Life Sciences, Shanghai University, Shanghai 200444, P. R. China
| | - Wei Feng
- School of Environmental and Chemical Engineering, Shanghai University, Shanghai 200444, P. R. China
- Materdicine Lab, School of Life Sciences, Shanghai University, Shanghai 200444, P. R. China
| | - Yu Chen
- School of Environmental and Chemical Engineering, Shanghai University, Shanghai 200444, P. R. China
- Materdicine Lab, School of Life Sciences, Shanghai University, Shanghai 200444, P. R. China
| |
Collapse
|
4
|
Andoh V, Ocansey DKW, Naveed H, Wang N, Chen L, Chen K, Mao F. The Advancing Role of Nanocomposites in Cancer Diagnosis and Treatment. Int J Nanomedicine 2024; 19:6099-6126. [PMID: 38911500 PMCID: PMC11194004 DOI: 10.2147/ijn.s471360] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2024] [Accepted: 06/12/2024] [Indexed: 06/25/2024] Open
Abstract
The relentless pursuit of effective cancer diagnosis and treatment strategies has led to the rapidly expanding field of nanotechnology, with a specific focus on nanocomposites. Nanocomposites, a combination of nanomaterials with diverse properties, have emerged as versatile tools in oncology, offering multifunctional platforms for targeted delivery, imaging, and therapeutic interventions. Nanocomposites exhibit great potential for early detection and accurate imaging in cancer diagnosis. Integrating various imaging modalities, such as magnetic resonance imaging (MRI), computed tomography (CT), and fluorescence imaging, into nanocomposites enables the development of contrast agents with enhanced sensitivity and specificity. Moreover, functionalizing nanocomposites with targeting ligands ensures selective accumulation in tumor tissues, facilitating precise imaging and diagnostic accuracy. On the therapeutic front, nanocomposites have revolutionized cancer treatment by overcoming traditional challenges associated with drug delivery. The controlled release of therapeutic agents from nanocomposite carriers enhances drug bioavailability, reduces systemic toxicity, and improves overall treatment efficacy. Additionally, the integration of stimuli-responsive components within nanocomposites enables site-specific drug release triggered by the unique microenvironment of the tumor. Despite the remarkable progress in the field, challenges such as biocompatibility, scalability, and long-term safety profiles remain. This article provides a comprehensive overview of recent developments, challenges, and prospects, emphasizing the transformative potential of nanocomposites in revolutionizing the landscape of cancer diagnostics and therapeutics. In Conclusion, integrating nanocomposites in cancer diagnosis and treatment heralds a new era for precision medicine.
Collapse
Affiliation(s)
- Vivian Andoh
- School of Life Sciences, Jiangsu University, Zhenjiang, People’s Republic of China
| | - Dickson Kofi Wiredu Ocansey
- Department of Laboratory Medicine, Lianyungang Clinical College, Jiangsu University, Lianyungang, Jiangsu, People’s Republic of China
- Directorate of University Health Services, University of Cape Coast, Cape Coast, Central Region, CC0959347, Ghana
| | - Hassan Naveed
- School of Life Sciences, Jiangsu University, Zhenjiang, People’s Republic of China
| | - Naijian Wang
- Key Laboratory of Medical Science and Laboratory Medicine of Jiangsu Province, School of Medicine, Jiangsu University, Zhenjiang, Jiangsu, People’s Republic of China
| | - Liang Chen
- School of Life Sciences, Jiangsu University, Zhenjiang, People’s Republic of China
| | - Keping Chen
- School of Life Sciences, Jiangsu University, Zhenjiang, People’s Republic of China
| | - Fei Mao
- Department of Laboratory Medicine, Lianyungang Clinical College, Jiangsu University, Lianyungang, Jiangsu, People’s Republic of China
| |
Collapse
|
5
|
Xu M, Qian Y, Li X, Gu B, He S, Lu X, Song S. Janus ACSP Nanoparticle for Synergistic Chemodynamic Therapy and Radiosensitization. ACS APPLIED MATERIALS & INTERFACES 2024; 16:17242-17252. [PMID: 38556729 DOI: 10.1021/acsami.4c00499] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 04/02/2024]
Abstract
Protective autophagy and DNA damage repair lead to tumor radio-resistance. Some hypoxic tumors exhibit a low radiation energy absorption coefficient in radiation therapy. High doses of X-rays may lead to side effects in the surrounding normal tissues. In order to overcome the radio-resistance and improve the efficacy of radiotherapy based on the characteristics of the tumor microenvironment, the development of radiosensitizers has attracted much attention. In this study, a Janus ACSP nanoparticle (NP) was developed for chemodynamic therapy and radiosensitization. The reactive oxygen species generated by the Fenton-like reaction regulated the distribution of cell cycles from a radioresistant phase to a radio-sensitive phase. The high-Z element, Au, enhanced the production of hydroxyl radicals (•OH) under X-ray radiation, promoting DNA damage and cell apoptosis. The NP delayed DNA damage repair by interfering with certain proteins involved in the DNA repair signaling pathway. In vivo experiments demonstrated that the combination of the copper-ion-based Fenton-like reaction and low-dose X-ray radiation enhanced the effectiveness of radiotherapy, providing a novel approach for synergistic chemodynamic and radiosensitization therapy. This study provides valuable insights and strategies for the development and application of NPs in cancer treatment.
Collapse
Affiliation(s)
- Mingzhen Xu
- Department of Nuclear Medicine, Shanghai Proton and Heavy Ion Center, Fudan University Shanghai Cancer Center, Shanghai 201315, China
- Shanghai Key Laboratory of Radiation Oncology, Shanghai 201315, China
- Shanghai Engineering Research Center of Proton and Heavy Ion Radiation Therapy, Shanghai 201315, China
- Department of Nuclear Medicine, Fudan University Shanghai Cancer Center, Xuhui District, No. 270 Dong'an Road, Shanghai 200032, China
| | - Yuyi Qian
- Department of Nuclear Medicine, Fudan University Shanghai Cancer Center, Xuhui District, No. 270 Dong'an Road, Shanghai 200032, China
| | - Xinyi Li
- Department of Nuclear Medicine, Fudan University Shanghai Cancer Center, Xuhui District, No. 270 Dong'an Road, Shanghai 200032, China
| | - Bingxin Gu
- Department of Nuclear Medicine, Fudan University Shanghai Cancer Center, Xuhui District, No. 270 Dong'an Road, Shanghai 200032, China
| | - Simin He
- Department of Nuclear Medicine, Fudan University Shanghai Cancer Center, Xuhui District, No. 270 Dong'an Road, Shanghai 200032, China
| | - Xin Lu
- Department of Nuclear Medicine, Fudan University Shanghai Cancer Center, Xuhui District, No. 270 Dong'an Road, Shanghai 200032, China
| | - Shaoli Song
- Department of Nuclear Medicine, Shanghai Proton and Heavy Ion Center, Fudan University Shanghai Cancer Center, Shanghai 201315, China
- Shanghai Key Laboratory of Radiation Oncology, Shanghai 201315, China
- Shanghai Engineering Research Center of Proton and Heavy Ion Radiation Therapy, Shanghai 201315, China
- Department of Nuclear Medicine, Fudan University Shanghai Cancer Center, Xuhui District, No. 270 Dong'an Road, Shanghai 200032, China
| |
Collapse
|
6
|
Jia X, Wang J, Wang E. Rapid Synthesis of Trimetallic Nanozyme for Sustainable Cascaded Catalytic Therapy via Tumor Microenvironment Remodulation. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2024; 36:e2309261. [PMID: 38016341 DOI: 10.1002/adma.202309261] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/08/2023] [Revised: 11/22/2023] [Indexed: 11/30/2023]
Abstract
Tumor microenvironment (TME)-responsive nanozyme-catalyzed cancer therapy shows great potential due to its specificity and efficiency. However, breaking the self-adaption of tumors and improving the sustainable remodeling TME ability remains a major challenge for developing novel nanozymes. Here, a rapid method is developed first to synthesize unprecedented trimetalic nanozyme (AuMnCu, AMC) with a targeting peptide (AMCc), which exhibits excellent peroxidase-like, catalase-like, and glucose oxidase-like activities. The released Cu and Mn ions in TME consume endogenous H2 O2 and produce O2 , while the AMCccatalyzes glucose oxidation reaction to generate H2 O2 and gluconic acid, which achieves the starvation therapy by depleting the energy and enhances the chemodynamic therapy effect by lowering the pH of the TME and producing extra H2 O2 . Meanwhile, the reactive oxygen species damage is amplified, as AMCc can constantly oxidize intracellular reductive glutathione through the cyclic valence alternation of Cu and Mn ions, and the generated Cu+ elevate the production of ·OH from H2 O2 . Further studies depict that the well-designed AMCc exhibits the excellent photothermal performance and achieves TME-responsive sustainable starvation/photothermal-enhanced chemodynamic synergistic effects in vitro and in vivo. Overall, a promising approach is demonstrated here to design "all-in-one" nanozyme for theranostics by remodeling the TME.
Collapse
Affiliation(s)
- Xiuna Jia
- State Key Laboratory of Electroanalytical Chemistry, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun, Jilin, 130022, P. R. China
| | - Jin Wang
- Department of Chemistry and Physics, State University of New York at Stony Brook, Stony Brook, NY, 11794-3400, USA
| | - Erkang Wang
- State Key Laboratory of Electroanalytical Chemistry, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun, Jilin, 130022, P. R. China
- College of Chemistry, Jilin University, Changchun, Jilin, 130012, P. R. China
| |
Collapse
|
7
|
Jiang W, Huang G, Pan S, Chen X, Liu T, Yang Z, Chen T, Zhu X. TRAIL-driven targeting and reversing cervical cancer radioresistance by seleno-nanotherapeutics through regulating cell metabolism. Drug Resist Updat 2024; 72:101033. [PMID: 38157648 DOI: 10.1016/j.drup.2023.101033] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2023] [Revised: 12/01/2023] [Accepted: 12/06/2023] [Indexed: 01/03/2024]
Abstract
Recently, radioresistance has become a major obstacle in the radiotherapy of cervical cancer. To demonstrate enhanced radiosensitization against radioresistant cervical cancer, radioresistant cervical cancer cell line was developed and the mechanism of radioresistance was explored. Due to the overexpression of (death receptor 5, DR5) in cervical cancer, tumor necrosis factor-related apoptosis-inducing ligand (TRAIL)-overexpressed cervical cancer cell membrane-camouflaged Cu2-xSe nanomedicine (CCMT) was designed. Since the CCMT was encapsulated with TRAIL-modified cell membrane, it represented high target to cervical cancer cell and immune evasion. Furthermore, Cu2-xSe had the ability to scavenge glutathione (GSH) and produce ·OH with excess H2O2 in the tumor microenvironment. The presence of CCMT combined with radiation therapy could effectively increase the 1O2 produced by X-rays. In vitro and in vivo studies elaborated that CCMT exhibited excellent radiosensitization properties to reverse radiotolerance by scavenging GSH and promoting DNA damage, apoptosis, mitochondrial membrane potential damage and metabolic disruption. Collectively, this study suggested that the development of TRAIL-overexpressed cell membrane-camouflaged Cu2-xSe nanomedicine could advance future cervical cancer treatment and minimize the disadvantages associated with radiation treatment.
Collapse
Affiliation(s)
- Wenxiao Jiang
- Center for Uterine Cancer Diagnosis & Therapy Research of Zhejiang Province, Department of Obstetrics and Gynecology, The Second Affiliated Hospital of Wenzhou Medical University, Wenzhou, Zhejiang 325027, China
| | - Guanning Huang
- State Key Laboratory of Bioactive Molecules and Druggability Assessment, MOE Key Laboratory of Tumor Molecular Biology, Department of Chemistry, Jinan University, Guangzhou 510632, China
| | - Shuya Pan
- Center for Uterine Cancer Diagnosis & Therapy Research of Zhejiang Province, Department of Obstetrics and Gynecology, The Second Affiliated Hospital of Wenzhou Medical University, Wenzhou, Zhejiang 325027, China
| | - Xin Chen
- Center for Uterine Cancer Diagnosis & Therapy Research of Zhejiang Province, Department of Obstetrics and Gynecology, The Second Affiliated Hospital of Wenzhou Medical University, Wenzhou, Zhejiang 325027, China
| | - Ting Liu
- Center for Uterine Cancer Diagnosis & Therapy Research of Zhejiang Province, Department of Obstetrics and Gynecology, The Second Affiliated Hospital of Wenzhou Medical University, Wenzhou, Zhejiang 325027, China
| | - Ziyi Yang
- Center for Uterine Cancer Diagnosis & Therapy Research of Zhejiang Province, Department of Obstetrics and Gynecology, The Second Affiliated Hospital of Wenzhou Medical University, Wenzhou, Zhejiang 325027, China
| | - Tianfeng Chen
- Center for Uterine Cancer Diagnosis & Therapy Research of Zhejiang Province, Department of Obstetrics and Gynecology, The Second Affiliated Hospital of Wenzhou Medical University, Wenzhou, Zhejiang 325027, China; State Key Laboratory of Bioactive Molecules and Druggability Assessment, MOE Key Laboratory of Tumor Molecular Biology, Department of Chemistry, Jinan University, Guangzhou 510632, China.
| | - Xueqiong Zhu
- Center for Uterine Cancer Diagnosis & Therapy Research of Zhejiang Province, Department of Obstetrics and Gynecology, The Second Affiliated Hospital of Wenzhou Medical University, Wenzhou, Zhejiang 325027, China.
| |
Collapse
|
8
|
Andoh V, Shi W, Ma S, Chen K, Yu Q. Cytotoxicity of AuCu-Cu 2S Nanocomposites: Implications for Biological Evaluation of the Nanocomposite Effect on Bombyx mori Silkworms and Cell Lines. ACS Biomater Sci Eng 2023; 9:6745-6758. [PMID: 37956306 DOI: 10.1021/acsbiomaterials.3c01402] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2023]
Abstract
AuCu-Cu2S nanocomposites are unique materials with exceptional properties that have recently received a lot of interest. However, little is known about their potential toxicity in terrestrial organisms and their subsequent effects on the environment. Therefore, it is essential to develop effective methodologies for evaluating AuCu-Cu2S nanocomposites in biological systems. This study reports the biological evaluation of the AuCu-Cu2S nanocomposite from animal and cell entity levels. The Bombyx mori silkworm was used as a model organism to study the effects of different concentrations of AuCu-Cu2S on silkworm development. Transcriptome analysis was also carried out to examine the genetic modulation exerted by the treatment. Moreover, biocompatibility and cytotoxicity of AuCu-Cu2S were evaluated in human bronchial epithelial cells 16HBE, human lung adenocarcinoma, and the insect Spodoptera frugiperda cell sf9 cell lines. The results showed that although AuCu-Cu2S at ≤400 ppm can prolong the eating habit of silkworms and promote the weight of the cocoon layer, there was an increase in silkworm mortality and a decrease in moth formation at a concentration of ≥800 ppm. The genetic regulation by AuCu-Cu2S treatment showed varying effects in the silkworm, primarily related to functions such as transport and catabolism, metabolism of cofactors and vitamins, xenobiotic biodegradation, amino acid, and carbohydrate. 16HBE, PC-9, and sf9 treated with 300 ppm of AuCu-Cu2S showed viability percentages of 60, 20, and 90%, respectively. Thus, AuCu-Cu2S at low concentrations serves as a safe and biocompatible material for the sf9 cell lines but is lethal to 16HBE and PC-9. This research could aid in understanding the biological effects and biocompatibility of AuCu-Cu2S nanocomposites, particularly in the field of biochemistry; however, the mechanisms involved need further exploration.
Collapse
Affiliation(s)
- Vivian Andoh
- School of Food and Biological Engineering, Jiangsu University, Zhenjiang, Jiangsu 212013, PR China
- School of Life Sciences, Jiangsu University, Zhenjiang, Jiangsu 212013, PR China
| | - Wenhui Shi
- School of Life Sciences, Jiangsu University, Zhenjiang, Jiangsu 212013, PR China
| | - Shangshang Ma
- School of Life Sciences, Jiangsu University, Zhenjiang, Jiangsu 212013, PR China
| | - Keping Chen
- School of Food and Biological Engineering, Jiangsu University, Zhenjiang, Jiangsu 212013, PR China
- School of Life Sciences, Jiangsu University, Zhenjiang, Jiangsu 212013, PR China
| | - Qian Yu
- School of Life Sciences, Jiangsu University, Zhenjiang, Jiangsu 212013, PR China
| |
Collapse
|
9
|
Ou R, Aodeng G, Ai J. Advancements in the Application of the Fenton Reaction in the Cancer Microenvironment. Pharmaceutics 2023; 15:2337. [PMID: 37765305 PMCID: PMC10536994 DOI: 10.3390/pharmaceutics15092337] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2023] [Revised: 09/04/2023] [Accepted: 09/04/2023] [Indexed: 09/29/2023] Open
Abstract
Cancer is a complex and multifaceted disease that continues to be a global health challenge. It exerts a tremendous burden on individuals, families, healthcare systems, and society as a whole. To mitigate the impact of cancer, concerted efforts and collaboration on a global scale are essential. This includes strengthening preventive measures, promoting early detection, and advancing effective treatment strategies. In the field of cancer treatment, researchers and clinicians are constantly seeking new approaches and technologies to improve therapeutic outcomes and minimize adverse effects. One promising avenue of investigation is the utilization of the Fenton reaction, a chemical process that involves the generation of highly reactive hydroxyl radicals (·OH) through the interaction of hydrogen peroxide (H2O2) with ferrous ions (Fe2+). The generated ·OH radicals possess strong oxidative properties, which can lead to the selective destruction of cancer cells. In recent years, researchers have successfully introduced the Fenton reaction into the cancer microenvironment through the application of nanotechnology, such as polymer nanoparticles and light-responsive nanoparticles. This article reviews the progress of the application of the Fenton reaction, catalyzed by polymer nanoparticles and light-responsive nanoparticles, in the cancer microenvironment, as well as the potential applications and future development directions of the Fenton reaction in the field of tumor treatment.
Collapse
Affiliation(s)
| | | | - Jun Ai
- Inner Mongolia Key Laboratory of Environmental Chemistry, College of Chemistry and Enviromental Science, Inner Mongolia Normal University, 81 Zhaowudalu, Hohhot 010022, China; (R.O.); (G.A.)
| |
Collapse
|
10
|
Sui C, Tan R, Liu Z, Li X, Xu W. Smart Chemical Oxidative Polymerization Strategy To Construct Au@PPy Core-Shell Nanoparticles for Cancer Diagnosis and Imaging-Guided Photothermal Therapy. Bioconjug Chem 2023; 34:257-268. [PMID: 36516477 DOI: 10.1021/acs.bioconjchem.2c00549] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
Imaging-guided photothermal therapy (PTT) in a single nanoscale platform has aroused extensive research interest in precision medicine, yet only a few methods have gained wide acceptance. Thus, it remained an urgent need to facilely develop biocompatible and green probes with excellent theranostic capacity for superior biomedical applications. In this study, a smart chemical oxidative polymerization strategy was successfully developed for the synthesis of Au@PPy core-shell nanoparticles with polyvinyl alcohol (PVA) as the hydrophile. In the reaction, the reactant tetrachloroauric acid (HAuCl4) was reduced by pyrrole to fabricate a gold (Au) core, and pyrrole was oxidized to deposit around the Au core to form a polypyrrole (PPy) shell. The as-synthesized Au@PPy nanoparticles showed a regular core-shell morphology and good colloidal stability. Relying on the high X-ray attenuation of Au and strong near-infrared (NIR) absorbance of PPy and Au, Au@PPy nanoparticles exhibited excellent performance in blood pool/tumor imaging and PTT treatment by a series of in vivo experiments, in which tumor could be precisely positioned and thoroughly eradicated. Hence, the facile chemical oxidative polymerization strategy for constructing monodisperse Au@PPy core-shell nanoparticles with potential for cancer diagnosis and imaging-guided photothermal therapy shed light on an innovative design concept for the facile fabrication of biomedical materials.
Collapse
Affiliation(s)
- Chunxiao Sui
- Department of Molecular Imaging and Nuclear Medicine, Tianjin Medical University Cancer Institute and Hospital, National Clinical Research Center for Cancer; Tianjin's Clinical Research Center for Cancer; Key Laboratory of Cancer Prevention and Therapy, Tianjin 300060, P. R. China.,Tianjin Medical University, Tianjin 300203, P. R. China
| | - Rui Tan
- Department of Neurosurgery, Tianjin Medical University General Hospital, Tianjin 300052, P. R. China.,Tianjin Medical University, Tianjin 300203, P. R. China
| | - Zifan Liu
- Department of Molecular Imaging and Nuclear Medicine, Tianjin Medical University Cancer Institute and Hospital, National Clinical Research Center for Cancer; Tianjin's Clinical Research Center for Cancer; Key Laboratory of Cancer Prevention and Therapy, Tianjin 300060, P. R. China.,Tianjin Medical University, Tianjin 300203, P. R. China
| | - Xiaofeng Li
- Department of Molecular Imaging and Nuclear Medicine, Tianjin Medical University Cancer Institute and Hospital, National Clinical Research Center for Cancer; Tianjin's Clinical Research Center for Cancer; Key Laboratory of Cancer Prevention and Therapy, Tianjin 300060, P. R. China
| | - Wengui Xu
- Department of Molecular Imaging and Nuclear Medicine, Tianjin Medical University Cancer Institute and Hospital, National Clinical Research Center for Cancer; Tianjin's Clinical Research Center for Cancer; Key Laboratory of Cancer Prevention and Therapy, Tianjin 300060, P. R. China
| |
Collapse
|
11
|
Pushpalatha C, Sowmya SV, Augustine D, Kumar C, Gayathri VS, Shakir A, Prabhu TN, Sandhya KV, Patil S. Antibacterial Nanozymes: An Emerging Innovative Approach to Oral Health Management. Top Catal 2022. [DOI: 10.1007/s11244-022-01731-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
|
12
|
Targeted-detection and sequential-treatment of small hepatocellular carcinoma in the complex liver environment by GPC-3-targeted nanoparticles. J Nanobiotechnology 2022; 20:156. [PMID: 35331259 PMCID: PMC8944070 DOI: 10.1186/s12951-022-01378-w] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2022] [Accepted: 03/14/2022] [Indexed: 02/08/2023] Open
Abstract
Despite advancements in diagnostic methods and therapeutic strategies, the mortality rate of hepatocellular carcinoma (HCC) remains as high as its incidence rate. Most liver cancers are detected in the advanced stages, when treatment options are limited. Small HCC is difficult to diagnose and is often overlooked by current imaging methods because of the complexity of the liver environment, especially in cirrhotic livers. In the present study, we developed a tumor "cruise missile", mesoporous Fe3O4-containing glucose oxidase-conjugated GPC3 peptide nanoparticles (FGP NPs). It was designed to enhance the accuracy of small HCC visualization to 85.7% using combined ultrasound/photoacoustic imaging in complex liver environment, which facilitated sequential catalytic targeted therapy for small HCC. In a carcinogen-induced mouse HCC model, FGP NPs could be used to accurately diagnose HCC in a liver cirrhosis background as well as distinguish HCC nodules from other abnormal liver nodules, such as cirrhosis nodules and necrotic nodules, by dynamic contrast-enhanced photoacoustic imaging. In a mouse xenograft HCC model, highly reactive oxygen species were formed by sequential catalytic reactions, which promoted HCC cell apoptosis, significantly increasing the survival of the model mice. The present study provides a basis for the precise detection and elimination of small HCCs in the complex liver environment.
Collapse
|
13
|
Abstract
Nanozyme is a series of nanomaterials with enzyme-mimetic activities that can proceed with the catalytic reactions of natural enzymes. In the field of biomedicine, nanozymes are capturing tremendous attention due to their high stability and low cost. Enzyme-mimetic activities of nanozymes can be regulated by multiple factors, such as the chemical state of metal ion, pH, hydrogen peroxide (H2O2), and glutathione (GSH) level, presenting great promise for biomedical applications. Over the past decade, multi-functional nanozymes have been developed for various biomedical applications. To promote the understandings of nanozymes and the development of novel and multifunctional nanozymes, we herein provide a comprehensive review of the nanozymes and their applications in the biomedical field. Nanozymes with versatile enzyme-like properties are briefly overviewed, and their mechanism and application are discussed to provide understandings for future research. Finally, underlying challenges and prospects of nanozymes in the biomedical frontier are discussed in this review.
Collapse
|
14
|
Zhang L, Forgham H, Shen A, Qiao R, Guo B. Recent Advances in Single Fe-Based Nanoagents for Photothermal-Chemodynamic Cancer Therapy. BIOSENSORS 2022; 12:86. [PMID: 35200346 PMCID: PMC8869282 DOI: 10.3390/bios12020086] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 01/09/2022] [Revised: 01/26/2022] [Accepted: 01/28/2022] [Indexed: 06/14/2023]
Abstract
Monomodal cancer therapies are often unsatisfactory, leading to suboptimal treatment effects that result in either an inability to stop growth and metastasis or prevent relapse. Thus, synergistic strategies that combine different therapeutic modalities to improve performance have become the new research trend. In this regard, the integration of photothermal therapy (PTT) with chemodynamic therapy (CDT), especially PTT/CDT in the second near-infrared (NIR-II) biowindow, has been demonstrated to be a highly efficient and relatively safe concept. With the rapid development of nanotechnology, nanoparticles can be designed from specific elements, such as Fe, that are equipped with both PTT and CDT therapeutic functions. In this review, we provide an update on the recent advances in Fe-based nanoplatforms for combined PTT/CDT. The perspectives on further improvement of the curative efficiency are described, highlighting the important scientific obstacles that require resolution in order to reach greater heights of clinical success. We hope this review will inspire the interest of researchers in developing novel Fe-based nanomedicines for multifunctional theranostics.
Collapse
Affiliation(s)
- Li Zhang
- Shenzhen Key Laboratory of Flexible Printed Electronics Technology and School of Science, Harbin Institute of Technology, Shenzhen 518055, China;
| | - Helen Forgham
- Australian Institute of Bioengineering & Nanotechnology, The University of Queensland, Brisbane, QLD 4072, Australia; (H.F.); (A.S.)
| | - Ao Shen
- Australian Institute of Bioengineering & Nanotechnology, The University of Queensland, Brisbane, QLD 4072, Australia; (H.F.); (A.S.)
| | - Ruirui Qiao
- Australian Institute of Bioengineering & Nanotechnology, The University of Queensland, Brisbane, QLD 4072, Australia; (H.F.); (A.S.)
| | - Bing Guo
- Shenzhen Key Laboratory of Flexible Printed Electronics Technology and School of Science, Harbin Institute of Technology, Shenzhen 518055, China;
| |
Collapse
|