1
|
Du L, Liu H, Song X, Feng X, Xu H, Tang W, Yang J. Developments in the field of intestinal toxicity and signaling pathways associated with rodent exposure to micro(nano)plastics. Toxicology 2024; 507:153883. [PMID: 38996996 DOI: 10.1016/j.tox.2024.153883] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2024] [Revised: 07/01/2024] [Accepted: 07/07/2024] [Indexed: 07/14/2024]
Abstract
The broad spread of micro(nano)plastics (MNPs) has garnered significant attention in recent years. MNPs have been detected in numerous human organs, indicating that they may also be hazardous to humans. The toxic effects of MNPs have been demonstrated in marine species and experimental animals. The primary pathway and target organ for MNPs entering the human body is the intestinal system, and increasing research has been done on the harmful effects and subsequent mechanisms of exposure to MNPs. Studies on how MNPs affect gut health in humans are scarce, nevertheless. Since rodents are frequently employed as animal models for human ailments, research on rodents exposed to MNPs can provide a more accurate representation of human circumstances. This study examined the effects of MNPs on intestinal microecology, inflammation, barrier function, and ion transport channels in rodents. It also reviewed the signal pathways involved, such as oxidative stress, nuclear factor (NF)-κB, Toll-like receptor (TLR) 4, inflammatory corpuscles, muscarinic acetylcholine receptors (mAChRs), mitogen-activated protein kinase (MAPK), and cell death. This review will offer a conceptual framework for the management and avoidance of associated illnesses.
Collapse
Affiliation(s)
- Lixia Du
- Department of Gastroenterology, Chengdu BOE Hospital, Chengdu 610219, China
| | - Hong Liu
- Department of Gastroenterology, The First People's Hospital of Shuangliu District (West China (Airport) Hospital of Sichuan University), Chengdu 610200, China.
| | - Xuan Song
- Center of Reproductive Medicine, Chengdu BOE Hospital, Chengdu 610219, China
| | - Xiaoqian Feng
- Department of Comprehensive Pediatric Internal Medicine, Chongqing University Three Gorges Hospital, Chongqing 404010, China
| | - Hui Xu
- Department of Gastroenterology, Chengdu BOE Hospital, Chengdu 610219, China
| | - Wei Tang
- Center of Endoscopy, Chengdu BOE Hospital, Chengdu 610219, China
| | - Jie Yang
- Center of Endoscopy, Chengdu BOE Hospital, Chengdu 610219, China
| |
Collapse
|
2
|
Zhuang J, Zhang H, Wu J, Hu D, Meng T, Xue J, Xu H, Wang G, Wang H, Zhang G. Redox-Responsive AIEgen Diselenide-Covalent Organic Framework Composites Targeting Hepatic Macrophages for Treatment of Drug-induced Liver Injury. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2024:e2402656. [PMID: 39140196 DOI: 10.1002/smll.202402656] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/03/2024] [Revised: 08/03/2024] [Indexed: 08/15/2024]
Abstract
The escalating misuse of antipyretic and analgesic drugs, alongside the rising incidents of acute drug-induced liver injury, underscores the need for a precisely targeted drug delivery system. Herein, two isoreticular covalent organic frameworks (Se-COF and Se-BCOF) are developed by Schiff-base condensation of emissive tetraphenylethylene and diselenide-bridged monomers. Leveraging the specific affinity of macrophages for mannose, the first precise targeting of these COFs to liver macrophages is achieved. The correlation is also explored between the therapeutic effects of COFs and the NLRP3/ASC/Caspase-1 signaling pathway. Utilizing this innovative delivery vehicle, the synergistic delivery of matrine and berberine are accomplished, compounds extracted from traditional Chinese medicine. This approach not only demonstrated the synergistic effects of the drugs but also mitigated their toxicity. Notably, berberine, through phosphorylation of JNK and up-regulation of nuclear Nrf-2 and its downstream gene Mn-SOD expression, simultaneously countered excessive ROS and suppressed the activation of the NLRP3/ASC/Caspase-1 signaling pathway in injured liver tissues. This multifaceted approach proved highly effective in safeguarding against acute drug-induced liver injury, ultimately restoring liver health to normalcy. These findings present a novel and promising strategy for the treatment of acute drug-induced liver injury.
Collapse
Affiliation(s)
- Jialu Zhuang
- Department of Oncology, The First Affiliated Hospital of Anhui Medical University, Inflammation and Immune Mediated Diseases Laboratory of Anhui Province, Anhui Medical University, Hefei, 230032, China
| | - Hao Zhang
- Department of Oncology, The First Affiliated Hospital of Anhui Medical University, Inflammation and Immune Mediated Diseases Laboratory of Anhui Province, Anhui Medical University, Hefei, 230032, China
| | - Jin Wu
- Department of Pharmacology, School of Basic Medical Sciences, Anhui Medical University, Hefei, 230032, China
| | - Danyou Hu
- Department of Oncology, The First Affiliated Hospital of Anhui Medical University, Inflammation and Immune Mediated Diseases Laboratory of Anhui Province, Anhui Medical University, Hefei, 230032, China
| | - Tao Meng
- Department of Pharmacology, School of Basic Medical Sciences, Anhui Medical University, Hefei, 230032, China
| | - Jing Xue
- Department of Pharmacology, School of Basic Medical Sciences, Anhui Medical University, Hefei, 230032, China
| | - Hanyang Xu
- Department of Oncology, The First Affiliated Hospital of Anhui Medical University, Inflammation and Immune Mediated Diseases Laboratory of Anhui Province, Anhui Medical University, Hefei, 230032, China
| | - Gang Wang
- Department of Respiratory and Critical Care Medicine, The First Affiliated Hospital of Anhui Medical University, Anhui Medical University, Hefei, 230032, China
| | - Hua Wang
- Department of Oncology, The First Affiliated Hospital of Anhui Medical University, Inflammation and Immune Mediated Diseases Laboratory of Anhui Province, Anhui Medical University, Hefei, 230032, China
| | - Guiyang Zhang
- Department of Pharmacology, School of Basic Medical Sciences, Anhui Medical University, Hefei, 230032, China
| |
Collapse
|
3
|
Stern NB, Shrestha B, Porter T. A Facile Approach to Producing Liposomal J-Aggregates of Indocyanine Green with Diagnostic and Therapeutic Potential. ADVANCED THERAPEUTICS 2024; 7:2400042. [PMID: 39132131 PMCID: PMC11308451 DOI: 10.1002/adtp.202400042] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2024] [Indexed: 08/13/2024]
Abstract
Liposomal J-Aggregates of Indocyanine Green (L-JA) can serve as a biocompatible and biodegradable nanoparticle for photoacoustic imaging and photothermal therapy. When compared to monomeric IcG, L-JA are characterized by longer circulation, improved photostability, elevated absorption at longer wavelengths, and increased photoacoustic signal generation. However, the documented methods for production of L-JA vary widely. We developed an approach to efficiently form IcG J-aggregates (IcG-JA) directly in liposomes at elevated temperatures. Aggregating within fully formed liposomes ensures particle uniformity and allows for control of J-aggregate size. L-JA have unique properties compared to IcG. L-JA provide significant contrast enhancement in photoacoustic images for up to 24 hours after injection, while IcG and unencapsulated IcG-JA are cleared within an hour. L-JA allow for more accurate photoacoustic-based sO2 estimation and particle tracking compared to IcG. Furthermore, photothermal heating of L-JA with an 852nm laser is demonstrated to be more effective at lower laser powers than conventional 808nm lasers for the first time. The presented technique offers an avenue for formulating a multi-faceted contrast agent for photoacoustic imaging and photothermal therapy that offers significant advantages over other conventional agents.
Collapse
|
4
|
Nendouvhada LP, Sibuyi NRS, Fadaka AO, Meyer S, Madiehe AM, Meyer M, Gabuza KB. Phytonanotherapy for the Treatment of Metabolic Dysfunction-Associated Steatotic Liver Disease. Int J Mol Sci 2024; 25:5571. [PMID: 38891759 PMCID: PMC11171778 DOI: 10.3390/ijms25115571] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2024] [Revised: 04/27/2024] [Accepted: 04/27/2024] [Indexed: 06/21/2024] Open
Abstract
Metabolic dysfunction-associated steatotic liver disease (MASLD), previously known as nonalcoholic fatty liver disease, is a steatotic liver disease associated with metabolic syndrome (MetS), especially obesity, hypertension, diabetes, hyperlipidemia, and hypertriglyceridemia. MASLD in 43-44% of patients can progress to metabolic dysfunction-associated steatohepatitis (MASH), and 7-30% of these cases will progress to liver scarring (cirrhosis). To date, the mechanism of MASLD and its progression is not completely understood and there were no therapeutic strategies specifically tailored for MASLD/MASH until March 2024. The conventional antiobesity and antidiabetic pharmacological approaches used to reduce the progression of MASLD demonstrated favorable peripheral outcomes but insignificant effects on liver histology. Alternatively, phyto-synthesized metal-based nanoparticles (MNPs) are now being explored in the treatment of various liver diseases due to their unique bioactivities and reduced bystander effects. Although phytonanotherapy has not been explored in the clinical treatment of MASLD/MASH, MNPs such as gold NPs (AuNPs) and silver NPs (AgNPs) have been reported to improve metabolic processes by reducing blood glucose levels, body fat, and inflammation. Therefore, these actions suggest that MNPs can potentially be used in the treatment of MASLD/MASH and related metabolic diseases. Further studies are warranted to investigate the feasibility and efficacy of phytonanomedicine before clinical application.
Collapse
Affiliation(s)
- Livhuwani P. Nendouvhada
- Department of Science and Innovation/Mintek Nanotechnology Innovation Centre, Biolabels Research Node, Department of Biotechnology, University of the Western Cape, Bellville 7535, South Africa (A.O.F.); (M.M.)
- Biomedical Research and Innovation Platform, South African Medical Research Council, Tygerberg 7505, South Africa
| | - Nicole R. S. Sibuyi
- Department of Science and Innovation/Mintek Nanotechnology Innovation Centre, Biolabels Research Node, Department of Biotechnology, University of the Western Cape, Bellville 7535, South Africa (A.O.F.); (M.M.)
- Health Platform, Advanced Materials Division, Mintek, Randburg 2194, South Africa
| | - Adewale O. Fadaka
- Department of Science and Innovation/Mintek Nanotechnology Innovation Centre, Biolabels Research Node, Department of Biotechnology, University of the Western Cape, Bellville 7535, South Africa (A.O.F.); (M.M.)
| | - Samantha Meyer
- Department of Biomedical Sciences, Faculty of Health and Wellness Sciences, Cape Peninsula University of Technology, Bellville 7535, South Africa;
| | - Abram M. Madiehe
- Department of Science and Innovation/Mintek Nanotechnology Innovation Centre, Biolabels Research Node, Department of Biotechnology, University of the Western Cape, Bellville 7535, South Africa (A.O.F.); (M.M.)
| | - Mervin Meyer
- Department of Science and Innovation/Mintek Nanotechnology Innovation Centre, Biolabels Research Node, Department of Biotechnology, University of the Western Cape, Bellville 7535, South Africa (A.O.F.); (M.M.)
| | - Kwazikwakhe B. Gabuza
- Department of Science and Innovation/Mintek Nanotechnology Innovation Centre, Biolabels Research Node, Department of Biotechnology, University of the Western Cape, Bellville 7535, South Africa (A.O.F.); (M.M.)
- Biomedical Research and Innovation Platform, South African Medical Research Council, Tygerberg 7505, South Africa
| |
Collapse
|
5
|
Fan J, Liu L, Lu Y, Chen Q, Fan S, Yang Y, Long Y, Liu X. Acute exposure to polystyrene nanoparticles promotes liver injury by inducing mitochondrial ROS-dependent necroptosis and augmenting macrophage-hepatocyte crosstalk. Part Fibre Toxicol 2024; 21:20. [PMID: 38610056 PMCID: PMC11010371 DOI: 10.1186/s12989-024-00578-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2023] [Accepted: 03/14/2024] [Indexed: 04/14/2024] Open
Abstract
BACKGROUND The global use of plastic materials has undergone rapid expansion, resulting in the substantial generation of degraded and synthetic microplastics and nanoplastics (MNPs), which have the potential to impose significant environmental burdens and cause harmful effects on living organisms. Despite this, the detrimental impacts of MNPs exposure towards host cells and tissues have not been thoroughly characterized. RESULTS In the present study, we have elucidated a previously unidentified hepatotoxic effect of 20 nm synthetic polystyrene nanoparticles (PSNPs), rather than larger PS beads, by selectively inducing necroptosis in macrophages. Mechanistically, 20 nm PSNPs were rapidly internalized by macrophages and accumulated in the mitochondria, where they disrupted mitochondrial integrity, leading to heightened production of mitochondrial reactive oxygen species (mtROS). This elevated mtROS generation essentially triggered necroptosis in macrophages, resulting in enhanced crosstalk with hepatocytes, ultimately leading to hepatocyte damage. Additionally, it was demonstrated that PSNPs induced necroptosis and promoted acute liver injury in mice. This harmful effect was significantly mitigated by the administration of a necroptosis inhibitor or systemic depletion of macrophages prior to PSNPs injection. CONCLUSION Collectively, our study suggests a profound toxicity of environmental PSNP exposure by triggering macrophage necroptosis, which in turn induces hepatotoxicity via intercellular crosstalk between macrophages and hepatocytes in the hepatic microenvironment.
Collapse
Affiliation(s)
- Junjie Fan
- Department of Laboratory and Blood Transfusion of Jiangbei Campus, The First Affiliated Hospital of Army Medical University (The 958th hospital of Chinese People's Liberation Army), 400000, Chongqing, China
| | - Li Liu
- Department of Laboratory and Blood Transfusion of Jiangbei Campus, The First Affiliated Hospital of Army Medical University (The 958th hospital of Chinese People's Liberation Army), 400000, Chongqing, China
| | - Yongling Lu
- Medical Research Center, Southwest Hospital, Army Military Medical University, 400038, Chongqing, China
| | - Qian Chen
- Medical Research Center, Southwest Hospital, Army Military Medical University, 400038, Chongqing, China
| | - Shijun Fan
- Medical Research Center, Southwest Hospital, Army Military Medical University, 400038, Chongqing, China
| | - Yongjun Yang
- Medical Research Center, Southwest Hospital, Army Military Medical University, 400038, Chongqing, China
| | - Yupeng Long
- Department of Laboratory and Blood Transfusion of Jiangbei Campus, The First Affiliated Hospital of Army Medical University (The 958th hospital of Chinese People's Liberation Army), 400000, Chongqing, China.
| | - Xin Liu
- Medical Research Center, Southwest Hospital, Army Military Medical University, 400038, Chongqing, China.
| |
Collapse
|
6
|
Brouwer H, Porbahaie M, Boeren S, Busch M, Bouwmeester H. The in vitro gastrointestinal digestion-associated protein corona of polystyrene nano- and microplastics increases their uptake by human THP-1-derived macrophages. Part Fibre Toxicol 2024; 21:4. [PMID: 38311718 PMCID: PMC10838446 DOI: 10.1186/s12989-024-00563-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2023] [Accepted: 01/16/2024] [Indexed: 02/06/2024] Open
Abstract
BACKGROUND Micro- and nanoplastics (MNPs) represent one of the most widespread environmental pollutants of the twenty-first century to which all humans are orally exposed. Upon ingestion, MNPs pass harsh biochemical conditions within the gastrointestinal tract, causing a unique protein corona on the MNP surface. Little is known about the digestion-associated protein corona and its impact on the cellular uptake of MNPs. Here, we systematically studied the influence of gastrointestinal digestion on the cellular uptake of neutral and charged polystyrene MNPs using THP-1-derived macrophages. RESULTS The protein corona composition was quantified using LC‒MS-MS-based proteomics, and the cellular uptake of MNPs was determined using flow cytometry and confocal microscopy. Gastrointestinal digestion resulted in a distinct protein corona on MNPs that was retained in serum-containing cell culture medium. Digestion increased the uptake of uncharged MNPs below 500 nm by 4.0-6.1-fold but did not affect the uptake of larger sized or charged MNPs. Forty proteins showed a good correlation between protein abundance and MNP uptake, including coagulation factors, apolipoproteins and vitronectin. CONCLUSION This study provides quantitative data on the presence of gastrointestinal proteins on MNPs and relates this to cellular uptake, underpinning the need to include the protein corona in hazard assessment of MNPs.
Collapse
Affiliation(s)
- Hugo Brouwer
- Division of Toxicology, Wageningen University, Stippeneng 4, 6708 WE, Wageningen, The Netherlands.
| | - Mojtaba Porbahaie
- Laboratory of Cell Biology and Immunology, Wageningen University, Wageningen, The Netherlands
| | - Sjef Boeren
- Laboratory of Biochemistry, Wageningen University, Wageningen, The Netherlands
| | - Mathias Busch
- Division of Toxicology, Wageningen University, Stippeneng 4, 6708 WE, Wageningen, The Netherlands
| | - Hans Bouwmeester
- Division of Toxicology, Wageningen University, Stippeneng 4, 6708 WE, Wageningen, The Netherlands
| |
Collapse
|
7
|
Zhang L, Zhang XY, Hu YL, You J. Synthesis, Characterization and Biosafety Evaluation of Hollow Gold Nanospheres. Curr Pharm Biotechnol 2024; 25:340-349. [PMID: 37309773 DOI: 10.2174/1389201024666230612114059] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2022] [Revised: 05/16/2023] [Accepted: 05/16/2023] [Indexed: 06/14/2023]
Abstract
OBJECTIVES In order to assess the biosafety of HAuNS using zebrafish models and the cancer cell lines HepG2, HEK293, and A549, this study prepared HAuNS in a variety of sizes and alterations. METHODS By oxidizing cobalt nanoparticles encased in gold shells, HAuNS were created. In the meantime, PEG- and PEI-coated HAuNS were created. The diameters of the HAuNS that were produced were 30~40 nm, 50~60 nm, and 70~80 nm. MTT assay was used to assess the toxicity of HAuNS on HepG2, HEK293, and A549 cells. For the investigation of their toxicities, HAuNS (50~60 nm) of various concentrations were incubated with zebrafish embryos. Then, cell death was determined using acridine orange staining. RESULTS In a cell line model, it was demonstrated that purified HAuNS exhibit lower toxicity than unpurified HAuNS. Meanwhile, it was discovered that surface-modified HAuNS was less hazardous than unmodified HAuNS. Unpurified HAuNS (50.60 nm) exposure to embryos caused deformity and increased mortality. Moreover, embryos exposed to HAuNS displayed an increase in cell death, showing that HAuNS can put zebrafish under physiological stress. CONCLUSION The possible toxicity of HAuNS is now more understood thanks to this investigation. The details could improve our comprehension of the nanotoxicity of medication delivery systems. Comparing HAuNS (50~60 nm) to the other two particle sizes, its toxicity was quite low. Compared to unpurified HAuNS, purified HAuNS displayed less toxicity. Comparing PEI-HAuNS and HAuNS to PEG-HAuNS, cytotoxicity was found to be lower. Our data support the use of pure HAuNS, HAuNS-PEG, and HAuNS (50~60 nm) as possible photothermal conductors when seen as a whole.
Collapse
Affiliation(s)
- Lu Zhang
- Department of Archaeology and Cultural Heritage, Zhejiang University, Hangzhou, P.R. China
- Naiman Market Inspection and Testing Center, Tongliao, P.R. China
| | - Xiao-Yan Zhang
- Research Institute of Traditional Chinese Medicine, Heilongjiang University of Chinese Medicine, Harbin, P.R. China
| | - Yu-Lan Hu
- Department of Archaeology and Cultural Heritage, Zhejiang University, Hangzhou, P.R. China
| | - Jian You
- College of Pharmaceutical Sciences, Zhejiang University, Hangzhou, P.R. China
| |
Collapse
|
8
|
Yang Y, Fan S, Chen Q, Lu Y, Zhu Y, Chen X, Xia L, Huang Q, Zheng J, Liu X. Correction: Acute exposure to gold nanoparticles aggravates lipopolysaccharide-induced liver injury by amplifying apoptosis via ROS-mediated macrophage-hepatocyte crosstalk. J Nanobiotechnology 2023; 21:239. [PMID: 37491233 PMCID: PMC10369827 DOI: 10.1186/s12951-023-01972-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/27/2023] Open
Affiliation(s)
- Yongjun Yang
- Medical Research Center, Southwest Hospital, Army Military Medical University, Chongqing, 400038, China
| | - Shijun Fan
- Medical Research Center, Southwest Hospital, Army Military Medical University, Chongqing, 400038, China
| | - Qian Chen
- Medical Research Center, Southwest Hospital, Army Military Medical University, Chongqing, 400038, China
| | - Yongling Lu
- Medical Research Center, Southwest Hospital, Army Military Medical University, Chongqing, 400038, China
| | - Yuanfeng Zhu
- Medical Research Center, Southwest Hospital, Army Military Medical University, Chongqing, 400038, China
| | - Xiaoli Chen
- Medical Research Center, Southwest Hospital, Army Military Medical University, Chongqing, 400038, China
| | - Lin Xia
- Medical Research Center, Southwest Hospital, Army Military Medical University, Chongqing, 400038, China
| | - Qianying Huang
- Medical Research Center, Southwest Hospital, Army Military Medical University, Chongqing, 400038, China
| | - Jiang Zheng
- Medical Research Center, Southwest Hospital, Army Military Medical University, Chongqing, 400038, China
| | - Xin Liu
- Medical Research Center, Southwest Hospital, Army Military Medical University, Chongqing, 400038, China.
| |
Collapse
|
9
|
Liu R, Xu W, Zhu H, Dong Z, Dong H, Yin S. Aging aggravates acetaminophen-induced acute liver injury and inflammation through inordinate C/EBPα-BMP9 crosstalk. Cell Biosci 2023; 13:61. [PMID: 36945064 PMCID: PMC10029235 DOI: 10.1186/s13578-023-01014-6] [Citation(s) in RCA: 9] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2022] [Accepted: 03/13/2023] [Indexed: 03/23/2023] Open
Abstract
BACKGROUND Previous studies have shown that bone morphogenetic protein 9 (BMP9) is almost exclusively produced in the liver and reaches tissues throughout the body as a secreted protein. However, the mechanism of BMP9 action and its role in aging-associated liver injury and inflammation are still unclear. RESULTS Aging significantly aggravates acetaminophen (APAP)-induced acute liver injury (ALI). Increased expression of CCAAT/enhancer binding protein α (C/EBPα) and BMP9 was identified in aged livers and in hepatocytes and macrophages (MФs) isolated from aged mice. Further analysis revealed that excess BMP9 was directly related to APAP-induced hepatocyte injury and death, as evidenced by activated drosophila mothers against decapentaplegic protein 1/5/9 (SMAD1/5/9) signaling, an increased dead cell/total cell ratio, decreased levels of ATG3 and ATG7, blocked autophagy, increased senescence-associated beta-galactosidase (SA-β-Gal) activity, and a higher rate of senescence-associated secretory phenotype (SASP) acquisition. In contrast, Bmp9 knockout (Bmp9-/-) partially alleviated the aforementioned manifestations of BMP9 overexpression. Moreover, BMP9 expression was found to be regulated by C/EBPα in vitro and in vivo. Notably, BMP9 also downregulated autophagy through its effect on autophagy-related genes (ATG3 and ATG7) in MΦs, which was associated with aggravated liver injury and SASP acquisition. CONCLUSIONS In summary, the present study highlights the crucial roles played by C/EBPα-BMP9 crosstalk and provides insights into the interrelationship between hepatocytes and MΦs during acute liver injury.
Collapse
Affiliation(s)
- Rui Liu
- Department of Geriatrics, Affiliated Provincial Hospital of Anhui Medical University, Anhui Medical University, Hefei, 230001, People's Republic of China
- Department of Oncology, The First Affiliated Hospital of Anhui Medical University, Hefei, 230022, China
| | - Wentao Xu
- Department of Oncology, The First Affiliated Hospital of Anhui Medical University, Hefei, 230022, China
| | - He Zhu
- Department of Geriatrics, Affiliated Provincial Hospital of Anhui Medical University, Anhui Medical University, Hefei, 230001, People's Republic of China
| | - Zijian Dong
- Clinical Medical College of Anhui Medical University, Hefei, 230036, China
| | - Huke Dong
- Clinical Medical College of Anhui Medical University, Hefei, 230036, China
| | - Shi Yin
- Department of Geriatrics, Affiliated Provincial Hospital of Anhui Medical University, Anhui Medical University, Hefei, 230001, People's Republic of China.
- Department of Geriatrics, Division of Life Sciences and Medicine, The First Affiliated Hospital of USTC, University of Science and Technology of China, Hefei, 230001, Anhui, China.
| |
Collapse
|
10
|
Triphenylphosphonium conjugated gold nanotriangles impact Pi3K/AKT pathway in breast cancer cells: a photodynamic therapy approach. Sci Rep 2023; 13:2230. [PMID: 36754981 PMCID: PMC9908940 DOI: 10.1038/s41598-023-28678-x] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2022] [Accepted: 01/23/2023] [Indexed: 02/10/2023] Open
Abstract
Although gold nanoparticles based photodynamic therapy (PDT) were reported to improve efficacy and specificity, the impact of surface charge in targeting cancer is still a challenge. Herein, we report gold nanotriangles (AuNTs) tuned with anionic and cationic surface charge conjugating triphenylphosphonium (TPP) targeting breast cancer cells with 5-aminoleuvinic acid (5-ALA) based PDT, in vitro. Optimized surface charge of AuNTs with and without TPP kill breast cancer cells. By combining, 5-ALA and PDT, the surface charge augmented AuNTs deliver improved cellular toxicity as revealed by MTT, fluorescent probes and flow cytometry. Further, the 5-ALA and PDT treatment in the presence of AuNTs impairs cell survival Pi3K/AKT signaling pathway causing mitochondrial dependent apoptosis. The cumulative findings demonstrate that, cationic AuNTs with TPP excel selective targeting of breast cancer cells in the presence of 5-ALA and PDT.
Collapse
|
11
|
Alshammari GM, Abdelhalim MA, Al-Ayed MS, Al-Harbi LN, Yahya MA. Concomitant Sub-Chronic Administration of Small-Size Gold Nanoparticles Aggravates Doxorubicin-Induced Liver Oxidative and Inflammatory Damage, Hyperlipidemia, and Hepatic Steatosis. Molecules 2023; 28:796. [PMID: 36677854 PMCID: PMC9863023 DOI: 10.3390/molecules28020796] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2022] [Revised: 01/02/2023] [Accepted: 01/06/2023] [Indexed: 01/15/2023] Open
Abstract
This study examined the effect of gold nanoparticles (AuNPs) on doxorubicin (DOX)-induced liver damage and steatosis in rats and tested its effect mechanism. Wistar male rats were divided into four groups (each of eight rats) as control, AuNPs (50 µL of 10 nm), DOX (15 mg/kg; 3 mg/kg/week), and DOX + AuNPs-treated rats. DOX is known to induce fasting hyperglycemia and hyperinsulinemia in treated rats. Individual treatment of both DOX and AuNPs also promoted liver damage, increased circulatory levels of ALT and AST, and stimulated serum and liver levels of TGs, CHOL, LDL-c, and FFAs. They also stimulated MDA, TNF-α, and IL-6, reduced GSH, SOD, HO-1, and CAT, upregulated mRNA levels of Bax and caspases-3 and -8 and downregulated mRNA levels of Bcl2 in the livers of rats. However, while DOX alone reduced hepatic levels of PPARα, both AuNPs and DOX stimulated mRNA levels of SREBP1, reduced the mRNA, cytoplasmic and nuclear levels of Nrf2, and increased mRNA, cytoplasmic, and nuclear levels of NF-κB. The liver damage and the alterations in all these parameters were significantly more profound when both AuNPs and DOX were administered together. In conclusion, AuNPs exaggerate liver damage, hyperlipidemia, and hepatic steatosis in DOX-treated rats by activating SREBP1 and NF-κB and suppressing the Nrf2/antioxidant axis.
Collapse
Affiliation(s)
- Ghedeir M. Alshammari
- Department of Food Science & Nutrition, College of Food and Agricultural Sciences, King Saud University, Riyadh 11451, Saudi Arabia
| | - Mohamed Anwar Abdelhalim
- Department of Physics and Astronomy, College of Sciences, King Saud University, Riyadh 11451, Saudi Arabia
| | - Mohammed S. Al-Ayed
- Department of Physics and Astronomy, College of Sciences, King Saud University, Riyadh 11451, Saudi Arabia
| | - Laila Naif Al-Harbi
- Department of Food Science & Nutrition, College of Food and Agricultural Sciences, King Saud University, Riyadh 11451, Saudi Arabia
| | - Mohammed Abdo Yahya
- Department of Food Science & Nutrition, College of Food and Agricultural Sciences, King Saud University, Riyadh 11451, Saudi Arabia
| |
Collapse
|
12
|
Kim J, Lee SK, Jung M, Jeong SY, You H, Won JY, Han SD, Cho HJ, Park S, Park J, Kim TM, Kim S. Extracellular vesicles from IFN-γ-primed mesenchymal stem cells repress atopic dermatitis in mice. J Nanobiotechnology 2022; 20:526. [PMID: 36496385 PMCID: PMC9741801 DOI: 10.1186/s12951-022-01728-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2022] [Accepted: 11/28/2022] [Indexed: 12/13/2022] Open
Abstract
BACKGROUND Atopic dermatitis (AD) is a chronic inflammatory skin disorder characterized by immune dysregulation, pruritus, and abnormal epidermal barrier function. Compared with conventional mesenchymal stem cell (MSC), induced pluripotent stem cell (iPSC)-derived mesenchymal stem cell (iMSC) is recognized as a unique source for producing extracellular vesicles (EVs) because it can be obtained in a scalable manner with an enhanced homogeneity. Stimulation of iMSCs with inflammatory cytokines can improve the immune-regulatory, anti-inflammatory, and tissue-repairing potential of iMSC-derived EVs. RESULTS Proteome analysis showed that IFN-γ-iMSC-EVs are enriched with protein sets that are involved in regulating interferon responses and inflammatory pathways. In AD mice, expression of interleukin receptors for Th2 cytokines (IL-4Rα/13Rα1/31Rα) and activation of their corresponding intracellular signaling molecules was reduced. IFN-γ-iMSC-EVs decreased itching, which was supported by reduced inflammatory cell infiltration and mast cells in AD mouse skin; reduced IgE receptor expression and thymic stromal lymphopoietin and NF-kB activation; and recovered impaired skin barrier, as evidenced by upregulation of key genes of epidermal differentiation and lipid synthesis. CONCLUSIONS IFN-γ-iMSC-EVs inhibit Th2-induced immune responses, suppress inflammation, and facilitate skin barrier restoration, contributing to AD improvement.
Collapse
Affiliation(s)
- Jimin Kim
- Brexogen Research Center, Brexogen Inc., Songpa-Gu, Seoul, 05855 South Korea
| | - Seul Ki Lee
- Brexogen Research Center, Brexogen Inc., Songpa-Gu, Seoul, 05855 South Korea
| | - Minyoung Jung
- Brexogen Research Center, Brexogen Inc., Songpa-Gu, Seoul, 05855 South Korea
| | - Seon-Yeong Jeong
- Brexogen Research Center, Brexogen Inc., Songpa-Gu, Seoul, 05855 South Korea
| | - Haedeun You
- Brexogen Research Center, Brexogen Inc., Songpa-Gu, Seoul, 05855 South Korea
| | - Ji-Yeon Won
- Brexogen Research Center, Brexogen Inc., Songpa-Gu, Seoul, 05855 South Korea
| | - Sang-Deok Han
- Brexogen Research Center, Brexogen Inc., Songpa-Gu, Seoul, 05855 South Korea
| | - Hye Jin Cho
- Brexogen Research Center, Brexogen Inc., Songpa-Gu, Seoul, 05855 South Korea
| | - Somi Park
- Brexogen Research Center, Brexogen Inc., Songpa-Gu, Seoul, 05855 South Korea
| | - Joonghoon Park
- grid.31501.360000 0004 0470 5905Graduate School of International Agricultural Technology, Seoul National University, Pyeongchang, Gangwon-do 25354 South Korea ,grid.31501.360000 0004 0470 5905Institutes of Green-Bio Science and Technology, Seoul National University, Pyeongchang, Gangwon-do 25354 South Korea
| | - Tae Min Kim
- grid.31501.360000 0004 0470 5905Graduate School of International Agricultural Technology, Seoul National University, Pyeongchang, Gangwon-do 25354 South Korea ,grid.31501.360000 0004 0470 5905Institutes of Green-Bio Science and Technology, Seoul National University, Pyeongchang, Gangwon-do 25354 South Korea
| | - Soo Kim
- Brexogen Research Center, Brexogen Inc., Songpa-Gu, Seoul, 05855 South Korea
| |
Collapse
|
13
|
Zhang N, Xiong G, Liu Z. Toxicity of metal-based nanoparticles: Challenges in the nano era. Front Bioeng Biotechnol 2022; 10:1001572. [PMID: 36619393 PMCID: PMC9822575 DOI: 10.3389/fbioe.2022.1001572] [Citation(s) in RCA: 46] [Impact Index Per Article: 23.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2022] [Accepted: 10/25/2022] [Indexed: 11/12/2022] Open
Abstract
With the rapid progress of nanotechnology, various nanoparticles (NPs) have been applicated in our daily life. In the field of nanotechnology, metal-based NPs are an important component of engineered NPs, including metal and metal oxide NPs, with a variety of biomedical applications. However, the unique physicochemical properties of metal-based NPs confer not only promising biological effects but also pose unexpected toxic threats to human body at the same time. For safer application of metal-based NPs in humans, we should have a comprehensive understanding of NP toxicity. In this review, we summarize our current knowledge about metal-based NPs, including the physicochemical properties affecting their toxicity, mechanisms of their toxicity, their toxicological assessment, the potential strategies to mitigate their toxicity and current status of regulatory movement on their toxicity. Hopefully, in the near future, through the convergence of related disciplines, the development of nanotoxicity research will be significantly promoted, thereby making the application of metal-based NPs in humans much safer.
Collapse
Affiliation(s)
- Naiding Zhang
- Department of Vascular Surgery, 2nd Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, Zhejiang, China
| | - Guiya Xiong
- Department of Science and Research, 2nd Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, Zhejiang, China
| | - Zhenjie Liu
- Department of Vascular Surgery, 2nd Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, Zhejiang, China,*Correspondence: Zhenjie Liu,
| |
Collapse
|
14
|
Zakaria ZZ, Mahmoud NN, Benslimane FM, Yalcin HC, Al Moustafa AE, Al-Asmakh M. Developmental Toxicity of Surface-Modified Gold Nanorods in the Zebrafish Model. ACS OMEGA 2022; 7:29598-29611. [PMID: 36061724 PMCID: PMC9434790 DOI: 10.1021/acsomega.2c01313] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/04/2022] [Accepted: 08/02/2022] [Indexed: 06/15/2023]
Abstract
BACKGROUND nanotechnology is one of the fastest-growing areas, and it is expected to have a substantial economic and social impact in the upcoming years. Gold particles (AuNPs) offer an opportunity for wide-ranging applications in diverse fields such as biomedicine, catalysis, and electronics, making them the focus of great attention and in parallel necessitating a thorough evaluation of their risk for humans and ecosystems. Accordingly, this study aims to evaluate the acute and developmental toxicity of surface-modified gold nanorods (AuNRs), on zebrafish (Danio rerio) early life stages. METHODS in this study, zebrafish embryos were exposed to surface-modified AuNRs at concentrations ranging from 1 to 20 μg/mL. Lethality and developmental endpoints such as hatching, tail flicking, and developmental delays were assessed until 96 h post-fertilization (hpf). RESULTS we found that AuNR treatment decreases the survival rate in embryos in a dose-dependent manner. Our data showed that AuNRs caused mortality with a calculated LC50 of EC50,24hpf of AuNRs being 9.1 μg/mL, while a higher concentration of AuNRs was revealed to elicit developmental abnormalities. Moreover, exposure to high concentrations of the nanorods significantly decreased locomotion compared to untreated embryos and caused a decrease in all tested parameters for cardiac output and blood flow analyses, leading to significantly elevated expression levels of cardiac failure markers ANP/NPPA and BNP/NPPB. CONCLUSIONS our results revealed that AuNR treatment at the EC50 induces apoptosis significantly through the P53, BAX/BCL-2, and CASPASE pathways as a suggested mechanism of action and toxicity modality.
Collapse
Affiliation(s)
- Zain Zaki Zakaria
- Department
of Biomedical Sciences, College of Health Sciences, QU Health, Qatar University, Doha 122104, Qatar
- Biomedical
Research Center, Qatar University, PO Box 2713, Doha 122104, Qatar
| | - Nouf N. Mahmoud
- Department
of Biomedical Sciences, College of Health Sciences, QU Health, Qatar University, Doha 122104, Qatar
- Faculty
of Pharmacy, Al-Zaytoonah University of
Jordan, Amman 11733, Jordan
| | | | - Huseyin C. Yalcin
- Biomedical
Research Center, Qatar University, PO Box 2713, Doha 122104, Qatar
| | - Ala-Eddin Al Moustafa
- Biomedical
Research Center, Qatar University, PO Box 2713, Doha 122104, Qatar
- College
of Medicine, QU Health, Qatar University, PO Box 2713, Doha 122104, Qatar
| | - Maha Al-Asmakh
- Department
of Biomedical Sciences, College of Health Sciences, QU Health, Qatar University, Doha 122104, Qatar
- Biomedical
Research Center, Qatar University, PO Box 2713, Doha 122104, Qatar
| |
Collapse
|
15
|
Alshammari GM, Abdelhalim MA, Al-Ayed MS, Al-Harbi LN, Yahya MA. The Protective Effect of α-Lipoic Acid against Gold Nanoparticles (AuNPs)-Mediated Liver Damage Is Associated with Upregulating Nrf2 and Suppressing NF-κB. Nutrients 2022; 14:nu14163327. [PMID: 36014833 PMCID: PMC9414933 DOI: 10.3390/nu14163327] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2022] [Revised: 08/08/2022] [Accepted: 08/10/2022] [Indexed: 12/21/2022] Open
Abstract
This study examined if regulating the keap-1? Nrf2 antioxidant pathway mediated gold nanoparticles (AuNPs) induced liver damage, and examined the protective effect of co-supplement of α-lipoic acid (α-LA). Rats were separated into 4 groups (n = 8/each) as control, α-LA (200 mg/kg), AuNPs (5 µg/2.85 × 1011), and AuNPs (5 µg/2.85 × 1011) + α-LA (200 mg/kg). After 7 days, AuNPs induced severe degeneration in the livers of rats with the appearance of some fatty changes. In addition, it increased serum levels of alanine aminotransferase (ALT) and gamma-glutamyl transferase (ɣ-GTT), and aspartate aminotransferase (AST), as well as liver levels of malondialdehyde (MDA). Concomitantly, AuNPs significantly depleted hepatic levels of total glutathione (GSH), superoxide dismutase (SOD), and catalase (CAT) but increased hepatic levels of tumor necrosis factor-α (TNF-α) and interleukin-6 (IL-6). It also reduced mRNA levels of B-cell lymphoma 2 (Bcl2) and heme oxygenase-1 (HO-1) but significantly increased those of Bax and cleaved caspase-3, as well as the ratio of Bax/Bcl2. In addition, AuNPs enhanced the total and nuclear levels of NF-κB p65 but reduced the mRNA and total and nuclear protein levels of Nrf2. Of note, AuNPs did not affect the mRNA levels of keap-1. All these events were reversed by α-LA in the AuNPs-treated rats. In conclusion, α-LA attenuated AuNPs-mediated liver damage in rats by suppressing oxidative stress and inflammation, effects that are associated with upregulation/activation of Nrf2.
Collapse
Affiliation(s)
- Ghedeir M. Alshammari
- Department of Food Science & Nutrition, College of Food and Agricultural Sciences, King Saud University, Riyadh 11451, Saudi Arabia
| | - Mohamed Anwar Abdelhalim
- Department of Physics and Astronomy, College of Science, King Saud University, Riyadh 11451, Saudi Arabia
| | - Mohammed S. Al-Ayed
- Department of Physics and Astronomy, College of Science, King Saud University, Riyadh 11451, Saudi Arabia
| | - Laila Naif Al-Harbi
- Department of Food Science & Nutrition, College of Food and Agricultural Sciences, King Saud University, Riyadh 11451, Saudi Arabia
| | - Mohammed Abdo Yahya
- Department of Food Science & Nutrition, College of Food and Agricultural Sciences, King Saud University, Riyadh 11451, Saudi Arabia
- Correspondence:
| |
Collapse
|
16
|
Zhang B, Yu L, Zhu R, Wei X, Fan X, Hu H, Yang D, Du H, Zhao M, Li L, Oh Y, Feng Y, Gu N. Malting barley carbon dots-mediated oxidative stress promotes insulin resistance in mice via NF-κB pathway and MAPK cascade. J Nanobiotechnology 2022; 20:331. [PMID: 35842638 PMCID: PMC9288084 DOI: 10.1186/s12951-022-01543-1] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2022] [Accepted: 07/04/2022] [Indexed: 11/25/2022] Open
Abstract
Background Food-borne carbon dots (CDs) are widely generated during food processing and are inevitably ingested by humans causing toxicity. However, the toxic effects of food-borne CDs on the blood glucose metabolism are unknown. Results In this study, we brewed beer via a representative strategy and extracted the melting-barley CDs (MBCDs) to explore the toxic effects on blood glucose in mice. We found the accumulation of fluorescent labeled MBCDs in various organs and oral administration of MBCDs can cause visceral toxicity, manifested as liver damage. Mice were orally administered MBCDs (5 and 25 mg/kg) for 16 weeks, and increased levels of fasting blood glucose were observed in both MBCDs-treated groups. Transcriptomic analyses revealed that MBCDs activate oxidative stress, inflammatory responses, the MAPK cascade, and PI3K/Akt signaling in mice livers. Mechanistically, MBCDs exposure-induced reactive oxygen species (ROS) overproduction activates the nuclear factor-κB (NF-κB) signaling pathway and MAPK cascade, thereby promoting phosphorylated insulin receptor substrate (IRS)-1 at Ser307 and inducing insulin resistance (IR). Meanwhile, the IR promoted gluconeogenesis, which enhanced MBCDs-induced hyperglycemia of mice. Importantly, inhibition of the ROS significantly attenuated the MBCDs-induced inflammatory response and MAPK cascade, thereby alleviating IR and hyperglycemia in mice. Conclusion In summary, this study revealed that MBCDs promote ROS overproduction and thus induced IR, resulting in imbalance of glucose homeostasis in mice. More importantly, this study was further assessed to reveal an imperative emphasis on the reevaluation of dietary and environmental CDs exposure, and has important implications for T2DM prevention research. Graphical Abstract ![]()
Supplementary Information The online version contains supplementary material available at 10.1186/s12951-022-01543-1.
Collapse
Affiliation(s)
- Boya Zhang
- School of Life Science and Technology, Harbin Institute of Technology, Harbin, 150001, China.,State Key Laboratory of Urban Water Resource and Environment, Harbin Institute of Technology, Harbin, 150006, China
| | - Lidong Yu
- School of Physics, Harbin Institute of Technology, Harbin, 150001, China
| | - Ruijiao Zhu
- School of Life Science and Technology, Harbin Institute of Technology, Harbin, 150001, China
| | - Xiangjuan Wei
- School of Life Science and Technology, Harbin Institute of Technology, Harbin, 150001, China
| | - Xingpei Fan
- School of Life Science and Technology, Harbin Institute of Technology, Harbin, 150001, China
| | - Hailong Hu
- Department of Medicine, Renal Electrolyte and Hypertension Division, Department of Genetics, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, 19019, USA
| | - Daqian Yang
- School of Life Science and Technology, Harbin Institute of Technology, Harbin, 150001, China
| | - Haining Du
- School of Life Science and Technology, Harbin Institute of Technology, Harbin, 150001, China
| | - Meimei Zhao
- School of Life Science and Technology, Harbin Institute of Technology, Harbin, 150001, China
| | - Li Li
- School of Life Science and Technology, Harbin Institute of Technology, Harbin, 150001, China
| | - Yuri Oh
- Faculty of Education, Wakayama University, Wakayama, Japan
| | - Yujie Feng
- State Key Laboratory of Urban Water Resource and Environment, Harbin Institute of Technology, Harbin, 150006, China
| | - Ning Gu
- School of Life Science and Technology, Harbin Institute of Technology, Harbin, 150001, China. .,State Key Laboratory of Urban Water Resource and Environment, Harbin Institute of Technology, Harbin, 150006, China.
| |
Collapse
|
17
|
Hofer S, Hofstätter N, Punz B, Hasenkopf I, Johnson L, Himly M. Immunotoxicity of nanomaterials in health and disease: Current challenges and emerging approaches for identifying immune modifiers in susceptible populations. WILEY INTERDISCIPLINARY REVIEWS. NANOMEDICINE AND NANOBIOTECHNOLOGY 2022; 14:e1804. [PMID: 36416020 PMCID: PMC9787548 DOI: 10.1002/wnan.1804] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 02/11/2022] [Revised: 03/24/2022] [Accepted: 03/30/2022] [Indexed: 11/24/2022]
Abstract
Nanosafety assessment has experienced an intense era of research during the past decades driven by a vivid interest of regulators, industry, and society. Toxicological assays based on in vitro cellular models have undergone an evolution from experimentation using nanoparticulate systems on singular epithelial cell models to employing advanced complex models more realistically mimicking the respective body barriers for analyzing their capacity to alter the immune state of exposed individuals. During this phase, a number of lessons were learned. We have thus arrived at a state where the next chapters have to be opened, pursuing the following objectives: (1) to elucidate underlying mechanisms, (2) to address effects on vulnerable groups, (3) to test material mixtures, and (4) to use realistic doses on (5) sophisticated models. Moreover, data reproducibility has become a significant demand. In this context, we studied the emerging concept of adverse outcome pathways (AOPs) from the perspective of immune activation and modulation resulting in pro-inflammatory versus tolerogenic responses. When considering the interaction of nanomaterials with biological systems, protein corona formation represents the relevant molecular initiating event (e.g., by potential alterations of nanomaterial-adsorbed proteins). Using this as an example, we illustrate how integrated experimental-computational workflows combining in vitro assays with in silico models aid in data enrichment and upon comprehensive ontology-annotated (meta)data upload to online repositories assure FAIRness (Findability, Accessibility, Interoperability, Reusability). Such digital twinning may, in future, assist in early-stage decision-making during therapeutic development, and hence, promote safe-by-design innovation in nanomedicine. Moreover, it may, in combination with in silico-based exposure-relevant dose-finding, serve for risk monitoring in particularly loaded areas, for example, workplaces, taking into account pre-existing health conditions. This article is categorized under: Toxicology and Regulatory Issues in Nanomedicine > Toxicology of Nanomaterials.
Collapse
Affiliation(s)
- Sabine Hofer
- Division of Allergy & Immunology, Department of Biosciences & Medical BiologyParis Lodron University of SalzburgSalzburgAustria
| | - Norbert Hofstätter
- Division of Allergy & Immunology, Department of Biosciences & Medical BiologyParis Lodron University of SalzburgSalzburgAustria
| | - Benjamin Punz
- Division of Allergy & Immunology, Department of Biosciences & Medical BiologyParis Lodron University of SalzburgSalzburgAustria
| | - Ingrid Hasenkopf
- Division of Allergy & Immunology, Department of Biosciences & Medical BiologyParis Lodron University of SalzburgSalzburgAustria
| | - Litty Johnson
- Division of Allergy & Immunology, Department of Biosciences & Medical BiologyParis Lodron University of SalzburgSalzburgAustria
| | - Martin Himly
- Division of Allergy & Immunology, Department of Biosciences & Medical BiologyParis Lodron University of SalzburgSalzburgAustria
| |
Collapse
|