1
|
Zhou X, Feng S, Xu Q, Li Y, Lan J, Wang Z, Ding Y, Wang S, Zhao Q. Current advances in nanozyme-based nanodynamic therapies for cancer. Acta Biomater 2025; 191:1-28. [PMID: 39571955 DOI: 10.1016/j.actbio.2024.11.023] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2024] [Revised: 10/29/2024] [Accepted: 11/18/2024] [Indexed: 11/28/2024]
Abstract
Nanozymes are nano-catalysis materials with enzyme-like activities, which can repair the defects of natural enzyme such as harsh catalytic conditions, and harness their strengths to treat tumor. The emerging nanodynamic therapies improved drug selectivity and decreased drug tolerance, while causing efficient cell apoptosis through the generated reactive oxygen species (ROS). Nanodynamic therapies based on nanozymes can improve the complicated tumor microenvironment (TME) to reduce the defect rate of nanodynamic therapies, and provide more options for tumor treatment. This review summarized the characteristics and applications of nanozymes with different activities and the factors influencing the activity of nanozymes. We also focused on the application of nanozymes in nanodynamic therapies, including photodynamic therapy (PDT), chemodynamic therapy (CDT), and sonodynamic therapy (SDT). Moreover, we discussed the strategies for optimizing nanodynamic therapies based on nanozymes for tumor treatment in detail, and provided a systematic review of tactics for synergies with other tumor therapies. Ultimately, we analyzed the shortcomings of nanodynamic therapies based on nanozymes and the relevant research prospect, which would provide sufficient evidence and lay a foundation for further research. STATEMENT OF SIGNIFICANCE: 1. The novelty and significance of the work with respect to the existing literatures. (1) Recent advances in nanozyme-based nanodynamic therapies are comprehensively and systematically reviewed, and strategies to address the limitations and challenges of current therapies based on nanozymes are discussed firstly. (2) The mechanism of nanozymes in nanodynamic therapies is described for the first time. The synergistic therapies, prospects, and challenges of nanozyme-based nanodynamic therapies are innovatively discussed. 2. The scientific impact and interest to our readership. This review focuses on the recent progress of nanozyme-based nanodynamic therapies. This review indicates the way forward for the combined treatment of nanozymes and nanodynamic therapies, and lays a foundation for facilitating theoretical development in clinic.
Collapse
Affiliation(s)
- Xubin Zhou
- Department of Pharmaceutics, School of Pharmacy, Shenyang Pharmaceutical University, 103 Wenhua Road, Shenyang, Liaoning 110016, PR China
| | - Shuaipeng Feng
- Department of Pharmaceutics, School of Pharmacy, Shenyang Pharmaceutical University, 103 Wenhua Road, Shenyang, Liaoning 110016, PR China
| | - Qingqing Xu
- Department of Pharmaceutics, School of Pharmacy, Shenyang Pharmaceutical University, 103 Wenhua Road, Shenyang, Liaoning 110016, PR China
| | - Yian Li
- School of Libra Arts of Shenyang Pharmaceutical University, Shenyang, Liaoning 110016, PR China
| | - Jiaru Lan
- Department of Pharmaceutics, School of Pharmacy, Shenyang Pharmaceutical University, 103 Wenhua Road, Shenyang, Liaoning 110016, PR China
| | - Ziyi Wang
- Department of Pharmaceutics, School of Pharmacy, Shenyang Pharmaceutical University, 103 Wenhua Road, Shenyang, Liaoning 110016, PR China
| | - Yiduo Ding
- Department of Pharmaceutics, School of Pharmacy, Shenyang Pharmaceutical University, 103 Wenhua Road, Shenyang, Liaoning 110016, PR China
| | - Siling Wang
- Department of Pharmaceutics, School of Pharmacy, Shenyang Pharmaceutical University, 103 Wenhua Road, Shenyang, Liaoning 110016, PR China
| | - Qinfu Zhao
- Department of Pharmaceutics, School of Pharmacy, Shenyang Pharmaceutical University, 103 Wenhua Road, Shenyang, Liaoning 110016, PR China.
| |
Collapse
|
2
|
Wu GL, Yen CE, Hsu WC, Yeh ML. Incorporation of cerium oxide nanoparticles into the micro-arc oxidation layer promotes bone formation and achieves structural integrity in magnesium orthopedic implants. Acta Biomater 2025; 191:80-97. [PMID: 39521312 DOI: 10.1016/j.actbio.2024.11.008] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2024] [Revised: 10/31/2024] [Accepted: 11/06/2024] [Indexed: 11/16/2024]
Abstract
Biodegradable metals offer significant advantages by reducing the need for additional surgeries following bone fixation. These materials, with their optimal mechanical and degradable properties, also mitigate stress-shielding effects while promoting biological processes essential for healing. This study investigated the in vitro and in vivo biocompatibility of ZK60 magnesium alloy coated with a micro-arc oxidative layer incorporated with cerium oxide nanoparticles in orthopedic implants. The results demonstrated that the magnesium substrate undergoes gradual degradation, effectively eliminating long-term inflammation during bone formation. The micro-arc oxidative coating forms a dense ceramic layer, acting as a protective barrier that reduces corrosion rates and enhances the biocompatibility of the magnesium substrate. The incorporation of cerium oxide nanoparticles improves the tribological properties of the coating, refining degradation patterns and improving osteogenic characteristics. Furthermore, cerium oxide nanoparticles enhance bone reconstruction by facilitating appropriate interconnections between newly formed bone and native bone tissue. Consequently, cerium oxide nanoparticles contribute to favorable biosafety outcomes and exceptional bone remodeling capabilities by supporting bone healing and sustaining a prolonged degradation process, ultimately achieving dynamic equilibrium in bone formation. STATEMENT OF SIGNIFICANCE: This study comprehensively examined the incorporation of cerium oxide nanoparticles into biodegradable magnesium through a micro-arc oxidative process for use in orthopedic implants. This study conducted a comprehensive analysis involving material characterization, biodegradability testing, in vitro osteogenesis assays, and in vivo implantation, highlighting the potential benefits of the distinctive properties of cerium oxide nanoparticles. This research emphasizes the ability of cerium oxide nanoparticles to enhance the biodegradability of magnesium and facilitate remarkable bone regeneration, suggesting promising advantages for additive materials in orthopedic implants.
Collapse
Affiliation(s)
- Guan-Lin Wu
- Department of Biomedical Engineering, National Cheng Kung University, Tainan, Taiwan
| | - Chin-En Yen
- Department of Biomedical Engineering, National Cheng Kung University, Tainan, Taiwan
| | - Wei-Chien Hsu
- Department of Biomedical Engineering, National Cheng Kung University, Tainan, Taiwan; Department of Orthopedics, An Nan Hospital, China Medical University, Tainan, Taiwan
| | - Ming-Long Yeh
- Department of Biomedical Engineering, National Cheng Kung University, Tainan, Taiwan; Medical Device Innovation Center, National Cheng Kung University, Tainan, Taiwan.
| |
Collapse
|
3
|
Li H, Pan M, Li Y, Liang H, Cui M, Zhang M, Zhang M. Nanomedicine: The new trend and future of precision medicine for inflammatory bowel disease. Chin Med J (Engl) 2024:00029330-990000000-01363. [PMID: 39679456 DOI: 10.1097/cm9.0000000000003413] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2024] [Indexed: 12/17/2024] Open
Abstract
ABSTRACT Nanomedicine is an interdisciplinary area that utilizes nanoscience and technology in the realm of medicine. Rapid advances in science and technology have propelled the medical sector into a new era. The most commonly used nanotechnology in the field of medicine is nanoparticles. Due to their unique physicochemical properties, nanoparticles offer significant benefits of precision medicine for diseases such as inflammatory bowel disease that cannot be effectively treated by existing approaches. Nanomedicine has emerged as a highly active research field, with extensive scientific and technological studies being carried out, as well as growing international competition in the commercialization of this field. The accumulation of expertise in the key technologies relating to nanomedicine would provide strategic advantages in the development of cutting-edge medical techniques. This review presented a comprehensive analysis of the primary uses of nanoparticles in medicine, including recent advances in their application for the diagnosis and treatment of inflammatory bowel disease. Furthermore, we discussed the challenges and possibilities associated with the application of nanoparticles in clinical settings.
Collapse
Affiliation(s)
- Huanyu Li
- Second Clinical Medical College, Shaanxi University of Chinese Medicine, Xianyang, Shaanxi 712046, China
| | - Meng Pan
- School of Basic Medical Sciences, Shaanxi University of Chinese Medicine, Xianyang, Shaanxi 712046, China
| | - Yifan Li
- Second Clinical Medical College, Shaanxi University of Chinese Medicine, Xianyang, Shaanxi 712046, China
| | - Hao Liang
- Department of Gastroenterology, The First Affiliated Hospital of Xi'an Medical University, Xi'an, Shaanxi 710077, China
| | - Manli Cui
- Department of Gastroenterology, The First Affiliated Hospital of Xi'an Medical University, Xi'an, Shaanxi 710077, China
| | - Mingzhen Zhang
- School of Basic Medical Sciences, Xi'an Jiaotong University, Xi'an, Shaanxi 710061, China
| | - Mingxin Zhang
- Department of Gastroenterology, The First Affiliated Hospital of Xi'an Medical University, Xi'an, Shaanxi 710077, China
- Engineering Research Center of Shaanxi Universities for Innovative Services of Chronic Disease Prevention and Control and Transformation of Nutritional Functional Food, Xi'an, Shaanxi 710077, China
| |
Collapse
|
4
|
Li S, Wu T, Wu J, Chen W, Zhang D. Recognizing the biological barriers and pathophysiological characteristics of the gastrointestinal tract for the design and application of nanotherapeutics. Drug Deliv 2024; 31:2415580. [PMID: 39404464 PMCID: PMC11485891 DOI: 10.1080/10717544.2024.2415580] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2024] [Revised: 10/04/2024] [Accepted: 10/07/2024] [Indexed: 10/19/2024] Open
Abstract
The gastrointestinal tract (GIT) is an important and complex system by which humans to digest food and absorb nutrients. The GIT is vulnerable to diseases, which may led to discomfort or even death in humans. Therapeutics for GIT disease treatment face multiple biological barriers, which significantly decrease the efficacy of therapeutics. Recognizing the biological barriers and pathophysiological characteristics of GIT may be helpful to design innovative therapeutics. Nanotherapeutics, which have special targeting and controlled therapeutic release profiles, have been widely used for the treatment of GIT diseases. Herein, we provide a comprehensive review of the biological barrier and pathophysiological characteristics of GIT, which may aid in the design of promising nanotherapeutics for GIT disease treatment. Furthermore, several typical diseases of the upper and lower digestive tracts, such as Helicobacter pylori infection and inflammatory bowel disease, were selected to investigate the application of nanotherapeutics for GIT disease treatment.
Collapse
Affiliation(s)
- Shan Li
- Department of Chemistry, College of Basic Medicine, Army Medical University (Third Military Medical University), Chongqing, China
- Department of Gastroenterology, Southwest Hospital, Army Medical University (Third Military Medical University), Chongqing, China
- Army 953 Hospital, Shigatse Branch of Xinqiao Hospital, Army Medical University (Third Military Medical University), Shigatse, Tibet Autonomous Region, China
| | - Tianyu Wu
- Department of Gastroenterology, Southwest Hospital, Army Medical University (Third Military Medical University), Chongqing, China
| | - Jingfeng Wu
- Department of Gastroenterology, Southwest Hospital, Army Medical University (Third Military Medical University), Chongqing, China
| | - Wensheng Chen
- Department of Gastroenterology, Southwest Hospital, Army Medical University (Third Military Medical University), Chongqing, China
| | - Dinglin Zhang
- Department of Chemistry, College of Basic Medicine, Army Medical University (Third Military Medical University), Chongqing, China
| |
Collapse
|
5
|
Yang D, Liu K, Cai C, Xi J, Yan C, Peng Z, Wang Y, Jing L, Zhang Y, Xie F, Li X. Target-Engineered Liposomes Decorated with Nanozymes Alleviate Liver Fibrosis by Remodeling the Liver Microenvironment. ACS APPLIED MATERIALS & INTERFACES 2024; 16:64536-64553. [PMID: 39530795 DOI: 10.1021/acsami.4c14357] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/16/2024]
Abstract
Liver fibrosis is a pathological repair response that occurs after sustained liver damage, and prompt intervention is necessary to prevent liver fibrosis from developing into a potentially life-threatening condition. In long-term liver injury, damaged hepatocytes produce excessive amounts of reactive oxygen species (ROS), which activate hepatic stellate cells (HSCs). This activation leads to excessive accumulation of extracellular matrix proteins in liver tissue. Additionally, liver macrophages contribute to the inflammatory microenvironment in the hepatic fibrotic process, exacerbating liver fibrosis through ROS production and the secretion of pro-inflammatory factors. To address the dysregulation of the hepatic microenvironment associated with liver fibrosis, we developed cerium oxide nanozymes using hyaluronic acid (HA) as a template and decorated them on the surface of liposomes loaded with oleanolic acid (OA). We named this prepared and obtained target-engineered liposome HCOL. The inherent superoxide dismutase (SOD) and catalase (CAT) activities of HCOL enabled it to effectively scavenge ROS in HSCs and alleviate the hypoxic conditions characteristic of fibrotic livers. Furthermore, HCOL reduced the concentrations of ROS in macrophages, promoting a shift in macrophage polarization from the pro-inflammatory M1 phenotype to the anti-inflammatory M2 phenotype. This transition increased the production of the anti-inflammatory cytokine interleukin 10 (IL-10), which contributed to the mitigation of the inflammatory microenvironment. Consequently, this therapeutic approach proves effective in decelerating the advancement of liver fibrosis.
Collapse
Affiliation(s)
- Dejun Yang
- School of Pharmacy, Chengdu University of Traditional Chinese Medicine, State Key Laboratory of Southwestern Chinese Medicine Resources, Chengdu 611137, China
| | - Kai Liu
- School of Pharmacy, Chengdu University of Traditional Chinese Medicine, State Key Laboratory of Southwestern Chinese Medicine Resources, Chengdu 611137, China
| | - Chunyan Cai
- School of Pharmacy, Chengdu University of Traditional Chinese Medicine, State Key Laboratory of Southwestern Chinese Medicine Resources, Chengdu 611137, China
| | - Jingjing Xi
- School of Pharmacy, Chengdu University of Traditional Chinese Medicine, State Key Laboratory of Southwestern Chinese Medicine Resources, Chengdu 611137, China
| | - Chunmei Yan
- School of Pharmacy, Chengdu University of Traditional Chinese Medicine, State Key Laboratory of Southwestern Chinese Medicine Resources, Chengdu 611137, China
| | - Zhaolei Peng
- School of Pharmacy, Chengdu University of Traditional Chinese Medicine, State Key Laboratory of Southwestern Chinese Medicine Resources, Chengdu 611137, China
| | - Yulin Wang
- School of Pharmacy, Chengdu University of Traditional Chinese Medicine, State Key Laboratory of Southwestern Chinese Medicine Resources, Chengdu 611137, China
| | - Lin Jing
- Institute of Public Health, Chengdu University of Traditional Chinese Medicine, Chengdu 611137, China
| | - Ying Zhang
- Institute of Public Health, Chengdu University of Traditional Chinese Medicine, Chengdu 611137, China
| | - Fan Xie
- Hospital of Chengdu University of Traditional Chinese Medicine. Chengdu 611137, China
| | - Xiaofang Li
- School of Pharmacy, Chengdu University of Traditional Chinese Medicine, State Key Laboratory of Southwestern Chinese Medicine Resources, Chengdu 611137, China
| |
Collapse
|
6
|
Li Z, Liu T, Xie W, Wang Z, Gong B, Yang M, He Y, Bai X, Liu K, Xie Z, Fan H. Protopanaxadiol derivative: A plant origin of novel selective glucocorticoid receptor modulator with anti-inflammatory effect. Eur J Pharmacol 2024; 983:176901. [PMID: 39181225 DOI: 10.1016/j.ejphar.2024.176901] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2024] [Revised: 07/19/2024] [Accepted: 08/14/2024] [Indexed: 08/27/2024]
Abstract
Constant efforts have been made to move towards maintaining the positive anti-inflammatory functions of glucocorticoids (GCs) while minimizing side effects. The anti-inflammatory effect of GCs is mainly attributed to the inhibition of major inflammatory pathways such as NF-κB through GR transrepression, while its side effects are mainly mediated by transactivation. Here, we investigated the selective glucocorticoid receptor modulator (SGRM)-like properties of a plant-derived compound. In this study, glucocorticoid receptor (GR)-mediated alleviation of inflammation by SP-8 was investigated by a combination of in vitro, in silico, and in vivo approaches. Molecular docking and cellular thermal shift assay suggested that SP-8 bound stably to the active site of GR via hydrogen bonding and hydrophobic interactions. SP-8 activated GR, induced GR nuclear translocation, and inhibited NF-κB pathway activation. Furthermore, SP-8 did not up-regulate the gene and protein expression of PEPCK and TAT in HepG2 cells, and it did not induce fat deposition like GC and has little effect on bone metabolism. Interestingly, SP-8 upregulated GR protein expression and did not cause GR phosphorylation at Ser211 in RAW264.7 cells. This work proved that SP-8 dissociated characteristics of transrepression and transactivation can be separated. In addition, the in vitro and in vivo anti-inflammatory effects of SP-8 were confirmed in LPS-induced RAW 264.7 cells and in a mouse model of DSS-induced ulcerative colitis, respectively. In conclusion, SP-8 might serve as a potential SGRM and might hold great potential for therapeutic use in inflammatory diseases.
Collapse
Affiliation(s)
- Zhenyuan Li
- School of Pharmacy, Key Laboratory of Molecular Pharmacology and Drug Evaluation (Yantai University), Ministry of Education, Collaborative Innovation Center of Advanced Drug Delivery System and Biotech Drugs in Universities of Shandong, Yantai University, Yantai, 264005, Shandong, PR China
| | - Teng Liu
- School of Pharmacy, Key Laboratory of Molecular Pharmacology and Drug Evaluation (Yantai University), Ministry of Education, Collaborative Innovation Center of Advanced Drug Delivery System and Biotech Drugs in Universities of Shandong, Yantai University, Yantai, 264005, Shandong, PR China
| | - Wenbin Xie
- School of Pharmacy, Key Laboratory of Molecular Pharmacology and Drug Evaluation (Yantai University), Ministry of Education, Collaborative Innovation Center of Advanced Drug Delivery System and Biotech Drugs in Universities of Shandong, Yantai University, Yantai, 264005, Shandong, PR China
| | - Zhixia Wang
- School of Pharmacy, Key Laboratory of Molecular Pharmacology and Drug Evaluation (Yantai University), Ministry of Education, Collaborative Innovation Center of Advanced Drug Delivery System and Biotech Drugs in Universities of Shandong, Yantai University, Yantai, 264005, Shandong, PR China
| | - Baifang Gong
- School of Pharmacy, Key Laboratory of Molecular Pharmacology and Drug Evaluation (Yantai University), Ministry of Education, Collaborative Innovation Center of Advanced Drug Delivery System and Biotech Drugs in Universities of Shandong, Yantai University, Yantai, 264005, Shandong, PR China
| | - Mingyan Yang
- School of Pharmacy, Key Laboratory of Molecular Pharmacology and Drug Evaluation (Yantai University), Ministry of Education, Collaborative Innovation Center of Advanced Drug Delivery System and Biotech Drugs in Universities of Shandong, Yantai University, Yantai, 264005, Shandong, PR China
| | - Yaping He
- School of Pharmacy, Key Laboratory of Molecular Pharmacology and Drug Evaluation (Yantai University), Ministry of Education, Collaborative Innovation Center of Advanced Drug Delivery System and Biotech Drugs in Universities of Shandong, Yantai University, Yantai, 264005, Shandong, PR China
| | - Xinxin Bai
- School of Pharmacy, Key Laboratory of Molecular Pharmacology and Drug Evaluation (Yantai University), Ministry of Education, Collaborative Innovation Center of Advanced Drug Delivery System and Biotech Drugs in Universities of Shandong, Yantai University, Yantai, 264005, Shandong, PR China
| | - Ke Liu
- Shandong Boyuan Biomedical Co., Ltd, Yantai, 264003, PR China
| | - Zeping Xie
- School of Pharmacy, Binzhou Medical University, Yantai, 264003, PR China.
| | - Huaying Fan
- School of Pharmacy, Key Laboratory of Molecular Pharmacology and Drug Evaluation (Yantai University), Ministry of Education, Collaborative Innovation Center of Advanced Drug Delivery System and Biotech Drugs in Universities of Shandong, Yantai University, Yantai, 264005, Shandong, PR China.
| |
Collapse
|
7
|
Liu L, Meng J, Li J, Liu J, Guo Z, Fang W, Zeng G. Utilizing the superoxide dismutase activity of ceria nanoparticles to endow poly-l-lactic acid bone implants with antitumor function. Int J Biol Macromol 2024; 282:137206. [PMID: 39500421 DOI: 10.1016/j.ijbiomac.2024.137206] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2024] [Revised: 10/31/2024] [Accepted: 10/31/2024] [Indexed: 11/09/2024]
Abstract
Currently, numerous bone tumor patients undergo tumor recurrence after surgical resection, which seriously affects their quality of life. In this study, the ceria (CeO2) nanoparticle was added to Poly-L-Lactic Acid (PLLA) bone implants endowing the bone implant with antitumor function. The results showed that the reactive oxygen species increased in U2OS cells while it dropped in HEK293 cells as the CeO2 content increased. Meanwhile, the PLLA-8CeO2 showed a high cell inhibition rate of 53.66 % for U2OS cells and possessed a high cell viability of 76.96 ± 2.20 % for HEK293 cells, meaning that the implant could kill bone tumor cells meanwhile show good cytocompatibility for normal cells. These were mainly due to the fact that the CeO2 nanoparticles acted as a superoxide dismutase in tumor cells reducing superoxide to hydrogen peroxide, inducing an increase in reactive oxygen species levels. The excess reactive oxygen species could result in tumor cell apoptosis by disrupting mitochondrial structure, oxidizing proteins, and promoting DNA denaturation. Moreover, the compressive strength of PLLA was improved by the CeO2 addition due to its particle dispersion strengthening. Besides, the PLLA-CeO2 had a faster degradation rate compared to PLLA. Overall, the PLLA-CeO2 is a promising implant material for bone tumor treatment.
Collapse
Affiliation(s)
- Long Liu
- Hunan Engineering Research Center of Research and Development of Degradable Materials and Molding Technology, Changsha University, Changsha 410003, China; Department of Mechanical and Electrical Engineering, Changsha University, Changsha 410003, China; Hunan Engineering Technology Research Center of low-carbon degradable material modification and processing, Changsha University, Changsha 410003, China
| | - Juan Meng
- Department of Mechanical and Electrical Engineering, Changsha University, Changsha 410003, China
| | - Jiamin Li
- Department of Mechanical and Electrical Engineering, Changsha University, Changsha 410003, China
| | - Jian Liu
- Hunan Engineering Research Center of Research and Development of Degradable Materials and Molding Technology, Changsha University, Changsha 410003, China; Department of Mechanical and Electrical Engineering, Changsha University, Changsha 410003, China; Hunan Engineering Technology Research Center of low-carbon degradable material modification and processing, Changsha University, Changsha 410003, China
| | - Zhiming Guo
- Hunan Engineering Research Center of Research and Development of Degradable Materials and Molding Technology, Changsha University, Changsha 410003, China; Department of Mechanical and Electrical Engineering, Changsha University, Changsha 410003, China; Hunan Engineering Technology Research Center of low-carbon degradable material modification and processing, Changsha University, Changsha 410003, China
| | - Wenjun Fang
- Hunan Engineering Research Center of Research and Development of Degradable Materials and Molding Technology, Changsha University, Changsha 410003, China; Department of Mechanical and Electrical Engineering, Changsha University, Changsha 410003, China; Hunan Engineering Technology Research Center of low-carbon degradable material modification and processing, Changsha University, Changsha 410003, China
| | - Guangsheng Zeng
- Hunan Engineering Research Center of Research and Development of Degradable Materials and Molding Technology, Changsha University, Changsha 410003, China; Department of Mechanical and Electrical Engineering, Changsha University, Changsha 410003, China; Hunan Engineering Technology Research Center of low-carbon degradable material modification and processing, Changsha University, Changsha 410003, China.
| |
Collapse
|
8
|
Ge H, Qi F, Shen Z, Wang H, Zhu S, Zhou S, Xie Z, Li D. Large-leaf yellow tea protein derived-peptides alleviated dextran sodium sulfate-induced acute colitis and restored intestinal microbiota balance in C57BL/6 J mice. Food Chem 2024; 456:139936. [PMID: 38865822 DOI: 10.1016/j.foodchem.2024.139936] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2024] [Revised: 05/25/2024] [Accepted: 05/30/2024] [Indexed: 06/14/2024]
Abstract
Large-leaf yellow tea (LYT)-derived peptides (TPP) are rich in amino acids required for damage repair, such as Glu, Arg, and Pro, and can be used to alleviate acute colitis. However, its effect and mechanisms against colitis remain unclear. This study utilized TPP to intervene in dextran sodium sulfate-induced acute colitis in C57BL/6 J mice. Results confirmed that TPP ameliorated acute colitis symptoms by inhibiting pro-inflammatory cytokines, restoring gut microbiota dysbiosis, particularly by increasing the abundance of beneficial bacteria Akkermansia and Lactobacillus while declining harmful microbiota Escherichia-Shigella. Besides, TPP intervention reshaped the gut microbiota phenotype by increasing the aerobic phenotype and reducing the potentially pathogenic phenotype. Levels of short-chain fatty acids, including acetic acid, propanoic acid, isobutyric acid, and butyric acid, were also enhanced in a dose-dependent manner to help restore gut microbiota equilibrium. This study supports using TPP as a viable plant protein-derived dietary resource for alleviating inflammatory bowel disease.
Collapse
Affiliation(s)
- Huifang Ge
- State Key Laboratory of Tea Plant Biology and Utilization, School of Tea and Food Science and Technology, Anhui Agricultural University, Hefei, Anhui 230036, People's Republic of China; Joint Research Center for Food Nutrition and Health of IHM, Hefei, Anhui 230036, People's Republic of China
| | - Fengxue Qi
- State Key Laboratory of Tea Plant Biology and Utilization, School of Tea and Food Science and Technology, Anhui Agricultural University, Hefei, Anhui 230036, People's Republic of China
| | - Ziyi Shen
- State Key Laboratory of Tea Plant Biology and Utilization, School of Tea and Food Science and Technology, Anhui Agricultural University, Hefei, Anhui 230036, People's Republic of China
| | - Hongyan Wang
- State Key Laboratory of Tea Plant Biology and Utilization, School of Tea and Food Science and Technology, Anhui Agricultural University, Hefei, Anhui 230036, People's Republic of China; Joint Research Center for Food Nutrition and Health of IHM, Hefei, Anhui 230036, People's Republic of China
| | - Shangliang Zhu
- State Key Laboratory of Tea Plant Biology and Utilization, School of Tea and Food Science and Technology, Anhui Agricultural University, Hefei, Anhui 230036, People's Republic of China
| | - Simeng Zhou
- State Key Laboratory of Tea Plant Biology and Utilization, School of Tea and Food Science and Technology, Anhui Agricultural University, Hefei, Anhui 230036, People's Republic of China
| | - Zhongwen Xie
- State Key Laboratory of Tea Plant Biology and Utilization, School of Tea and Food Science and Technology, Anhui Agricultural University, Hefei, Anhui 230036, People's Republic of China; Joint Research Center for Food Nutrition and Health of IHM, Hefei, Anhui 230036, People's Republic of China.
| | - Daxiang Li
- State Key Laboratory of Tea Plant Biology and Utilization, School of Tea and Food Science and Technology, Anhui Agricultural University, Hefei, Anhui 230036, People's Republic of China; Joint Research Center for Food Nutrition and Health of IHM, Hefei, Anhui 230036, People's Republic of China.
| |
Collapse
|
9
|
Yang Y, Zhang C, Lin L, Li Q, Wang M, Zhang Y, Yu Y, Hu D, Wang X. Multifunctional MnGA Nanozymes for the Treatment of Ulcerative Colitis by Reducing Intestinal Inflammation and Regulating the Intestinal Flora. ACS APPLIED MATERIALS & INTERFACES 2024; 16:56884-56901. [PMID: 39401179 DOI: 10.1021/acsami.4c14291] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/25/2024]
Abstract
In ulcerative colitis (UC), the formation of an inflammatory environment is due to the combined effects of excess production of reactive oxygen species (ROS) and reactive nitrogen species (RNS), overproduction of proinflammatory cytokines, and disruption of immune system function. There are many kinds of traditional drugs for the clinical treatment of UC, but long-term drug use can cause toxic side effects and drug resistance and can also reduce patient compliance and other drawbacks. Hence, in light of the clinical challenges associated with UC, including the limitations of existing treatments, intense adverse reactions and the development of resistance to medications, no novel therapeutic agents that offer effective relief and maintain a high level of biosafety are urgently needed. Although many anti-inflammatory nanomedicines have been developed by researchers, the development of efficient and nontoxic nanomedicines is still a major challenge in clinical medicine. Using the natural product gallic acid and the metal compound manganese chloride, a highly effective and nontoxic multifunctional nanoenzyme was developed for the treatment of UC. Nanozymes can effectively eliminate ROS and RNS to reduce the inflammation of intestinal epithelial cells caused by oxidation, facilitate the restoration of the intestinal epithelial barrier through the upregulation of tight junction protein expression, and balance the intestinal microbiota to maintain the stability of the intestinal environment. Using a rodent model designed to mimic UC, we monitored body weight, colon length, the spleen index, and the degree of tissue damage and demonstrated that manganese gallate (MnGA) nanoparticles can reduce intestinal inflammation by clearing ROS and active nitrogen. Intestinal flora sequencing revealed that MnGA nanoparticles could regulate the intestinal flora, promote the growth of beneficial bacteria and decrease the levels of detrimental bacteria within the intestinal tract in a mouse model of UC. Thus, MnGA nanoparticles can maintain the balance of the intestinal flora. This study demonstrated that MnGA nanoparticles are excellent antioxidant and effective anti-inflammatory agents, have good biosafety, and can effectively treat UC.
Collapse
Affiliation(s)
- Yan Yang
- Department of Gastroenterology, The Second Affiliated Hospital of Soochow University, Suzhou, Jiangsu 215000, China
- Department of Gastroenterology, The Second People's Hospital of Hefei, Hefei Hospital Affiliated to Anhui Medical University, Hefei, Anhui 230011, China
| | - Cong Zhang
- Department of Gastroenterology, Centre for Leading Medicine and Advanced Technologies of IHM, The First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, Anhui 230001, China
| | - Liting Lin
- School of Biomedical Engineering, Anhui Medical University, Hefei 230032, China
| | - Qingrong Li
- School of Biomedical Engineering, Anhui Medical University, Hefei 230032, China
| | - Min Wang
- School of Biomedical Engineering, Anhui Medical University, Hefei 230032, China
| | - Yiqun Zhang
- School of Biomedical Engineering, Anhui Medical University, Hefei 230032, China
| | - Yue Yu
- Department of Gastroenterology, Centre for Leading Medicine and Advanced Technologies of IHM, The First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, Anhui 230001, China
| | - Duanmin Hu
- Department of Gastroenterology, The Second Affiliated Hospital of Soochow University, Suzhou, Jiangsu 215000, China
| | - Xianwen Wang
- School of Biomedical Engineering, Anhui Medical University, Hefei 230032, China
| |
Collapse
|
10
|
Neupane YR, Yogananda TM, Rompicharla SVK, Selaru FM, Ensign LM. Emerging therapeutics for the management of intestinal fibrosis and strictures. ADVANCES IN PHARMACOLOGY (SAN DIEGO, CALIF.) 2024; 101:107-139. [PMID: 39521597 DOI: 10.1016/bs.apha.2024.09.001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/16/2024]
Abstract
Chronic intestinal inflammation in patients with inflammatory bowel disease (IBD) can lead to the development of fibrosis and the formation of strictures. Endoscopic balloon dilation and surgical resection are currently the only available treatments for fibrotic strictures. However, both strategies are associated with potential complications and high rates of stricture recurrence, necessitating additional procedures and/or multiple surgical resections. IBD therapeutic modalities aimed at inflammation, including anti-inflammatory agents, such as corticosteroids, biologics and small molecules, have shown limited efficacy in altering the natural history of strictures, ameliorating fibrosis progression, or preventing recurrences. New and innovative therapeutic approaches targeted at fibrosis are urgently needed. Herein, we provide an overview of emerging therapeutics, including novel drug delivery systems, for the management of intestinal fibrosis and strictures.
Collapse
Affiliation(s)
- Yub Raj Neupane
- Center for Nanomedicine at the Wilmer Eye Institute, The Johns Hopkins University School of Medicine, Baltimore, MD, United States; Department of Ophthalmology, The Johns Hopkins University School of Medicine, Baltimore, MD, United States
| | - Thanuja Marasarakottige Yogananda
- Center for Nanomedicine at the Wilmer Eye Institute, The Johns Hopkins University School of Medicine, Baltimore, MD, United States; Department of Ophthalmology, The Johns Hopkins University School of Medicine, Baltimore, MD, United States
| | - Sri Vishnu Kiran Rompicharla
- Center for Nanomedicine at the Wilmer Eye Institute, The Johns Hopkins University School of Medicine, Baltimore, MD, United States; Department of Ophthalmology, The Johns Hopkins University School of Medicine, Baltimore, MD, United States
| | - Florin M Selaru
- Division of Gastroenterology and Hepatology, The Johns Hopkins University School of Medicine, Baltimore, MD, United States; Department of Biomedical Engineering, The Johns Hopkins University School of Medicine, Baltimore, MD, United States; Department of Oncology, Sidney Kimmel Cancer Center, The Johns Hopkins University School of Medicine, Baltimore, MD, United States; The Institute for Nanobiotechnology, The Johns Hopkins University School of Medicine, Baltimore, MD, United States
| | - Laura M Ensign
- Center for Nanomedicine at the Wilmer Eye Institute, The Johns Hopkins University School of Medicine, Baltimore, MD, United States; Department of Ophthalmology, The Johns Hopkins University School of Medicine, Baltimore, MD, United States; Department of Biomedical Engineering, The Johns Hopkins University School of Medicine, Baltimore, MD, United States; Department of Oncology, Sidney Kimmel Cancer Center, The Johns Hopkins University School of Medicine, Baltimore, MD, United States; Departments of Gynecology and Obstetrics, Pharmacology and Molecular Sciences, and Medicine (Infectious Diseases), The Johns Hopkins University School of Medicine, Baltimore, MD, United States; Department of Chemical and Biomolecular Engineering, The Johns Hopkins University School of Medicine, Baltimore, MD, United States.
| |
Collapse
|
11
|
Lu J, Shen X, Li H, Du J. Recent advances in bacteria-based platforms for inflammatory bowel diseases treatment. EXPLORATION (BEIJING, CHINA) 2024; 4:20230142. [PMID: 39439496 PMCID: PMC11491310 DOI: 10.1002/exp.20230142] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 10/07/2023] [Accepted: 01/18/2024] [Indexed: 10/25/2024]
Abstract
Inflammatory bowel disease (IBD) is a recurring chronic inflammatory disease. Current treatment strategies are aimed at alleviating clinical symptoms and are associated with gastrointestinal or systemic adverse effects. New delivery strategies are needed for the treatment of IBD. Bacteria are promising biocarriers, which can produce drugs in situ and sense the gut in real time. Herein, we focus on recent studies of engineered bacteria used for IBD treatment and introduce the application of engineered bacteria in the diagnosis. On this basis, the current dilemmas and future developments of bacterial delivery systems are discussed.
Collapse
Affiliation(s)
- Jiaoying Lu
- Department of GastroenterologyThe First Affiliated HospitalSchool of MedicineZhejiang UniversityHangzhouChina
| | - Xinyuan Shen
- National Key Laboratory of Advanced Drug Delivery and Release SystemsCollege of Pharmaceutical SciencesZhejiang UniversityHangzhouChina
- Department of BioengineeringUniversity of CaliforniaLos AngelesCaliforniaUSA
| | - Hongjun Li
- National Key Laboratory of Advanced Drug Delivery and Release SystemsCollege of Pharmaceutical SciencesZhejiang UniversityHangzhouChina
- Department of Hepatobiliary and Pancreatic Surgery, The Second Affiliated HospitalSchool of MedicineZhejiang UniversityHangzhouZhejiangChina
- Liangzhu LaboratoryZhejiang UniversityHangzhouChina
| | - Juan Du
- Department of GastroenterologyThe First Affiliated HospitalSchool of MedicineZhejiang UniversityHangzhouChina
| |
Collapse
|
12
|
Ghorbani M, Ercole F, Nazemi K, Warne NM, Quinn JF, Kempe K. A comparative study on surface-engineered nanoceria using a catechol copolymer design: colloidal stability vs. antioxidant activity. NANOSCALE 2024; 16:17024-17041. [PMID: 39189132 DOI: 10.1039/d4nr02247e] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 08/28/2024]
Abstract
Nanoceria (NC) are widely studied as potent nanozyme antioxidants, featuring unique multifunctional, self-regenerative, and high-throughput enzymatic functions. However, bare NC are reported to show poor colloidal stability in biological media. Despite this, the nexus between colloidal stability and antioxidant activity has rarely been assessed. Here, a library of three copolymeric stabilising agents was synthesised, each consisting of hydrophilic poly(oligo(ethylene glycol) methyl ether methacrylate) brushes (P(OEGMA)) and a novel catechol anchoring block, and used for surface engineering of NC. The colloidal stability of the surface-engineered NC was assessed in phosphate buffered saline (PBS) by monitoring their precipitation via UV-Vis spectrophotometry, and their catalase (CAT)- and superoxide dismutase (SOD)-like activities were analysed using fluorospectrophotometry. The obtained results indicate that P(OEGMA) coating improves colloidal stability of NC over 48 h, highlighting the stable attachment of catechol functionalities to the surface of NC. In addition, X-ray photoelectron spectroscopy (XPS) indicates that the catechol functionalities lead to an increase in Ce3+/Ce4+ ratio and the concentration of oxygen vacancies, depending on the number of catechol units. Altogether, surface engineering of NC optimally results in an increase in CAT- and SOD-like activities by, respectively, 41% (=57.7% H2O2 elimination) and 78% (=78.0% O2˙- elimination) relative to bare NC, signifying a positive correlation between colloidal stability and antioxidant activity of the NC nanozymes.
Collapse
Affiliation(s)
- Milad Ghorbani
- Drug Delivery, Disposition and Dynamics, Monash Institute of Pharmaceutical Sciences, Monash University, Parkville, Victoria 3052, Australia.
- Materials Science and Engineering, Monash University, Clayton, Victoria 3800, Australia.
| | - Francesca Ercole
- Drug Delivery, Disposition and Dynamics, Monash Institute of Pharmaceutical Sciences, Monash University, Parkville, Victoria 3052, Australia.
| | - Katayoun Nazemi
- Drug Delivery, Disposition and Dynamics, Monash Institute of Pharmaceutical Sciences, Monash University, Parkville, Victoria 3052, Australia.
| | - Nicole M Warne
- Drug Delivery, Disposition and Dynamics, Monash Institute of Pharmaceutical Sciences, Monash University, Parkville, Victoria 3052, Australia.
| | - John F Quinn
- Drug Delivery, Disposition and Dynamics, Monash Institute of Pharmaceutical Sciences, Monash University, Parkville, Victoria 3052, Australia.
- Department of Chemical and Biological Engineering, Faculty of Engineering, Monash University, Clayton, Victoria 3800, Australia
| | - Kristian Kempe
- Drug Delivery, Disposition and Dynamics, Monash Institute of Pharmaceutical Sciences, Monash University, Parkville, Victoria 3052, Australia.
- Materials Science and Engineering, Monash University, Clayton, Victoria 3800, Australia.
| |
Collapse
|
13
|
Tong Y, Liu Q, Fu H, Han M, Zhu H, Yang K, Xu L, Meng M, Yin Y, Xi R. Cascaded Nanozyme Based pH-Responsive Oxygenation for Targeted Eradication of Resistant Helicobacter Pylori. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2024; 20:e2401059. [PMID: 38775621 DOI: 10.1002/smll.202401059] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/08/2024] [Revised: 04/22/2024] [Indexed: 10/04/2024]
Abstract
Nanozymes, as substitutes for natural enzymes, are constructed as cascade catalysis systems for biomedical applications due to their inherent catalytic properties, high stability, tunable physicochemical properties, and environmental responsiveness. Herein, a multifunctional nanozyme is reported to initiate cascade enzymatic reactions specific in acidic environments for resistant Helicobacter pylori (H. pylori) targeting eradication. The cobalt-coated Prussian blue analog based FPB-Co-Ch NPs displays oxidase-, superoxide dismutase-, peroxidase-, and catalase- mimicking activities that trigger •O 2 - ${\mathrm{O}}_2^ - {\bm{\ }}$ and H2O2 to supply O2, thereby killing H. pylori in the stomach. To this end, chitosan is modified on the surface to exert bacterial targeted adhesion and improve the biocompatibility of the composite. In the intestinal environment, the cascade enzymatic activities are significantly inhibited, ensuring the biosafety of the treatment. In vitro, sensitive and resistant strains of H. pylori are cultured and the antibacterial activity is evaluated. In vivo, murine infection models are developed and its success is confirmed by gastric mucosal reculturing, Gram staining, H&E staining, and Giemsa staining. Additionally, the antibacterial capacity, anti-inflammation, repair effects, and biosafety of FPB-Co-Ch NPs are comprehensively investigated. This strategy renders a drug-free approach that specifically targets and kills H. pylori, restoring the damaged gastric mucosa while relieving inflammation.
Collapse
Affiliation(s)
- Yue Tong
- State Key Laboratory of Medicinal Chemical Biology, College of Pharmacy and Tianjin Key Laboratory of Molecular Drug Research, Nankai University, Tianjin, 300350, China
| | - Qian Liu
- State Key Laboratory of Medicinal Chemical Biology, College of Pharmacy and Tianjin Key Laboratory of Molecular Drug Research, Nankai University, Tianjin, 300350, China
| | - Hongli Fu
- State Key Laboratory of Medicinal Chemical Biology, College of Pharmacy and Tianjin Key Laboratory of Molecular Drug Research, Nankai University, Tianjin, 300350, China
| | - Mengfan Han
- State Key Laboratory of Medicinal Chemical Biology, College of Pharmacy and Tianjin Key Laboratory of Molecular Drug Research, Nankai University, Tianjin, 300350, China
| | - Hanchen Zhu
- State Key Laboratory of Medicinal Chemical Biology, College of Pharmacy and Tianjin Key Laboratory of Molecular Drug Research, Nankai University, Tianjin, 300350, China
| | - Kun Yang
- State Key Laboratory of Medicinal Chemical Biology, College of Pharmacy and Tianjin Key Laboratory of Molecular Drug Research, Nankai University, Tianjin, 300350, China
| | - Le Xu
- State Key Laboratory of Medicinal Chemical Biology, College of Pharmacy and Tianjin Key Laboratory of Molecular Drug Research, Nankai University, Tianjin, 300350, China
| | - Meng Meng
- State Key Laboratory of Medicinal Chemical Biology, College of Pharmacy and Tianjin Key Laboratory of Molecular Drug Research, Nankai University, Tianjin, 300350, China
| | - Yongmei Yin
- State Key Laboratory of Medicinal Chemical Biology, College of Pharmacy and Tianjin Key Laboratory of Molecular Drug Research, Nankai University, Tianjin, 300350, China
| | - Rimo Xi
- State Key Laboratory of Medicinal Chemical Biology, College of Pharmacy and Tianjin Key Laboratory of Molecular Drug Research, Nankai University, Tianjin, 300350, China
| |
Collapse
|
14
|
Gao X, Gao N, Du M, Xiang Y, Zuo H, Cao H, Zheng S, Huang R, Wan W, Hu K. Pilocarpine mediated excessive calcium accumulation leads to ciliary muscle cell senescence and apoptosis. FASEB J 2024; 38:e23878. [PMID: 39120551 DOI: 10.1096/fj.202401286r] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2024] [Revised: 07/07/2024] [Accepted: 07/30/2024] [Indexed: 08/10/2024]
Abstract
The ciliary muscle constitutes a crucial element in refractive regulation. Investigating the pathophysiological mechanisms within the ciliary muscle during excessive contraction holds significance in treating ciliary muscle dysfunction. A guinea pig model of excessive contraction of the ciliary muscle induced by drops pilocarpine was employed, alongside the primary ciliary muscle cells was employed in in vitro experiments. The results of the ophthalmic examination showed that pilocarpine did not significantly change refraction and axial length during the experiment, but had adverse effects on the regulatory power of the ciliary muscle. The current data reveal notable alterations in the expression profiles of hypoxia inducible factor 1 (HIF-1α), ATP2A2, P53, α-SMA, Caspase-3, and BAX within the ciliary muscle of animals subjected to pilocarpine exposure, alongside corresponding changes observed in cultured cells treated with pilocarpine. Augmented levels of ROS were detected in both tissue specimens and cells, culminating in a significant increase in cell apoptosis in in vivo and in vitro experiments. Further examination revealed that pilocarpine induced an increase in intracellular Ca2+ levels and disrupted MMP, as evidenced by mitochondrial swelling and diminished cristae density compared to control conditions, concomitant with a noteworthy decline in antioxidant enzyme activity. However, subsequent blockade of Ca2+ channels in cells resulted in downregulation of HIF-1α, ATP2A2, P53, α-SMA, Caspase-3, and BAX expression, alongside ameliorated mitochondrial function and morphology. The inhibition of Ca2+ channels presents a viable approach to mitigate ciliary cells damage and sustain proper ciliary muscle function by curtailing the mitochondrial damage induced by excessive contractions.
Collapse
Affiliation(s)
- Xiang Gao
- The First Affiliated Hospital of Chongqing Medical University, Chongqing Key Laboratory of Prevention and Treatment on major blinding diseases, Chongqing Eye Institute, Chongqing Branch (Municipality Division) of National Clinical Research Center for Ocular Diseases, Chongqing, People's Republic of China
| | - Ning Gao
- The First Affiliated Hospital of Chongqing Medical University, Chongqing Key Laboratory of Prevention and Treatment on major blinding diseases, Chongqing Eye Institute, Chongqing Branch (Municipality Division) of National Clinical Research Center for Ocular Diseases, Chongqing, People's Republic of China
| | - Miaomiao Du
- The First Affiliated Hospital of Chongqing Medical University, Chongqing Key Laboratory of Prevention and Treatment on major blinding diseases, Chongqing Eye Institute, Chongqing Branch (Municipality Division) of National Clinical Research Center for Ocular Diseases, Chongqing, People's Republic of China
| | - Yongguo Xiang
- The First Affiliated Hospital of Chongqing Medical University, Chongqing Key Laboratory of Prevention and Treatment on major blinding diseases, Chongqing Eye Institute, Chongqing Branch (Municipality Division) of National Clinical Research Center for Ocular Diseases, Chongqing, People's Republic of China
| | - Hangjia Zuo
- The First Affiliated Hospital of Chongqing Medical University, Chongqing Key Laboratory of Prevention and Treatment on major blinding diseases, Chongqing Eye Institute, Chongqing Branch (Municipality Division) of National Clinical Research Center for Ocular Diseases, Chongqing, People's Republic of China
| | - Huijie Cao
- The First Affiliated Hospital of Chongqing Medical University, Chongqing Key Laboratory of Prevention and Treatment on major blinding diseases, Chongqing Eye Institute, Chongqing Branch (Municipality Division) of National Clinical Research Center for Ocular Diseases, Chongqing, People's Republic of China
| | - Shijie Zheng
- The First Affiliated Hospital of Chongqing Medical University, Chongqing Key Laboratory of Prevention and Treatment on major blinding diseases, Chongqing Eye Institute, Chongqing Branch (Municipality Division) of National Clinical Research Center for Ocular Diseases, Chongqing, People's Republic of China
| | | | - Wenjuan Wan
- The First Affiliated Hospital of Chongqing Medical University, Chongqing Key Laboratory of Prevention and Treatment on major blinding diseases, Chongqing Eye Institute, Chongqing Branch (Municipality Division) of National Clinical Research Center for Ocular Diseases, Chongqing, People's Republic of China
| | - Ke Hu
- The First Affiliated Hospital of Chongqing Medical University, Chongqing Key Laboratory of Prevention and Treatment on major blinding diseases, Chongqing Eye Institute, Chongqing Branch (Municipality Division) of National Clinical Research Center for Ocular Diseases, Chongqing, People's Republic of China
| |
Collapse
|
15
|
Kong C, Yang M, Yue N, Zhang Y, Tian C, Wei D, Shi R, Yao J, Wang L, Li D. Restore Intestinal Barrier Integrity: An Approach for Inflammatory Bowel Disease Therapy. J Inflamm Res 2024; 17:5389-5413. [PMID: 39161679 PMCID: PMC11330754 DOI: 10.2147/jir.s470520] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2024] [Accepted: 07/02/2024] [Indexed: 08/21/2024] Open
Abstract
The intestinal barrier maintained by various types of columnar epithelial cells, plays a crucial role in regulating the interactions between the intestinal contents (such as the intestinal microbiota), the immune system, and other components. Dysfunction of the intestinal mucosa is a significant pathophysiological mechanism and clinical manifestation of inflammatory bowel disease (IBD). However, current therapies for IBD primarily focus on suppressing inflammation, and no disease-modifying treatments specifically target the epithelial barrier. Given the side effects associated with chronic immunotherapy, effective alternative therapies that promote mucosal healing are highly attractive. In this review, we examined the function of intestinal epithelial barrier function and the mechanisms of behind its disruption in IBD. We illustrated the complex process of intestinal mucosal healing and proposed therapeutic approaches to promote mucosal healing strategies in IBD. These included the application of stem cell transplantation and organ-like tissue engineering approaches to generate new intestinal tissue. Finally, we discussed potential strategies to restore the function of the intestinal barrier as a treatment for IBD.
Collapse
Affiliation(s)
- Chen Kong
- The Second Clinical Medical College, Jinan University; Shenzhen, Guangdong, People’s Republic of China
| | - Meifeng Yang
- Department of Hematology, Yantian District People’s Hospital, Shenzhen, Guangdong, People’s Republic of China
| | - Ningning Yue
- Department of Gastroenterology, Shenzhen People’s Hospital (the Second Clinical Medical College, Jinan University), Shenzhen, Guangdong, People’s Republic of China
| | - Yuan Zhang
- Department of Medical Administration, Huizhou Institute of Occupational Diseases Control and Prevention, Huizhou, Guangdong, People’s Republic of China
| | - Chengmei Tian
- Department of Emergency, Shenzhen People’s Hospital (the Second Clinical Medical College, Jinan University; the First Affiliated Hospital, Southern University of Science and Technology), Shenzhen, Guangdong, People’s Republic of China
| | - Daoru Wei
- Department of Rehabilitation, Shenzhen People’s Hospital (the Second Clinical Medical College, Jinan University; the First Affiliated Hospital, Southern University of Science and Technology), Shenzhen, Guangdong, People’s Republic of China
| | - Ruiyue Shi
- The Second Clinical Medical College, Jinan University; Shenzhen, Guangdong, People’s Republic of China
| | - Jun Yao
- The Second Clinical Medical College, Jinan University; Shenzhen, Guangdong, People’s Republic of China
| | - Lisheng Wang
- The Second Clinical Medical College, Jinan University; Shenzhen, Guangdong, People’s Republic of China
| | - Defeng Li
- The Second Clinical Medical College, Jinan University; Shenzhen, Guangdong, People’s Republic of China
| |
Collapse
|
16
|
Cao L, Duan D, Peng J, Li R, Cao Q, Li X, Guo Y, Li J, Liu K, Li Y, Zhang W, Liu S, Zhang X, Zhao Y. Oral enzyme-responsive nanoprobes for targeted theranostics of inflammatory bowel disease. J Nanobiotechnology 2024; 22:484. [PMID: 39138477 PMCID: PMC11321179 DOI: 10.1186/s12951-024-02749-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2024] [Accepted: 08/02/2024] [Indexed: 08/15/2024] Open
Abstract
BACKGROUND Inflammatory bowel disease (IBD) is a progressive and debilitating inflammatory disease of the gastrointestinal tract (GIT). Despite recent advances, precise treatment and noninvasive monitoring remain challenging. METHODS Herein, we developed orally-administered, colitis-targeting and hyaluronic acid (HA)-modified, core-shell curcumin (Cur)- and cerium oxide (CeO2)-loaded nanoprobes (Cur@PC-HA/CeO2 NPs) for computed tomography (CT) imaging-guided treatment and monitoring of IBD in living mice. RESULTS Following oral administration, high-molecular-weight HA maintains integrity with little absorption in the upper GIT, and then actively accumulates at local colitis sites owing to its colitis-targeting ability, leading to specific CT enhancement lasting for 24 h. The retained NPs are further degraded by hyaluronidase in the colon to release Cur and CeO2, thereby exerting anti-inflammatory and antioxidant effects. Combined with the ability of NPs to regulate intestinal flora, the oral NPs result in substantial relief in symptoms. Following multiple treatments, the gradually decreasing range of the colon with high CT attenuation correlates with the change in the clinical biomarkers, indicating the feasibility of treatment response and remission. CONCLUSION This study provides a proof-of-concept for the design of a novel theranostic integration strategy for concomitant IBD treatment and the real-time monitoring of treatment responses.
Collapse
Affiliation(s)
- Lin Cao
- Department of Radiology, The Second Hospital of Tianjin Medical University, Tianjin, 300211, China
| | - Dengyi Duan
- Department of Radiology, The Second Hospital of Tianjin Medical University, Tianjin, 300211, China
| | - Jing Peng
- Department of Radiology, The Second Hospital of Tianjin Medical University, Tianjin, 300211, China
| | - Ruinan Li
- Image Center, Cangzhou Hospital of Integrated and Western Medicine, Cangzhou, 061001, China
| | - Qi Cao
- Department of Reproductive Medicine, First Teaching Hospital of Tianjin University of Traditional Chinese Medicine, Tianjin, 300380, China
| | - Xinwen Li
- Department of Radiology, The Second Hospital of Tianjin Medical University, Tianjin, 300211, China
| | - Yunfei Guo
- Department of Radiology, The Second Hospital of Tianjin Medical University, Tianjin, 300211, China
| | - Jianmin Li
- Tianjin Institute of Urology, The Second Hospital of Tianjin Medical University, Tianjin, 300211, China
- Tianjin Key Laboratory of Precision Medicine for Sex Hormones and Diseases (in Preparation), The Second Hospital of Tianjin Medical University, Tianjin, 300211, China
| | - Kangkang Liu
- Tianjin Institute of Urology, The Second Hospital of Tianjin Medical University, Tianjin, 300211, China
| | - Yiming Li
- Department of Radiology, The Second Hospital of Tianjin Medical University, Tianjin, 300211, China
| | - Wenyi Zhang
- Department of Radiology, The Second Hospital of Tianjin Medical University, Tianjin, 300211, China
| | - Shuang Liu
- Department of Radiology, The Second Hospital of Tianjin Medical University, Tianjin, 300211, China
| | - Xuening Zhang
- Department of Radiology, The Second Hospital of Tianjin Medical University, Tianjin, 300211, China
| | - Yang Zhao
- Department of Radiology, The Second Hospital of Tianjin Medical University, Tianjin, 300211, China.
- Tianjin Institute of Urology, The Second Hospital of Tianjin Medical University, Tianjin, 300211, China.
| |
Collapse
|
17
|
Meng X, Wang WD, Li SR, Sun ZJ, Zhang L. Harnessing cerium-based biomaterials for the treatment of bone diseases. Acta Biomater 2024; 183:30-49. [PMID: 38849022 DOI: 10.1016/j.actbio.2024.05.046] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2024] [Revised: 05/24/2024] [Accepted: 05/30/2024] [Indexed: 06/09/2024]
Abstract
Bone, an actively metabolic organ, undergoes constant remodeling throughout life. Disturbances in the bone microenvironment can be responsible for pathologically bone diseases such as periodontitis, osteoarthritis, rheumatoid arthritis and osteoporosis. Conventional bone tissue biomaterials are not adequately adapted to complex bone microenvironment. Therefore, there is an urgent clinical need to find an effective strategy to improve the status quo. In recent years, nanotechnology has caused a revolution in biomedicine. Cerium(III, IV) oxide, as an important member of metal oxide nanomaterials, has dual redox properties through reversible binding with oxygen atoms, which continuously cycle between Ce(III) and Ce(IV). Due to its special physicochemical properties, cerium(III, IV) oxide has received widespread attention as a versatile nanomaterial, especially in bone diseases. This review describes the characteristics of bone microenvironment. The enzyme-like properties and biosafety of cerium(III, IV) oxide are also emphasized. Meanwhile, we summarizes controllable synthesis of cerium(III, IV) oxide with different nanostructural morphologies. Following resolution of synthetic principles of cerium(III, IV) oxide, a variety of tailored cerium-based biomaterials have been widely developed, including bioactive glasses, scaffolds, nanomembranes, coatings, and nanocomposites. Furthermore, we highlight the latest advances in cerium-based biomaterials for inflammatory and metabolic bone diseases and bone-related tumors. Tailored cerium-based biomaterials have already demonstrated their value in disease prevention, diagnosis (imaging and biosensors) and treatment. Therefore, it is important to assist in bone disease management by clarifying tailored properties of cerium(III, IV) oxide in order to promote the use of cerium-based biomaterials in the future clinical setting. STATEMENT OF SIGNIFICANCE: In this review, we focused on the promising of cerium-based biomaterials for bone diseases. We reviewed the key role of bone microenvironment in bone diseases and the main biological activities of cerium(III, IV) oxide. By setting different synthesis conditions, cerium(III, IV) oxide nanostructures with different morphologies can be controlled. Meanwhile, tailored cerium-based biomaterials can serve as a versatile toolbox (e.g., bioactive glasses, scaffolds, nanofibrous membranes, coatings, and nanocomposites). Then, the latest research advances based on cerium-based biomaterials for the treatment of bone diseases were also highlighted. Most importantly, we analyzed the perspectives and challenges of cerium-based biomaterials. In future perspectives, this insight has given rise to a cascade of cerium-based biomaterial strategies, including disease prevention, diagnosis (imaging and biosensors) and treatment.
Collapse
Affiliation(s)
- Xiang Meng
- State Key Laboratory of Oral & Maxillofacial Reconstruction and Regeneration, Key Laboratory of Oral Biomedicine Ministry of Education, Hubei Key Laboratory of Stomatology, School & Hospital of Stomatology, Frontier Science Center for Immunology and Metabolism, TaiKang Center for Life and Medical Sciences, Wuhan University, Wuhan 430079, PR China
| | - Wen-Da Wang
- State Key Laboratory of Oral & Maxillofacial Reconstruction and Regeneration, Key Laboratory of Oral Biomedicine Ministry of Education, Hubei Key Laboratory of Stomatology, School & Hospital of Stomatology, Frontier Science Center for Immunology and Metabolism, TaiKang Center for Life and Medical Sciences, Wuhan University, Wuhan 430079, PR China
| | - Su-Ran Li
- State Key Laboratory of Oral & Maxillofacial Reconstruction and Regeneration, Key Laboratory of Oral Biomedicine Ministry of Education, Hubei Key Laboratory of Stomatology, School & Hospital of Stomatology, Frontier Science Center for Immunology and Metabolism, TaiKang Center for Life and Medical Sciences, Wuhan University, Wuhan 430079, PR China
| | - Zhi-Jun Sun
- State Key Laboratory of Oral & Maxillofacial Reconstruction and Regeneration, Key Laboratory of Oral Biomedicine Ministry of Education, Hubei Key Laboratory of Stomatology, School & Hospital of Stomatology, Frontier Science Center for Immunology and Metabolism, TaiKang Center for Life and Medical Sciences, Wuhan University, Wuhan 430079, PR China.
| | - Lu Zhang
- State Key Laboratory of Oral & Maxillofacial Reconstruction and Regeneration, Key Laboratory of Oral Biomedicine Ministry of Education, Hubei Key Laboratory of Stomatology, School & Hospital of Stomatology, Frontier Science Center for Immunology and Metabolism, TaiKang Center for Life and Medical Sciences, Wuhan University, Wuhan 430079, PR China; Department of Endodontics, School and Hospital of Stomatology, Wuhan University, HongShan District, LuoYu Road No. 237, Wuhan, 430079, PR China.
| |
Collapse
|
18
|
Zou H, Hong Y, Xu B, Wang M, Xie H, Wang Y, Lin Q. Multifunctional Cerium Oxide Nanozyme for Synergistic Dry Eye Disease Therapy. ACS APPLIED MATERIALS & INTERFACES 2024; 16:34757-34771. [PMID: 38946068 DOI: 10.1021/acsami.4c07390] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/02/2024]
Abstract
Dry eye disease (DED) is a chronic multifactorial ocular surface disease mainly caused by the instability of tear film, characterized by a series of ocular discomforts and even visual disorders. Oxidative stress has been recognized as an upstream factor in DED development. Diquafosol sodium (DQS) is an agonist of the P2Y2 receptor to restore the integrity/stability of the tear film. With the ability to alternate between Ce3+ and Ce4+, cerium oxide nanozymes could scavenge overexpressed reactive oxygen species (ROS). Hence, a DQS-loaded cerium oxide nanozyme was designed to boost the synergistic treatment of DED. Cerium oxide with branched polyethylenimine-graft-poly(ethylene glycol) as nucleating agent and dispersant was fabricated followed with DQS immobilization via a dynamic phenylborate ester bond, obtaining the DQS-loaded cerium oxide nanozyme (defined as Ce@PBD). Because of the ability to mimic the cascade processes of superoxide dismutase and catalase, Ce@PBD could scavenge excessive accumulated ROS, showing strong antioxidant and anti-inflammatory properties. Meanwhile, the P2Y2 receptors in the conjunctival cells could be stimulated by DQS in Ce@PBD, which can relieve the incompleteness and instability of the tear film. The animal experiments demonstrated that Ce@PBD significantly restored the defect of the corneal epithelium and increased the number of goblet cells, with the promotion of tear secretion, which was the best among commercial DQS ophthalmic solutions.
Collapse
Affiliation(s)
- Haoyu Zou
- National Engineering Research Center of Ophthalmology and Optometry, School of Biomedical Engineering, School of Ophthalmology and Optometry, Eye Hospital, Wenzhou Medical University, Wenzhou 325027, China
| | - Yueze Hong
- National Engineering Research Center of Ophthalmology and Optometry, School of Biomedical Engineering, School of Ophthalmology and Optometry, Eye Hospital, Wenzhou Medical University, Wenzhou 325027, China
| | - Baoqi Xu
- National Engineering Research Center of Ophthalmology and Optometry, School of Biomedical Engineering, School of Ophthalmology and Optometry, Eye Hospital, Wenzhou Medical University, Wenzhou 325027, China
| | - Mengting Wang
- National Engineering Research Center of Ophthalmology and Optometry, School of Biomedical Engineering, School of Ophthalmology and Optometry, Eye Hospital, Wenzhou Medical University, Wenzhou 325027, China
| | - Hongying Xie
- National Engineering Research Center of Ophthalmology and Optometry, School of Biomedical Engineering, School of Ophthalmology and Optometry, Eye Hospital, Wenzhou Medical University, Wenzhou 325027, China
| | - Yajia Wang
- National Engineering Research Center of Ophthalmology and Optometry, School of Biomedical Engineering, School of Ophthalmology and Optometry, Eye Hospital, Wenzhou Medical University, Wenzhou 325027, China
| | - Quankui Lin
- National Engineering Research Center of Ophthalmology and Optometry, School of Biomedical Engineering, School of Ophthalmology and Optometry, Eye Hospital, Wenzhou Medical University, Wenzhou 325027, China
| |
Collapse
|
19
|
Guo R, Xu W, Wang Y, Yue L, Huang S, Xiu Y, Huang Y, Wang B. A Spatially Stable Crystal-Particle Gel to Trap Patchouli Oil for Efficient Colonic Drug Delivery. ACS APPLIED MATERIALS & INTERFACES 2024; 16:29198-29209. [PMID: 38785397 DOI: 10.1021/acsami.4c03219] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/25/2024]
Abstract
Patchouli oil has exhibited remarkable efficacy in the treatment of colitis. However, its volatility and potential irritancy are often drawbacks when extensively used in clinical applications. Oil gel is a semisolid and thermoreversible system that has received extensive interest for its solubility enhancement, inhibition of bioactive component recrystallization, and the facilitation of controlled bioactive release. Therefore, we present a strategy to develop an oil gel formulation that addresses this multifaceted problem. Notably, a patchouli oil gel formulation was designed to solidify and trap patchouli oil into a spatially stable crystal-particle structure and colonic released delivery, which has an advantage of the stable structure and viscosity. The patchouli oil gel treatment of zebrafish with colitis improved goblet cells and decreased macrophages. Additionally, patchouli oil gel showed superior advantages for restoring the tissue barrier. Furthermore, our investigative efforts unveiled patchouli oil's influence on TRP channels, providing evidence for its potential role in mechanisms of anti-inflammatory action. While the journey continues, these preliminary revelations provide a robust foundation for considering the adoption of patchouli oil gel as a pragmatic intervention for managing colitis.
Collapse
Affiliation(s)
- Ru Guo
- School of Pharmacy, Shanghai University of Traditional Chinese Medicine, Shanghai 201203, China
- State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai 201203, China
| | - Weihua Xu
- State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai 201203, China
- Department of Pharmacy, Shanghai University of Medicine & Health Sciences Affiliated Zhoupu Hospital, Shanghai 201318, China
| | - Yingshu Wang
- School of Pharmacy, Shanghai University of Traditional Chinese Medicine, Shanghai 201203, China
- State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai 201203, China
| | - Lixia Yue
- School of Pharmacy, Shanghai University of Traditional Chinese Medicine, Shanghai 201203, China
- State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai 201203, China
| | - Shaogang Huang
- The First Affiliated Hospital of Guangzhou University of Chinese Medicine, Guangzhou 501405, China
| | - Yanfeng Xiu
- School of Pharmacy, Shanghai University of Traditional Chinese Medicine, Shanghai 201203, China
| | - Yongzhuo Huang
- State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai 201203, China
| | - Bing Wang
- School of Pharmacy, Shanghai University of Traditional Chinese Medicine, Shanghai 201203, China
- State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai 201203, China
- State Key Laboratory of Systems Medicine for Cancer, Shanghai Cancer Institute, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai 200032, China
| |
Collapse
|
20
|
Yu Y, Yang D, Lin B, Zhu L, Li C, Li X. Readily Available Oral Prebiotic Protein Reactive Oxygen Species Nanoscavengers for Synergistic Therapy of Inflammation and Fibrosis in Inflammatory Bowel Disease. ACS NANO 2024; 18:13583-13598. [PMID: 38740518 DOI: 10.1021/acsnano.3c13114] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/16/2024]
Abstract
A significant gap exists in the demand for safe and effective drugs for inflammatory bowel disease (IBD), and its associated intestinal fibrosis. As oxidative stress plays a central role in the pathogenesis of IBD, astaxanthin (AST), a good antioxidant with high safety, holds promise for treating IBD. However, the application of AST is restricted by its poor solubility and easy oxidation. Herein, different protein-based nanoparticles (NPs) are fabricated for AST loading to identify an oral nanovehicle with potential clinical applicability. Through systematic validation via molecular dynamics simulation and in vitro characterization of properties, whey protein isolate (WPI)-driven NPs using a simple preparation method without the need for cross-linking agents or emulsifiers were identified as the optimal carrier for oral AST delivery. Upon oral administration, the WPI-driven NPs, benefiting from the intrinsic pH sensitivity and mucoadhesive properties, effectively shielded AST from degradation by gastric juices and targeted release of AST at intestinal lesion sites. Additionally, the AST NPs displayed potent therapeutic efficacy in both dextran sulfate sodium (DSS)-induced acute colitis and chronic colitis-associated intestinal fibrosis by ameliorating inflammation, oxidative damage, and intestinal microecology. In conclusion, the AST WPI NPs hold a potential therapeutic value in treating inflammation and fibrosis in IBD.
Collapse
Affiliation(s)
- Yang Yu
- College of Pharmaceutical Sciences, Southwest University, Chongqing 400715, China
| | - Dairong Yang
- College of Pharmaceutical Sciences, Southwest University, Chongqing 400715, China
| | - Bingru Lin
- Department of Gastroenterology, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou 310003, China
| | - Lin Zhu
- School of Chinese Medicine, Hong Kong Baptist University, 999077 Hong Kong, China
| | - Chong Li
- College of Pharmaceutical Sciences, Southwest University, Chongqing 400715, China
| | - Xin Li
- Department of Clinical Pharmacy, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou 310003, China
| |
Collapse
|
21
|
Hua S, Dong X, Peng Q, Zhang K, Zhang X, Yang J. Single-atom nanozymes shines diagnostics of gastrointestinal diseases. J Nanobiotechnology 2024; 22:286. [PMID: 38796465 PMCID: PMC11127409 DOI: 10.1186/s12951-024-02569-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2024] [Accepted: 05/20/2024] [Indexed: 05/28/2024] Open
Abstract
Various clinical symptoms of digestive system, such as infectious, inflammatory, and malignant disorders, have a profound impact on the quality of life and overall health of patients. Therefore, the chase for more potent medicines is both highly significant and urgent. Nanozymes, a novel class of nanomaterials, amalgamate the biological properties of nanomaterials with the catalytic activity of enzymes, and have been engineered for various biomedical applications, including complex gastrointestinal diseases (GI). Particularly, because of their distinctive metal coordination structure and ability to maximize atom use efficiency, single-atom nanozymes (SAzymes) with atomically scattered metal centers are becoming a more viable substitute for natural enzymes. Traditional nanozyme design strategies are no longer able to meet the current requirements for efficient and diverse SAzymes design due to the diversification and complexity of preparation processes. As a result, this review emphasizes the design concept and the synthesis strategy of SAzymes, and corresponding bioenzyme-like activities, such as superoxide dismutase (SOD), peroxidase (POD), oxidase (OXD), catalase (CAT), and glutathione peroxidase (GPx). Then the various application of SAzymes in GI illnesses are summarized, which should encourage further research into nanozymes to achieve better application characteristics.
Collapse
Affiliation(s)
- Sijia Hua
- Zhejiang University of Chinese Medicine, No. 548 Binwen Road, Binjiang District, Hangzhou, 310053, Zhejiang, China
| | - Xiulin Dong
- Department of Gastroenterology, School of Medicine, Affiliated Hangzhou First People's Hospital, Westlake University, No. 261 Huansha Road, Hangzhou, 310006, Zhejiang, China
- Department of Pharmacy and Central Laboratory, School of Medicine, Sichuan Academy of Medical Sciences, Sichuan Provincial People's Hospital, University of Electronic Science and Technology of China, No. 32, West Second Section, First Ring Road, Chengdu, 610072, Sichuan, People's Republic of China
| | - Qiuxia Peng
- Department of Pharmacy and Central Laboratory, School of Medicine, Sichuan Academy of Medical Sciences, Sichuan Provincial People's Hospital, University of Electronic Science and Technology of China, No. 32, West Second Section, First Ring Road, Chengdu, 610072, Sichuan, People's Republic of China
| | - Kun Zhang
- Department of Pharmacy and Central Laboratory, School of Medicine, Sichuan Academy of Medical Sciences, Sichuan Provincial People's Hospital, University of Electronic Science and Technology of China, No. 32, West Second Section, First Ring Road, Chengdu, 610072, Sichuan, People's Republic of China.
| | - Xiaofeng Zhang
- Department of Gastroenterology, School of Medicine, Affiliated Hangzhou First People's Hospital, Westlake University, No. 261 Huansha Road, Hangzhou, 310006, Zhejiang, China.
| | - Jianfeng Yang
- Department of Gastroenterology, School of Medicine, Affiliated Hangzhou First People's Hospital, Westlake University, No. 261 Huansha Road, Hangzhou, 310006, Zhejiang, China.
| |
Collapse
|
22
|
Li X, Zhu W, Liu R, Ding G, Huang H. Cerium Oxide Nanozymes Improve Skeletal Muscle Function in Gestational Diabetic Offspring by Attenuating Mitochondrial Oxidative Stress. ACS OMEGA 2024; 9:21851-21863. [PMID: 38799328 PMCID: PMC11112706 DOI: 10.1021/acsomega.3c09025] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/13/2023] [Revised: 04/14/2024] [Accepted: 04/30/2024] [Indexed: 05/29/2024]
Abstract
Gestational diabetes mellitus (GDM) is a significant complication during pregnancy that results in abnormalities in the function of multiple systems in the offspring, which include skeletal muscle dysfunction and reduced systemic metabolic capacity. One of the primary causes behind this intergenerational effect is the presence of mitochondrial dysfunction and oxidative stress in the skeletal muscle of the offspring due to exposure to a high-glucose environment in utero. Cerium oxide (CeO2) nanozymes are antioxidant agents with polymerase activity that have been widely used in the treatment of inflammatory and aging diseases. In this study, we synthesized ultrasmall particle size CeO2 nanozymes and applied them in GDM mouse offspring. The CeO2 nanozymes demonstrated an ability to increase insulin sensitivity and enhance skeletal muscle motility in GDM offspring by improving mitochondrial activity, increasing mitochondrial ATP synthesis function, and restoring abnormal mitochondrial morphology. Furthermore, at the cellular level, CeO2 nanozymes could ameliorate metabolic dysregulation and decrease cell differentiation in adult muscle cells induced by hyperglycemic stimuli. This was achieved through the elimination of endogenous reactive oxygen species (ROS) and an improvement in mitochondrial oxidative respiration function. In conclusion, CeO2 nanozymes play a crucial role in preserving muscle function and maintaining the metabolic stability of organisms. Consequently, they serve to reverse the negative effects of GDM on skeletal muscle physiology in the offspring.
Collapse
Affiliation(s)
- Xinyuan Li
- Obstetrics
and Gynecology Hospital, Institute of Reproduction and Development, Fudan University, Shanghai200433,China
- Research
Units of Embryo Original Diseases, Chinese
Academy of Medical Sciences (No. 2019RU056), Shanghai200011,China
- Key
Laboratory of Reproductive Genetics (Ministry of Education), Department
of Reproductive Endocrinology, Women’s Hospital, Zhejiang University School of Medicine, Hangzhou310058,China
| | - Wanbo Zhu
- Department
of Orthopedics, Shanghai Sixth People’s Hospital Affiliated
to Shanghai Jiao Tong University School of Medicine, Shanghai Jiao Tong University, Shanghai 200233, China
| | - Rui Liu
- Obstetrics
and Gynecology Hospital, Institute of Reproduction and Development, Fudan University, Shanghai200433,China
- Research
Units of Embryo Original Diseases, Chinese
Academy of Medical Sciences (No. 2019RU056), Shanghai200011,China
- Key
Laboratory of Reproductive Genetics (Ministry of Education), Department
of Reproductive Endocrinology, Women’s Hospital, Zhejiang University School of Medicine, Hangzhou310058,China
- Reproductive
Medicine Center, International Institutes of Medicine, the Fourth
Affiliated Hospital, Zhejiang University
School of Medicine, Yiwu322000, China
| | - Guolian Ding
- Obstetrics
and Gynecology Hospital, Institute of Reproduction and Development, Fudan University, Shanghai200433,China
- Research
Units of Embryo Original Diseases, Chinese
Academy of Medical Sciences (No. 2019RU056), Shanghai200011,China
| | - Hefeng Huang
- Obstetrics
and Gynecology Hospital, Institute of Reproduction and Development, Fudan University, Shanghai200433,China
- Research
Units of Embryo Original Diseases, Chinese
Academy of Medical Sciences (No. 2019RU056), Shanghai200011,China
- Key
Laboratory of Reproductive Genetics (Ministry of Education), Department
of Reproductive Endocrinology, Women’s Hospital, Zhejiang University School of Medicine, Hangzhou310058,China
| |
Collapse
|
23
|
Wang F, Hang L, Dai B, Li F, Zhu Y, Jia H, Ai Y, Wang L, Xue Y, Yuan H. Characterization of herpetrione amorphous nanoparticles stabilized by hydroxypropylmethyl cellulose and its absorption mechanism in vitro. Int J Biol Macromol 2024; 268:131744. [PMID: 38663711 DOI: 10.1016/j.ijbiomac.2024.131744] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/24/2023] [Revised: 04/10/2024] [Accepted: 04/20/2024] [Indexed: 04/28/2024]
Abstract
Herpetrione(HPE) is an effective compound that has been used in the treatment of liver diseases. To improve its dissolution and absorption, herpetrione nanosuspensions was prepared. Nanosuspensions were proved to achieve intact absorption in vivo. However, the transport mechanisms are not fully understood, especially lack of direct evidence of translocation of particulates. In this study, an environment-responsive dye, P4, was loaded into herpetrione amorphous nanoparticles (HPE-ANPs) to elucidate the absorption and transport mechanism of the nanoparticles. And the amount of HPE and nanoparticles in the samples were quantified using HPLC/LC-MS/MS and IVIS with the model of Caco-2 and Caco-2/HT29-MTX. Results demonstrated that HPE is mainly taken up by passive diffusion in the form of free drugs, while HPE-ANPs are internalized by an energy dependent active transport pathway or intracellular endocytosis. It is speculated that HPE-ANPs may change the original entry pathway of drug molecules. Furthermore, the presence of mucus layer and the use of HPMC E15 may contribute to drug absorption to some extent. Transcellular transport study indicates that HPE-ANPs has a poor absorption. In conclusion, the differences in the absorption behavior trends of HPE-ANPs are caused by the difference in particle properties and the form of existence of the drug.
Collapse
Affiliation(s)
- Fang Wang
- Department of Pharmacy, Air Force Medical Center, Air Force Medical University, Beijing 100142, China; School of Medicine, Huaqiao University, Quanzhou 362021, China
| | - Lingyu Hang
- Department of Pharmacy, Air Force Medical Center, Air Force Medical University, Beijing 100142, China
| | - Bo Dai
- Department of Pharmacy, Air Force Medical Center, Air Force Medical University, Beijing 100142, China
| | - Fangqin Li
- Department of Pharmacy, Air Force Medical Center, Air Force Medical University, Beijing 100142, China
| | - Yuwen Zhu
- Department of Pharmacy, Air Force Medical Center, Air Force Medical University, Beijing 100142, China
| | - Haiqiang Jia
- Department of Pharmacy, Air Force Medical Center, Air Force Medical University, Beijing 100142, China; School of Medicine, Huaqiao University, Quanzhou 362021, China
| | - Yu Ai
- Bohai (Tianjin) Medical Laboratory, Tianjin 300400, China
| | - Liqiang Wang
- School of Medicine, Huaqiao University, Quanzhou 362021, China.
| | - Yuye Xue
- Department of Pharmacy, Air Force Medical Center, Air Force Medical University, Beijing 100142, China.
| | - Hailong Yuan
- Department of Pharmacy, Air Force Medical Center, Air Force Medical University, Beijing 100142, China.
| |
Collapse
|
24
|
Tsyupka DV, Pigarev SV, Podkolodnaya YA, Khudina EA, Popova NR, Goryacheva IY, Goryacheva OA. One-pot hydrothermal synthesis of fluorophore-modified cerium oxide nanoparticles. Phys Chem Chem Phys 2024; 26:9546-9555. [PMID: 38456314 DOI: 10.1039/d4cp00237g] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/09/2024]
Abstract
Cerium oxide nanoparticles (CeO2 NPs), which have powerful antioxidant properties, are promising nanomaterials for the treatment of diseases associated with oxidative stress. The well-developed surface of CeO2 NPs makes them promising for use as a multifunctional system for various biomedical applications. This work demonstrates a simple approach that allows the direct formation of a molecular fluorophore on the surface of CeO2 NPs using a simple one-pot hydrothermal synthesis. Thus, we were able to synthesize CeO2 NPs of ultra-small size ∼2 nm with a narrow distribution, highly stable fluorescence, and a quantum yield of ∼62%. UV-visible transmission studies revealed that the resulting CeO2 NPs exhibited fast autogenerative catalytic reduction. In vitro results showed high biocompatibility of CeO2 NPs; their internalization occurs mainly in the region of cell nuclei. Thus, the resulting NPs have the necessary parameters and can be successfully used in biovisualization and therapy.
Collapse
Affiliation(s)
- Daria V Tsyupka
- Saratov State University, 83 Astrakhanskaya Street, Saratov 410012, Russia.
| | - Sergey V Pigarev
- Saratov State University, 83 Astrakhanskaya Street, Saratov 410012, Russia.
| | | | | | - Nelli R Popova
- Institute of Theoretical and Experimental Biophysics, Russian Academy of Sciences, Institutskaya str., 3, Moscow Region, Pushchino 142290, Russia
| | | | - Olga A Goryacheva
- Saratov State University, 83 Astrakhanskaya Street, Saratov 410012, Russia.
| |
Collapse
|
25
|
Yao R, Zhu M, Guo Z, Shen J. Refining nanoprobes for monitoring of inflammatory bowel disease. Acta Biomater 2024; 177:37-49. [PMID: 38364928 DOI: 10.1016/j.actbio.2024.02.014] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2023] [Revised: 01/11/2024] [Accepted: 02/09/2024] [Indexed: 02/18/2024]
Abstract
Inflammatory bowel disease (IBD) is a gastrointestinal immune disease that requires clear diagnosis, timely treatment, and lifelong monitoring. The diagnosis and monitoring methods of IBD mainly include endoscopy, imaging examination, and laboratory examination, which are constantly developed to achieve early definite diagnosis and accurate monitoring. In recent years, with the development of nanotechnology, the diagnosis and monitoring methods of IBD have been remarkably enriched. Nanomaterials, characterized by their minuscule dimensions that can be tailored, along with their distinctive optical, magnetic, and biodistribution properties, have emerged as valuable contrast agents for imaging and targeted agents for endoscopy. Through both active and passive targeting mechanisms, nanoparticles accumulate at the site of inflammation, thereby enhancing IBD detection. This review comprehensively outlines the existing IBD detection techniques, expounds upon the utilization of nanoparticles in IBD detection and diagnosis, and offers insights into the future potential of in vitro diagnostics. STATEMENT OF SIGNIFICANCE: Due to their small size and unique physical and chemical properties, nanomaterials are widely used in the biological and medical fields. In the area of oncology and inflammatory disease, an increasing number of nanomaterials are being developed for diagnostics and drug delivery. Here, we focus on inflammatory bowel disease, an autoimmune inflammatory disease that requires early diagnosis and lifelong monitoring. Nanomaterials can be used as contrast agents to visualize areas of inflammation by actively or passively targeting them through the intestinal mucosal epithelium where gaps exist due to inflammation stimulation. In this article, we summarize the utilization of nanoparticles in inflammatory bowel disease detection and diagnosis, and offers insights into the future potential of in vitro diagnostics.
Collapse
Affiliation(s)
- Ruchen Yao
- Renji Hospital, School of Medicine, Shanghai Jiao Tong University, Division of Gastroenterology and Hepatology, Key Laboratory of Gastroenterology and Hepatology, Ministry of Health, Inflammatory Bowel Disease Research Center, Shanghai Institute of Digestive Disease, 160# Pu Jian Ave, Shanghai 200127, China; NHC Key Laboratory of Digestive Diseases, China
| | - Mingming Zhu
- Renji Hospital, School of Medicine, Shanghai Jiao Tong University, Division of Gastroenterology and Hepatology, Key Laboratory of Gastroenterology and Hepatology, Ministry of Health, Inflammatory Bowel Disease Research Center, Shanghai Institute of Digestive Disease, 160# Pu Jian Ave, Shanghai 200127, China; NHC Key Laboratory of Digestive Diseases, China
| | - Zhiqian Guo
- Key Laboratory for Advanced Materials and Joint International Research Laboratory of Precision Chemistry and Molecular Engineering, Feringa Nobel Prize Scientist Joint Research Center, Institute of Fine Chemicals, Frontiers Science Center for Materiobiology and Dynamic Chemistry, School of Chemistry and Molecular Engineering, East China University of Science and Technology, Shanghai 200237, China.
| | - Jun Shen
- Renji Hospital, School of Medicine, Shanghai Jiao Tong University, Division of Gastroenterology and Hepatology, Key Laboratory of Gastroenterology and Hepatology, Ministry of Health, Inflammatory Bowel Disease Research Center, Shanghai Institute of Digestive Disease, 160# Pu Jian Ave, Shanghai 200127, China; NHC Key Laboratory of Digestive Diseases, China.
| |
Collapse
|
26
|
Chi Z, Gu J, Li H, Wang Q. Recent progress of metal-organic framework-based nanozymes with oxidoreductase-like activity. Analyst 2024; 149:1416-1435. [PMID: 38334683 DOI: 10.1039/d3an01995k] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/10/2024]
Abstract
Nanozymes, a class of synthetic nanomaterials possessing enzymatic catalytic properties, exhibit distinct advantages such as exceptional stability and cost-effectiveness. Among them, metal-organic framework (MOF)-based nanozymes have garnered significant attention due to their large specific surface area, tunable pore size and uniform structure. MOFs are porous crystalline materials bridged by inorganic metal ions/clusters and organic ligands, which hold immense potential in the fields of catalysis, sensors and drug carriers. The combination of MOFs with diverse nanomaterials gives rise to various types of MOF-based nanozyme, encompassing original MOFs, MOF-based nanozymes with chemical modifications, MOF-based composites and MOF derivatives. It is worth mentioning that the metal ions and organic ligands in MOFs are perfectly suited for designing oxidoreductase-like nanozymes. In this review, we intend to provide an overview of recent trends and progress in MOF-based nanozymes with oxidoreductase-like activity. Furthermore, the current obstacles and prospective outlook of MOF-based nanozymes are proposed and briefly discussed. This comprehensive analysis aims to facilitate progress in the development of novel MOF-based nanozymes with oxidoreductase-like activity while serving as a valuable reference for scientists engaged in related disciplines.
Collapse
Affiliation(s)
- Zhongmei Chi
- College of Chemistry and Materials Engineering, Bohai University, Jinzhou, Liaoning Province, 121013, P. R. China.
| | - Jiali Gu
- College of Chemistry and Materials Engineering, Bohai University, Jinzhou, Liaoning Province, 121013, P. R. China.
| | - Hui Li
- College of Chemistry and Materials Engineering, Bohai University, Jinzhou, Liaoning Province, 121013, P. R. China.
| | - Qiong Wang
- College of Chemistry and Materials Engineering, Bohai University, Jinzhou, Liaoning Province, 121013, P. R. China.
| |
Collapse
|
27
|
Liu Y, Huang J, Li S, Li Z, Chen C, Qu G, Chen K, Teng Y, Ma R, Wu X, Ren J. Advancements in hydrogel-based drug delivery systems for the treatment of inflammatory bowel disease: a review. Biomater Sci 2024; 12:837-862. [PMID: 38196386 DOI: 10.1039/d3bm01645e] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2024]
Abstract
Inflammatory bowel disease (IBD) is a chronic disorder that affects millions of individuals worldwide. However, current drug therapies for IBD are plagued by significant side effects, low efficacy, and poor patient compliance. Consequently, there is an urgent need for novel therapeutic approaches to alleviate IBD. Hydrogels, three-dimensional networks of hydrophilic polymers with the ability to swell and retain water, have emerged as promising materials for drug delivery in the treatment of IBD due to their biocompatibility, tunability, and responsiveness to various stimuli. In this review, we summarize recent advancements in hydrogel-based drug delivery systems for the treatment of IBD. We first identify three pathophysiological alterations that need to be addressed in the current treatment of IBD: damage to the intestinal mucosal barrier, dysbiosis of intestinal flora, and activation of inflammatory signaling pathways leading to disequilibrium within the intestines. Subsequently, we discuss in depth the processes required to prepare hydrogel drug delivery systems, from the selection of hydrogel materials, types of drugs to be loaded, methods of drug loading and drug release mechanisms to key points in the preparation of hydrogel drug delivery systems. Additionally, we highlight the progress and impact of the hydrogel-based drug delivery system in IBD treatment through regulation of physical barrier immune responses, promotion of mucosal repair, and improvement of gut microbiota. In conclusion, we analyze the challenges of hydrogel-based drug delivery systems in clinical applications for IBD treatment, and propose potential solutions from our perspective.
Collapse
Affiliation(s)
- Ye Liu
- School of Medicine, Southeast University, Nanjing, 210009, China
- Research Institute of General Surgery, Jinling Hospital, Affiliated Hospital of Medical School, Nanjing University, Nanjing, 210002, China.
| | - Jinjian Huang
- Research Institute of General Surgery, Jinling Hospital, Affiliated Hospital of Medical School, Nanjing University, Nanjing, 210002, China.
| | - Sicheng Li
- Research Institute of General Surgery, Jinling Hospital, Affiliated Hospital of Medical School, Nanjing University, Nanjing, 210002, China.
| | - Ze Li
- Research Institute of General Surgery, Jinling Hospital, Affiliated Hospital of Medical School, Nanjing University, Nanjing, 210002, China.
| | - Canwen Chen
- Research Institute of General Surgery, Jinling Hospital, Affiliated Hospital of Medical School, Nanjing University, Nanjing, 210002, China.
| | - Guiwen Qu
- School of Medicine, Southeast University, Nanjing, 210009, China
- Research Institute of General Surgery, Jinling Hospital, Affiliated Hospital of Medical School, Nanjing University, Nanjing, 210002, China.
| | - Kang Chen
- Research Institute of General Surgery, Jinling Hospital, Affiliated Hospital of Medical School, Nanjing University, Nanjing, 210002, China.
| | - Yitian Teng
- Research Institute of General Surgery, Jinling Hospital, Affiliated Hospital of Medical School, Nanjing University, Nanjing, 210002, China.
| | - Rui Ma
- School of Medicine, Southeast University, Nanjing, 210009, China
- Research Institute of General Surgery, Jinling Hospital, Affiliated Hospital of Medical School, Nanjing University, Nanjing, 210002, China.
| | - Xiuwen Wu
- School of Medicine, Southeast University, Nanjing, 210009, China
- Research Institute of General Surgery, Jinling Hospital, Affiliated Hospital of Medical School, Nanjing University, Nanjing, 210002, China.
| | - Jianan Ren
- School of Medicine, Southeast University, Nanjing, 210009, China
- Research Institute of General Surgery, Jinling Hospital, Affiliated Hospital of Medical School, Nanjing University, Nanjing, 210002, China.
| |
Collapse
|
28
|
Zheng J, Wang R, Wang Y. New concepts drive the development of delivery tools for sustainable treatment of diabetic complications. Biomed Pharmacother 2024; 171:116206. [PMID: 38278022 DOI: 10.1016/j.biopha.2024.116206] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2023] [Revised: 01/18/2024] [Accepted: 01/22/2024] [Indexed: 01/28/2024] Open
Abstract
Diabetic complications, especially diabetic retinopathy, diabetic nephropathy and painful diabetic neuropathy, account for a large portion of patients with diabetes and display rising global prevalence. They are the leading causes of blindness, kidney failure and hypersensitivity to pain caused by diabetes. Current approved therapeutics against the diabetic complications are few and exhibit limited efficacy. The enhanced cell-specificity, stability, biocompatibility, and loading capacity of drugs are essential for the mitigation of diabetic complications. In the article, we have critically discussed the recent studies over the past two years in material sciences and biochemistry. The insightful concepts in these studies drive the development of novel nanoparticles and mesenchymal stem cells-derived extracellular vesicles to meet the need for treatment of diabetic complications. Their underlying biochemical principles, advantages and limitations have been in-depth analyzed. The nanoparticles discussed in the article include double-headed nanodelivery system, nanozyme, ESC-HCM-B system, soft polymer nanostars, tetrahedral DNA nanostructures and hydrogels. They ameliorate the diabetic complication through attenuation of inflammation, apoptosis and restoration of metabolic homeostasis. Moreover, mesenchymal stem cell-derived extracellular vesicles efficiently deliver therapeutic proteins to the retinal cells to suppress the angiogenesis, inflammation, apoptosis and oxidative stress to reverse diabetic retinopathy. Collectively, we provide a critical discussion on the concept, mechanism and therapeutic applicability of new delivery tools to treat these three devastating diabetic complications.
Collapse
Affiliation(s)
- Jianan Zheng
- School of Kinesiology, Shanghai University of Sport, Shanghai 200438, China
| | - Ru Wang
- School of Kinesiology, Shanghai University of Sport, Shanghai 200438, China; Shanghai Frontiers Science Research Base of Exercise and Metabolic Health, China.
| | - Yibing Wang
- School of Kinesiology, Shanghai University of Sport, Shanghai 200438, China; Shanghai Frontiers Science Research Base of Exercise and Metabolic Health, China.
| |
Collapse
|
29
|
Pandey S, Kumari S, Manohar Aeshala L, Singh S. Investigating temperature variability on antioxidative behavior of synthesized cerium oxide nanoparticle for potential biomedical application. J Biomater Appl 2024; 38:866-874. [PMID: 38173143 DOI: 10.1177/08853282231226037] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2024]
Abstract
Cerium oxide nanoparticles (CNP) have garnered significant attention due to their versatile redox properties and wound-healing applications. The antioxidative nature of CNP is due to its ability to be oxidized and reduced, followed by the capture or release of oxygen which is used for scavenging reactive oxygen species (ROS). Herein, CNP is produced through a wet chemistry approach and its tunable redox property is tested across a range of temperatures. The synthesized CNP was observed to reveal the signature peak at 245 nm indicating a high Ce+3/Ce+4 ratio. Towards evaluating the redox antioxidative behavior, CNPs were subjected to a comprehensive analysis for superoxide dismutase mimetic analysis with riboflavin-mediated nitroblue tetrazolium scavenging assay. The results demonstrated that the redox activity of cerium oxide nanoparticles was strongly influenced by the different temperature ranges. Superoxide dismutase mimetic activity was observed to be reduced with a decrease in temperature as we moved from 4°C (80% activity) to -80°C (47% activity) at 1 mM conc of CNP. Similarly, the SOD mimetic activity increased with an increase in temperature from 40°C (72% activity) to 70°C (94% activity). Further, CNP was found to inhibit E. coli (gram+ve) and Enterobacter (gram-ve) beyond 70% simultaneously at 1 mM conc, indicating its potential application as a remarkable antimicrobial agent. CNP also inhibited the alpha-amylase activity up to the 60% at 1 mM conc suggesting its potential application in antidiabetic wound healing therapy. Overall, the CNP finds its application in mitigating the oxidative stress-related disorder exhibited by its high antioxidative, antimicrobial, and antidiabetic behavior.
Collapse
Affiliation(s)
- Shivam Pandey
- Amity Institute of Biotechnology, Amity University Chhattisgarh, Raipur, India
| | - Sneha Kumari
- Amity Institute of Biotechnology, Amity University Chhattisgarh, Raipur, India
| | - Leela Manohar Aeshala
- Department of Chemical Engineering, National Institute of Technology Warangal, Telangana, India
| | - Sushant Singh
- Amity Institute of Biotechnology, Amity University Chhattisgarh, Raipur, India
| |
Collapse
|
30
|
Zhang Y, Wu Y, Yan Y, Ma Y, Tu L, Shao J, Tang X, Chen L, Liang G, Yin L. Dual-Targeted Nanoparticle-in-Microparticle System for Ulcerative Colitis Therapy. Adv Healthc Mater 2023; 12:e2301518. [PMID: 37660262 DOI: 10.1002/adhm.202301518] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2023] [Revised: 08/01/2023] [Indexed: 09/04/2023]
Abstract
Conventional oral therapy for ulcerative colitis (UC) is associated with premature release or degradation of drugs in the harsh gastrointestinal environment, resulting in reduced therapeutic effectiveness. Consequently, the present study aims to develop a dual-targeted delivery system with a nanoparticle-in-microparticle (nano-in-micro) structure. The prepared Asiatic Acid-loaded delivery system (AA/CDM-BT-ALG) has pH-sensitive properties. Cellular uptake evaluation confirms that nanoparticles exhibit targeted absorption by macrophages and Caco-2 cells through mannose (Man) receptor and biotin-mediated endocytosis, respectively. Therefore, this mechanism effectively enhances intracellular drug concentration. Additionally, the biodistribution study conducted on the gastrointestinal tract of mice indicates that the colon of the microspheres group shows higher fluorescence intensity with longer duration than the other groups. This finding indicates that the microspheres exhibit selective accumulation in areas of colon inflammation. In vivo experiments in colitis mice showed that AA/CDM-BT-ALG significantly alleviates the histopathological characteristics of the colon, reduced neutrophil, and macrophage infiltration, and decreases pro-inflammatory cytokine expression. Furthermore, the effect of AA/CDM-BT-ALG on colitis is validated to be closely related to the TLR4/MyD88/NF-κB signaling pathway. The present findings suggest that the development of a dual-targeted delivery system is accomplished effectively, with the potential to serve as a drug-controlled release system for treating UC.
Collapse
Affiliation(s)
- Yawen Zhang
- School of Pharmacy, Hangzhou Medical College, 182 Tianmushan Rd, Hangzhou, 310013, China
| | - Yue Wu
- School of Pharmacy, Hangzhou Medical College, 182 Tianmushan Rd, Hangzhou, 310013, China
| | - Yuping Yan
- School of Pharmacy, Hangzhou Medical College, 182 Tianmushan Rd, Hangzhou, 310013, China
| | - Yijing Ma
- School of Pharmacy, Hangzhou Medical College, 182 Tianmushan Rd, Hangzhou, 310013, China
| | - Linglan Tu
- School of Laboratory Medicine and Bioengineering, Hangzhou Medical College, Hangzhou, 310013, China
| | - Jingjing Shao
- School of Pharmacy, Wenzhou Medical University, Wenzhou, 325000, China
| | - Xuanyu Tang
- School of Pharmacy, Hangzhou Medical College, 182 Tianmushan Rd, Hangzhou, 310013, China
| | - Lingfeng Chen
- School of Pharmacy, Hangzhou Medical College, 182 Tianmushan Rd, Hangzhou, 310013, China
| | - Guang Liang
- School of Pharmacy, Hangzhou Medical College, 182 Tianmushan Rd, Hangzhou, 310013, China
| | - Lina Yin
- School of Pharmacy, Hangzhou Medical College, 182 Tianmushan Rd, Hangzhou, 310013, China
| |
Collapse
|
31
|
Min K, Sahu A, Jeon SH, Tae G. Emerging drug delivery systems with traditional routes - A roadmap to chronic inflammatory diseases. Adv Drug Deliv Rev 2023; 203:115119. [PMID: 37898338 DOI: 10.1016/j.addr.2023.115119] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2022] [Revised: 07/17/2023] [Accepted: 10/23/2023] [Indexed: 10/30/2023]
Abstract
Inflammation is prevalent and inevitable in daily life but can generally be accommodated by the immune systems. However, incapable self-healing and persistent inflammation can progress to chronic inflammation, leading to prevalent or fatal chronic diseases. This review comprehensively covers the topic of emerging drug delivery systems (DDSs) for the treatment of chronic inflammatory diseases (CIDs). First, we introduce the basic biology of the chronic inflammatory process and provide an overview of the main CIDs of the major organs. Next, up-to-date information on various DDSs and the associated strategies for ensuring targeted delivery and stimuli-responsiveness applied to CIDs are discussed extensively. The implementation of traditional routes of drug administration to maximize their therapeutic effects against CIDs is then summarized. Finally, perspectives on future DDSs against CIDs are presented.
Collapse
Affiliation(s)
- Kiyoon Min
- School of Materials Science and Engineering, Gwangju Institute of Science and Technology (GIST), Gwangju 61005, Republic of Korea
| | - Abhishek Sahu
- Department of Biotechnology, National Institute of Pharmaceutical Education & Research (NIPER), Hajipur, 844102, India
| | - Sae Hyun Jeon
- School of Materials Science and Engineering, Gwangju Institute of Science and Technology (GIST), Gwangju 61005, Republic of Korea
| | - Giyoong Tae
- School of Materials Science and Engineering, Gwangju Institute of Science and Technology (GIST), Gwangju 61005, Republic of Korea.
| |
Collapse
|
32
|
Li X, Yu M, Zhao Q, Yu Y. Prospective therapeutics for intestinal and hepatic fibrosis. Bioeng Transl Med 2023; 8:e10579. [PMID: 38023697 PMCID: PMC10658571 DOI: 10.1002/btm2.10579] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2023] [Revised: 06/17/2023] [Accepted: 07/12/2023] [Indexed: 12/01/2023] Open
Abstract
Currently, there are no effective therapies for intestinal and hepatic fibrosis representing a considerable unmet need. Breakthroughs in pathogenesis have accelerated the development of anti-fibrotic therapeutics in recent years. Particularly, with the development of nanotechnology, the harsh environment of the gastrointestinal tract and inaccessible microenvironment of fibrotic lesions seem to be no longer considered a great barrier to the use of anti-fibrotic drugs. In this review, we comprehensively summarize recent preclinical and clinical studies on intestinal and hepatic fibrosis. It is found that the targets for preclinical studies on intestinal fibrosis is varied, which could be divided into molecular, cellular, and tissues level, although little clinical trials are ongoing. Liver fibrosis clinical trials have focused on improving metabolic disorders, preventing the activation and proliferation of hepatic stellate cells, promoting the degradation of collagen, and reducing inflammation and cell death. At the preclinical stage, the therapeutic strategies have focused on drug targets and delivery systems. At last, promising remedies to the current challenges are based on multi-modal synergistic and targeted delivery therapies through mesenchymal stem cells, nanotechnology, and gut-liver axis providing useful insights into anti-fibrotic strategies for clinical use.
Collapse
Affiliation(s)
- Xin Li
- Department of Clinical Pharmacy, The First Affiliated HospitalZhejiang University School of MedicineHangzhouChina
- Zhejiang Provincial Key Laboratory for Drug Evaluation and Clinical Research, The First Affiliated HospitalZhejiang University School of MedicineHangzhouChina
- Institute of Pharmaceutics, College of Pharmaceutical SciencesZhejiang UniversityHangzhouChina
| | - Mengli Yu
- Department of Gastroenterology, The Fourth Affiliated HospitalZhejiang University School of MedicineYiwuChina
| | - Qingwei Zhao
- Department of Clinical Pharmacy, The First Affiliated HospitalZhejiang University School of MedicineHangzhouChina
- Zhejiang Provincial Key Laboratory for Drug Evaluation and Clinical Research, The First Affiliated HospitalZhejiang University School of MedicineHangzhouChina
| | - Yang Yu
- College of Pharmaceutical SciencesSouthwest UniversityChongqingChina
| |
Collapse
|
33
|
Pota G, Silvestri B, Vitiello G, Gallucci N, Di Girolamo R, Scialla S, Raucci MG, Ambrosio L, Di Napoli M, Zanfardino A, Varcamonti M, Pezzella A, Luciani G. Towards nanostructured red-ox active bio-interfaces: Bioinspired antibacterial hybrid melanin-CeO 2 nanoparticles for radical homeostasis. BIOMATERIALS ADVANCES 2023; 153:213558. [PMID: 37467646 DOI: 10.1016/j.bioadv.2023.213558] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/04/2023] [Revised: 05/29/2023] [Accepted: 07/08/2023] [Indexed: 07/21/2023]
Abstract
Redox-active nano-biointerfaces are gaining weight in the field of regenerative medicine since they can act as enzymes in regulating physiological processes and enabling cell homeostasis, as well as the defense against pathogen aggression. In particular, cerium oxide nanoparticles (CeO2 NPs) stand as intriguing enzyme-mimicking nanoplatforms, owing to the reversible Ce+3/Ce+4 surface oxidation state. Moreover, surface functionalization leads to higher catalytic activity and selectivity, as well as more tunable enzyme-mimicking performances. Conjugation with melanin is an adequate strategy to boost and enrich CeO2 NPs biological features, because of melanin redox properties accounting for intrinsic antioxidant, antimicrobial and anti-inflammatory power. Herein, hybrid Melanin/CeO2 nanostructures were designed by simply coating the metal-oxide nanoparticles with melanin chains, obtained in-situ through ligand-to-metal charge transfer mechanism, according to a bioinspired approach. Obtained hybrid nanostructures underwent detailed physico-chemical characterization. Morphological and textural features were investigated through TEM, XRD and N2 physisorption. The nature of nanoparticle-melanin interaction was analyzed through FTIR, UV-vis and EPR spectroscopy. Melanin-coated hybrid nanostructures exhibited a relevant antioxidant activity, confirmed by a powerful quenching effect for DPPH radical, reaching 81 % inhibition at 33 μg/mL. A promising anti-inflammatory efficacy of the melanin-coated hybrid nanostructures was validated through a significant inhibition of BSA denaturation after 3 h. Meanwhile, the enzyme-mimicking activity was corroborated by a prolonged peroxidase activity after 8 h at 100 μg/mL and a relevant catalase-like action, by halving the H2O2 level in 30 min at 50 μg/mL. Antimicrobial assays attested that conjugation with melanin dramatically boosted CeO2 biocide activity against both Gram (-) and Gram (+) strains. Cytocompatibility tests demonstrated that the melanin coating not only enhanced the CeO2 nanostructures biomimicry, resulting in improved cell viability for human dermal fibroblast cells (HDFs), but mostly they proved that Melanin-CeO2 NPs were able to control the oxidative stress, modulating the production of nitrite and reactive oxygen species (ROS) levels in HDFs, under physiological conditions. Such remarkable outcomes make hybrid melanin-CeO2 nanozymes, promising redox-active interfaces for regenerative medicine.
Collapse
Affiliation(s)
- Giulio Pota
- Department of Chemical, Materials and Production Engineering, University of Naples Federico II, Piazzale V. Tecchio 80, 80125 Naples, Italy
| | - Brigida Silvestri
- Department of Civil, Architectural and Environmental Engineering, University of Naples Federico II, Via Claudio 21, 80125 Naples, Italy
| | - Giuseppe Vitiello
- Department of Chemical, Materials and Production Engineering, University of Naples Federico II, Piazzale V. Tecchio 80, 80125 Naples, Italy; CSGI, Center for Colloid and Surface Science, via della Lastruccia 3, 50019 Sesto Fiorentino, FI, Italy
| | - Noemi Gallucci
- Department of Chemical Sciences, University of Naples Federico II Via Cinthia 4, 80126 Naples, Italy
| | - Rocco Di Girolamo
- Department of Chemical Sciences, University of Naples Federico II Via Cinthia 4, 80126 Naples, Italy
| | - Stefania Scialla
- Institute for Polymers Composites and Biomaterials (IPCB) CNR Via Campi Flegrei 34, I-80078 Pozzuoli, NA, Italy
| | - Maria Grazia Raucci
- Institute for Polymers Composites and Biomaterials (IPCB) CNR Via Campi Flegrei 34, I-80078 Pozzuoli, NA, Italy
| | - Luigi Ambrosio
- Institute for Polymers Composites and Biomaterials (IPCB) CNR Via Campi Flegrei 34, I-80078 Pozzuoli, NA, Italy
| | - Michela Di Napoli
- Department of Biology, University of Naples Federico II Via Cinthia 4, 80126 Naples, Italy
| | - Anna Zanfardino
- Department of Biology, University of Naples Federico II Via Cinthia 4, 80126 Naples, Italy
| | - Mario Varcamonti
- Department of Biology, University of Naples Federico II Via Cinthia 4, 80126 Naples, Italy
| | - Alessandro Pezzella
- Institute for Polymers Composites and Biomaterials (IPCB) CNR Via Campi Flegrei 34, I-80078 Pozzuoli, NA, Italy; Department of Physics "Ettore Pancini", University of Naples Federico II Via Cinthia 4, 80126 Naples, Italy; National Interuniversity Consortium of Materials Science and Technology (INSTM), Via G. Giusti, 9, 50121 Florence, Italy
| | - Giuseppina Luciani
- Department of Chemical, Materials and Production Engineering, University of Naples Federico II, Piazzale V. Tecchio 80, 80125 Naples, Italy.
| |
Collapse
|
34
|
Liu C, Wang Q, Wu YL. Recent Advances in Nanozyme-Based Materials for Inflammatory Bowel Disease. Macromol Biosci 2023; 23:e2300157. [PMID: 37262405 DOI: 10.1002/mabi.202300157] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2023] [Revised: 05/07/2023] [Indexed: 06/03/2023]
Abstract
Inflammatory bowel disease (IBD) is a type of chronic inflammatory disorder that interferes with the patient's lifestyle and, in extreme situations, can be deadly. Fortunately, with the ever-deepening understanding of the pathological cause of IBD, recent studies using nanozyme-based materials have indicated the potential toward effective IBD treatment. In this review, the recent advancement of nanozymes for the treatment of enteritis is summarized from the perspectives of the structural design of nanozyme-based materials and therapeutic strategies, intending to serve as a reference to produce effective nanozymes for moderating inflammation in the future. Last but not least, the potential and current restrictions for using nanozymes in IBD will also be discussed. In short, this review may provide a guidance for the development of innovative enzyme-mimetic nanomaterials that offer a novel and efficient approach toward the effective treatment of IBD.
Collapse
Affiliation(s)
- Chuyi Liu
- Fujian Provincial Key Laboratory of Innovative Drug Target Research and State Key Laboratory of Cellular Stress Biology, School of Pharmaceutical Sciences, Xiamen University, Xiamen, 361102, China
| | - Qi Wang
- Fujian Provincial Key Laboratory of Innovative Drug Target Research and State Key Laboratory of Cellular Stress Biology, School of Pharmaceutical Sciences, Xiamen University, Xiamen, 361102, China
| | - Yun-Long Wu
- Fujian Provincial Key Laboratory of Innovative Drug Target Research and State Key Laboratory of Cellular Stress Biology, School of Pharmaceutical Sciences, Xiamen University, Xiamen, 361102, China
| |
Collapse
|
35
|
Jeyachandran S, Srinivasan R, Ramesh T, Parivallal A, Lee J, Sathiyamoorthi E. Recent Development and Application of "Nanozyme" Artificial Enzymes-A Review. Biomimetics (Basel) 2023; 8:446. [PMID: 37754197 PMCID: PMC10526256 DOI: 10.3390/biomimetics8050446] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2023] [Revised: 09/13/2023] [Accepted: 09/14/2023] [Indexed: 09/28/2023] Open
Abstract
Nanozymes represent a category of nano-biomaterial artificial enzymes distinguished by their remarkable catalytic potency, stability, cost-effectiveness, biocompatibility, and degradability. These attributes position them as premier biomaterials with extensive applicability across medical, industrial, technological, and biological domains. Following the discovery of ferromagnetic nanoparticles with peroxidase-mimicking capabilities, extensive research endeavors have been dedicated to advancing nanozyme utilization. Their capacity to emulate the functions of natural enzymes has captivated researchers, prompting in-depth investigations into their attributes and potential applications. This exploration has yielded insights and innovations in various areas, including detection mechanisms, biosensing techniques, and device development. Nanozymes exhibit diverse compositions, sizes, and forms, resembling molecular entities such as proteins and tissue-based glucose. Their rapid impact on the body necessitates a comprehensive understanding of their intricate interplay. As each day witnesses the emergence of novel methodologies and technologies, the integration of nanozymes continues to surge, promising enhanced comprehension in the times ahead. This review centers on the expansive deployment and advancement of nanozyme materials, encompassing biomedical, biotechnological, and environmental contexts.
Collapse
Affiliation(s)
- Sivakamavalli Jeyachandran
- Laboratory in Biotechnology & Biosignal Transduction, Department of Orthodontics, Saveetha Dental College and Hospitals, Saveetha Institute of Medical and Technical Sciences (SIMATS), Saveetha University, Chennai 600077, Tamil Nadu, India
| | - Ramachandran Srinivasan
- Centre for Ocean Research (DST-FIST Sponsored Centre), MoES-Earth Science and Technology Cell (Marine Biotechnological Studies), Sathyabama Research Park, Sathyabama Institute of Science and Technology, Chennai 600119, Tamil Nadu, India;
| | - Thiyagarajan Ramesh
- Department of Basic Medical Sciences, College of Medicine, Prince Sattam bin Abdulaziz University, P.O. Box 173, Al-Kharj 11942, Saudi Arabia;
| | - Arumugam Parivallal
- Department of Mathematics, Sungkyunkwan University, Suwon 16419, Republic of Korea;
| | - Jintae Lee
- School of Chemical Engineering, Yeungnam University, Gyeongsan 38541, Republic of Korea
| | | |
Collapse
|
36
|
Singh S, Rai N, Tiwari H, Gupta P, Verma A, Kumar R, Kailashiya V, Salvi P, Gautam V. Recent Advancements in the Formulation of Nanomaterials-Based Nanozymes, Their Catalytic Activity, and Biomedical Applications. ACS APPLIED BIO MATERIALS 2023; 6:3577-3599. [PMID: 37590090 DOI: 10.1021/acsabm.3c00253] [Citation(s) in RCA: 8] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/19/2023]
Abstract
Nanozymes are nanoparticles with intrinsic enzyme-mimicking properties that have become more prevalent because of their ability to outperform conventional enzymes by overcoming their drawbacks related to stability, cost, and storage. Nanozymes have the potential to manipulate active sites of natural enzymes, which is why they are considered promising candidates to function as enzyme mimetics. Several microscopy- and spectroscopy-based techniques have been used for the characterization of nanozymes. To date, a wide range of nanozymes, including catalase, oxidase, peroxidase, and superoxide dismutase, have been designed to effectively mimic natural enzymes. The activity of nanozymes can be controlled by regulating the structural and morphological aspects of the nanozymes. Nanozymes have multifaceted benefits, which is why they are exploited on a large scale for their application in the biomedical sector. The versatility of nanozymes aids in monitoring and treating cancer, other neurodegenerative diseases, and metabolic disorders. Due to the compelling advantages of nanozymes, significant research advancements have been made in this area. Although a wide range of nanozymes act as potent mimetics of natural enzymes, their activity and specificities are suboptimal, and there is still room for their diversification for analytical purposes. Designing diverse nanozyme systems that are sensitive to one or more substrates through specialized techniques has been the subject of an in-depth study. Hence, we believe that stimuli-responsive nanozymes may open avenues for diagnosis and treatment by fusing the catalytic activity and intrinsic nanomaterial properties of nanozyme systems.
Collapse
Affiliation(s)
- Swati Singh
- Centre of Experimental Medicine and Surgery, Institute of Medical Sciences, Banaras Hindu University, Varanasi 221005, India
| | - Nilesh Rai
- Centre of Experimental Medicine and Surgery, Institute of Medical Sciences, Banaras Hindu University, Varanasi 221005, India
| | - Harshita Tiwari
- Centre of Experimental Medicine and Surgery, Institute of Medical Sciences, Banaras Hindu University, Varanasi 221005, India
| | - Priyamvada Gupta
- Centre of Experimental Medicine and Surgery, Institute of Medical Sciences, Banaras Hindu University, Varanasi 221005, India
| | - Ashish Verma
- Centre of Experimental Medicine and Surgery, Institute of Medical Sciences, Banaras Hindu University, Varanasi 221005, India
| | - Rajiv Kumar
- Centre of Experimental Medicine and Surgery, Institute of Medical Sciences, Banaras Hindu University, Varanasi 221005, India
| | - Vikas Kailashiya
- Department of Pathology, Institute of Medical Sciences, Banaras Hindu University, Varanasi 221005, Uttar Pradesh, India
| | - Prafull Salvi
- Agriculture Biotechnology Department, National Agri-Food Biotechnology Institute, Sahibzada Ajit Singh Nagar 140306, India
| | - Vibhav Gautam
- Centre of Experimental Medicine and Surgery, Institute of Medical Sciences, Banaras Hindu University, Varanasi 221005, India
| |
Collapse
|
37
|
Song X, Huang Q, Yang Y, Ma L, Liu W, Ou C, Chen Q, Zhao T, Xiao Z, Wang M, Jiang Y, Yang Y, Zhang J, Nan Y, Wu W, Ai K. Efficient Therapy of Inflammatory Bowel Disease (IBD) with Highly Specific and Durable Targeted Ta 2 C Modified with Chondroitin Sulfate (TACS). ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2023; 35:e2301585. [PMID: 37224059 DOI: 10.1002/adma.202301585] [Citation(s) in RCA: 11] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/18/2023] [Revised: 05/06/2023] [Indexed: 05/26/2023]
Abstract
Non-invasive localization of lesions and specific targeted therapy are still the main challenges for inflammatory bowel disease (IBD). Ta, as a medical metal element, has been widely used in the treatment of different diseases because of its excellent physicochemical properties but is still far from being explored in IBD. Here, Ta2 C modified with chondroitin sulfate (CS) (TACS) is evaluated as a highly targeted therapy nanomedicine for IBD. Specifically, TACS is modified with dual targeting CS functions due to IBD lesion-specific positive charges and high expression of CD44 receptors. Thanks to the acid stability, sensitive CT imaging function, and strong reactive oxygen species (ROS) elimination ability, oral TACS can accurately locate and delineate IBD lesions through non-invasive CT imaging, and specifically targeted treat IBD effectively because high levels of ROS are a central factor in the progression of IBD. As expected, TACS has much better imaging and therapeutic effects than clinical CT contrast agent and first-line drug 5-aminosalicylic acid, respectively. The mechanism of TACS treatment mainly involves protection of mitochondria, elimination of oxidative stress, inhibiting macrophage M1 polarization, protection of intestinal barrier, and restoration of intestinal flora balance. Collectively, this work provides unprecedented opportunities for oral nanomedicines to targeted therapy of IBD.
Collapse
Affiliation(s)
- Xiangping Song
- Department of Geriatric Surgery, Xiangya Hospital, Central South University, Changsha, 410008, China
- Xiangya School of Pharmaceutical Sciences, Central South University, Changsha, 410008, China
- National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, 410008, China
- Department of General Surgery, Xiangya Hospital, Central South University, Changsha, 410008, China
| | - Qiong Huang
- National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, 410008, China
- Department of Pharmacy, Xiangya Hospital, Central South University, Changsha, 410008, P. R. China
| | - Yuqi Yang
- National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, 410008, China
- Department of Pharmacy, Xiangya Hospital, Central South University, Changsha, 410008, P. R. China
| | - Liang Ma
- Hubei Key Laboratory of Optical Information and Pattern Recognition, Wuhan Institute of Technology, Wuhan, 430205, China
| | - Wenguang Liu
- Department of Radiology, Xiangya Hospital, Central South University, Changsha, 410008, China
| | - Chunlin Ou
- Department of Pathology, Xiangya Hospital, Central South University, Changsha, 410008, China
| | - Qiaohui Chen
- Xiangya School of Pharmaceutical Sciences, Central South University, Changsha, 410008, China
- Hunan Provincial Key Laboratory of Cardiovascular Research, Xiangya School of Pharmaceutical Sciences, Central South University, Changsha, 410008, China
| | - Tianjiao Zhao
- Xiangya School of Pharmaceutical Sciences, Central South University, Changsha, 410008, China
- Hunan Provincial Key Laboratory of Cardiovascular Research, Xiangya School of Pharmaceutical Sciences, Central South University, Changsha, 410008, China
| | - Zuoxiu Xiao
- Xiangya School of Pharmaceutical Sciences, Central South University, Changsha, 410008, China
- Hunan Provincial Key Laboratory of Cardiovascular Research, Xiangya School of Pharmaceutical Sciences, Central South University, Changsha, 410008, China
| | - Mingyuan Wang
- Department of Geriatric Surgery, Xiangya Hospital, Central South University, Changsha, 410008, China
- National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, 410008, China
- Department of General Surgery, Xiangya Hospital, Central South University, Changsha, 410008, China
| | - Yitian Jiang
- Xiangya School of Pharmaceutical Sciences, Central South University, Changsha, 410008, China
- Hunan Provincial Key Laboratory of Cardiovascular Research, Xiangya School of Pharmaceutical Sciences, Central South University, Changsha, 410008, China
| | - Yunrong Yang
- National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, 410008, China
- Department of Pharmacy, Xiangya Hospital, Central South University, Changsha, 410008, P. R. China
| | - Jinping Zhang
- National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, 410008, China
- Department of Pharmacy, Xiangya Hospital, Central South University, Changsha, 410008, P. R. China
| | - Yayun Nan
- Geriatric Medical Center, People's Hospital of Ningxia Hui Autonomous Region, Yinchuan, 750002, China
| | - Wei Wu
- Department of Geriatric Surgery, Xiangya Hospital, Central South University, Changsha, 410008, China
- National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, 410008, China
- Department of General Surgery, Xiangya Hospital, Central South University, Changsha, 410008, China
| | - Kelong Ai
- Xiangya School of Pharmaceutical Sciences, Central South University, Changsha, 410008, China
- Hunan Provincial Key Laboratory of Cardiovascular Research, Xiangya School of Pharmaceutical Sciences, Central South University, Changsha, 410008, China
- Key Laboratory of Aging-related Bone and Joint Diseases Prevention and Treatment., Ministry of Education, Xiangya Hospital, Central South University, Changsha, 410008, China
| |
Collapse
|