1
|
Sun M, Chen Q, Ren Y, Zhuo Y, Xu S, Rao H, Wu D, Feng B, Wang Y. CoNiCoNC tumor therapy by two-ways producing H 2O 2 to aggravate energy metabolism, chemokinetics, and ferroptosis. J Colloid Interface Sci 2025; 678:925-937. [PMID: 39270392 DOI: 10.1016/j.jcis.2024.09.067] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2024] [Revised: 09/01/2024] [Accepted: 09/07/2024] [Indexed: 09/15/2024]
Abstract
The effectiveness of chemokinetic therapy nanozymes is severely constrained because of the low H2O2 levels in the tumor microenvironment. Unlike other self-produced H2O2 nanozymes, the N-CNTs-encapsulated CoNi alloy (CoNiCoNC) with glucose oxidase and lactate oxidase activities has two ways to produce H2O2. It can facilitate the transformation of glucose and lactic acid into H2O2 simultaneously. First, the H2O2 generation pathway is favorable for aggravating energy metabolism. Second, some produced H2O2 can be decomposed by CoNiCoNC to H2O and O2 with the 4e- pathway to alleviate the TME hypoxia. Third, H2O2 can be catalyzed to form OH to enhance reactive oxygen species (ROS) content. Through proteomic analysis, nanozymes substantially impact the metabolic pathways of cancer cells because of their aggravating energy metabolism. The high levels of ROS can cause mitochondrial lipid peroxidation and cellular ferroptosis. Consequently, the two-way H2O2-selective nanoenzymatic platform realizes the synergistic effect of starvation therapy and chemokinetics.
Collapse
Affiliation(s)
- Mengmeng Sun
- College of Science, Sichuan Agricultural University, Xin Kang Road, Yucheng District, Ya'an 625014, PR China.
| | - Qiushu Chen
- College of Science, Sichuan Agricultural University, Xin Kang Road, Yucheng District, Ya'an 625014, PR China.
| | - Yingying Ren
- College of Science, Sichuan Agricultural University, Xin Kang Road, Yucheng District, Ya'an 625014, PR China.
| | - Yong Zhuo
- Animal Nutrition Institute, Sichuan Agricultural University, Chengdu 611130, PR China.
| | - Shengyu Xu
- Animal Nutrition Institute, Sichuan Agricultural University, Chengdu 611130, PR China.
| | - Hanbing Rao
- College of Science, Sichuan Agricultural University, Xin Kang Road, Yucheng District, Ya'an 625014, PR China.
| | - De Wu
- Animal Nutrition Institute, Sichuan Agricultural University, Chengdu 611130, PR China.
| | - Bin Feng
- Animal Nutrition Institute, Sichuan Agricultural University, Chengdu 611130, PR China.
| | - Yanying Wang
- College of Science, Sichuan Agricultural University, Xin Kang Road, Yucheng District, Ya'an 625014, PR China.
| |
Collapse
|
2
|
Cai J, Xu Y, Liao F. Advances in multifunctional metal-organic framework (MOF)-based nanoplatforms for cancer starvation therapy. Expert Rev Mol Med 2024; 26:e27. [PMID: 39397711 PMCID: PMC11488333 DOI: 10.1017/erm.2024.28] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2024] [Revised: 05/28/2024] [Accepted: 07/23/2024] [Indexed: 10/15/2024]
Abstract
Cancer remains a significant threat to human health today. Even though starvation therapy and other treatment methods have recently advanced to a new level of rapid development in tumour treatment, their limited therapeutic effectiveness and unexpected side effects prevent them from becoming the first option in clinical treatment. With rapid advancement in nanotechnology, the utilization of nanomaterials in therapeutics offers the potential to address the shortcomings in cancer treatment. Notably, multifunctional metal-organic framework (MOF) has been widely employed in cancer therapy due to their customizable shape, adjustable diameter, high porosity, diverse compositions, large specific surface area, high degree of functionalization and strong biocompatibility. This paper reviews the current progress and success of MOF-based multifunctional nanoplatforms for cancer starvation therapy, as well as the prospects and potential barriers for the application of MOF nanoplatforms in cancer starvation therapy.
Collapse
Affiliation(s)
- Jinghan Cai
- Renmin Hospital of Wuhan University, Wuhan University, Wuhan, P. R. China
| | - Yan Xu
- University Hospital, Wuhan Institute of Technology, Wuhan, P. R. China
| | - Fei Liao
- Department of Gastroenterology, Renmin Hospital of Wuhan University, Wuhan, P. R. China
| |
Collapse
|
3
|
Yu Z, Lepoitevin M, Serre C. Iron-MOFs for Biomedical Applications. Adv Healthc Mater 2024:e2402630. [PMID: 39388416 DOI: 10.1002/adhm.202402630] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2024] [Revised: 08/29/2024] [Indexed: 10/12/2024]
Abstract
Over the past two decades, iron-based metal-organic frameworks (Fe-MOFs) have attracted significant research interest in biomedicine due to their low toxicity, tunable degradability, substantial drug loading capacity, versatile structures, and multimodal functionalities. Despite their great potential, the transition of Fe-MOFs-based composites from laboratory research to clinical products remains challenging. This review evaluates the key properties that distinguish Fe-MOFs from other MOFs and highlights recent advances in synthesis routes, surface engineering, and shaping technologies. In particular, it focuses on their applications in biosensing, antimicrobial, and anticancer therapies. In addition, the review emphasizes the need to develop scalable, environmentally friendly, and cost-effective production methods for additional Fe-MOFs to meet the specific requirements of various biomedical applications. Despite the ability of Fe-MOFs-based composites to combine therapies, significant hurdles still remain, including the need for a deeper understanding of their therapeutic mechanisms and potential risks of resistance and overdose. Systematically addressing these challenges could significantly enhance the prospects of Fe-MOFs in biomedicine and potentially facilitate their integration into mainstream clinical practice.
Collapse
Affiliation(s)
- Zhihao Yu
- Institut des Matériaux Poreux de Paris, ENS, ESPCI Paris, CNRS, PSL University, Paris, France
| | - Mathilde Lepoitevin
- Institut des Matériaux Poreux de Paris, ENS, ESPCI Paris, CNRS, PSL University, Paris, France
| | - Christian Serre
- Institut des Matériaux Poreux de Paris, ENS, ESPCI Paris, CNRS, PSL University, Paris, France
| |
Collapse
|
4
|
Yao L, Zhu X, Shan Y, Zhang L, Yao J, Xiong H. Recent Progress in Anti-Tumor Nanodrugs Based on Tumor Microenvironment Redox Regulation. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2024; 20:e2310018. [PMID: 38269480 DOI: 10.1002/smll.202310018] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/03/2023] [Revised: 12/30/2023] [Indexed: 01/26/2024]
Abstract
The growth state of tumor cells is strictly affected by the specific abnormal redox status of the tumor microenvironment (TME). Moreover, redox reactions at the biological level are also central and fundamental to essential energy metabolism reactions in tumors. Accordingly, anti-tumor nanodrugs targeting the disruption of this abnormal redox homeostasis have become one of the hot spots in the field of nanodrugs research due to the effectiveness of TME modulation and anti-tumor efficiency mediated by redox interference. This review discusses the latest research results of nanodrugs in anti-tumor therapy, which regulate the levels of oxidants or reductants in TME through a variety of therapeutic strategies, ultimately breaking the original "stable" redox state of the TME and promoting tumor cell death. With the gradual deepening of study on the redox state of TME and the vigorous development of nanomaterials, it is expected that more anti-tumor nano drugs based on tumor redox microenvironment regulation will be designed and even applied clinically.
Collapse
Affiliation(s)
- Lan Yao
- State Key Laboratory of Natural Medicines and Jiangsu Key Laboratory of Druggability of Biopharmaceuticals, Department of Pharmaceutics, China Pharmaceutical University, 639 Longmian Avenue, Nanjing, 211198, P. R. China
| | - Xiang Zhu
- State Key Laboratory of Natural Medicines and Jiangsu Key Laboratory of Druggability of Biopharmaceuticals, Department of Pharmaceutics, China Pharmaceutical University, 639 Longmian Avenue, Nanjing, 211198, P. R. China
| | - Yunyi Shan
- State Key Laboratory of Natural Medicines and Jiangsu Key Laboratory of Druggability of Biopharmaceuticals, Department of Pharmaceutics, China Pharmaceutical University, 639 Longmian Avenue, Nanjing, 211198, P. R. China
| | - Liang Zhang
- State Key Laboratory of Natural Medicines and Jiangsu Key Laboratory of Druggability of Biopharmaceuticals, Department of Pharmaceutics, China Pharmaceutical University, 639 Longmian Avenue, Nanjing, 211198, P. R. China
| | - Jing Yao
- State Key Laboratory of Natural Medicines and Jiangsu Key Laboratory of Druggability of Biopharmaceuticals, Department of Pharmaceutics, China Pharmaceutical University, 639 Longmian Avenue, Nanjing, 211198, P. R. China
| | - Hui Xiong
- State Key Laboratory of Natural Medicines and Jiangsu Key Laboratory of Druggability of Biopharmaceuticals, Department of Pharmaceutics, China Pharmaceutical University, 639 Longmian Avenue, Nanjing, 211198, P. R. China
| |
Collapse
|
5
|
Ren H, Hao M, Liu G, Li J, Jiang Z, Meng W, Zhang Y. Oxygen Self-Supplied Perfluorocarbon-Modified Micelles for Enhanced Cancer Photodynamic Therapy and Ferroptosis. ACS APPLIED BIO MATERIALS 2024; 7:3306-3315. [PMID: 38634490 DOI: 10.1021/acsabm.4c00251] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/19/2024]
Abstract
Photodynamic therapy (PDT) and ferroptosis show significant potential in tumor treatment. However, their therapeutic efficacy is often hindered by the oxygen-deficient tumor microenvironment and the challenges associated with efficient intracellular drug delivery into tumor cells. Toward this end, this work synthesized perfluorocarbon (PFC)-modified Pluronic F127 (PFC-F127), and then exploits it as a carrier for codelivery of photosensitizer Chlorin e6 (Ce6) and the ferroptosis promoter sorafenib (Sor), yielding an oxygen self-supplying nanoplatform denoted as Ce6-Sor@PFC-F127. The PFCs on the surface of the micelle play a crucial role in efficiently solubilizing and delivering oxygen as well as increasing the hydrophobicity of the micelle surface, giving rise to enhanced endocytosis by cancer cells. The incorporation of an oxygen-carrying moiety into the micelles enhances the therapeutic impact of PDT and ferroptosis, leading to amplified endocytosis and cytotoxicity of tumor cells. Hypotonic saline technology was developed to enhance the cargo encapsulation efficiency. Notably, in a murine tumor model, Ce6-Sor@PFC-F127 effectively inhibited tumor growth through the combined use of oxygen-enhanced PDT and ferroptosis. Taken together, this work underscores the promising potential of Ce6-Sor@PFC-F127 as a multifunctional therapeutic nanoplatform for the codelivery of multiple cargos such as oxygen, photosensitizers, and ferroptosis inducers.
Collapse
Affiliation(s)
- He Ren
- School of Chemical Engineering and Technology, Key Laboratory of Systems Bioengineering (Ministry of Education), Frontiers Science Center for Synthetic Biology (Ministry of Education), Tianjin University, Tianjin 300350, P.R. China
| | - Minchao Hao
- School of Chemical Engineering and Technology, Key Laboratory of Systems Bioengineering (Ministry of Education), Frontiers Science Center for Synthetic Biology (Ministry of Education), Tianjin University, Tianjin 300350, P.R. China
| | - Gengqi Liu
- School of Chemical Engineering and Technology, Key Laboratory of Systems Bioengineering (Ministry of Education), Frontiers Science Center for Synthetic Biology (Ministry of Education), Tianjin University, Tianjin 300350, P.R. China
| | - Jiexin Li
- School of Chemical Engineering and Technology, Key Laboratory of Systems Bioengineering (Ministry of Education), Frontiers Science Center for Synthetic Biology (Ministry of Education), Tianjin University, Tianjin 300350, P.R. China
| | - Zhen Jiang
- School of Chemical Engineering and Technology, Key Laboratory of Systems Bioengineering (Ministry of Education), Frontiers Science Center for Synthetic Biology (Ministry of Education), Tianjin University, Tianjin 300350, P.R. China
| | - Wenlu Meng
- School of Chemical Engineering and Technology, Key Laboratory of Systems Bioengineering (Ministry of Education), Frontiers Science Center for Synthetic Biology (Ministry of Education), Tianjin University, Tianjin 300350, P.R. China
| | - Yumiao Zhang
- School of Chemical Engineering and Technology, Key Laboratory of Systems Bioengineering (Ministry of Education), Frontiers Science Center for Synthetic Biology (Ministry of Education), Tianjin University, Tianjin 300350, P.R. China
| |
Collapse
|
6
|
Li SL, Hou HY, Chu X, Zhu YY, Zhang YJ, Duan MD, Liu J, Liu Y. Nanomaterials-Involved Tumor-Associated Macrophages' Reprogramming for Antitumor Therapy. ACS NANO 2024; 18:7769-7795. [PMID: 38420949 DOI: 10.1021/acsnano.3c12387] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 03/02/2024]
Abstract
Tumor-associated macrophages (TAMs) play pivotal roles in tumor development. As primary contents of tumor environment (TME), TAMs secrete inflammation-related substances to regulate tumoral occurrence and development. There are two kinds of TAMs: the tumoricidal M1-like TAMs and protumoral M2-like TAMs. Reprogramming TAMs from immunosuppressive M2 to immunocompetent M1 phenotype is considered a feasible way to improve immunotherapeutic efficiency. Notably, nanomaterials show great potential for biomedical fields due to their controllable structures and properties. There are many types of nanomaterials that exhibit great regulatory activities for TAMs' reprogramming. In this review, the recent progress of nanomaterials-involved TAMs' reprogramming is comprehensively discussed. The various nanomaterials for TAMs' reprogramming and the reprogramming strategies are summarized and introduced. Additionally, the challenges and perspectives of TAMs' reprogramming for efficient therapy are discussed, aiming to provide inspiration for TAMs' regulator design and promote the development of TAMs-mediated immunotherapy.
Collapse
Affiliation(s)
- Shu-Lan Li
- State Key Laboratory of Separation Membrane and Membrane Process, School of Chemistry & School of Electronic and Information Engineering, Tiangong University, Tianjin 300387, P. R. China
| | - Hua-Ying Hou
- State Key Laboratory of Separation Membrane and Membrane Process, School of Chemistry & School of Electronic and Information Engineering, Tiangong University, Tianjin 300387, P. R. China
| | - Xu Chu
- School of Materials Science and Engineering & School of Chemical Engineering and Technology, Tiangong University, Tianjin 300387, P. R. China
| | - Yu-Ying Zhu
- State Key Laboratory of Separation Membrane and Membrane Process, School of Chemistry & School of Electronic and Information Engineering, Tiangong University, Tianjin 300387, P. R. China
| | - Yu-Juan Zhang
- School of Materials Science and Engineering & School of Chemical Engineering and Technology, Tiangong University, Tianjin 300387, P. R. China
| | - Meng-Die Duan
- School of Materials Science and Engineering & School of Chemical Engineering and Technology, Tiangong University, Tianjin 300387, P. R. China
| | - Junyi Liu
- Albany Medical College, New York 12208, United States
| | - Yi Liu
- State Key Laboratory of Separation Membrane and Membrane Process, School of Chemistry & School of Electronic and Information Engineering, Tiangong University, Tianjin 300387, P. R. China
- School of Materials Science and Engineering & School of Chemical Engineering and Technology, Tiangong University, Tianjin 300387, P. R. China
- School of Chemical and Environmental Engineering, Wuhan Polytechnic University, Wuhan 430023, P. R. China
| |
Collapse
|
7
|
Shi P, Wu Z, Liu Y, Zhang G, Zhang C. Immobilization of horseradish peroxidase on metal-organic framework to imporve enzyme activity for enhanced chemodynamic therapy. J Inorg Biochem 2024; 250:112394. [PMID: 37864880 DOI: 10.1016/j.jinorgbio.2023.112394] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2023] [Revised: 09/27/2023] [Accepted: 10/03/2023] [Indexed: 10/23/2023]
Abstract
Bio-enzymes have the advantages of strong substrate specificity, high catalytic efficiency, and minimal toxic side effects, making them promising drugs in cancer therapy. However, the poor stability and cellular penetrability of uncoated protein in the physiological environment severely restricts the direct application of Bio-enzyme. To address it, we report a metal-organic framework (MOF), Hf-DBA (H2DBA, biphenyl carboxylic acid ligands). The morphology of the Hf-DBA was revealed by TEM and the diameter was in the range of 200 to 350 nm. Hf-DBA acted a carrier for intracellular delivery and protection of horseradish peroxidase (HRP). The prepared HRP@Hf-DBA can catalyze the excess H2O2 in the tumor cells to generation of •OH for chemodynamic therapy (CDT). Compared with free HRP, the catalytic activity of HRP@Hf-DBA is significantly improved, and the optimal catalytic conditions are explored. The catalytic stability of HRP@Hf-DBA remained above 70% after 12 cycles of catalysis. After treatment with HRP@Hf-DBA, the apoptosis rates of A549 and Hela cells was 71.64%, and 76.86%. The results in vitro show that HRP@Hf-DBA can effectively inhibit the growth of tumor cells through enhanced CDT.
Collapse
Affiliation(s)
- Pengfei Shi
- College of Chemistry and Chemical Engineering, Qingdao University, Qingdao, Shandong 266071, China; Shandong Provincial Key Laboratory of Detection Technology for Tumor Markers, School of Chemistry and Chemical Engineering, Linyi University, Linyi 276000, Shandong, China.
| | - Ziyong Wu
- Shandong Provincial Key Laboratory of Detection Technology for Tumor Markers, School of Chemistry and Chemical Engineering, Linyi University, Linyi 276000, Shandong, China
| | - Yingyan Liu
- Shandong Provincial Key Laboratory of Detection Technology for Tumor Markers, School of Chemistry and Chemical Engineering, Linyi University, Linyi 276000, Shandong, China
| | - Guoda Zhang
- Shandong Provincial Key Laboratory of Detection Technology for Tumor Markers, School of Chemistry and Chemical Engineering, Linyi University, Linyi 276000, Shandong, China
| | - Chuangli Zhang
- Shandong Provincial Key Laboratory of Detection Technology for Tumor Markers, School of Chemistry and Chemical Engineering, Linyi University, Linyi 276000, Shandong, China.
| |
Collapse
|
8
|
Fu Y, Sun J, Wang Y, Li W. Glucose oxidase and metal catalysts combined tumor synergistic therapy: mechanism, advance and nanodelivery system. J Nanobiotechnology 2023; 21:400. [PMID: 37907972 PMCID: PMC10617118 DOI: 10.1186/s12951-023-02158-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2023] [Accepted: 10/12/2023] [Indexed: 11/02/2023] Open
Abstract
Cancer has always posed a significant threat to human health, prompting extensive research into new treatment strategies due to the limitations of traditional therapies. Starvation therapy (ST) has garnered considerable attention by targeting the primary energy source, glucose, utilized by cancer cells for proliferation. Glucose oxidase (GOx), a catalyst facilitating glucose consumption, has emerged as a critical therapeutic agent for ST. However, mono ST alone struggles to completely suppress tumor growth, necessitating the development of synergistic therapy approaches. Metal catalysts possess enzyme-like functions and can serve as carriers, capable of combining with GOx to achieve diverse tumor treatments. However, ensuring enzyme activity preservation in normal tissue and activation specifically within tumors presents a crucial challenge. Nanodelivery systems offer the potential to enhance therapy effectiveness by improving the stability of therapeutic agents and enabling controlled release. This review primarily focuses on recent advances in the mechanism of GOx combined with metal catalysts for synergistic tumor therapy. Furthermore, it discusses various nanoparticles (NPs) constructs designed for synergistic therapy in different carrier categories. Finally, this review provides a summary of GOx-metal catalyst-based NPs (G-M) and offers insights into the challenges associated with G-M therapy, delivery design, and oxygen (O2) supply.
Collapse
Affiliation(s)
- Yuhan Fu
- School of Pharmacy, Heilongjiang University of Chinese Medicine, Harbin, Heilongjiang Province, China
- Key Laboratory of Basic and Application Research of Beiyao Ministry of Education, Heilongjiang University of Chinese Medicine, Harbin, Heilongjiang Province, China
| | - Jialin Sun
- Postdoctoral Research Station, Heilongjiang University of Chinese Medicine, Harbin, Heilongjiang Province, China
- Biological Science and Technology Department, Heilongjiang Minzu College, Harbin, Heilongjiang Province, China
| | - Yanhong Wang
- School of Pharmacy, Heilongjiang University of Chinese Medicine, Harbin, Heilongjiang Province, China.
- Key Laboratory of Basic and Application Research of Beiyao Ministry of Education, Heilongjiang University of Chinese Medicine, Harbin, Heilongjiang Province, China.
| | - Weinan Li
- School of Pharmacy, Heilongjiang University of Chinese Medicine, Harbin, Heilongjiang Province, China.
- Key Laboratory of Basic and Application Research of Beiyao Ministry of Education, Heilongjiang University of Chinese Medicine, Harbin, Heilongjiang Province, China.
| |
Collapse
|
9
|
Reddy VP. Oxidative Stress in Health and Disease. Biomedicines 2023; 11:2925. [PMID: 38001926 PMCID: PMC10669448 DOI: 10.3390/biomedicines11112925] [Citation(s) in RCA: 13] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2023] [Revised: 10/25/2023] [Accepted: 10/26/2023] [Indexed: 11/26/2023] Open
Abstract
Oxidative stress, resulting from the excessive intracellular accumulation of reactive oxygen species (ROS), reactive nitrogen species (RNS), and other free radical species, contributes to the onset and progression of various diseases, including diabetes, obesity, diabetic nephropathy, diabetic neuropathy, and neurological diseases, such as Alzheimer's disease (AD), amyotrophic lateral sclerosis (ALS), and Parkinson's disease (PD). Oxidative stress is also implicated in cardiovascular disease and cancer. Exacerbated oxidative stress leads to the accelerated formation of advanced glycation end products (AGEs), a complex mixture of crosslinked proteins and protein modifications. Relatively high levels of AGEs are generated in diabetes, obesity, AD, and other I neurological diseases. AGEs such as Ne-carboxymethyllysine (CML) serve as markers for disease progression. AGEs, through interaction with receptors for advanced glycation end products (RAGE), initiate a cascade of deleterious signaling events to form inflammatory cytokines, and thereby further exacerbate oxidative stress in a vicious cycle. AGE inhibitors, AGE breakers, and RAGE inhibitors are therefore potential therapeutic agents for multiple diseases, including diabetes and AD. The complexity of the AGEs and the lack of well-established mechanisms for AGE formation are largely responsible for the lack of effective therapeutics targeting oxidative stress and AGE-related diseases. This review addresses the role of oxidative stress in the pathogenesis of AGE-related chronic diseases, including diabetes and neurological disorders, and recent progress in the development of therapeutics based on antioxidants, AGE breakers and RAGE inhibitors. Furthermore, this review outlines therapeutic strategies based on single-atom nanozymes that attenuate oxidative stress through the sequestering of reactive oxygen species (ROS) and reactive nitrogen species (RNS).
Collapse
Affiliation(s)
- V Prakash Reddy
- Department of Chemistry, Missouri University of Science and Technology, Rolla, MO 65409, USA
| |
Collapse
|
10
|
Chen L, Zhao D, Ren X, Ren J, Meng X, Fu C, Li X. Shikonin-Loaded Hollow Fe-MOF Nanoparticles for Enhanced Microwave Thermal Therapy. ACS Biomater Sci Eng 2023; 9:5405-5417. [PMID: 37638660 PMCID: PMC10498989 DOI: 10.1021/acsbiomaterials.3c00644] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2023] [Accepted: 08/15/2023] [Indexed: 08/29/2023]
Abstract
Microwave (MW) thermal therapy has been widely used for the treatment of cancer in clinics, but it still shows limited efficacy and a high recurrence rate owing to non-selective heat delivery and thermo-resistance. Regulating glycolysis shows great promise to improve MW thermal therapy since glycolysis plays an important role in thermo-resistance, progression, metabolism, and recurrence. Herein, we developed a delivery nanosystem of shikonin (SK)-loaded and hyaluronic acid (HA)-modified hollow Fe-MOF (HFM), HFM@SK@HA, as an efficient glycolysis-meditated agent to improve the efficacy of MW thermal therapy. The HFM@SK@HA nanosystem shows a high SK loading capacity of 31.7 wt %. The loaded SK can be effectively released from the HFM@SK@HA under the stimulation of an acidic tumor microenvironment and MW irradiation, overcoming the intrinsically low solubility and severe toxicity of SK. We also find that the HFM@SK@HA can not only greatly improve the heating effect of MW in the tumor site but also mediate MW-enhancing dynamic therapy efficiency by catalyzing the endogenous H2O2 to generate reactive oxygen species (ROS). As such, the MW irradiation treatment in the presence of HFM@SK@HA in vitro enables a highly improved anti-tumor efficacy due to the combined effect of released SK and generated ROS on inhibiting glycolysis in cancer cells. Our in vivo experiments show that the tumor inhibition rate is up to 94.75% ± 3.63% with no obvious recurrence during the 2 weeks after treatment. This work provides a new strategy for improving the efficacy of MW thermal therapy.
Collapse
Affiliation(s)
- Lufeng Chen
- Department
of Radiation Oncology, First Clinical Medical
School and First Hospital of Shanxi Medical University, No.85 Jiefang Road, Taiyuan City 030001, PR China
| | - Dongming Zhao
- Department
of Radiation Oncology, First Clinical Medical
School and First Hospital of Shanxi Medical University, No.85 Jiefang Road, Taiyuan City 030001, PR China
- Department
of Pathology, Basic Medical School, Shanxi
Medical University, No.56 Xinjian Road, Taiyuan City 030001, PR China
| | - Xiangling Ren
- Laboratory
of Controllable Preparation and Application of Nanomaterials, Technical
Institute of Physics and Chemistry, Chinese
Academy of Sciences, No.29 East Road Zhongguancun, Beijing 100190, PR China
- CAS
Key Laboratory of Cryogenics, Technical Institute of Physics and Chemistry, Chinese Academy of Sciences, Beijing 100190, China
| | - Jun Ren
- Laboratory
of Controllable Preparation and Application of Nanomaterials, Technical
Institute of Physics and Chemistry, Chinese
Academy of Sciences, No.29 East Road Zhongguancun, Beijing 100190, PR China
- CAS
Key Laboratory of Cryogenics, Technical Institute of Physics and Chemistry, Chinese Academy of Sciences, Beijing 100190, China
| | - Xianwei Meng
- Laboratory
of Controllable Preparation and Application of Nanomaterials, Technical
Institute of Physics and Chemistry, Chinese
Academy of Sciences, No.29 East Road Zhongguancun, Beijing 100190, PR China
- CAS
Key Laboratory of Cryogenics, Technical Institute of Physics and Chemistry, Chinese Academy of Sciences, Beijing 100190, China
| | - Changhui Fu
- Laboratory
of Controllable Preparation and Application of Nanomaterials, Technical
Institute of Physics and Chemistry, Chinese
Academy of Sciences, No.29 East Road Zhongguancun, Beijing 100190, PR China
- CAS
Key Laboratory of Cryogenics, Technical Institute of Physics and Chemistry, Chinese Academy of Sciences, Beijing 100190, China
| | - Xianfeng Li
- Department
of Radiation Oncology, First Clinical Medical
School and First Hospital of Shanxi Medical University, No.85 Jiefang Road, Taiyuan City 030001, PR China
- Department
of Pathology, Basic Medical School, Shanxi
Medical University, No.56 Xinjian Road, Taiyuan City 030001, PR China
| |
Collapse
|