1
|
Bosch S, Botha TL, Wepener V. Influence of different functionalized CdTe quantum dots on the accumulation of metals, developmental toxicity and respiration in different development stages of the zebrafish ( Danio rerio). FRONTIERS IN TOXICOLOGY 2023; 5:1176172. [PMID: 37200940 PMCID: PMC10185758 DOI: 10.3389/ftox.2023.1176172] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2023] [Accepted: 04/11/2023] [Indexed: 05/20/2023] Open
Abstract
Introduction: The bioaccumulation and differential effects of cadmium tellurium quantum dot (CdTe QDs) nanomaterials with different functional groups are poorly understood in aquatic organisms. This study aimed to investigate the metal uptake, developmental effects, and respiratory effects of CdTe QDs with different functional groups (COOH, NH3, and PEG) on zebrafish embryos. Methods: Zebrafish embryos were exposed to carboxylate (COOH), ammonia (NH3), and polyethylene glycol (PEG) functionalized CdTe QDs at nominal concentrations of 0.5, 2, 4, 6, and 20 mg QDs/L. The materials were characterized in E3 exposure media and the metal uptake, developmental effects, and respiratory effects of zebrafish embryos were recorded. Results: The total Cd or Te concentrations in the larvae could not be explained by the metal concentrations or dissolution of the materials in the exposure media. The metal uptake in the larvae was not dose-dependent, except for the QD-PEG treatment. The QD-NH3 treatment caused respiration inhibition at the highest exposure concentration and hatching delays and severe malformations at low concentrations. The toxicities observed at low concentrations were attributed to particles crossing the pores in the chorion, and toxicities at higher concentrations were linked to the aggregation of particle agglomerates to the surface of the chorion impairing respiration. Developmental defects were recorded following exposure to all three functional groups, but the QD-NH3 group had the most severe response. The LC50 values for embryo development of QD-COOH and QD-PEG groups were higher than 20 mg/L, and the LC50 of the QD-NH3 group was 20 mg/L. Discussion: The results of this study suggest that CdTe QDs with different functional groups have differential effects on zebrafish embryos. The QD-NH3 treatment caused the most severe effects, including respiration inhibition and developmental defects. These findings provide valuable information for understanding the effects of CdTe QDs on aquatic organisms and highlight the need for further investigation.
Collapse
Affiliation(s)
- Suanne Bosch
- Water Research Group, School of Biological Sciences, North-West University, Potchefstroom, South Africa
- *Correspondence: Suanne Bosch,
| | - Tarryn Lee Botha
- Water Research Group, School of Biological Sciences, North-West University, Potchefstroom, South Africa
- Department of Zoology, University of Johannesburg, Johannesburg, South Africa
| | - Victor Wepener
- Water Research Group, School of Biological Sciences, North-West University, Potchefstroom, South Africa
| |
Collapse
|
2
|
Della Torre C, Maggioni D, Ghilardi A, Parolini M, Santo N, Landi C, Madaschi L, Magni S, Tasselli S, Ascagni M, Bini L, La Porta C, Del Giacco L, Binelli A. The interactions of fullerene C 60 and Benzo(α)pyrene influence their bioavailability and toxicity to zebrafish embryos. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2018; 241:999-1008. [PMID: 30029334 DOI: 10.1016/j.envpol.2018.06.042] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/05/2018] [Revised: 06/13/2018] [Accepted: 06/13/2018] [Indexed: 06/08/2023]
Abstract
This study aimed to assess the toxicological consequences related to the interaction of fullerene nanoparticles (C60) and Benzo(α)pyrene (B(α)P) on zebrafish embryos, which were exposed to C60 and B(α)P alone and to C60 doped with B(α)P. The uptake of pollutants into their tissues and intra-cellular localization were investigated by immunofluorescence and electron microscopy. A set of biomarkers of genotoxicity and oxidative stress, as well as functional proteomics analysis were applied to assess the toxic effects due to C60 interaction with B(α)P. The carrier role of C60 for B(α)P was observed, however adsorption on C60 did not affect the accumulation and localization of B(α)P in the embryos. Instead, C60 doped with B(α)P resulted more prone to sedimentation and less bioavailable for the embryos compared to C60 alone. As for toxicity, our results suggested that C60 alone elicited oxidative stress in embryos and a down-regulation of proteins involved in energetic metabolism. The C60 + B(α)P induced cellular response mechanisms similar to B(α)P alone, but generating greater cellular damages in the exposed embryos.
Collapse
Affiliation(s)
| | | | - Anna Ghilardi
- Department of Biosciences, University of Milan, Italy
| | - Marco Parolini
- Department of Environmental Science and Policy, University of Milan, Italy
| | - Nadia Santo
- Department of Biosciences, University of Milan, Italy
| | - Claudia Landi
- Department of Life Science, University of Siena, Italy
| | | | - Stefano Magni
- Department of Biosciences, University of Milan, Italy
| | - Stefano Tasselli
- CNR-IRSA (National Research Council-Water Research Institute), Brugherio, Italy
| | | | - Luca Bini
- Department of Life Science, University of Siena, Italy
| | - Caterina La Porta
- Department of Environmental Science and Policy, University of Milan, Italy
| | | | | |
Collapse
|
3
|
Rotomskis R, Jurgelėnė Ž, Stankevičius M, Stankevičiūtė M, Kazlauskienė N, Jokšas K, Montvydienė D, Kulvietis V, Karabanovas V. Interaction of carboxylated CdSe/ZnS quantum dots with fish embryos: Towards understanding of nanoparticles toxicity. THE SCIENCE OF THE TOTAL ENVIRONMENT 2018; 635:1280-1291. [PMID: 29710581 DOI: 10.1016/j.scitotenv.2018.04.206] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/01/2018] [Revised: 04/15/2018] [Accepted: 04/16/2018] [Indexed: 06/08/2023]
Abstract
Due to colloidal instability even with protective coatings, nanoparticles tend to aggregate in complex environments and possibly interact with biota. In this study, visualization of quantum dots (QDs) interaction with rainbow trout (Oncorhynchus mykiss) embryos was performed. Studies on zebrafish (Danio rerio) and pearl gourami (Trichogaster leerii) embryos have shown that QDs interact with embryos in a general manner and their affects are independent on the type of the embryo. It was demonstrated that carboxylated CdSe/ZnS QDs (4 nM) were aggregating in accumulation media and formed agglomerates on the surface of fish embryos under 1-12 days incubation in deep-well water. Detailed analysis of QDs distribution on fish embryos surface and investigation of the penetration of QDs through embryo's membrane showed that the chorion protects embryos from the penetration through the chorion and the accumulation of nanoparticles inside the embryos. Confocal microscopy and spectroscopy studies on rainbow trout embryos demonstrated that QDs cause chorion damage, due to QDs aggregation on the surface of chorion, even the formation of the agglomerates at the outer part of the embryos and/or with the mucus were detected. Aggregation of QDs and formation of agglomerates on the outer part of the embryo's membrane caused the intervention of the aggregates to the chorion and even partially destroyed the embryo's chorion. The incorporation of QDs in chorion was confirmed by two methods: in living embryos from a 3D reconstruction view, and in slices of embryos from a histology view. The damage of chorion integrity might have adverse effects on embryonic development. Moreover, for the first time the toxic effect of QDs was separated from the heavy metal toxicity, which is most commonly discussed in the literature to the toxicity of the QDs.
Collapse
Affiliation(s)
- Ričardas Rotomskis
- Laboratory of Biomedical Physics, National Cancer Institute, Baublio st. 3b, LT-08660 Vilnius, Lithuania; Biophotonics Group of Laser Research Center, Vilnius University, Sauletekio ave. 9, LT-10222 Vilnius, Lithuania.
| | - Živilė Jurgelėnė
- Laboratory of Ecology and Physiology of Hydrobionts, Nature Research Centre, Akademijos st. 2, LT-08412 Vilnius, Lithuania.
| | - Mantas Stankevičius
- Laboratory of Biomedical Physics, National Cancer Institute, Baublio st. 3b, LT-08660 Vilnius, Lithuania; Biophotonics Group of Laser Research Center, Vilnius University, Sauletekio ave. 9, LT-10222 Vilnius, Lithuania
| | - Milda Stankevičiūtė
- Laboratory of Genotoxicology, Nature Research Centre, Akademijos st. 2, LT-08412 Vilnius, Lithuania
| | - Nijolė Kazlauskienė
- Laboratory of Ecology and Physiology of Hydrobionts, Nature Research Centre, Akademijos st. 2, LT-08412 Vilnius, Lithuania
| | - Kęstutis Jokšas
- Geology and Geography Institute of Nature Research Centre, Akademijos st. 2, LT-08412 Vilnius, Lithuania; Vilnius University, Faculty of Chemistry and Geosciences, Naugarduko st. 24, LT-03225 Vilnius, Lithuania
| | - Danguolė Montvydienė
- Laboratory of Ecology and Physiology of Hydrobionts, Nature Research Centre, Akademijos st. 2, LT-08412 Vilnius, Lithuania
| | - Vytautas Kulvietis
- Laboratory of Biomedical Physics, National Cancer Institute, Baublio st. 3b, LT-08660 Vilnius, Lithuania
| | - Vitalijus Karabanovas
- Laboratory of Biomedical Physics, National Cancer Institute, Baublio st. 3b, LT-08660 Vilnius, Lithuania; Department of Chemistry and Bioengineering, Vilnius Gediminas Technical University, Sauletekio ave. 11, LT-10223 Vilnius, Lithuania
| |
Collapse
|
4
|
Lin HD, Hsu LS, Chien CC, Chen SC. Proteomic analysis of ametryn toxicity in zebrafish embryos. ENVIRONMENTAL TOXICOLOGY 2018; 33:579-586. [PMID: 29427468 DOI: 10.1002/tox.22546] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/18/2017] [Revised: 01/19/2018] [Accepted: 01/27/2018] [Indexed: 06/08/2023]
Abstract
Ametrym (AMT) is the most widely used herbicide and frequently detected in the aquatic environment. AMT also represent a potential health risk to aquatic organisms and animals, including humans. However, little data are available on their toxicity to zebrafish (Danio rerio). The aim of the present study was to evaluate the toxicological effects of AMT exposure on zebrafish embryos. In the acute toxicity test, 6 hpf embryos were exposed to various concentrations of AMT for 24 or 48 h. The results indicated that AMT induced malformation in larvae. To investigate the toxicological mechanism on the protein expression level. A proteomic approach was employed to investigate the proteome alterations of zebra fish embryos exposed to 20 mg/L AMT for 48 h. Among 2925 unique proteins identified, 298 differential proteins (> or <1.3-fold, P < 0.05) were detected in the treated embryos as compared to the corresponding proteins in the untreated embryos. Gene ontology analysis showed that these up-regulated proteins were most involved in glycolysis, lipid transport, protein polymerization, and nucleotide binding, and the down-regulated proteins were related to microtubule-based process, protein polymerization, oxygen transport. Moreover, KEGG pathway analysis indicated that tight junction, ribosome, and oxidative phosphorylation were inhibited in the treated embryos. These findings provide new insight into the mechanisms of toxicity induced by AMT.
Collapse
Affiliation(s)
- Heng-Dao Lin
- Department of Life Sciences, National Central University, Jhongli, Taiwan
| | - Li-Sung Hsu
- Institute of Biochemistry, Microbiology, and Immunology, Chung Shan Medical University, Taichung, Taiwan
- Clinical Laboratory, Chung Shan Medical University Hospital, Taichung, Taiwan
| | - Chih-Ching Chien
- Graduate School of Biotechnology and Bioengineering, Yuan Ze University, Jhongli, Taiwan
| | - Ssu-Ching Chen
- Department of Life Sciences, National Central University, Jhongli, Taiwan
| |
Collapse
|
5
|
Ebrahimie E, Moussavi Nik SH, Newman M, Van Der Hoek M, Lardelli M. The Zebrafish Equivalent of Alzheimer's Disease-Associated PRESENILIN Isoform PS2V Regulates Inflammatory and Other Responses to Hypoxic Stress. J Alzheimers Dis 2017; 52:581-608. [PMID: 27031468 DOI: 10.3233/jad-150678] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023]
Abstract
Dominant mutations in the PRESENILIN genes PSEN1 and PSEN2 cause familial Alzheimer's disease (fAD) that usually shows onset before 65 years of age. In contrast, genetic variation at the PSEN1 and PSEN2 loci does not appear to contribute to risk for the sporadic, late onset form of the disease (sAD), leading to doubts that these genes play a role in the majority of AD cases. However, a truncated isoform of PSEN2, PS2V, is upregulated in sAD brains and is induced by hypoxia and high cholesterol intake. PS2V can increase γ-secretase activity and suppress the unfolded protein response (UPR), but detailed analysis of its function has been hindered by lack of a suitable, genetically manipulable animal model since mice and rats lack this PRESENILIN isoform. We recently showed that zebrafish possess an isoform, PS1IV, that is cognate to human PS2V. Using an antisense morpholino oligonucleotide, we can block specifically the induction of PS1IV that normally occurs under hypoxia. Here, we exploit this ability to identify gene regulatory networks that are modulated by PS1IV. When PS1IV is absent under hypoxia-like conditions, we observe changes in expression of genes controlling inflammation (particularly sAD-associated IL1B and CCR5), vascular development, the UPR, protein synthesis, calcium homeostasis, catecholamine biosynthesis, TOR signaling, and cell proliferation. Our results imply an important role for PS2V in sAD as a component of a pathological mechanism that includes hypoxia/oxidative stress and support investigation of the role of PS2V in other diseases, including schizophrenia, when these are implicated in the pathology.
Collapse
Affiliation(s)
- Esmaeil Ebrahimie
- Department of Genetics and Evolution, School of Biological Sciences, University of Adelaide, Adelaide, Australia.,School of Information Technology and Mathematical Sciences, Division of Information Technology, Engineering and the Environment, University of South Australia, Adelaide, Australia.,School of Biological Sciences, Faculty of Science and Engineering, Flinders University, Adelaide, Australia
| | - Seyyed Hani Moussavi Nik
- Department of Genetics and Evolution, School of Biological Sciences, University of Adelaide, Adelaide, Australia
| | - Morgan Newman
- Department of Genetics and Evolution, School of Biological Sciences, University of Adelaide, Adelaide, Australia
| | - Mark Van Der Hoek
- Centre for Cancer Biology, SA Pathology, Frome Road, Adelaide, Australia
| | - Michael Lardelli
- Department of Genetics and Evolution, School of Biological Sciences, University of Adelaide, Adelaide, Australia
| |
Collapse
|
6
|
Rocha TL, Mestre NC, Sabóia-Morais SMT, Bebianno MJ. Environmental behaviour and ecotoxicity of quantum dots at various trophic levels: A review. ENVIRONMENT INTERNATIONAL 2017; 98:1-17. [PMID: 27745949 DOI: 10.1016/j.envint.2016.09.021] [Citation(s) in RCA: 72] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/07/2016] [Revised: 09/26/2016] [Accepted: 09/26/2016] [Indexed: 06/06/2023]
Abstract
Despite the wide application of quantum dots (QDs) in electronics, pharmacy and nanomedicine, limited data is available on their environmental health risk. To advance our current understanding of the environmental impact of these engineered nanomaterials, the aim of this review is to give a detailed insight on the existing information concerning the behaviour, transformation and fate of QDs in the aquatic environment, as well as on its mode of action (MoA), ecotoxicity, trophic transfer and biomagnification at various trophic levels (micro-organisms, aquatic invertebrates and vertebrates). Data show that several types of Cd-based QDs, even at low concentrations (<mgCdL-1), induce different toxic effects compared to their dissolved counterpart, indicating nano-specific ecotoxicity. QD ecotoxicity at different trophic levels is highly dependent on its physico-chemical properties, environmental conditions, concentration and exposure time, as well as, species, while UV irradiation increases its toxicity. The state of the art regarding the MoA of QDs according to taxonomic groups is summarised and illustrated. Accumulation and trophic transfer of QDs was observed in freshwater and seawater species, while limited biomagnification and detoxification processes were detected. Finally, current knowledge gaps are discussed and recommendations for future research identified. Overall, the knowledge available indicates that in order to develop sustainable nanotechnologies there is an urgent need to develop Cd-free QDs and new "core-shell-conjugate" QD structures.
Collapse
Affiliation(s)
- Thiago Lopes Rocha
- CIMA, Faculty of Science and Technology, University of Algarve, Campus de Gambelas, 8005-139 Faro, Portugal; Laboratory of Cellular Behavior, Biological Sciences Institute, Federal University of Goiás, Goiânia, Goiás, Brazil
| | - Nélia C Mestre
- CIMA, Faculty of Science and Technology, University of Algarve, Campus de Gambelas, 8005-139 Faro, Portugal
| | | | - Maria João Bebianno
- CIMA, Faculty of Science and Technology, University of Algarve, Campus de Gambelas, 8005-139 Faro, Portugal.
| |
Collapse
|
7
|
Differential Regulation of Gene and Protein Expression by Zinc Oxide Nanoparticles in Hen's Ovarian Granulosa Cells: Specific Roles of Nanoparticles. PLoS One 2015; 10:e0140499. [PMID: 26460738 PMCID: PMC4604165 DOI: 10.1371/journal.pone.0140499] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2015] [Accepted: 09/25/2015] [Indexed: 11/23/2022] Open
Abstract
Annually, tons and tons of zinc oxide nanoparticles (ZnO NPs) are produced in the world. And they are applied in almost all aspects of our life. Their release from the products into environment may pose issue for human health. Although many studies have reported the adverse effects of ZnO NPs on organisms, little is known about the effects on female reproductive systems or the related mechanisms. Quantitative proteomics have not been applied although quantitative transcriptomics have been used in zinc oxide nanoparticles (ZnO NPs) research. Genes are very important players however proteins are the real actors in the biological systems. By using hen’s ovarian granulosa cells, it was found that ZnO-NP-5μg/ml and ZnSO4-10μg/ml treatments produced the same amount of intracellular Zn and resulted in similar cell growth inhibition. And NPs were found in the treated cells. However, ZnO-NP-5μg/ml specifically regulated the expression of genes and proteins compared with that in ZnSO4-10μg/ml treatment. For the first time, this investigation reports that intact NPs produce different impacts on the expression of genes and proteins involved in specific pathways compared to that by Zn2+. The findings enrich our knowledge for the molecular insights of zinc oxide nanoparticles effects on the female reproductive systems. This also may raise the health concern that ZnO NPs may adversely affect the female reproductive systems through regulation of specific signaling pathways.
Collapse
|