1
|
Jakubek P, Kalinowski P, Karkucinska-Wieckowska A, Kaikini A, Simões ICM, Potes Y, Kruk B, Grajkowska W, Pinton P, Milkiewicz P, Grąt M, Pronicki M, Lebiedzinska-Arciszewska M, Krawczyk M, Wieckowski MR. Oxidative stress in metabolic dysfunction-associated steatotic liver disease (MASLD): How does the animal model resemble human disease? FASEB J 2024; 38:e23466. [PMID: 38318780 DOI: 10.1096/fj.202302447r] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2023] [Revised: 01/15/2024] [Accepted: 01/22/2024] [Indexed: 02/07/2024]
Abstract
Despite decades of research, the pathogenesis of metabolic dysfunction-associated steatotic liver disease (MASLD) is still not completely understood. Based on the evidence from preclinical models, one of the factors proposed as a main driver of disease development is oxidative stress. This study aimed to search for the resemblance between the profiles of oxidative stress and antioxidant defense in the animal model of MASLD and the group of MASLD patients. C57BL/6J mice were fed with the Western diet for up to 24 weeks and served as the animal model of MASLD. The antioxidant profile of mice hepatic tissue was determined by liquid chromatography-MS3 spectrometry (LC-MS/MS). The human cohort consisted of 20 patients, who underwent bariatric surgery, and 6 controls. Based on histological analysis, 4 bariatric patients did not have liver steatosis and as such were also classified as controls. Total antioxidant activity was measured in sera and liver biopsy samples. The hepatic levels of antioxidant enzymes and oxidative damage were determined by Western Blot. The levels of antioxidant enzymes were significantly altered in the hepatic tissue of mice with MASLD. In contrast, there were no significant changes in the antioxidant profile of hepatic tissue of MASLD patients, except for the decreased level of carbonylated proteins. Decreased protein carbonylation together with significant correlations between the thioredoxin system and parameters describing metabolic health suggest alterations in the thiol-redox signaling. Altogether, these data show that even though the phenotype of mice closely resembles human MASLD, the animal-to-human translation of cellular and molecular processes such as oxidative stress may be more challenging.
Collapse
Affiliation(s)
- Patrycja Jakubek
- Laboratory of Mitochondrial Biology and Metabolism, Nencki Institute of Experimental Biology of Polish Academy of Sciences, Warsaw, Poland
| | - Piotr Kalinowski
- Department of General, Transplant and Liver Surgery, Medical University of Warsaw, Warsaw, Poland
| | | | - Aakruti Kaikini
- Laboratory of Mitochondrial Biology and Metabolism, Nencki Institute of Experimental Biology of Polish Academy of Sciences, Warsaw, Poland
| | - Inês C M Simões
- Laboratory of Mitochondrial Biology and Metabolism, Nencki Institute of Experimental Biology of Polish Academy of Sciences, Warsaw, Poland
| | - Yaiza Potes
- Laboratory of Mitochondrial Biology and Metabolism, Nencki Institute of Experimental Biology of Polish Academy of Sciences, Warsaw, Poland
| | - Beata Kruk
- Laboratory of Metabolic Liver Diseases, Department of General, Transplant and Liver Surgery, Centre for Preclinical Research, Medical University of Warsaw, Warsaw, Poland
| | - Wieslawa Grajkowska
- Department of Pathology, The Children's Memorial Health Institute, Warsaw, Poland
| | - Paolo Pinton
- Department of Medical Sciences, Section of Experimental Medicine, Laboratory for Technologies of Advanced Therapies, University of Ferrara, Ferrara, Italy
| | - Piotr Milkiewicz
- Liver and Internal Medicine Unit, Department of General, Transplant and Liver Surgery, Medical University of Warsaw, Warsaw, Poland
- Translational Medicine Group, Pomeranian Medical University, Szczecin, Poland
| | - Michał Grąt
- Department of General, Transplant and Liver Surgery, Medical University of Warsaw, Warsaw, Poland
| | - Maciej Pronicki
- Department of Pathology, The Children's Memorial Health Institute, Warsaw, Poland
| | - Magdalena Lebiedzinska-Arciszewska
- Laboratory of Mitochondrial Biology and Metabolism, Nencki Institute of Experimental Biology of Polish Academy of Sciences, Warsaw, Poland
| | - Marcin Krawczyk
- Laboratory of Metabolic Liver Diseases, Department of General, Transplant and Liver Surgery, Centre for Preclinical Research, Medical University of Warsaw, Warsaw, Poland
- Department of Medicine II, Saarland University Medical Center, Saarland University, Homburg, Germany
| | - Mariusz R Wieckowski
- Laboratory of Mitochondrial Biology and Metabolism, Nencki Institute of Experimental Biology of Polish Academy of Sciences, Warsaw, Poland
| |
Collapse
|
2
|
Hussen BM, Abdullah ST, Abdullah SR, Younis YM, Hidayat HJ, Rasul MF, Mohamadtahr S. Exosomal non-coding RNAs: Blueprint in colorectal cancer metastasis and therapeutic targets. Noncoding RNA Res 2023; 8:615-632. [PMID: 37767111 PMCID: PMC10520679 DOI: 10.1016/j.ncrna.2023.09.001] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2023] [Revised: 09/08/2023] [Accepted: 09/08/2023] [Indexed: 09/29/2023] Open
Abstract
Colorectal cancer (CRC) is ranked as the world's third-most prevalent cancer, and metastatic CRC considerably increases cancer-related fatalities globally. A number of complex mechanisms that are strictly controlled at the molecular level are involved in metastasis, which is the primary reason for death in people with CRC. Recently, it has become clear that exosomes, which are small extracellular vesicles released by non-tumorous and tumorigenic cells, play a critical role as communication mediators among tumor microenvironment (TME). To facilitate communication between the TME and cancer cells, non-coding RNAs (ncRNAs) play a crucial role and are recognized as potent regulators of gene expression and cellular processes, such as metastasis and drug resistance. NcRNAs are now recognized as potent regulators of gene expression and many hallmarks of cancer, including metastasis. Exosomal ncRNAs, like miRNAs, circRNAs, and lncRNAs, have been demonstrated to influence a number of cellular mechanisms that contribute to CRC metastasis. However, the molecular mechanisms that link exosomal ncRNAs with CRC metastasis are not well understood. This review highlights the essential roles that exosomal ncRNAs play in the progression of CRC metastatic disease and explores the therapeutic choices that are open to patients who have CRC metastases. However, exosomal ncRNA treatment strategy development is still in its early phases; consequently, additional investigation is required to improve delivery methods and find novel therapeutic targets as well as confirm the effectiveness and safety of these therapies in preclinical and clinical contexts.
Collapse
Affiliation(s)
- Bashdar Mahmud Hussen
- Department of Biomedical Sciences, College of Science, Cihan University-Erbil, Erbil, Kurdistan Region, 44001, Iraq
- Department of Clinical Analysis, College of Pharmacy, Hawler Medical University, Kurdistan Region, Erbil, Iraq
| | - Sara Tharwat Abdullah
- Department of Pharmacology and Toxicology, College of Pharmacy, Hawler Medical University, Erbil, Iraq
| | - Snur Rasool Abdullah
- Medical Laboratory Science, College of Health Sciences, Lebanese French University, Kurdistan Region, Erbil, Iraq
| | - Yousif Mohammed Younis
- Department of Nursing, College of Nursing, Lebanese French University, Kurdistan Region, Erbil, Iraq
| | - Hazha Jamal Hidayat
- Department of Biology, College of Education, Salahaddin University-Erbil, Kurdistan Region, Iraq
| | - Mohammed Fatih Rasul
- Department of Pharmaceutical Basic Science, Faculty of Pharmacy, Tishk International University, Erbil, Kurdistan Region, Iraq
| | - Sayran Mohamadtahr
- Department of Clinical Analysis, College of Pharmacy, Hawler Medical University, Kurdistan Region, Erbil, Iraq
| |
Collapse
|
3
|
Park JS, Rustamov N, Roh YS. The Roles of NFR2-Regulated Oxidative Stress and Mitochondrial Quality Control in Chronic Liver Diseases. Antioxidants (Basel) 2023; 12:1928. [PMID: 38001781 PMCID: PMC10669501 DOI: 10.3390/antiox12111928] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2023] [Revised: 10/24/2023] [Accepted: 10/27/2023] [Indexed: 11/26/2023] Open
Abstract
Chronic liver disease (CLD) affects a significant portion of the global population, leading to a substantial number of deaths each year. Distinct forms like non-alcoholic fatty liver disease (NAFLD) and alcoholic fatty liver disease (ALD), though they have different etiologies, highlight shared pathologies rooted in oxidative stress. Central to liver metabolism, mitochondria are essential for ATP production, gluconeogenesis, fatty acid oxidation, and heme synthesis. However, in diseases like NAFLD, ALD, and liver fibrosis, mitochondrial function is compromised by inflammatory cytokines, hepatotoxins, and metabolic irregularities. This dysfunction, especially electron leakage, exacerbates the production of reactive oxygen species (ROS), augmenting liver damage. Amidst this, nuclear factor erythroid 2-related factor 2 (NRF2) emerges as a cellular protector. It not only counters oxidative stress by regulating antioxidant genes but also maintains mitochondrial health by overseeing autophagy and biogenesis. The synergy between NRF2 modulation and mitochondrial function introduces new therapeutic potentials for CLD, focusing on preserving mitochondrial integrity against oxidative threats. This review delves into the intricate role of oxidative stress in CLD, shedding light on innovative strategies for its prevention and treatment, especially through the modulation of the NRF2 and mitochondrial pathways.
Collapse
Affiliation(s)
| | | | - Yoon-Seok Roh
- College of Pharmacy and Medical Research Center, Chungbuk National University, Cheongju 28160, Republic of Korea; (J.-S.P.); (N.R.)
| |
Collapse
|
4
|
de Almeida KA, de Moura FR, Lima JV, Garcia EM, Muccillo-Baisch AL, Ramires PF, Penteado JO, da Luz Mathias M, Dias D, da Silva Júnior FMR. Oxidative damage in the Vesper mouse (Calomys laucha) exposed to a simulated oil spill-a multi-organ study. ECOTOXICOLOGY (LONDON, ENGLAND) 2023; 32:502-511. [PMID: 37118609 DOI: 10.1007/s10646-023-02657-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Accepted: 04/20/2023] [Indexed: 05/11/2023]
Abstract
Small wild mammals have been used to measure the damage caused by exposure to oil-contaminated soil, including deer mice. However, the study of toxic effects of crude oil using oxidative damage biomarkers in the wild rodent Calomys laucha (Vesper mouse) is absent. This investigation aimed to evaluate the effects of acute exposure to contaminated soil with different concentrations of crude oil (0, 1, 2, 4 and 8% w/w), simulating an accidental spill, using oxidative stress biomarkers in the liver, kidneys, lungs, testes, paw muscle, and lymphocytes of C. laucha. Animals exposed to the contaminated soil showed increases in lipid peroxidation and protein carbonylation at the highest exposure concentrations in most organ homogenates analyzed and also in blood cells, but responses to total antioxidant capacity were tissue-dependent. These results showed that acute exposure to oil-contaminated soil caused oxidative damage in C. laucha and indicate these small mammals may be susceptible to suffer the impacts of such contamination in its occurrence region, threatening the species' survival.
Collapse
Affiliation(s)
- Krissia Aparecida de Almeida
- LEFT - Laboratório de Ensaios Farmacológicos e Toxicológicos, Instituto de Ciências Biológicas, Universidade Federal do Rio Grande - FURG, Av. Itália, km 8, Campus Carreiros, Rio Grande, RS, CEP 96203-900, Brazil
| | - Fernando Rafael de Moura
- LEFT - Laboratório de Ensaios Farmacológicos e Toxicológicos, Instituto de Ciências Biológicas, Universidade Federal do Rio Grande - FURG, Av. Itália, km 8, Campus Carreiros, Rio Grande, RS, CEP 96203-900, Brazil
- Programa de Pós Graduação em Ciências da Saúde, Universidade Federal do Rio Grande - FURG, Rua Visconde de Paranaguá, 102, Rio Grande, RS, CEP 96203-900, Brazil
| | - Juliane Ventura Lima
- Programa de Pós Graduação em Ciências Fisiológicas, Universidade Federal do Rio Grande - FURG, Av. Itália, km 8, Campus Carreiros, Rio Grande, RS, CEP 96203-900, Brazil
| | - Edariane Menestrino Garcia
- LEFT - Laboratório de Ensaios Farmacológicos e Toxicológicos, Instituto de Ciências Biológicas, Universidade Federal do Rio Grande - FURG, Av. Itália, km 8, Campus Carreiros, Rio Grande, RS, CEP 96203-900, Brazil
| | - Ana Luíza Muccillo-Baisch
- LEFT - Laboratório de Ensaios Farmacológicos e Toxicológicos, Instituto de Ciências Biológicas, Universidade Federal do Rio Grande - FURG, Av. Itália, km 8, Campus Carreiros, Rio Grande, RS, CEP 96203-900, Brazil
- Programa de Pós Graduação em Ciências da Saúde, Universidade Federal do Rio Grande - FURG, Rua Visconde de Paranaguá, 102, Rio Grande, RS, CEP 96203-900, Brazil
| | - Paula Florencio Ramires
- LEFT - Laboratório de Ensaios Farmacológicos e Toxicológicos, Instituto de Ciências Biológicas, Universidade Federal do Rio Grande - FURG, Av. Itália, km 8, Campus Carreiros, Rio Grande, RS, CEP 96203-900, Brazil
- Programa de Pós Graduação em Ciências da Saúde, Universidade Federal do Rio Grande - FURG, Rua Visconde de Paranaguá, 102, Rio Grande, RS, CEP 96203-900, Brazil
| | - Julia Oliveira Penteado
- LEFT - Laboratório de Ensaios Farmacológicos e Toxicológicos, Instituto de Ciências Biológicas, Universidade Federal do Rio Grande - FURG, Av. Itália, km 8, Campus Carreiros, Rio Grande, RS, CEP 96203-900, Brazil
- Programa de Pós Graduação em Ciências da Saúde, Universidade Federal do Rio Grande - FURG, Rua Visconde de Paranaguá, 102, Rio Grande, RS, CEP 96203-900, Brazil
| | - Maria da Luz Mathias
- Department of Animal Biology, Faculty of Sciences of the University of Lisbon & CESAM - Centre for Environmental and Marine Studies, Campo Grande, 1749-016, Lisbon, Portugal
| | - Deodália Dias
- Department of Animal Biology, Faculty of Sciences of the University of Lisbon & CESAM - Centre for Environmental and Marine Studies, Campo Grande, 1749-016, Lisbon, Portugal
| | - Flavio Manoel Rodrigues da Silva Júnior
- LEFT - Laboratório de Ensaios Farmacológicos e Toxicológicos, Instituto de Ciências Biológicas, Universidade Federal do Rio Grande - FURG, Av. Itália, km 8, Campus Carreiros, Rio Grande, RS, CEP 96203-900, Brazil.
- Programa de Pós Graduação em Ciências da Saúde, Universidade Federal do Rio Grande - FURG, Rua Visconde de Paranaguá, 102, Rio Grande, RS, CEP 96203-900, Brazil.
| |
Collapse
|
5
|
Gulzar F, Ahmad S, Singh S, Kumar P, Sharma A, Tamrakar AK. NOD1 activation in 3T3-L1 adipocytes confers lipid accumulation in HepG2 cells. Life Sci 2023; 316:121400. [PMID: 36657640 DOI: 10.1016/j.lfs.2023.121400] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2022] [Revised: 01/04/2023] [Accepted: 01/12/2023] [Indexed: 01/17/2023]
Abstract
AIMS Activation of specific innate immune receptors has been characterized to modulate nutrient metabolism in individual metabolic tissue directly or indirectly via secretory molecules. Activation of the nucleotide-binding oligomerization domain-containing protein 1 (NOD1) in adipocytes has been reported to induce lipolysis linked with insulin resistance and inflammatory response. These cues are positioned to modulate metabolic action in distal organs through paracrine/endocrine signaling. Here, we assessed the role of NOD1-mediated lipolysis and inflammatory response in adipocytes to affect lipid metabolism in hepatocytes. MAIN METHODS Human hepatoma cells (HepG2) were exposed to conditioned medium obtained from 3 T3-L1 adipocytes pretreated with NOD1 ligand (iE-DAP) and the effects on lipid accumulation, inflammation and insulin response were assessed. Activation of mechanisms leading to hepatic lipid accumulation was investigated by gene expression analysis. KEY FINDINGS The conditioned medium from NOD1-activated 3 T3-L1 adipocytes (CM-DAP) induced lipid accumulation in HepG2 cells, driven by both lipolysis and inflammatory responses. The CM-DAP-induced lipid accumulation was independent to de novo lipogenesis and resulted from the enhanced transport of fatty acids inside and consequent increase in rate of triglycerides synthesis in hepatocytes. Moreover, CM-DAP-induced lipid accumulation instigated the expression of the markers of fatty acid oxidation and VLDL assembly for the export of triglycerides from hepatocyte. Furthermore, CM-DAP-induced lipid accumulation was associated with induction of inflammatory response and impairment of insulin signaling in HepG2 cells. SIGNIFICANCE Beyond showing liver-specific mechanisms to adipocytes-derived factors, our findings support the involvement of adipose tissue as a mediator in NOD1-mediated biological responses to modulate hepatic metabolism.
Collapse
Affiliation(s)
- Farah Gulzar
- Division of Biochemistry and Structural Biology, CSIR-Central Drug Research Institute, Lucknow 226031, India
| | - Shadab Ahmad
- Division of Biochemistry and Structural Biology, CSIR-Central Drug Research Institute, Lucknow 226031, India; Academy of Scientific and Innovative Research (AcSIR), Ghaziabad 201002, U.P., India
| | - Sushmita Singh
- Division of Biochemistry and Structural Biology, CSIR-Central Drug Research Institute, Lucknow 226031, India; Academy of Scientific and Innovative Research (AcSIR), Ghaziabad 201002, U.P., India
| | - Pawan Kumar
- Division of Biochemistry and Structural Biology, CSIR-Central Drug Research Institute, Lucknow 226031, India; Academy of Scientific and Innovative Research (AcSIR), Ghaziabad 201002, U.P., India
| | - Aditya Sharma
- Division of Biochemistry and Structural Biology, CSIR-Central Drug Research Institute, Lucknow 226031, India
| | - Akhilesh K Tamrakar
- Division of Biochemistry and Structural Biology, CSIR-Central Drug Research Institute, Lucknow 226031, India; Academy of Scientific and Innovative Research (AcSIR), Ghaziabad 201002, U.P., India.
| |
Collapse
|
6
|
Chen H, Qi X, Guan K, Wang R, Li Q, Ma Y. Tandem mass tag-based quantitative proteomics analysis reveals the effects of the α-lactalbumin peptides GINY and DQW on lipid deposition and oxidative stress in HepG2 cells. J Dairy Sci 2023; 106:2271-2288. [PMID: 36797178 DOI: 10.3168/jds.2022-22511] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2022] [Accepted: 09/28/2022] [Indexed: 02/16/2023]
Abstract
The objective of this study was to investigate the mechanism by which the α-lactalbumin peptides Gly-Ile-Asn-Tyr (GINY) and Asp-Gln-Trp (DQW) ameliorate free fatty acid-induced lipid deposition in HepG2 cells. The results show that GINY and DQW reduced triglyceride, total cholesterol, and free fatty acid levels significantly in free fatty acid-treated HepG2 cells. Based on proteomic analysis, GINY and DQW alleviated lipid deposition and oxidative stress mainly through the peroxisome proliferator-activated receptor (PPAR) pathway, fatty acid metabolism, oxidative phosphorylation, and response to oxidative stress. In vitro experiments confirmed that GINY and DQW upregulated the mRNA and protein expression of fatty acid β-oxidation-related and oxidative stress-related genes, and downregulated the mRNA and protein expression of lipogenesis-related genes by activating peroxisome proliferator-activated receptor α (PPARα). Meanwhile, GINY and DQW reduced free fatty acid-induced lipid droplet accumulation and reactive oxygen species generation, and enhanced the mitochondrial membrane potential and ATP levels. Furthermore, GINY and DQW enhanced carnitine palmitoyl-transferase 1a (CPT-1a) and superoxide dismutase activities, and diminished acetyl-coenzyme A carboxylase 1 (ACC1) and fatty acid synthase (FASN) activities in a PPARα-dependent manner. Interestingly, GW6471 (a PPARα inhibitor) weakened the effects of GINY and DQW on the PPARα pathway. Hence, our findings suggest that GINY and DQW have the potential to alleviate nonalcoholic fatty liver disease by activating the PPARα pathway.
Collapse
Affiliation(s)
- Haoran Chen
- School of Chemistry and Chemical Engineering, Harbin Institute of Technology, Harbin, 150001, Heilongjiang, China
| | - Xiaofen Qi
- School of Chemistry and Chemical Engineering, Harbin Institute of Technology, Harbin, 150001, Heilongjiang, China
| | - Kaifang Guan
- School of Chemistry and Chemical Engineering, Harbin Institute of Technology, Harbin, 150001, Heilongjiang, China
| | - Rongchun Wang
- School of Chemistry and Chemical Engineering, Harbin Institute of Technology, Harbin, 150001, Heilongjiang, China
| | - Qiming Li
- New Hope Dairy Co. Ltd., Chengdu, 610063, Sichuan, China; Dairy Nutrition and Function, Key Laboratory of Sichuan Province, Chengdu, 610000, Sichuan, China
| | - Ying Ma
- School of Chemistry and Chemical Engineering, Harbin Institute of Technology, Harbin, 150001, Heilongjiang, China.
| |
Collapse
|
7
|
Nikolova G, Ananiev J, Ivanov V, Petkova-Parlapanska K, Georgieva E, Karamalakova Y. The Azadirachta indica (Neem) Seed Oil Reduced Chronic Redox-Homeostasis Imbalance in a Mice Experimental Model on Ochratoxine A-Induced Hepatotoxicity. Antioxidants (Basel) 2022; 11:1678. [PMID: 36139752 PMCID: PMC9495949 DOI: 10.3390/antiox11091678] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2022] [Revised: 08/16/2022] [Accepted: 08/25/2022] [Indexed: 11/16/2022] Open
Abstract
Liver damage severity depends on both the dose and the exposure duration. Oxidative stress may increase the Ochratoxine-A (OTA) hepatotoxicity and many antioxidants may counteract toxic liver function. The present study aims to investigate the hepatoprotective potential of Azadirachta indicaA (A. indica; neem oil) seed oil to reduce acute oxidative disorders and residual OTA toxicity in a 28-day experimental model. The activity of antioxidant and hepatic enzymes, cytokines and the levels of oxidative stress biomarkers -MDA, GSPx, Hydroxiproline, GST, PCC, AGEs, PGC-1, and STIR-1 were analyzed by ELISA. The free radicals ROS and RNS levels were measured by EPR. The protective effects were studied in BALB/C mice treated with A. indica seed oil (170 mg/kg), alone and in combination with OTA (1.25 mg/kg), by gavage daily for 28 days. At the end of the experiment, mice treated with OTA showed changes in liver and antioxidant enzymes, and oxidative stress parameters in the liver and blood. A. indica oil significantly reduced oxidative stress and lipid peroxidation compared to the OTA group. In addition, the hepatic histological evaluation showed significant adipose tissue accumulation in OTA-treated tissues, while treatment with 170 mg/kg A. indica oil showed moderate adipose tissue accumulation.
Collapse
Affiliation(s)
- Galina Nikolova
- Department of Chemistry and Biochemistry, Medical Faculty, Trakia University, 11 Armeiska Str., 6000 Stara Zagora, Bulgaria
| | - Julian Ananiev
- Department of General and Clinical Pathology, Forensic Medicine and Deontology, Faculty of Medicine, Trakia University, 11 Armeiska Str., 6000 Stara Zagora, Bulgaria
| | - Veselin Ivanov
- Department of Chemistry and Biochemistry, Medical Faculty, Trakia University, 11 Armeiska Str., 6000 Stara Zagora, Bulgaria
| | - Kamelia Petkova-Parlapanska
- Department of Chemistry and Biochemistry, Medical Faculty, Trakia University, 11 Armeiska Str., 6000 Stara Zagora, Bulgaria
| | - Ekaterina Georgieva
- Department of Chemistry and Biochemistry, Medical Faculty, Trakia University, 11 Armeiska Str., 6000 Stara Zagora, Bulgaria
| | - Yanka Karamalakova
- Department of Chemistry and Biochemistry, Medical Faculty, Trakia University, 11 Armeiska Str., 6000 Stara Zagora, Bulgaria
| |
Collapse
|
8
|
Pelechá M, Villanueva-Bádenas E, Timor-López E, Donato MT, Tolosa L. Cell Models and Omics Techniques for the Study of Nonalcoholic Fatty Liver Disease: Focusing on Stem Cell-Derived Cell Models. Antioxidants (Basel) 2021; 11:86. [PMID: 35052590 PMCID: PMC8772881 DOI: 10.3390/antiox11010086] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2021] [Revised: 12/24/2021] [Accepted: 12/28/2021] [Indexed: 12/04/2022] Open
Abstract
Nonalcoholic fatty liver disease (NAFLD) is now the leading cause of chronic liver disease in western countries. The molecular mechanisms leading to NAFLD are only partially understood, and effective therapeutic interventions are clearly needed. Therefore, preclinical research is required to improve knowledge about NAFLD physiopathology and to identify new therapeutic targets. Primary human hepatocytes, human hepatic cell lines, and human stem cell-derived hepatocyte-like cells exhibit different hepatic phenotypes and have been widely used for studying NAFLD pathogenesis. In this paper, apart from employing the different in vitro cell models for the in vitro assessment of NAFLD, we also reviewed other approaches (metabolomics, transcriptomics, and high-content screening). We aimed to summarize the characteristics of different cell types and methods and to discuss their major advantages and disadvantages for NAFLD modeling.
Collapse
Affiliation(s)
- María Pelechá
- Unidad de Hepatología Experimental, Instituto de Investigación Sanitaria La Fe, 46026 Valencia, Spain; (M.P.); (E.V.-B.); (E.T.-L.)
| | - Estela Villanueva-Bádenas
- Unidad de Hepatología Experimental, Instituto de Investigación Sanitaria La Fe, 46026 Valencia, Spain; (M.P.); (E.V.-B.); (E.T.-L.)
- Departamento de Bioquímica y Biología Molecular, Facultad de Medicina y Odontología, Universidad de Valencia, 46010 Valencia, Spain
| | - Enrique Timor-López
- Unidad de Hepatología Experimental, Instituto de Investigación Sanitaria La Fe, 46026 Valencia, Spain; (M.P.); (E.V.-B.); (E.T.-L.)
- Departamento de Bioquímica y Biología Molecular, Facultad de Medicina y Odontología, Universidad de Valencia, 46010 Valencia, Spain
| | - María Teresa Donato
- Unidad de Hepatología Experimental, Instituto de Investigación Sanitaria La Fe, 46026 Valencia, Spain; (M.P.); (E.V.-B.); (E.T.-L.)
- Departamento de Bioquímica y Biología Molecular, Facultad de Medicina y Odontología, Universidad de Valencia, 46010 Valencia, Spain
- Centro de Investigación Biomédica en Red de Enfermedades Hepáticas y Digestivas (CIBERehd), Instituto de Salud Carlos III, 28029 Madrid, Spain
| | - Laia Tolosa
- Unidad de Hepatología Experimental, Instituto de Investigación Sanitaria La Fe, 46026 Valencia, Spain; (M.P.); (E.V.-B.); (E.T.-L.)
- Biomedical Research Networking Center on Bioengineering, Biomaterials and Nanomedicine (CIBER-BBN), Instituto de Salud Carlos III, 28029 Madrid, Spain
| |
Collapse
|
9
|
Gu Y, Zhang Y, Li M, Huang Z, Jiang J, Chen Y, Chen J, Jia Y, Zhang L, Zhou F. Ferulic Acid Ameliorates Atherosclerotic Injury by Modulating Gut Microbiota and Lipid Metabolism. Front Pharmacol 2021; 12:621339. [PMID: 33841148 PMCID: PMC8026864 DOI: 10.3389/fphar.2021.621339] [Citation(s) in RCA: 40] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2020] [Accepted: 01/08/2021] [Indexed: 12/13/2022] Open
Abstract
Atherosclerosis is a leading cause of death worldwide. Recent studies have emphasized the significance of gut microbiota and lipid metabolism in the development of atherosclerosis. Herein, the effects and molecular mechanisms involving ferulic acid (FA) was examined in atherosclerosis using the ApoE-knockout (ApoE-∕-, c57BL/6 background) mouse model. Eighteen male ApoE-/- mice were fed a high-fat diet (HFD) for 12 weeks and then randomly divided into three groups: the model group, the FA (40 mg/kg/day) group and simvastatin (5 mg/kg/day) group. As results, FA could significantly alleviate atherosclerosis and regulate lipid levels in mice. Liver injury and hepatocyte steatosis induced by HFD were also mitigated by FA. FA improved lipid metabolism involving up-regulation of AMPKα phosphorylation and down-regulation of SREBP1 and ACC1 expression. Furthermore, FA induced marked structural changes in the gut microbiota and fecal metabolites and specifically reduced the relative abundance of Fimicutes, Erysipelotrichaceae and Ileibacterium, which were positively correlated with serum lipid levels in atherosclerosis mice. In conclusion, we demonstrate that FA could significantly ameliorate atherosclerotic injury, which may be partly by modulating gut microbiota and lipid metabolism via the AMPKα/SREBP1/ACC1 pathway.
Collapse
Affiliation(s)
- Yuyan Gu
- School of Traditional Chinese Medicine, Southern Medical University, Guangzhou, China
| | - Yaxin Zhang
- School of Traditional Chinese Medicine, Southern Medical University, Guangzhou, China
| | - Mei Li
- VIP Healthcare Center, Third Affiliated Hospital of Sun Yat-sen University, Guangzhou, China
| | - Zhiyong Huang
- Department of Otolaryngology, The Third Affiliated Hospital of Southern Medical University, Guangzhou, China
| | - Jing Jiang
- School of Traditional Chinese Medicine, Southern Medical University, Guangzhou, China
| | - Yihao Chen
- School of Traditional Chinese Medicine, Southern Medical University, Guangzhou, China
| | - Junqi Chen
- Department of Otolaryngology, The Third Affiliated Hospital of Southern Medical University, Guangzhou, China
| | - Yuhua Jia
- School of Traditional Chinese Medicine, Southern Medical University, Guangzhou, China
| | - Lihua Zhang
- Department of Gynaecology, Integrated Hospital of Traditional Chinese Medicine, Southern Medical University, Guangzhou, China
| | - Fenghua Zhou
- School of Traditional Chinese Medicine, Southern Medical University, Guangzhou, China
| |
Collapse
|
10
|
Zou LY, Hu N, Wang N, Wang HL. Hepatoprotective Activities of Polysaccharide From the Fruit of Ribes odoratum Wendl. on High-Fat-Sucrose Diet-Induced Nonalcoholic Fatty Liver Disease in Mice. Nat Prod Commun 2020. [DOI: 10.1177/1934578x20946935] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022] Open
Abstract
To investigate the hepatoprotective activities of a polysaccharide extracted from the fruit of Ribes odoratum Wendl. (ROWFP) in a mouse model of high-fat-sucrose diet (HFD)-induced nonalcoholic fatty liver disease (NAFLD). The NAFLD model was induced in C57BL/6 mice by feeding them an HFD for 12 weeks. The mice were randomly divided into the following 5 groups: control group, HFD group, 10-mg/kg ROWFP group, 100-mg/kg ROWFP group, and 200-mg/kg ROWFP group. The levels of alanine aminotransferase (ALT), aspartate aminotransferase (AST), total triglycerides (TG), total cholesterol (TC), and high-density lipoprotein (HDL) in the serum were analyzed by enzyme-linked immunosorbent assay. The liver ultrastructure was observed via optical microscopy. The oil red O-stained lipid droplets of the fresh liver samples were analyzed, and the lipid content was semiquantified. CD68 expression in the liver tissue and serum levels of the inflammatory factors (interleukin [IL]-1β, IL-6, and tumor necrosis factor-alpha [TNF-α]) were measured to reflect the inflammation status. The degree of liver fibrosis was determined by sirius red staining. When compared with the control group, the levels of AST, ALT, TG, TC, IL-1β, IL-6, TNF-α, and CD68 in the HFD group were increased, while the HDL level was decreased. Severe liver damage, lipid accumulation, and liver fibrosis were also observed in the HFD model group. When compared with the model group, ROWFP treatment (100 mg/kg or 200 mg/kg) significantly attenuated the HFD-induced hepatic damage. This study supports the hepatoprotective effect of ROWFP against HFD-induced NAFLD.
Collapse
Affiliation(s)
- Lin-you Zou
- Key Laboratory of Tibetan Medicine Research, Northwest Institute of Plateau Biology, Chinese Academy of Sciences, Xining, P. R. China
- State Key Laboratory of Plateau Ecology and Agriculture, Qinghai University, Xining, P. R. China
- Key Laboratory of Tibetan Medicine Research of Qinghai Province, Xining, P. R. China
- University of Chinese Academy of Sciences, Beijing, P. R. China
| | - Na Hu
- Key Laboratory of Tibetan Medicine Research, Northwest Institute of Plateau Biology, Chinese Academy of Sciences, Xining, P. R. China
- Key Laboratory of Tibetan Medicine Research of Qinghai Province, Xining, P. R. China
| | - Ning Wang
- State Key Laboratory of Plateau Ecology and Agriculture, Qinghai University, Xining, P. R. China
- Qinghai Academy of Agriculture and Forestry Science, Xining, P. R. China
| | - Hong-lun Wang
- Key Laboratory of Tibetan Medicine Research, Northwest Institute of Plateau Biology, Chinese Academy of Sciences, Xining, P. R. China
- Key Laboratory of Tibetan Medicine Research of Qinghai Province, Xining, P. R. China
| |
Collapse
|
11
|
Oxidative Stress Parameters in the Liver of Growing Male Rats Receiving Various Alcoholic Beverages. Nutrients 2020; 12:nu12010158. [PMID: 31935882 PMCID: PMC7019817 DOI: 10.3390/nu12010158] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2019] [Revised: 01/02/2020] [Accepted: 01/03/2020] [Indexed: 02/07/2023] Open
Abstract
Typical alcohol consumption begins in the adolescence period, increasing the risk of alcoholic liver disease (ALD) in adolescents and young adults, and while the pathophysiology of ALD is still not completely understood, it is believed that oxidative stress may be the major contributor that initiates and promotes the progression of liver damage. The aim of the present study was to assess the influence of alcohol consumption on the markers of oxidative stress and liver inflammation in the animal model of prolonged alcohol consumption in adolescents using various alcoholic beverages. In a homogenic group of 24 male Wistar rats (4 groups—6 animals per group), since 30th day of life, in order to mimic the alcohol consumption since adolescence, animals received (1) no alcoholic beverage (control group), (2) ethanol solution, (3) red wine, or (4) beer (experimental groups) for 6 weeks. Afterwards, the activities of alcohol dehydrogenase (ADH), alanine aminotransferase (ALT), and aspartate aminotransferase (AST), as well as levels of cytochrome P450-2E1 (CYP2E1), thiobarbituric acid-reactive substances (TBARS), protein carbonyl groups, tumor necrosis factor-α (TNF-α), and interleukine-10 (IL-10) were measured in liver homogenates. The difference between studied groups was observed for CYP2E1 and protein carbonyl groups levels (increased levels for animals receiving beer compared with control group), as well as for ALT activity (decreased activity for animals receiving beer compared with other experimental groups) (p < 0.05). The results suggested that some components of beer, other than ethanol, are responsible for its influence on the markers of oxidative stress and liver inflammation observed in the animal model of prolonged alcohol consumption in adolescents. Taking this into account, beer consumption in adolescents, which is a serious public health issue, should be assessed in further studies to broaden the knowledge of the progression of liver damage caused by alcohol consumption in this group.
Collapse
|