1
|
Wu L, Wang J, Chai L, Chen J, Jin X. Roles of deubiquitinases in urologic cancers (Review). Oncol Lett 2024; 28:609. [PMID: 39525605 PMCID: PMC11544529 DOI: 10.3892/ol.2024.14743] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2024] [Accepted: 09/23/2024] [Indexed: 11/16/2024] Open
Abstract
Human health is endangered by the occurrence and progression of urological cancers, including renal cell carcinoma, prostate cancer and bladder cancer, which are usually associated with the activation of oncogenic factors and inhibition of cancer suppressors. The primary mechanism for protein breakdown in cells is the ubiquitin-proteasome system, whilst deubiquitinases contribute to the reversal of this process. However, both are important for protein homeostasis. Deubiquitination may also be involved in the control of the cell cycle, proliferation and apoptosis, and dysregulated deubiquitination is associated with the malignant transformation, invasion and metastasis of urologic malignancies. Therefore, a comprehensive summary of the mechanisms underlying deubiquitination in urological cancers may provide novel strategies and insights for diagnosis and treatment. The present review aimed to methodically clarify the role of deubiquitinating enzymes in urinary system cancers as well as their prospective application prospects for clinical treatment.
Collapse
Affiliation(s)
- Liangpei Wu
- Department of Chemoradiotherapy, The Affiliated People's Hospital of Ningbo University, Ningbo, Zhejiang 315040, P.R. China
- Department of Biochemistry and Molecular Biology, Health Science Center, Ningbo University, Ningbo, Zhejiang 315211, P.R. China
| | - Jiahui Wang
- Department of Chemoradiotherapy, The Affiliated People's Hospital of Ningbo University, Ningbo, Zhejiang 315040, P.R. China
- Department of Biochemistry and Molecular Biology, Health Science Center, Ningbo University, Ningbo, Zhejiang 315211, P.R. China
| | - Lin Chai
- Department of Chemoradiotherapy, The Affiliated People's Hospital of Ningbo University, Ningbo, Zhejiang 315040, P.R. China
- Department of Biochemistry and Molecular Biology, Health Science Center, Ningbo University, Ningbo, Zhejiang 315211, P.R. China
| | - Jun Chen
- Department of Chemoradiotherapy, The Affiliated People's Hospital of Ningbo University, Ningbo, Zhejiang 315040, P.R. China
| | - Xiaofeng Jin
- Department of Biochemistry and Molecular Biology, Health Science Center, Ningbo University, Ningbo, Zhejiang 315211, P.R. China
| |
Collapse
|
2
|
Cao X, Yan Z, Chen Z, Ge Y, Hu X, Peng F, Huang W, Zhang P, Sun R, Chen J, Ding M, Zong D, He X. The Emerging Role of Deubiquitinases in Radiosensitivity. Int J Radiat Oncol Biol Phys 2024; 118:1347-1370. [PMID: 38092257 DOI: 10.1016/j.ijrobp.2023.12.003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2023] [Revised: 11/03/2023] [Accepted: 12/03/2023] [Indexed: 02/05/2024]
Abstract
Radiation therapy is a primary treatment for cancer, but radioresistance remains a significant challenge in improving efficacy and reducing toxicity. Accumulating evidence suggests that deubiquitinases (DUBs) play a crucial role in regulating cell sensitivity to ionizing radiation. Traditional small-molecule DUB inhibitors have demonstrated radiosensitization effects, and novel deubiquitinase-targeting chimeras (DUBTACs) provide a promising strategy for radiosensitizer development by harnessing the ubiquitin-proteasome system. This review highlights the mechanisms by which DUBs regulate radiosensitivity, including DNA damage repair, the cell cycle, cell death, and hypoxia. Progress on DUB inhibitors and DUBTACs is summarized, and their potential radiosensitization effects are discussed. Developing drugs targeting DUBs appears to be a promising alternative approach to overcoming radioresistance, warranting further research into their mechanisms.
Collapse
Affiliation(s)
- Xiang Cao
- Affiliated Cancer Hospital of Nanjing Medical University, Jiangsu Cancer Hospital, and Jiangsu Institute of Cancer Research, Nanjing, Jiangsu, China
| | - Zhenyu Yan
- Affiliated Cancer Hospital of Nanjing Medical University, Jiangsu Cancer Hospital, and Jiangsu Institute of Cancer Research, Nanjing, Jiangsu, China
| | - Zihan Chen
- Xuzhou Medical University, Xuzhou, Jiangsu, China
| | - Yizhi Ge
- Affiliated Cancer Hospital of Nanjing Medical University, Jiangsu Cancer Hospital, and Jiangsu Institute of Cancer Research, Nanjing, Jiangsu, China
| | - Xinyu Hu
- Affiliated Cancer Hospital of Nanjing Medical University, Jiangsu Cancer Hospital, and Jiangsu Institute of Cancer Research, Nanjing, Jiangsu, China
| | - Fanyu Peng
- Affiliated Cancer Hospital of Nanjing Medical University, Jiangsu Cancer Hospital, and Jiangsu Institute of Cancer Research, Nanjing, Jiangsu, China
| | - Wenxuan Huang
- Affiliated Cancer Hospital of Nanjing Medical University, Jiangsu Cancer Hospital, and Jiangsu Institute of Cancer Research, Nanjing, Jiangsu, China
| | - Pingchuan Zhang
- Affiliated Cancer Hospital of Nanjing Medical University, Jiangsu Cancer Hospital, and Jiangsu Institute of Cancer Research, Nanjing, Jiangsu, China
| | - Ruozhou Sun
- Affiliated Cancer Hospital of Nanjing Medical University, Jiangsu Cancer Hospital, and Jiangsu Institute of Cancer Research, Nanjing, Jiangsu, China
| | - Jiazhen Chen
- Affiliated Cancer Hospital of Nanjing Medical University, Jiangsu Cancer Hospital, and Jiangsu Institute of Cancer Research, Nanjing, Jiangsu, China
| | - Mingjun Ding
- Affiliated Cancer Hospital of Nanjing Medical University, Jiangsu Cancer Hospital, and Jiangsu Institute of Cancer Research, Nanjing, Jiangsu, China
| | - Dan Zong
- Affiliated Cancer Hospital of Nanjing Medical University, Jiangsu Cancer Hospital, and Jiangsu Institute of Cancer Research, Nanjing, Jiangsu, China.
| | - Xia He
- Affiliated Cancer Hospital of Nanjing Medical University, Jiangsu Cancer Hospital, and Jiangsu Institute of Cancer Research, Nanjing, Jiangsu, China; Xuzhou Medical University, Xuzhou, Jiangsu, China; Department of Environmental Genomics, Jiangsu Key Laboratory of Cancer Biomarkers, Prevention and Treatment, Collaborative Innovation Center for Cancer Personalized Medicine, Nanjing Medical University, Nanjing, China.
| |
Collapse
|
3
|
Teixeira E, Fernandes C, Bungărdean M, Paula ADC, Lima RT, Batista R, Vinagre J, Sobrinho-Simões M, Máximo V, Soares P. Investigating USP42 Mutation as Underlying Cause of Familial Non-Medullary Thyroid Carcinoma. Int J Mol Sci 2024; 25:1522. [PMID: 38338801 PMCID: PMC10855484 DOI: 10.3390/ijms25031522] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2023] [Revised: 01/19/2024] [Accepted: 01/22/2024] [Indexed: 02/12/2024] Open
Abstract
In a family with Familial Non-Medullary Thyroid Carcinoma (FNMTC), our investigation using Whole-Exome Sequencing (WES) uncovered a novel germline USP42 mutation [p.(Gly486Arg)]. USP42 is known for regulating p53, cell cycle arrest, and apoptosis, and for being reported as overexpressed in breast and gastric cancer patients. Recently, a USP13 missense mutation was described in FNMTC, suggesting a potential involvement in thyroid cancer. Aiming to explore the USP42 mutation as an underlying cause of FNMTC, our team validated the mutation in blood and tissue samples from the family. Using immunohistochemistry, the expression of USP42, Caspase-3, and p53 was assessed. The USP42 gene was silenced in human thyroid Nthy-Ori 3-1 cells using siRNAs. Subsequently, expression, viability, and morphological assays were conducted. p53, Cyclin D1, p21, and p27 proteins were evaluated by Western blot. USP42 protein was confirmed in all family members and was found to be overexpressed in tumor samples, along with an increased expression of p53 and cleaved Caspase-3. siRNA-mediated USP42 downregulation in Nthy-Ori 3-1 cells resulted in reduced cell viability, morphological changes, and modifications in cell cycle-related proteins. Our results suggest a pivotal role of USP42 mutation in thyroid cell biology, and this finding indicates that USP42 may serve as a new putative target in FNMTC.
Collapse
Affiliation(s)
- Elisabete Teixeira
- Cancer Signalling and Metabolism Group do Instituto de Investigação e Inovação em Saúde—i3s, Rua Alfredo Allen 208, 4200-135 Porto, Portugal
- Cancer Signalling and Metabolism Group do Instituto de Patologia e Imunologia Molecular da Universidade do Porto—Ipatimup, Rua Júlio Amaral de Carvalho 45, 4200-135 Porto, Portugal
- Departamento de Biomedicina da Faculdade de Medicina da Universidade do Porto—FMUP, Alameda Prof. Hernâni Monteiro, 4200-319 Porto, Portugal
| | - Cláudia Fernandes
- Cancer Signalling and Metabolism Group do Instituto de Investigação e Inovação em Saúde—i3s, Rua Alfredo Allen 208, 4200-135 Porto, Portugal
- Cancer Signalling and Metabolism Group do Instituto de Patologia e Imunologia Molecular da Universidade do Porto—Ipatimup, Rua Júlio Amaral de Carvalho 45, 4200-135 Porto, Portugal
- Departamento de Bioquímica da Faculdade de Ciências da Universidade do Porto—FCUP, Rua do Campo Alegre 1021 1055, 4169-007 Porto, Portugal
- Departamento de Patologia e Imunologia Molecular do Instituto de Ciências Biomédicas Abel Salazar da Universidade do Porto—ICBAS, R. Jorge de Viterbo Ferreira 228, 4050-313 Porto, Portugal
| | - Maria Bungărdean
- Department of Pathology, Iuliu Haţieganu University of Medicine and Pharmacy, Municipal Clinical Hospital, Cluj-Napoca 400139, Romania
| | - Arnaud Da Cruz Paula
- Cancer Signalling and Metabolism Group do Instituto de Investigação e Inovação em Saúde—i3s, Rua Alfredo Allen 208, 4200-135 Porto, Portugal
- Cancer Signalling and Metabolism Group do Instituto de Patologia e Imunologia Molecular da Universidade do Porto—Ipatimup, Rua Júlio Amaral de Carvalho 45, 4200-135 Porto, Portugal
| | - Raquel T. Lima
- Cancer Signalling and Metabolism Group do Instituto de Investigação e Inovação em Saúde—i3s, Rua Alfredo Allen 208, 4200-135 Porto, Portugal
- Cancer Signalling and Metabolism Group do Instituto de Patologia e Imunologia Molecular da Universidade do Porto—Ipatimup, Rua Júlio Amaral de Carvalho 45, 4200-135 Porto, Portugal
- Departamento de Patologia da Faculdade de Medicina da Universidade do Porto—FMUP, Alameda Prof. Hernâni Monteiro, 4200-319 Porto, Portugal
| | - Rui Batista
- Cancer Signalling and Metabolism Group do Instituto de Investigação e Inovação em Saúde—i3s, Rua Alfredo Allen 208, 4200-135 Porto, Portugal
- Cancer Signalling and Metabolism Group do Instituto de Patologia e Imunologia Molecular da Universidade do Porto—Ipatimup, Rua Júlio Amaral de Carvalho 45, 4200-135 Porto, Portugal
| | - João Vinagre
- Cancer Signalling and Metabolism Group do Instituto de Investigação e Inovação em Saúde—i3s, Rua Alfredo Allen 208, 4200-135 Porto, Portugal
- Cancer Signalling and Metabolism Group do Instituto de Patologia e Imunologia Molecular da Universidade do Porto—Ipatimup, Rua Júlio Amaral de Carvalho 45, 4200-135 Porto, Portugal
- Departamento de Patologia da Faculdade de Medicina da Universidade do Porto—FMUP, Alameda Prof. Hernâni Monteiro, 4200-319 Porto, Portugal
| | - Manuel Sobrinho-Simões
- Cancer Signalling and Metabolism Group do Instituto de Investigação e Inovação em Saúde—i3s, Rua Alfredo Allen 208, 4200-135 Porto, Portugal
- Cancer Signalling and Metabolism Group do Instituto de Patologia e Imunologia Molecular da Universidade do Porto—Ipatimup, Rua Júlio Amaral de Carvalho 45, 4200-135 Porto, Portugal
- Departamento de Patologia da Faculdade de Medicina da Universidade do Porto—FMUP, Alameda Prof. Hernâni Monteiro, 4200-319 Porto, Portugal
| | - Valdemar Máximo
- Cancer Signalling and Metabolism Group do Instituto de Investigação e Inovação em Saúde—i3s, Rua Alfredo Allen 208, 4200-135 Porto, Portugal
- Cancer Signalling and Metabolism Group do Instituto de Patologia e Imunologia Molecular da Universidade do Porto—Ipatimup, Rua Júlio Amaral de Carvalho 45, 4200-135 Porto, Portugal
- Departamento de Patologia da Faculdade de Medicina da Universidade do Porto—FMUP, Alameda Prof. Hernâni Monteiro, 4200-319 Porto, Portugal
| | - Paula Soares
- Cancer Signalling and Metabolism Group do Instituto de Investigação e Inovação em Saúde—i3s, Rua Alfredo Allen 208, 4200-135 Porto, Portugal
- Cancer Signalling and Metabolism Group do Instituto de Patologia e Imunologia Molecular da Universidade do Porto—Ipatimup, Rua Júlio Amaral de Carvalho 45, 4200-135 Porto, Portugal
- Departamento de Patologia da Faculdade de Medicina da Universidade do Porto—FMUP, Alameda Prof. Hernâni Monteiro, 4200-319 Porto, Portugal
| |
Collapse
|
4
|
Yu J, Yuan S, Song J, Yu S. USP39 interacts with SIRT7 to promote cervical squamous cell carcinoma by modulating autophagy and oxidative stress via FOXM1. J Transl Med 2023; 21:807. [PMID: 37957720 PMCID: PMC10641974 DOI: 10.1186/s12967-023-04623-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2023] [Accepted: 10/13/2023] [Indexed: 11/15/2023] Open
Abstract
BACKGROUND Sirtuin 7 (SIRT7) is an oncogene that promotes tumor progression in various malignancies, however, its role and regulatory mechanism in cervical squamous cell carcinoma (CSCC) is unknown. Herein, we attempted to investigate the functional role and molecular mechanism of SIRT7 underlying CSCC progression. METHODS SIRT7 expression was evaluated in CSCC cells using various assays. We then used a series of function gain-and-loss experiments to determine the role of SIRT7 in CSCC progression. Furthermore, mechanism experiments were conducted to assess the interaction between SIRT7/USP39/FOXM1 in CSCC cells. Additionally, rescue assays were conducted to explore the regulatory function of USP39/FOXM1 in CSCC cellular processes. RESULTS SIRT7 was highly expressed in CSCC patient tissues and cell lines. SIRT7 deficiency showed significant repression on the proliferation, and autophagy of CSCC cells in vitro and tumorigenesis in vivo. Similarly, apoptosis and ROS production in CSCC cells were accelerated after the SIRT7 knockdown. Moreover, SIRT7 and USP39 were found colocalized in the cell nucleus. Interestingly, SIRT7 was revealed to deacetylate USP39 to promote its protein stability in CSCC cells. USP39 protein was also verified to be upregulated in CSCC tissues and cells. USP39 silencing showed suppressive effects on CSCC cell growth. Mechanistically, USP39 was revealed to upregulate SIRT7 by promoting the transcriptional activity of FOXM1. Rescue assays also indicated that SIRT7 promoted autophagy and inhibited ROS production in CSCC cells by regulating USP39/FOXM1. CONCLUSION The SIRT7/USP39/FOXM1 positive feedback network regulates autophagy and oxidative stress in CSCC, thus providing a new direction for CSCC-targeted therapy.
Collapse
Affiliation(s)
- Juanpeng Yu
- Department of Gynecology, The Affiliated Huai'an No.1 People's Hospital of Nanjing Medical University, No. 1 Huanghe West Road, Huaiyin District, Huai'an, 223300, Jiangsu, China
| | - Shuai Yuan
- Department of Gynecology, The Affiliated Huai'an No.1 People's Hospital of Nanjing Medical University, No. 1 Huanghe West Road, Huaiyin District, Huai'an, 223300, Jiangsu, China
| | - Jinglin Song
- Department of Obstetrics and Gynecology, Langao County Hospital of Traditional Chinese Medicine, Ankang, 725400, Shaanxi, China
| | - Shengsheng Yu
- Department of Gynecology, The Affiliated Huai'an No.1 People's Hospital of Nanjing Medical University, No. 1 Huanghe West Road, Huaiyin District, Huai'an, 223300, Jiangsu, China.
| |
Collapse
|
5
|
Rocha RDFB, Garcia AO, Otto PI, da Silva MVB, Martins MF, Machado MA, Panetto JCDC, Guimarães SEF. Runs of homozygosity and signatures of selection for number of oocytes and embryos in the Gir Indicine cattle. Mamm Genome 2023:10.1007/s00335-023-09989-w. [PMID: 37000236 DOI: 10.1007/s00335-023-09989-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2022] [Accepted: 03/11/2023] [Indexed: 04/01/2023]
Abstract
Runs of homozygosity (ROH) and signatures of selection are the results of selection processes in livestock species that have been shown to affect several traits in cattle. The aim of the current work was to verify the profile of ROH and inbreeding depression in the number of total (TO) and viable oocytes (VO) and the number of embryos (EMBR) in Gir Indicine cattle. In addition, we aim to identify signatures of selection, genes, and enriched regions between Gir subpopulations sorted by breeding value for these traits. The genotype file contained 2093 animals and 420,718 SNP markers. Breeding values used to sort Gir animals were previously obtained. ROH and signature of selection analyses were performed using PLINK software, followed by ROH-based (FROH) and pedigree-based inbreeding (Fped) and a search for genes and their functions. An average of 50 ± 8.59 ROHs were found per animal. ROHs were separated into classes according to size, ranging from 1 to 2 Mb (ROH1-2Mb: 58.17%), representing ancient inbreeding, ROH2-4Mb (22.74%), ROH4-8Mb (11.34%), ROH8-16Mb (5.51%), and ROH>16Mb (2.24%). Combining our results, we conclude that the increase in general FROH and Fped significantly decreases TO and VO; however, in different chromosomes traits can increase or decrease with FROH. In the analysis for signatures of selection, we identified 15 genes from 47 significant genomic regions, indicating differences in populations with high and low breeding value for the three traits.
Collapse
Affiliation(s)
| | | | - Pamela Itajara Otto
- Department of Animal Science, Universidade Federal de Santa Maria, Santa Maria, Rio Grande Do Sul, Brazil
| | | | | | | | | | | |
Collapse
|
6
|
Pan XW, Xu D, Chen WJ, Chen JX, Chen WJ, Ye JQ, Gan SS, Zhou W, Song X, Shi L, Cui XG. USP39 promotes malignant proliferation and angiogenesis of renal cell carcinoma by inhibiting VEGF-A 165b alternative splicing via regulating SRSF1 and SRPK1. Cancer Cell Int 2021; 21:486. [PMID: 34544400 PMCID: PMC8454004 DOI: 10.1186/s12935-021-02161-x] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2021] [Accepted: 08/18/2021] [Indexed: 01/01/2023] Open
Abstract
Background The benefit of targeted therapy for renal cell carcinoma (RCC) is largely crippled by drug resistance. Rapid disease progression and poor prognosis occur in patients with drug resistance. New treatments demand prompt exploration for clinical therapies. Ubiquitin-specific peptidase 39 (USP39) serves as the pro-tumor factor in several previous studies of other malignant tumors. To investigate the function and mechanism of USP39 in promoting malignant proliferation and angiogenesis of RCC. Methods We applied ONCOMINE database to analyze the correlation between USP39 expression level and the clinical characteristics of RCC. USP39 knockdown or overexpression plasmids were transfected into 786-O and ACHN cells. The HUVEC received cell supernatants of 786-O and ACHN cells with knockdown or overexpression USP39.The effect of USP39 on RCC was evaluated by MTT assay, cell cycle analysis, colony formation assay and tubule formation assay. The interaction between USP39 and VEGF-A alternative splicing was assessed by affinity purification and mass spectrometry, co-immunoprecipitation and Western blot assays. Results The mRNA expression level of USP39 in RCC was significantly higher than that in normal renal tissue (P < 0.001), and negatively correlated with the survival rate of RCC patients (P < 0.01). Silencing of USP39 in 786-O and ACHN cells inhibited cell proliferation and colony formation, and induced S phase arrest. USP39 overexpression significantly increased the number of tubules (P < 0.05) and branches (P < 0.01) formed by HUVEC cells, and USP39 knockdown produced an opposite effect (P < 0.05). The USP39 (101–565) fragment directly mediated its binding to SRSF1 and SRPK1, and promoted the phosphorylation of SRSF1 to regulate VEGF-A alternative splicing. USP39 knockdown upregulated the expression of VEGF-A165b, and USP39 overexpression downregulated the expression of VEGF-A165b significantly (both P < 0.05). Conclusion USP39 acted as a pro-tumor factor by motivating the malignant biological processes of RCC, probably through inhibiting VEGF-A165b alternative splicing and regulating SRSF1 and SRPK1. USP39 may prove to be a potential therapeutic target for RCC. Graphic abstract ![]()
Supplementary Information The online version contains supplementary material available at 10.1186/s12935-021-02161-x.
Collapse
Affiliation(s)
- Xiu-Wu Pan
- Department of Urology, Xinhua Hospital, School of Medicine, Shanghai Jiaotong University, 1665 Kongjiang Road, Shanghai, 200092, China.,Depanrtment of Urology, Third Affiliated Hospital of the Second Military Medical University, Shanghai, 201805, China
| | - Da Xu
- Depanrtment of Urology, Third Affiliated Hospital of the Second Military Medical University, Shanghai, 201805, China
| | - Wen-Jin Chen
- Depanrtment of Urology, Third Affiliated Hospital of the Second Military Medical University, Shanghai, 201805, China
| | - Jia-Xin Chen
- Depanrtment of Urology, Third Affiliated Hospital of the Second Military Medical University, Shanghai, 201805, China
| | - Wei-Jie Chen
- Depanrtment of Urology, Third Affiliated Hospital of the Second Military Medical University, Shanghai, 201805, China
| | - Jian-Qing Ye
- Depanrtment of Urology, Third Affiliated Hospital of the Second Military Medical University, Shanghai, 201805, China
| | - Si-Shun Gan
- Depanrtment of Urology, Third Affiliated Hospital of the Second Military Medical University, Shanghai, 201805, China
| | - Wang Zhou
- Depanrtment of Urology, Third Affiliated Hospital of the Second Military Medical University, Shanghai, 201805, China.
| | - Xu Song
- Department of Urology, Shanghai Seventh People's Hospital, Shandong, 200137, China.
| | - Lei Shi
- Department of Urology, Yantai Yuhuangding Hospital of Qingdao University Medical College, Shandong, 264000, China.
| | - Xin-Gang Cui
- Department of Urology, Xinhua Hospital, School of Medicine, Shanghai Jiaotong University, 1665 Kongjiang Road, Shanghai, 200092, China.
| |
Collapse
|
7
|
Cruz L, Soares P, Correia M. Ubiquitin-Specific Proteases: Players in Cancer Cellular Processes. Pharmaceuticals (Basel) 2021; 14:ph14090848. [PMID: 34577547 PMCID: PMC8469789 DOI: 10.3390/ph14090848] [Citation(s) in RCA: 43] [Impact Index Per Article: 10.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2021] [Revised: 08/20/2021] [Accepted: 08/21/2021] [Indexed: 12/14/2022] Open
Abstract
Ubiquitination represents a post-translational modification (PTM) essential for the maintenance of cellular homeostasis. Ubiquitination is involved in the regulation of protein function, localization and turnover through the attachment of a ubiquitin molecule(s) to a target protein. Ubiquitination can be reversed through the action of deubiquitinating enzymes (DUBs). The DUB enzymes have the ability to remove the mono- or poly-ubiquitination signals and are involved in the maturation, recycling, editing and rearrangement of ubiquitin(s). Ubiquitin-specific proteases (USPs) are the biggest family of DUBs, responsible for numerous cellular functions through interactions with different cellular targets. Over the past few years, several studies have focused on the role of USPs in carcinogenesis, which has led to an increasing development of therapies based on USP inhibitors. In this review, we intend to describe different cellular functions, such as the cell cycle, DNA damage repair, chromatin remodeling and several signaling pathways, in which USPs are involved in the development or progression of cancer. In addition, we describe existing therapies that target the inhibition of USPs.
Collapse
Affiliation(s)
- Lucas Cruz
- i3S—Instituto de Investigação e Inovação Em Saúde, Universidade Do Porto, 4200-135 Porto, Portugal; (L.C.); (P.S.)
- Ipatimup—Instituto de Patologia e Imunologia Molecular da Universidade do Porto, 4250-475 Porto, Portugal
- FCUP—Faculty of Sciences, University of Porto, Rua do Campo Alegre, s/n, 4169-007 Porto, Portugal
| | - Paula Soares
- i3S—Instituto de Investigação e Inovação Em Saúde, Universidade Do Porto, 4200-135 Porto, Portugal; (L.C.); (P.S.)
- Ipatimup—Instituto de Patologia e Imunologia Molecular da Universidade do Porto, 4250-475 Porto, Portugal
- FCUP—Faculty of Sciences, University of Porto, Rua do Campo Alegre, s/n, 4169-007 Porto, Portugal
- Departamento de Patologia, Faculdade de Medicina da Universidade Do Porto, 4200-139 Porto, Portugal
| | - Marcelo Correia
- i3S—Instituto de Investigação e Inovação Em Saúde, Universidade Do Porto, 4200-135 Porto, Portugal; (L.C.); (P.S.)
- Ipatimup—Instituto de Patologia e Imunologia Molecular da Universidade do Porto, 4250-475 Porto, Portugal
- Correspondence:
| |
Collapse
|
8
|
Zhao Y, Geng H, Liu G, Ji Q, Cheng X, Li X, Liu W, Thorne RF, Zhang R, Liu X. The Deubiquitinase USP39 Promotes ESCC Tumorigenesis Through Pre-mRNA Splicing of the mTORC2 Component Rictor. Front Oncol 2021; 11:667495. [PMID: 34123832 PMCID: PMC8189149 DOI: 10.3389/fonc.2021.667495] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2021] [Accepted: 05/05/2021] [Indexed: 12/24/2022] Open
Abstract
Spliceosomes are large RNA-protein molecular complexes which mediate splicing of pre-mRNA in eukaryotic cells. Their function is frequently altered in cancer, providing opportunities for novel therapeutic approaches. The ubiquitin specific protease 39 (USP39) is a highly conserved deubiquitylation family member that plays an essential role in pre-mRNA splicing where it serves to assemble the mature spliceosome complex. Previous studies have reported that USP39 acts in an oncogenic manner where it contributes to cancer progression and predicts poor prognosis in various human tumor types. Here we report that USP39 is differentially upregulated in human esophageal squamous cell carcinoma (ESCC) and its expression is significantly associated with clinicopathological characteristics including differentiation status and TNM stage. We found the USP39 upregulation was maintained in ESCC cell lines where it functioned to promote cancer cell growth in vitro and in xenografts. RNA-seq analyses identified that mTOR pathway activation was affected by shRNA-mediated silencing of USP39. Subsequent biochemical analyses demonstrated that USP39 regulates the activity of mTORC2 by selectively enhancing the splicing and maturation of Rictor mRNA, although not other key mTORC components. Together, our report proposes USP39 as a biomarker and oncogenic factor in ESCC, with a potential for targeting the USP39/mTOR2/Rictor axis as a therapeutic strategy. Furthermore, our study adds ESCC to the list of cancers where USP39 contributes to tumorigenesis and progression.
Collapse
Affiliation(s)
- Yuan Zhao
- Department of Thoracic Surgery, The First Affiliated Hospital, Anhui Medical University, Hefei, China
| | - Huiwu Geng
- Biology Department, School of Life Sciences, Anhui Medical University, Hefei, China
| | - Gang Liu
- Biology Department, School of Life Sciences, Anhui Medical University, Hefei, China
| | - Qiang Ji
- Biology Department, School of Life Sciences, Anhui Medical University, Hefei, China.,Translational Research Institute of Henan Provincial People's Hospital and People's Hospital of Zhengzhou University, Molecular Pathology Centre, Academy of Medical Sciences, Zhengzhou University, Zhengzhou, China
| | - Xiaomin Cheng
- Biology Department, School of Life Sciences, Anhui Medical University, Hefei, China
| | - Xinying Li
- Biology Department, School of Life Sciences, Anhui Medical University, Hefei, China
| | - Wei Liu
- Department of Thoracic Surgery, The First Affiliated Hospital, Anhui Medical University, Hefei, China
| | - Rick F Thorne
- Translational Research Institute of Henan Provincial People's Hospital and People's Hospital of Zhengzhou University, Molecular Pathology Centre, Academy of Medical Sciences, Zhengzhou University, Zhengzhou, China
| | - Renquan Zhang
- Department of Thoracic Surgery, The First Affiliated Hospital, Anhui Medical University, Hefei, China
| | - Xiaoying Liu
- Biology Department, School of Life Sciences, Anhui Medical University, Hefei, China.,Translational Research Institute of Henan Provincial People's Hospital and People's Hospital of Zhengzhou University, Molecular Pathology Centre, Academy of Medical Sciences, Zhengzhou University, Zhengzhou, China
| |
Collapse
|
9
|
Liu K, Qiu D, Liang X, Huang Y, Zhao J, Qiu X, Zhang Q, Xiao ZD, Qin Y. Human DUBs' gene expression and regulation in antiviral signaling in response to poly (I:C) treatment. Mol Immunol 2020; 129:45-52. [PMID: 33278678 DOI: 10.1016/j.molimm.2020.11.006] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2020] [Revised: 11/03/2020] [Accepted: 11/08/2020] [Indexed: 02/06/2023]
Abstract
Type I interferons (IFNs) play a central role in host defense against viral infection. Multiple posttranslational modifications including ubiquitination and deubiquitination regulate the function of diverse molecules in type I IFN signaling. Many ubiquitin ligase enzymes, such as those of the TRAF and TRIM families, have been shown to participate in the production of type I IFNs and inflammatory cytokines. However, the function of deubiquitinating enzymes (DUBs), a protein family that counteracts the action of protein ubiquitination, on the regulation of antiviral immune responses is not well understood. In this study, we used the broad-spectrum DUB inhibitor G5 to reveal their function in antiviral signaling, and then systematically analyzed mRNA expression of the DUB genes upon poly (I:C) treatment in THP-1 cells. Based on this analysis, we cloned some DUB genes whose expression changed and determined their function in antiviral signaling. Taken together, we present a comprehensive DUB gene expression analysis in THP-1 cells, and suggest the involvement of this family of proteins in the regulation of host antiviral activities.
Collapse
Affiliation(s)
- Kunpeng Liu
- Cell-gene Therapy Translational Medicine Research Center, Biotherapy center, The Third Affiliated Hospital of Sun Yat-sen University, Guangzhou, China
| | - Dongbo Qiu
- Cell-gene Therapy Translational Medicine Research Center, Biotherapy center, The Third Affiliated Hospital of Sun Yat-sen University, Guangzhou, China; Guangdong Provincial Key Laboratory of Liver Disease Research, Guangzhou, China
| | - Xue Liang
- Department of Nutrition, School of Public Health, Sun Yat-sen University, Guangzhou, China
| | - Yingqi Huang
- Cell-gene Therapy Translational Medicine Research Center, Biotherapy center, The Third Affiliated Hospital of Sun Yat-sen University, Guangzhou, China
| | - Jingyuan Zhao
- Cell-gene Therapy Translational Medicine Research Center, Biotherapy center, The Third Affiliated Hospital of Sun Yat-sen University, Guangzhou, China
| | - Xiusheng Qiu
- Vaccine Research Institute, The Third Affiliated Hospital of Sun Yat-sen University, Sun Yat-sen University, Guangzhou, China
| | - Qi Zhang
- Cell-gene Therapy Translational Medicine Research Center, Biotherapy center, The Third Affiliated Hospital of Sun Yat-sen University, Guangzhou, China; Guangdong Provincial Key Laboratory of Liver Disease Research, Guangzhou, China.
| | - Zhen-Dong Xiao
- Cell-gene Therapy Translational Medicine Research Center, Biotherapy center, The Third Affiliated Hospital of Sun Yat-sen University, Guangzhou, China; Guangdong Provincial Key Laboratory of Liver Disease Research, Guangzhou, China.
| | - Yunfei Qin
- Cell-gene Therapy Translational Medicine Research Center, Biotherapy center, The Third Affiliated Hospital of Sun Yat-sen University, Guangzhou, China; Guangdong Provincial Key Laboratory of Liver Disease Research, Guangzhou, China.
| |
Collapse
|
10
|
Yuan J, Zhang G, Li X, Ma Q, Cheng W, Wang W, Zhang B, Hu T, Song G. Knocking down USP39 Inhibits the Growth and Metastasis of Non-Small-Cell Lung Cancer Cells through Activating the p53 Pathway. Int J Mol Sci 2020; 21:ijms21238949. [PMID: 33255748 PMCID: PMC7728369 DOI: 10.3390/ijms21238949] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2020] [Revised: 11/19/2020] [Accepted: 11/21/2020] [Indexed: 12/18/2022] Open
Abstract
Ubiquitin-specific protease 39 (USP39), a member of the deubiquitinating enzyme family, has been reported to participate in cytokinesis and metastasis. Previous studies determined that USP39 functions as an oncogenic factor in various types of cancer. Here, we reported that USP39 is frequently overexpressed in human lung cancer tissues and non-small-cell lung cancer (NSCLC) cell lines. USP39 knockdown inhibited the proliferation and colony formation of A549 and HCC827 cells and decreased tumorigenic potential in nude mice. Specifically, knocking down USP39 resulted in cell cycle arrest at G2/M and subsequent apoptosis through the activation of the p53 pathway, including upregulation of p21, cleaved-cas3, cleaved-cas9 and downregulation of CDC2 and CycinB1. Moreover, USP39 knockdown significantly inhibited migration and invasion of A549 and HCC827 cells, also via activation of the p53 pathway, and downregulation of MMP2 and MMP9. Importantly, we verified these results in metastasis models in vivo. Collectively, these results not only establish that USP39 functions as an oncogene in lung cancer, but reveal that USP39 has an essential role in regulating cell proliferation and metastasis via activation of the p53 pathway.
Collapse
Affiliation(s)
- Jiahui Yuan
- Cancer Research Center, School of Medicine, Xiamen University, Xiamen 361102, China; (J.Y.); (G.Z.); (X.L.); (Q.M.); (W.C.); (W.W.); (T.H.)
| | - Gongye Zhang
- Cancer Research Center, School of Medicine, Xiamen University, Xiamen 361102, China; (J.Y.); (G.Z.); (X.L.); (Q.M.); (W.C.); (W.W.); (T.H.)
| | - Xiaomei Li
- Cancer Research Center, School of Medicine, Xiamen University, Xiamen 361102, China; (J.Y.); (G.Z.); (X.L.); (Q.M.); (W.C.); (W.W.); (T.H.)
| | - Qiujuan Ma
- Cancer Research Center, School of Medicine, Xiamen University, Xiamen 361102, China; (J.Y.); (G.Z.); (X.L.); (Q.M.); (W.C.); (W.W.); (T.H.)
| | - Weipeng Cheng
- Cancer Research Center, School of Medicine, Xiamen University, Xiamen 361102, China; (J.Y.); (G.Z.); (X.L.); (Q.M.); (W.C.); (W.W.); (T.H.)
| | - Weiwei Wang
- Cancer Research Center, School of Medicine, Xiamen University, Xiamen 361102, China; (J.Y.); (G.Z.); (X.L.); (Q.M.); (W.C.); (W.W.); (T.H.)
| | - Bing Zhang
- Department of Basic Medicine, School of Medicine, Xiamen University, Xiamen 361102, China;
| | - Tianhui Hu
- Cancer Research Center, School of Medicine, Xiamen University, Xiamen 361102, China; (J.Y.); (G.Z.); (X.L.); (Q.M.); (W.C.); (W.W.); (T.H.)
| | - Gang Song
- Cancer Research Center, School of Medicine, Xiamen University, Xiamen 361102, China; (J.Y.); (G.Z.); (X.L.); (Q.M.); (W.C.); (W.W.); (T.H.)
- Correspondence:
| |
Collapse
|
11
|
Mustafa M, Mahadevan DSA, Daniel R, Bharadwaj A, Aravindan SP, Kiran YS. A Case Report of Familial Medullary Carcinoma Thyroid—Seldom Seen by Surgeons. Indian J Surg 2020. [DOI: 10.1007/s12262-019-01998-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/25/2022] Open
|
12
|
Yan C, Yuan J, Xu J, Zhang G, Li X, Zhang B, Hu T, Huang X, Mao Y, Song G. Ubiquitin-specific peptidase 39 regulates the process of proliferation and migration of human ovarian cancer via p53/p21 pathway and EMT. Med Oncol 2019; 36:95. [PMID: 31637536 DOI: 10.1007/s12032-019-1308-7] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2019] [Accepted: 08/27/2019] [Indexed: 12/15/2022]
Abstract
Ovarian cancer is one of the most lethal gynecological cancers; owning to its late detection and chemoresistance, understanding the pathogenesis of this malignant tumor is much critical. Previous studies have reported that ubiquitin-specific peptidase 39 (USP39) is generally overexpressed in a variety of cancers, including hepatocellular carcinoma, gastric cancer and so forth. Furthermore, USP39 is proved to be associated with the proliferation of malignant tumors. However, the function and mechanism of USP39 in ovarian cancer have not been elucidated. In the present study, we observed that USP39 was frequently overexpressed in human ovarian cancer and was highly correlated with TNM stage. Suppression of USP39 markedly inhibited the growth and migration of ovarian cancer cell lines HO-8910 and SKOV3 and induced cell cycle G2/M arrest. Moreover, knockdown of USP39 inhibited ovarian tumor growth in a xenograft model. In addition, our findings indicated that cell cycle arrest induced by USP39 knockdown might be involved in p53/p21 signaling pathway. Furthermore, we found that the depletion of USP39 inhibited the migration of ovarian cancer cells via blocking epithelial-mesenchymal transition. Taken together, these results suggest that USP39 may play vital roles in the genesis and progression and may serve as a potential biomarker for diagnosis and therapeutic target of ovarian cancer.
Collapse
Affiliation(s)
- Congcong Yan
- Cancer Research Center, School of Medicine, Xiamen University, Xiamen, 361102, China
| | - Jiahui Yuan
- Cancer Research Center, School of Medicine, Xiamen University, Xiamen, 361102, China
| | - Jiajia Xu
- Cancer Research Center, School of Medicine, Xiamen University, Xiamen, 361102, China
| | - Gongye Zhang
- Cancer Research Center, School of Medicine, Xiamen University, Xiamen, 361102, China
| | - Xiaomei Li
- Cancer Research Center, School of Medicine, Xiamen University, Xiamen, 361102, China
| | - Bing Zhang
- Department of Basic Medicine, School of Medicine, Xiamen University, Xiamen, 361102, China
| | - Tianhui Hu
- Cancer Research Center, School of Medicine, Xiamen University, Xiamen, 361102, China
| | - Xiaohua Huang
- Department of Basic Medicine, School of Medicine, Xiamen University, Xiamen, 361102, China
| | - Yubin Mao
- Cancer Research Center, School of Medicine, Xiamen University, Xiamen, 361102, China. .,Department of Basic Medicine, School of Medicine, Xiamen University, Xiamen, 361102, China.
| | - Gang Song
- Cancer Research Center, School of Medicine, Xiamen University, Xiamen, 361102, China.
| |
Collapse
|
13
|
Ding K, Ji J, Zhang X, Huang B, Chen A, Zhang D, Li X, Wang X, Wang J. RNA splicing factor USP39 promotes glioma progression by inducing TAZ mRNA maturation. Oncogene 2019; 38:6414-6428. [PMID: 31332287 PMCID: PMC6756117 DOI: 10.1038/s41388-019-0888-1] [Citation(s) in RCA: 35] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2018] [Revised: 06/06/2019] [Accepted: 07/03/2019] [Indexed: 01/01/2023]
Abstract
Increasing evidence demonstrates that ubiquitin specific protease 39 (USP39) plays an oncogenic role in various human tumors. Here, using expression analysis of the publicly available Oncomine database, clinical glioma patient samples, and glioma cells, we found that USP39 was overexpressed in human gliomas. Knockdown of USP39 in glioma cells demonstrated that the protein promoted cell growth, invasion and migration in vitro and in a tumor model in nude mice. To identify mediators of USP39 growth-promoting properties, we used luciferase reporter constructs under transcriptional control of various promoters specific to seven canonical cancer-associated pathways. Luciferase activity from a synthetic TEAD-dependent YAP/TAZ-responsive reporter, as a direct readout of the Hippo signaling pathway, was decreased by 92% in cells with USP39 knockdown, whereas the luciferase activities from the other six cancer pathways, including MAPK/ERK, MAPK/JNK, NFκB, Notch, TGFβ, and Wnt, remained unchanged. TAZ protein expression however was decreased independent of canonical Hippo signaling. Immunohistochemistry revealed a positive correlation between USP39 and TAZ proteins in orthotopic xenografts derived from modified glioma cells expressing USP39 shRNAs and primary human glioma samples (p < 0.05). Finally, loss of USP39 decreased TAZ pre-mRNA splicing efficiency in glioma cells in vitro, which led to reduced levels of TAZ protein. In summary, USP39 has oncogenic properties that increase TAZ protein levels by inducing maturation of its mRNA. USP39 therefore provides a novel therapeutic target for the treatment of human glioma.
Collapse
Affiliation(s)
- Kaikai Ding
- Department of Neurosurgery, Qilu Hospital of Shandong University and Institute of Brain and Brain-Inspired Science, Shandong University, 250012, Jinan, PR China.,Shandong Key Laboratory of Brain Function Remodeling, 250012, Jinan, PR China
| | - Jianxiong Ji
- Department of Neurosurgery, Qilu Hospital of Shandong University and Institute of Brain and Brain-Inspired Science, Shandong University, 250012, Jinan, PR China.,Shandong Key Laboratory of Brain Function Remodeling, 250012, Jinan, PR China
| | - Xin Zhang
- Department of Neurosurgery, Qilu Hospital of Shandong University and Institute of Brain and Brain-Inspired Science, Shandong University, 250012, Jinan, PR China.,Shandong Key Laboratory of Brain Function Remodeling, 250012, Jinan, PR China
| | - Bin Huang
- Department of Neurosurgery, Qilu Hospital of Shandong University and Institute of Brain and Brain-Inspired Science, Shandong University, 250012, Jinan, PR China.,Shandong Key Laboratory of Brain Function Remodeling, 250012, Jinan, PR China
| | - Anjing Chen
- Department of Neurosurgery, Qilu Hospital of Shandong University and Institute of Brain and Brain-Inspired Science, Shandong University, 250012, Jinan, PR China.,Shandong Key Laboratory of Brain Function Remodeling, 250012, Jinan, PR China
| | - Di Zhang
- Department of Neurosurgery, Qilu Hospital of Shandong University and Institute of Brain and Brain-Inspired Science, Shandong University, 250012, Jinan, PR China.,Shandong Key Laboratory of Brain Function Remodeling, 250012, Jinan, PR China
| | - Xingang Li
- Department of Neurosurgery, Qilu Hospital of Shandong University and Institute of Brain and Brain-Inspired Science, Shandong University, 250012, Jinan, PR China.,Shandong Key Laboratory of Brain Function Remodeling, 250012, Jinan, PR China
| | - Xinyu Wang
- Department of Neurosurgery, Qilu Hospital of Shandong University and Institute of Brain and Brain-Inspired Science, Shandong University, 250012, Jinan, PR China. .,Shandong Key Laboratory of Brain Function Remodeling, 250012, Jinan, PR China.
| | - Jian Wang
- Department of Neurosurgery, Qilu Hospital of Shandong University and Institute of Brain and Brain-Inspired Science, Shandong University, 250012, Jinan, PR China. .,Shandong Key Laboratory of Brain Function Remodeling, 250012, Jinan, PR China. .,Department of Biomedicine, University of Bergen, 5009, Bergen, Norway.
| |
Collapse
|
14
|
Wang L, Chen T, Li X, Yan W, Lou Y, Liu Z, Chen H, Cui Z. USP39 promotes ovarian cancer malignant phenotypes and carboplatin chemoresistance. Int J Oncol 2019; 55:277-288. [PMID: 31180526 DOI: 10.3892/ijo.2019.4818] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2018] [Accepted: 05/24/2019] [Indexed: 11/05/2022] Open
Abstract
Ubiquitin‑specific protease 39 (USP39), as one of the deubiquitinating enzymes (DUBs), exhibits aberrant an expression and has oncogenic functions in several types of cancer. However, the function and underlying molecular mechanisms of action of USP39 in ovarian cancer remain largely undetermined. The present study thus aimed to investigate whether USP39 is a promising tumor‑associated gene and whether it could be a viable target for overcoming chemotherapeutic resistance in ovarian cancer. The present study identified that USP39 was highly expressed in ovarian cancer samples with carboplatin resistance. A series of functional assays revealed that the knockdown of USP39 in ES2 and SKOV3 cells significantly decreased cell proliferation, induced cell cycle arrest at the G2/M phase and impaired the cell colony formation ability. USP39 deficiency enhanced the carboplatin‑induced apoptosis of the SKOV3 cells via the activation of poly‑ADP ribose polymerase and caspase‑3. USP39 knockdown led to the inhibition of cell migration and invasion. The opposite effects were observed when USP39 was overexpressed in the ES2 and SKOV3 cells. In vivo animal models revealed that the subcutaneous transplantation and intraperitoneal injection of USP39‑overexpressing ES2 cells increased tumor burden with or without treatment with carboplatin. However, the knockdown of USP39 suppressed SKOV3 cell growth in vivo. Mechanistic analyses also demonstrated that USP39 induced the phosphorylation of extracellular signal‑regulated kinase and AKT and increased the expression of epidermal growth factor receptor and cyclin B1. Collectively, the findings of this study suggest that USP39 may paly a vital role in regulating ovarian cancer malignant phenotypes and carboplatin resistance. Therefore, USP39 may prove to be a promising therapeutic target for patients with ovarian cancer.
Collapse
Affiliation(s)
- Lingzhi Wang
- Department of Obstetrics and Gynecology, The Affiliated Hospital of Qingdao University, Qingdao, Shandong 266061, P.R. China
| | - Tanxiu Chen
- Department of Science and Education, Jiangxi Key Laboratory of Translational Cancer Research, Jiangxi Cancer Hospital, Nanchang, Jiangxi 330029, P.R. China
| | - Xukun Li
- State Key Laboratory of Molecular Oncology, National Cancer Center/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beiing 100021, P.R. China
| | - Wei Yan
- 6th Department of Internal Medicine, Jiangxi Cancer Hospital, Nanchang, Jiangxi 330029, P.R. China
| | - Yanhui Lou
- Department of Obstetrics and Gynecology, The Affiliated Hospital of Qingdao University, Qingdao, Shandong 266061, P.R. China
| | - Zhihua Liu
- State Key Laboratory of Molecular Oncology, National Cancer Center/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beiing 100021, P.R. China
| | - Hongyan Chen
- State Key Laboratory of Molecular Oncology, National Cancer Center/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beiing 100021, P.R. China
| | - Zhumei Cui
- Department of Obstetrics and Gynecology, The Affiliated Hospital of Qingdao University, Qingdao, Shandong 266061, P.R. China
| |
Collapse
|
15
|
Xing Z, Sun F, He W, Wang Z, Song X, Zhang F. Downregulation of ubiquitin-specific peptidase 39 suppresses the proliferation and induces the apoptosis of human colorectal cancer cells. Oncol Lett 2018; 15:5443-5450. [PMID: 29556295 PMCID: PMC5844003 DOI: 10.3892/ol.2018.8061] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2016] [Accepted: 10/20/2017] [Indexed: 02/07/2023] Open
Abstract
Ubiquitin-specific peptidase 39 (USP39) has been reported to participate in the mitotic spindle checkpoint and the process of cytokinesis. and has been identified as a therapeutic target for various types of cancer. However, the effect of USP39 in colorectal cancer (CRC) has not been investigated. To explore the functional role of USP39 in CRC cell growth, lentivirus-mediated RNA interference was applied to inhibit USP39 expression in SW1116 and HCT116 cells. The relative USP39 mRNA and protein expression levels were significantly reduced in the USP39 knockdown cells, as verified by reverse transcription-quantitative polymerase chain reaction and western blot analysis. USP39 knockdown significantly reduced the proliferation and colony formation abilities of CRC cells, and induced apoptosis and cell cycle arrest in the G2/M phases, as determined by an MTT assay, a colony formation assay and flow cytometry analysis. Furthermore, western blot analysis demonstrated that USP39 knockdown may have induced apoptosis through the upregulation of p53, p-p53, PARP and caspase-3 expression in SW1116 cells. In conclusion, USP39 may be a novel biological marker for targeted therapy against CRC, and requires further investigation.
Collapse
Affiliation(s)
- Zhiyuan Xing
- Department of General Surgery, The Second Affiliated Hospital of Qingdao University Medical College, Qingdao, Shandong 266000, P.R. China
| | - Fengbo Sun
- Department of General Surgery, Qingdao Haici Medical Group, Qingdao, Shandong 266000, P.R. China
| | - Wang He
- Department of Hepatopathy, Qingdao Sixth People's Hospital, Qingdao, Shandong 266000, P.R. China
| | - Zhiwei Wang
- Department of General Surgery, The Second Affiliated Hospital of Qingdao University Medical College, Qingdao, Shandong 266000, P.R. China
| | - Xiuqi Song
- Department of General Surgery, The Second Affiliated Hospital of Qingdao University Medical College, Qingdao, Shandong 266000, P.R. China
| | - Fengjuan Zhang
- Department of Infection, The Second Affiliated Hospital of Qingdao University Medical College, Qingdao, Shandong 266000, P.R. China
| |
Collapse
|
16
|
Xu Y, Zhu MR, Zhang JY, Si GM, Lv JJ. Knockdown of ubiquitin‑specific peptidase 39 inhibits the malignant progression of human renal cell carcinoma. Mol Med Rep 2018; 17:4729-4735. [PMID: 29328477 DOI: 10.3892/mmr.2018.8421] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2016] [Accepted: 12/04/2017] [Indexed: 11/06/2022] Open
Abstract
Ubiquitin specific peptidase 39 (USP39) serves important roles in mRNA processing and is involved in tumorigenesis of multiple solid malignancies. However, the influence and underlying mechanism of USP39 on human renal cell carcinomas (RCC) remain to be elucidated. The current study investigated the functional roles of USP39 in human RCC cell lines. siRNA‑mediated RNA interference was used to downregulate USP39 in RCC cells. CCK‑8, wound healing and invasion assays were performed to assess the proliferative ability and metastatic potential. The cell cycle distribution and apoptosis were evaluated by flow cytometry. The activity of signaling pathways and the expression of cell cycle‑related proteins were detected by western blot analysis. The siRNA‑directed RNA interference targeting USP39 could effectively downregulate the expression level of USP39 in two RCC cell lines. Depletion of USP39 by siRNA significantly suppressed cell growth and decreased invasive capacity of RCC cells. Silencing of USP39 induced cell apoptosis and cell cycle arrest at G2/M phase. Additionally, the expression levels of apoptotic and G2/M phase‑related proteins were notably decreased following depletion of USP39. Mechanistically, downregulation of USP39 blocked the activation of Akt and extracellular signal regulated kinase signaling pathways in RCC cells. These findings indicate that USP39 may serve as an oncogenic factor in RCC and could be a potential therapeutic candidate for human RCCs.
Collapse
Affiliation(s)
- Yuan Xu
- Department of Urology, Shandong Provincial Hospital, Shandong University, Jinan, Shandong 250021, P.R. China
| | - Mei-Rong Zhu
- Department of Urology, Jinan Central Hospital, Shandong University, Jinan, Shandong 250013, P.R. China
| | - Jing-Yong Zhang
- Department of Urology, Shandong Provincial Hospital, Shandong University, Jinan, Shandong 250021, P.R. China
| | - Guo-Min Si
- Department of Urology, Shandong Provincial Hospital, Shandong University, Jinan, Shandong 250021, P.R. China
| | - Jia-Ju Lv
- Department of Urology, Shandong Provincial Hospital, Shandong University, Jinan, Shandong 250021, P.R. China
| |
Collapse
|
17
|
Overexpression of USP39 predicts poor prognosis and promotes tumorigenesis of prostate cancer via promoting EGFR mRNA maturation and transcription elongation. Oncotarget 2017; 7:22016-30. [PMID: 26959883 PMCID: PMC5008341 DOI: 10.18632/oncotarget.7882] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2016] [Accepted: 02/23/2016] [Indexed: 12/14/2022] Open
Abstract
Castration resistance is a serious problem facing clinical treatment of prostate cancer (PCa). The underlying molecular mechanisms of acquired proliferation ability of tumor cells upon androgen deprivation are largely undetermined. In the present study, we identified that ubiquitin specific peptidase 39 (USP39) was significantly upregulated in PCa samples and cell lines. Elevated USP39 expression was positively correlated with Gleason score, predicted a poor outcome, and functioned as an independent risk factor for biochemical recurrence (BCR) especially in patients with a Gleason score ≤7. Our cell-based study showed that the expression level of USP39 was the highest in AR-negative PCa cell lines. Knockdown of USP39 in PCa cells inhibited cancer colony formation and tumor cell growth, and induced G2/M arrest and cell apoptosis. Microarray analysis suggested that knockdown of USP39 caused a reduced expression of EGFR. Silencing of USP39 inhibited the expression of EGFR 3′-end, and presented a remarkable block to the maturation of EGFR mRNA, suggesting that silencing of USP39 decreased the transcriptional elongation and maturation of EGFR mRNA. Oncomine datasets analysis showed that USP39 expression was positively correlated with EGFR level. The above findings suggest that USP39 plays a vital oncogenic role in the tumorigenesis of PCa and may prove to be a potential biomarker for predicting the prognosis of PCa patients.
Collapse
|
18
|
Ubiquitin-specific protease 39 is overexpressed in human lung cancer and promotes tumor cell proliferation in vitro. Mol Cell Biochem 2016; 422:97-107. [DOI: 10.1007/s11010-016-2809-8] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2016] [Accepted: 08/29/2016] [Indexed: 10/21/2022]
|
19
|
Knockdown of USP39 induces cell cycle arrest and apoptosis in melanoma. Tumour Biol 2016; 37:13167-13176. [PMID: 27456357 DOI: 10.1007/s13277-016-5212-x] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2016] [Accepted: 07/13/2016] [Indexed: 01/13/2023] Open
Abstract
The spliceosome machinery composed of multimeric protein complexes guides precursor messenger RNAs (mRNAs) (pre-mRNAs) splicing in eukaryotic cells. Spliceosome components have been shown to be downregulated in cancer and could be a promising molecular target for anticancer therapy. The ubiquitin-specific protease 39 (USP39) is essential for pre-mRNA splicing, and upregulated USP39 expression is noted in a variety of cancers. However, the role of USP39 in the development and progression of melanoma remains unclear. In the present study, USP39 expression was found to be increased in melanoma tissues compared with that in nevus tissues. USP39 silencing via lentivirus-mediated short hairpin RNA (shRNA) significantly suppressed melanoma cell proliferation, induced G0/G1 cell cycle phase arrest, and increased apoptosis in vitro. Moreover, USP39 knockdown suppressed melanoma tumor growth in a xenograft model. In addition, USP39 silencing was associated with the increased expressions of p21, p27, and Bax. Furthermore, the inhibition of USP39 expression decreased the phosphorylation of extracellular signal-regulated kinase (ERK)1/2, indicating that ERK signaling pathways might be involved in the regulation of melanoma cell proliferation by USP39. Our findings suggest that USP39 may play crucial roles in the development and pathogenesis of melanoma, and it may serve as a potential therapeutic target for melanoma.
Collapse
|