1
|
Ma X, Huang T, Li X, Zhou X, Pan H, Du A, Zeng Y, Yuan K, Wang Z. Exploration of the link between COVID-19 and gastric cancer from the perspective of bioinformatics and systems biology. Front Med (Lausanne) 2024; 11:1428973. [PMID: 39371335 PMCID: PMC11449776 DOI: 10.3389/fmed.2024.1428973] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2024] [Accepted: 09/04/2024] [Indexed: 10/08/2024] Open
Abstract
Background Coronavirus disease 2019 (COVID-19), an infectious disease caused by severe acute respiratory syndrome coronavirus-2 (SARS-CoV-2), has caused a global pandemic. Gastric cancer (GC) poses a great threat to people's health, which is a high-risk factor for COVID-19. Previous studies have found some associations between GC and COVID-19, whereas the underlying molecular mechanisms are not well understood. Methods We employed bioinformatics and systems biology to explore these links between GC and COVID-19. Gene expression profiles of COVID-19 (GSE196822) and GC (GSE179252) were obtained from the Gene Expression Omnibus (GEO) database. After identifying the shared differentially expressed genes (DEGs) for GC and COVID-19, functional annotation, protein-protein interaction (PPI) network, hub genes, transcriptional regulatory networks and candidate drugs were analyzed. Results We identified 209 shared DEGs between COVID-19 and GC. Functional analyses highlighted immune-related pathways as key players in both diseases. Ten hub genes (CDK1, KIF20A, TPX2, UBE2C, HJURP, CENPA, PLK1, MKI67, IFI6, IFIT2) were identified. The transcription factor/gene and miRNA/gene interaction networks identified 38 transcription factors (TFs) and 234 miRNAs. More importantly, we identified ten potential therapeutic agents, including ciclopirox, resveratrol, etoposide, methotrexate, trifluridine, enterolactone, troglitazone, calcitriol, dasatinib and deferoxamine, some of which have been reported to improve and treat GC and COVID-19. Conclusion This research offer valuable insights into the molecular interplay between COVID-19 and GC, potentially guiding future therapeutic strategies.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | - Kefei Yuan
- Division of Liver Surgery, Department of General Surgery and Laboratory of Liver Surgery, and State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu, China
| | - Zhen Wang
- Division of Liver Surgery, Department of General Surgery and Laboratory of Liver Surgery, and State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu, China
| |
Collapse
|
2
|
Zhang W, Dong J, Wu Y, Liang X, Suo L, Wang L. Integrated Bioinformatic Analysis Reveals the Oncogenic, Survival, and Prognostic Characteristics of TPX2 in Hepatocellular Carcinoma. Biochem Genet 2024:10.1007/s10528-024-10840-3. [PMID: 38833082 DOI: 10.1007/s10528-024-10840-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2023] [Accepted: 05/13/2024] [Indexed: 06/06/2024]
Abstract
Targeting protein for Xenopus kinesin-like protein 2 (TPX2), a well-known mitotic protein, has been linked to carcinogenesis in several cancers. This study investigated the role of TPX2 in hepatocellular carcinoma (HCC) from various aspects using bioinformatic analyses. TPX2 expression and its prognostic value in pan-cancers were analyzed using SangerBox. TPX2 expression and its association with prognosis, immune infiltration, tumor mutations, and signaling pathways in HCC were analyzed using UALCAN, BoxKaplan-Meier Plotter, GEPIA, Human Protein Atlas, TIMER 2.0, and SangerBox. Genes co-expressed with TPX2 in HCC were analyzed using the HCCDB database, followed by functional enrichment using SangerBox. Clinical predictive models were established based on TPX2 and its co-expressed genes using the ACLBI database. TPX2 expression significantly increased in pan-cancers and was associated with survival in nearly half of the cancer types. High TPX2 expression has been linked to poor survival outcomes in patients with HCC. TPX2 expression was positively correlated with abundant infiltration of immune cells (including B cells, CD4 + /CD8 + T cells, macrophages, neutrophils, and dendritic cells), TP53 mutation, and carcinogenesis-related pathways, such as the PI3K/AKT/mTOR pathway, cellular response to hypoxia, and tumor proliferation signature. Nineteen genes were found to be co-expressed with TPX2 in HCC, and these genes showed close positive correlations and were mainly implicated in cell cycle-related functions. A prognostic model established using TPX2 and its expressed genes could stratify HCC patients into high- and low-risk groups, with a significantly shorter survival time in high-risk groups. The prognostic model performed well in predicting 1-, 3-, and 5-year survival of patients with HCC, with areas under the curve of 0.801, 0.725, and 0.711, respectively. TPX2 functions as an oncogene in HCC, and its high expression is detrimental to the survival of patients with HCC. Thus, TPX2 may be a prognostic biomarker and potential therapeutic target for HCC.
Collapse
Affiliation(s)
- Weibin Zhang
- Department of Hepatobiliary Surgery, The Second Hospital of Dalian Medical University, Dalian, China
| | - Jia Dong
- Department of Radiology, Jinzhou Maternity and Infant Hospital, Jinzhou, China
| | - Yunfei Wu
- Department of General Surgery, Jinzhou Central Hospital, Jinzhou, China
| | - Xiangnan Liang
- Department of Hepatobiliary Surgery, The Second Hospital of Dalian Medical University, Dalian, China
| | - Lida Suo
- Department of Hepatobiliary Surgery, The Second Hospital of Dalian Medical University, Dalian, China
| | - Liming Wang
- Department of Hepatobiliary Surgery, The Second Hospital of Dalian Medical University, Dalian, China.
| |
Collapse
|
3
|
Ge W, Wang Y, Quan M, Mao T, Bischof EY, Xu H, Zhang X, Li S, Yue M, Ma J, Yang H, Wang L, Yu Z, Wang L, Cui J. Activation of the PI3K/AKT signaling pathway by ARNTL2 enhances cellular glycolysis and sensitizes pancreatic adenocarcinoma to erlotinib. Mol Cancer 2024; 23:48. [PMID: 38459558 PMCID: PMC10921723 DOI: 10.1186/s12943-024-01965-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2023] [Accepted: 02/22/2024] [Indexed: 03/10/2024] Open
Abstract
BACKGROUND Pancreatic adenocarcinoma (PC) is an aggressive malignancy with limited treatment options. The poor prognosis primarily stems from late-stage diagnosis and when the disease has become therapeutically challenging. There is an urgent need to identify specific biomarkers for cancer subtyping and early detection to enhance both morbidity and mortality outcomes. The addition of the EGFR tyrosine kinase inhibitor (TKI), erlotinib, to gemcitabine chemotherapy for the first-line treatment of patients with advanced pancreatic cancer slightly improved outcomes. However, restricted clinical benefits may be linked to the absence of well-characterized criteria for stratification and dependable biomarkers for the prediction of treatment effectiveness. METHODS AND RESULTS We examined the levels of various cancer hallmarks and identified glycolysis as the primary risk factor for overall survival in PC. Subsequently, we developed a glycolysis-related score (GRS) model to accurately distinguish PC patients with high GRS. Through in silico screening of 4398 compounds, we discovered that erlotinib had the strongest therapeutic benefits for high-GRS PC patients. Furthermore, we identified ARNTL2 as a novel prognostic biomarker and a predictive factor for erlotinib treatment responsiveness in patients with PC. Inhibition of ARNTL2 expression reduced the therapeutic efficacy, whereas increased expression of ARNTL2 improved PC cell sensitivity to erlotinib. Validation in vivo using patient-derived xenografts (PDX-PC) with varying ARNTL2 expression levels demonstrated that erlotinib monotherapy effectively halted tumor progression in PDX-PC models with high ARNTL2 expression. In contrast, PDX-PC models lacking ARNTL2 did not respond favorably to erlotinib treatment. Mechanistically, we demonstrated that the ARNTL2/E2F1 axis-mediated cellular glycolysis sensitizes PC cells to erlotinib treatment by activating the PI3K/AKT signaling pathway. CONCLUSIONS Our investigations have identified ARNTL2 as a novel prognostic biomarker and predictive indicator of sensitivity. These results will help to identify erlotinib-responsive cases of PC and improve treatment outcomes. These findings contribute to the advancement of precision oncology, enabling more accurate and targeted therapeutic interventions.
Collapse
Affiliation(s)
- Weiyu Ge
- Department of Oncology and State Key Laboratory of Systems Medicine for Cancer of Shanghai Cancer Institute, Renji Hospital, School of Medicine, Shanghai Jiaotong University, Shanghai, 200127, China
- Department of Medical Oncology, Shanghai Medical College, Fudan University Shanghai Cancer Center, Fudan University, Shanghai, 200032, People's Republic of China
| | - Yanling Wang
- Department of Oncology and State Key Laboratory of Systems Medicine for Cancer of Shanghai Cancer Institute, Renji Hospital, School of Medicine, Shanghai Jiaotong University, Shanghai, 200127, China
| | - Ming Quan
- Department of Oncology and Tumor Institute, Shanghai East Hospital, Tongji University School of Medicine, Shanghai, China.
| | - Tiebo Mao
- Department of Oncology and State Key Laboratory of Systems Medicine for Cancer of Shanghai Cancer Institute, Renji Hospital, School of Medicine, Shanghai Jiaotong University, Shanghai, 200127, China
| | - Evelyne Y Bischof
- Department of Oncology and State Key Laboratory of Systems Medicine for Cancer of Shanghai Cancer Institute, Renji Hospital, School of Medicine, Shanghai Jiaotong University, Shanghai, 200127, China
| | - Haiyan Xu
- Department of Oncology and State Key Laboratory of Systems Medicine for Cancer of Shanghai Cancer Institute, Renji Hospital, School of Medicine, Shanghai Jiaotong University, Shanghai, 200127, China
| | - Xiaofei Zhang
- Department of Oncology and State Key Laboratory of Systems Medicine for Cancer of Shanghai Cancer Institute, Renji Hospital, School of Medicine, Shanghai Jiaotong University, Shanghai, 200127, China
| | - Shumin Li
- Department of Oncology and State Key Laboratory of Systems Medicine for Cancer of Shanghai Cancer Institute, Renji Hospital, School of Medicine, Shanghai Jiaotong University, Shanghai, 200127, China
| | - Ming Yue
- Department of Oncology and State Key Laboratory of Systems Medicine for Cancer of Shanghai Cancer Institute, Renji Hospital, School of Medicine, Shanghai Jiaotong University, Shanghai, 200127, China
| | - Jingyu Ma
- Department of Oncology and State Key Laboratory of Systems Medicine for Cancer of Shanghai Cancer Institute, Renji Hospital, School of Medicine, Shanghai Jiaotong University, Shanghai, 200127, China
| | - Haiyan Yang
- Department of Oncology and State Key Laboratory of Systems Medicine for Cancer of Shanghai Cancer Institute, Renji Hospital, School of Medicine, Shanghai Jiaotong University, Shanghai, 200127, China
| | - Lei Wang
- Department of Oncology, The Affiliated Lianyungang Hospital of Xuzhou Medical University, The First People's Hospital of Lianyungang, Jiangsu, China
| | - Zhengyuan Yu
- Department of Medical Oncology, The First Affiliated Hospital of Soochow University, Suzhou, Jiangsu, China.
| | - Liwei Wang
- Department of Oncology and State Key Laboratory of Systems Medicine for Cancer of Shanghai Cancer Institute, Renji Hospital, School of Medicine, Shanghai Jiaotong University, Shanghai, 200127, China.
| | - Jiujie Cui
- Department of Oncology and State Key Laboratory of Systems Medicine for Cancer of Shanghai Cancer Institute, Renji Hospital, School of Medicine, Shanghai Jiaotong University, Shanghai, 200127, China.
| |
Collapse
|
4
|
Zhu M, Wang X, Zhang Q, Xie C, Wang T, Shen K, Zhang L, Zhou X. Integrative analysis confirms TPX2 as a novel biomarker for clinical implication, tumor microenvironment, and immunotherapy response across human solid tumors. Aging (Albany NY) 2024; 16:2563-2590. [PMID: 38315450 PMCID: PMC10911359 DOI: 10.18632/aging.205498] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2023] [Accepted: 12/01/2023] [Indexed: 02/07/2024]
Abstract
Targeting Protein for Xenopus Kinesin Like Protein 2 (TPX2) serves as a microtubule associated protein for the regulation of spindle assembly and tumorigenesis. We aim to investigate the prognostic and immunological role of TPX2 in pan-cancer. TCGA database, Tumor Immune Single-cell Hub (TISCH), and Human Protein Atlas (HPA) were retrieved to evaluate the expression pattern of TPX2 as well as its diagnostic and prognostic value in solid tumors. Genomic alterations of TPX2 were assessed with cBioPortal database. In vitro experiments in lung adenocarcinoma (LUAD) were performed to confirm the potential role of TPX2. Overexpression of TPX2 was found in 22 types of cancers, and was positively related with copy number variations (CNV) and negative with methylation. Up-regulated TPX2 could predict worse outcomes in the majority of cancers. Single-cell analysis revealed that TPX2 was mainly distributed in malignant cells (especially in glioma) and proliferating T cells. Genomic alteration of TPX2 was common in different types of tumors, while with prognostic value in two types of cancers. Additionally, significant correlations were found between TPX2 expression and tumor microenvironment (including stromal cells and immune cells) as well as immune related genes across cancer types. Drug sensitivity analysis revealed that TPX2 could predict response to chemotherapy and immunotherapy. Functional analyses demonstrated close relationship of TPX2 with immune function and malignant phenotypes. Finally, it was confirmed that knockdown of TPX2 could reduce proliferation and migration ability of LUAD cells. In summary, TPX2 could serve as a diagnostic and prognostic biomarker and a potential immunotherapy marker.
Collapse
Affiliation(s)
- Mingxia Zhu
- Department of Radiation Oncology, The First Affiliated Hospital of Soochow University, Suzhou 215006, China
| | - Xiaping Wang
- Department of Pathology, The Second Affiliated Hospital of Nanjing Medical University, Nanjing 210000, China
| | - Qing Zhang
- Department of Neurosurgery, Xinghua People’s Hospital, Xinghua 225700, China
| | - Chen Xie
- Department of Gastroenterology, The First Affiliated Hospital of Soochow University, Suzhou 215006, China
| | - Tongshan Wang
- Department of Oncology, First Affiliated Hospital of Nanjing Medical University, Nanjing 210029, China
| | - Kai Shen
- Department of Oncology, First Affiliated Hospital of Nanjing Medical University, Nanjing 210029, China
| | - Lan Zhang
- Department of Radiation Oncology, Shanghai Tenth People’s Hospital of Tongji University, Shanghai 200072, China
| | - Xin Zhou
- Department of Oncology, First Affiliated Hospital of Nanjing Medical University, Nanjing 210029, China
| |
Collapse
|
5
|
Zhang J, An L, Zhao R, Shi R, Zhou X, Wei S, Zhang Q, Zhang T, Feng D, Yu Z, Wang H. KIF4A promotes genomic stability and progression of endometrial cancer through regulation of TPX2 protein degradation. Mol Carcinog 2023; 62:303-318. [PMID: 36468837 DOI: 10.1002/mc.23487] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2022] [Revised: 10/07/2022] [Accepted: 11/04/2022] [Indexed: 12/12/2022]
Abstract
Kinesin family member 4A (KIF4A) belongs to the kinesin superfamily proteins, which are closely associated with mitophagy. Nonetheless, the role of KIF4A in endometrial cancer (EC) remains poorly characterized. The present study showed that KIF4A not only was upregulated but also predicted poor prognosis in patients with EC. KIF4A knockdown in EC cells resulted in attenuated proliferative capacity in vitro and in vivo. Transcriptome sequencing and gene function analysis revealed that KIF4A contributed to the maintenance of EC cells' genomic stability and that KIF4A knockdown induced the DNA damage response, cell cycle arrest, and apoptosis. Mechanistically, KIF4A interacted with TPX2 (a protein involved in DNA damage repair to cope with the replication pressure) to enhance its stability via inhibition of TPX2 ubiquitination and eventually ensured the genomic stability of EC cells during mitosis. Taken together, our results indicated that KIF4A functions as a tumor oncogene that facilitates EC progression via the maintenance of genomic stability. Therefore, targeting the KIF4A/TPX2 axis may provide new concepts and strategies for the treatment of patients with EC.
Collapse
Affiliation(s)
- Jun Zhang
- Department of Obstetrics and Gynecology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China
| | - Lanfen An
- Division of Life Science and Medicine, Clinical Center of Reproductive Medicine, The First Affiliated Hospital of USTC, University of Science and Technology of China, Hefei, China
| | - Rong Zhao
- Department of Obstetrics and Gynecology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China
| | - Rui Shi
- Department of Obstetrics and Gynecology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China
| | - Xing Zhou
- Department of Obstetrics and Gynecology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China
| | - Sitian Wei
- Department of Obstetrics and Gynecology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China
| | - Qi Zhang
- Department of Obstetrics and Gynecology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China
| | - Tangansu Zhang
- Department of Obstetrics and Gynecology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China
| | - Dilu Feng
- Department of Obstetrics and Gynecology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China
| | - Zhicheng Yu
- Department of Obstetrics and Gynecology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China
| | - Hongbo Wang
- Department of Obstetrics and Gynecology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China.,Clinical Research Center of Cancer Immunotherapy, Wuhan, Hubei, China
| |
Collapse
|
6
|
Duan H, Chen B, Wang W, Luo H. Identification of GNG7 as a novel biomarker and potential therapeutic target for gastric cancer via bioinformatic analysis and in vitro experiments. Aging (Albany NY) 2023; 15:1445-1474. [PMID: 36863706 PMCID: PMC10042700 DOI: 10.18632/aging.204545] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2022] [Accepted: 02/16/2023] [Indexed: 03/04/2023]
Abstract
Gastric cancer (GC) is one of the most common malignancies with unfavorable prognoses. The present study aimed to identify novel biomarkers or potential therapeutic targets in GC via bioinformatic analysis and in vitro experiments. The Gene Expression Omnibus and The Cancer Genome Atlas databases were used to screen the differentially expressed genes (DEGs). After protein-protein interaction network construction, both module and prognostic analyses were performed to identify prognosis-related genes in GC. The expression patterns and functions of G protein γ subunit 7 (GNG7) in GC were then visualized in multiple databases and further verified using in vitro experiments. A total of 897 overlapping DEGs were detected and 20 hub genes were identified via systematic analysis. After accessing the prognostic value of the hub genes using the online server Kaplan-Meier plotter, a six-gene prognostic signature was identified, which was also significantly correlated with the process of immune infiltration in GC. The results of open-access database analyses suggested that GNG7 is downregulated in GC; this downregulation was associated with tumor progression. Furthermore, the functional enrichment analysis unveiled that the GNG7-coexpressed genes or gene sets were closely correlated with the proliferation and cell cycle processes of GC cells. Finally, in vitro experiments further confirmed that GNG7 overexpression inhibited GC cell proliferation, colony formation, and cell cycle progression and induced apoptosis. As a tumor suppressor gene, GNG7 suppressed the growth of GC cells via cell cycle blockade and apoptosis induction and thus may be used as a potential biomarker and therapeutic target for GC.
Collapse
Affiliation(s)
- Houyu Duan
- Department of Gastroenterology, Renmin Hospital of Wuhan University, Wuhan 430060, Hubei, P.R. China
| | - Biao Chen
- Department of Oncology, Renmin Hospital of Wuhan University, Wuhan 430060, Hubei, P.R. China
| | - Wei Wang
- Department of Hepatobiliary Surgery, Renmin Hospital of Wuhan University, Wuhan 430060, Hubei, P.R. China
| | - Hesheng Luo
- Department of Gastroenterology, Renmin Hospital of Wuhan University, Wuhan 430060, Hubei, P.R. China
| |
Collapse
|
7
|
Meng X, Cao J, Zheng H, Ma X, Wang Y, Tong Y, Xie S, Lu R, Guo L. TPX2 promotes ovarian tumorigenesis by interacting with Lamin A/C and affecting its stability. Cancer Med 2023; 12:9738-9748. [PMID: 36789877 PMCID: PMC10166900 DOI: 10.1002/cam4.5683] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2022] [Accepted: 01/31/2023] [Indexed: 02/16/2023] Open
Abstract
OBJECTIVE Ovarian cancer (OC) is one of the fatal gynecologic malignancies. However, there are no effective prognostic or therapeutic indicators for OC. Herein, we aim to reveal the potential function of targeting protein for Xklp2 (TPX2) in OC progression. METHODS Immunohistochemical and bioinformatic analyses were used to evaluate the level of TPX2 in OC samples. Effects of TPX2 on cell proliferation, cell apoptosis and ROS production were evaluated in vivo and in vitro. Mass spectrometry, Co-IP and immunofluorescence assays were performed to identify and verify protein-protein interactions. RESULTS Our data showed that pathological overexpression (OE) of the TPX2 in OC could manifest a poor prognosis. Functional studies demonstrated that TPX2 silencing led to the suppression of cell proliferation in vitro and in vivo through an increase in reactive oxygen species (ROS) level and apoptosis, while TPX2 OE exhibited the opposite effect. Furthermore, by mass spectrometric analysis, we identified a novel interacting partner, Lamin A/C, for TPX2. Mechanistically, TPX2 regulated Lamin A/C's stability by modulating the level of phospho-Lamin A/C (Ser 22). CONCLUSION Our findings thus suggest that TPX2 may be a promising therapeutic target for OC.
Collapse
Affiliation(s)
- Xin Meng
- Department of Clinical Laboratory, Fudan University Shanghai Cancer Center, Shanghai, China.,Department of Oncology, Shanghai Medical College, Fudan University, Shanghai, China
| | - Jiazhen Cao
- Department of Clinical Laboratory, Fudan University Shanghai Cancer Center, Shanghai, China.,Department of Oncology, Shanghai Medical College, Fudan University, Shanghai, China
| | - Hui Zheng
- Department of Clinical Laboratory, Fudan University Shanghai Cancer Center, Shanghai, China
| | - Xiaolu Ma
- Department of Clinical Laboratory, Fudan University Shanghai Cancer Center, Shanghai, China
| | - Yanchun Wang
- Department of Clinical Laboratory, Fudan University Shanghai Cancer Center, Shanghai, China
| | - Ying Tong
- Department of Clinical Laboratory, Fudan University Shanghai Cancer Center, Shanghai, China
| | - Suhong Xie
- Department of Clinical Laboratory, Fudan University Shanghai Cancer Center, Shanghai, China
| | - Renquan Lu
- Department of Clinical Laboratory, Fudan University Shanghai Cancer Center, Shanghai, China.,Department of Oncology, Shanghai Medical College, Fudan University, Shanghai, China
| | - Lin Guo
- Department of Clinical Laboratory, Fudan University Shanghai Cancer Center, Shanghai, China.,Department of Oncology, Shanghai Medical College, Fudan University, Shanghai, China
| |
Collapse
|
8
|
Liu J, Jiang M, Guan J, Wang Y, Yu W, Hu Y, Zhang X, Yang J. LncRNA KCNQ1OT1 enhances the radioresistance of lung squamous cell carcinoma by targeting the miR-491-5p/TPX2-RNF2 axis. J Thorac Dis 2022; 14:4081-4095. [PMID: 36389338 PMCID: PMC9641317 DOI: 10.21037/jtd-22-1261] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2022] [Accepted: 10/14/2022] [Indexed: 12/01/2022]
Abstract
BACKGROUND Lung cancer, especially lung squamous cell carcinoma (LUSC), is one of the most common malignant tumors worldwide. Currently, radiosensitization research is a vital direction for the improvement of LUSC therapy. Long non-coding RNAs (lncRNAs) can be novel biomarkers due to their multiple functions in cancers. However, the function and mechanism of lncRNA KCNQ1OT1 in the radioresistance of LUSC remain to be elucidated. METHODS The clonogenic assay was employed to determine the radioresistance of SK-MES-1R and NCI-H226R cells. Real-time quantitative polymerase chain reaction (RT-qPCR) and Western blot were conducted for the detection of gene expression. Cell proliferation was determined by the methyl thiazolyl tetrazolium (MTT) assay, colony formation assay, and 5-ethynyl-2'-deoxyuridine (EdU) staining, and cell apoptosis was assessed by flow cytometry. The relationships between genes were also evaluated by applying the luciferase reporter and radioimmunoprecipitation (RIP) assays. RESULTS Radioresistant LUSC cells (SK-MES-1R and NCI-H226R) had strong resistance to X-ray irradiation, and lncRNA KCNQ1OT1 was highly expressed in SK-MES-1R and NCI-H226R cells. Moreover, knockdown of lncRNA KCNQ1OT1 prominently suppressed proliferation, attenuated radioresistance, and accelerated the apoptosis of SK-MES-1R and NCI-H226R cells. More importantly, we verified that miR-491-5p was a regulatory target of lncRNA KCNQ1OT1, and Xenopus kinesin-like protein 2 (TPX2) and RING finger protein 2 (RNF2) were the target genes of miR-491-5p. The rescue experiment results also demonstrated that miR-491-5p was involved in the inhibition of cell proliferation and the downregulation of TPX2 and RNF2 expression mediated by lncRNA KCNQ1OT1 knockdown in SK-MES-1R and NCI-H226R cells. CONCLUSIONS LncRNA KCNQ1OT1 was associated with the radioresistance of radioresistant LUSC cells, and the lncRNA KCNQ1OT1/miR-491-5p/TPX2-RNF2 axis might be used as a therapeutic target to enhance the radiosensitivity of radioresistant LUSC cells.
Collapse
Affiliation(s)
- Jiahui Liu
- Department of Cardiothoracic Surgery Nursing Platform, First Hospital of Jilin University, Changchun, China
| | - Mi Jiang
- Department of Cardiothoracic Surgery Nursing Platform, First Hospital of Jilin University, Changchun, China
| | - Jinlei Guan
- Department of Radiotherapy, The Fourth Hospital of Hebei Medical University, Shijiazhuang, China
| | - Yuan Wang
- Department of Radiotherapy, The Fourth Hospital of Hebei Medical University, Shijiazhuang, China
| | - Wenjuan Yu
- Department of Radiotherapy, The Fourth Hospital of Hebei Medical University, Shijiazhuang, China
| | - Yuanping Hu
- Department of Radiotherapy, The Fourth Hospital of Hebei Medical University, Shijiazhuang, China
| | - Xin Zhang
- Department of Radiotherapy, The Fourth Hospital of Hebei Medical University, Shijiazhuang, China
| | - Jie Yang
- Department of Radiotherapy, The Fourth Hospital of Hebei Medical University, Shijiazhuang, China
| |
Collapse
|
9
|
Yu Z, Liang C, Tu H, Qiu S, Dong X, Zhang Y, Ma C, Li P. Common Core Genes Play Vital Roles in Gastric Cancer With Different Stages. Front Genet 2022; 13:881948. [PMID: 35938042 PMCID: PMC9352954 DOI: 10.3389/fgene.2022.881948] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2022] [Accepted: 05/31/2022] [Indexed: 12/24/2022] Open
Abstract
Background: Owing to complex molecular mechanisms in gastric cancer (GC) oncogenesis and progression, existing biomarkers and therapeutic targets could not significantly improve diagnosis and prognosis. This study aims to identify the key genes and signaling pathways related to GC oncogenesis and progression using bioinformatics and meta-analysis methods. Methods: Eligible microarray datasets were downloaded and integrated using the meta-analysis method. According to the tumor stage, GC gene chips were classified into three groups. Thereafter, the three groups’ differentially expressed genes (DEGs) were identified by comparing the gene data of the tumor groups with those of matched normal specimens. Enrichment analyses were conducted based on common DEGs among the three groups. Then protein–protein interaction (PPI) networks were constructed to identify relevant hub genes and subnetworks. The effects of significant DEGs and hub genes were verified and explored in other datasets. In addition, the analysis of mutated genes was also conducted using gene data from The Cancer Genome Atlas database. Results: After integration of six microarray datasets, 1,229 common DEGs consisting of 1,065 upregulated and 164 downregulated genes were identified. Alpha-2 collagen type I (COL1A2), tissue inhibitor matrix metalloproteinase 1 (TIMP1), thymus cell antigen 1 (THY1), and biglycan (BGN) were selected as significant DEGs throughout GC development. The low expression of ghrelin (GHRL) is associated with a high lymph node ratio (LNR) and poor survival outcomes. Thereafter, we constructed a PPI network of all identified DEGs and gained 39 subnetworks and the top 20 hub genes. Enrichment analyses were performed for common DEGs, the most related subnetwork, and the top 20 hub genes. We also selected 61 metabolic DEGs to construct PPI networks and acquired the relevant hub genes. Centrosomal protein 55 (CEP55) and POLR1A were identified as hub genes associated with survival outcomes. Conclusion: The DEGs, hub genes, and enrichment analysis for GC with different stages were comprehensively investigated, which contribute to exploring the new biomarkers and therapeutic targets.
Collapse
Affiliation(s)
- Zhiyuan Yu
- School of Medicine, Nankai University, Tianjin, China
- Department of General Surgery, The First Medical Center, Chinese PLA General Hospital, Beijing, China
| | - Chen Liang
- First Department of Liver Disease / Beijing Municipal Key Laboratory of Liver Failure and Artificial Liver Treatment Research, Beijing You’an Hospital, Capital Medical University, Beijing, China
| | - Huaiyu Tu
- Department of General Surgery, The First Medical Center, Chinese PLA General Hospital, Beijing, China
| | - Shuzhong Qiu
- Department of General Surgery, The First Medical Center, Chinese PLA General Hospital, Beijing, China
| | - Xiaoyu Dong
- Department of General Surgery, The First Medical Center, Chinese PLA General Hospital, Beijing, China
| | - Yonghui Zhang
- Department of General Surgery, The First Medical Center, Chinese PLA General Hospital, Beijing, China
| | - Chao Ma
- Department of General Surgery, The First Medical Center, Chinese PLA General Hospital, Beijing, China
| | - Peiyu Li
- School of Medicine, Nankai University, Tianjin, China
- Department of General Surgery, The First Medical Center, Chinese PLA General Hospital, Beijing, China
- *Correspondence: Peiyu Li,
| |
Collapse
|
10
|
Li L, Gao J, Li J, Wang J. MiR-711 regulates gastric cancer progression by targeting CD44. Cancer Biomark 2022; 35:71-81. [PMID: 35786646 DOI: 10.3233/cbm-210213] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
Abstract
BACKGROUND MicroRNAs (miRNAs) have been reported to play an important role in tumor progression by regulating the expression of target genes. OBJECTIVE This study attempted to verify the role of miR-711 in gastric cancer (GC) progression by in vitro and in vivo assays. METHODS The expression of miR-711 in tumor tissues and cells was detected by real-time quantitative PCR (qRT-PCR). Expression of MiR-711 in NCI-N87 and SNU-1 cells was detected by FISH. We transfected GC cells with miR-711 mimics or inhibitors. The effects of miR-711 on the proliferation and metastasis of GC cells were detected by CCK-8, wound healing and transwell assays. Dual-luciferase reporter gene assay was used to verify the targeting relationship between miR-711 and CD44. Xenograft assays was used to verify the regulatory effect of miR-711 on tumor growth. RESULTS In GC tissues and cell lines, the expression of miR-711 was down-regulated when compare with adjacent tissues or normal epithelial cells. The results indicated that overexpressing of miR-711 could suppress the GC cell proliferation, migration, and invasion through targeting CD44. The knockdown of CD44 showed similar effects as miR-711 overexpression in GC cells. Moreover, we confirmed these effects in the in vivo assays. Furthermore, we found that miR-711 could play a role by influencing tumor cell stemness. CONCLUSION MiR-711 plays vital roles as a tumor-suppressor by targeting CD44 and may be a therapeutic target for GC treatment.
Collapse
Affiliation(s)
- Liang Li
- Department of General Surgery, The Second Affiliated Hospital of Xinjiang Medical University, Xinjiang, China
| | - Jie Gao
- Department of Gynecology, The Affiliated Tumor Hospital of Xinjiang Medical University, Xinjiang, China
| | - Jiangang Li
- Department of General Surgery, The Second Affiliated Hospital of Xinjiang Medical University, Xinjiang, China
| | - Jun Wang
- Department of General Surgery, The Second Affiliated Hospital of Xinjiang Medical University, Xinjiang, China
| |
Collapse
|
11
|
He Y, Peng L, Li J, Li Q, Chu Y, Lin Q, Rui R, Ju S. TPX2 deficiency leads to spindle abnormity and meiotic impairment in porcine oocytes. Theriogenology 2022; 187:164-172. [DOI: 10.1016/j.theriogenology.2022.04.031] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2021] [Revised: 04/28/2022] [Accepted: 04/30/2022] [Indexed: 10/18/2022]
|
12
|
Suppression of histone deacetylase 1 by JSL-1 attenuates the progression and metastasis of cholangiocarcinoma via the TPX2/Snail axis. Cell Death Dis 2022; 13:324. [PMID: 35395834 PMCID: PMC8993895 DOI: 10.1038/s41419-022-04571-9] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2021] [Revised: 12/19/2021] [Accepted: 01/19/2022] [Indexed: 01/06/2023]
Abstract
AbstractHistone deacetylases (HDACs) are entwined with the pathogenesis of various cancers and potentially serve as promising therapeutic targets. Herein, we intend to explore the potential role of HDAC1 inhibitor (JSL-1) in the tumorigenesis and metastasis of cholangiocarcinoma (CC) and to highlight the molecular basis of its function. As shown by bioinformatics analysis and immunohistochemical detection, high HDAC1 expression was witnessed in CC tissues relative to matched controls from patients with cholecystitis. The molecular network that HDAC1 silencing reduced the enrichment of HDAC1 and Snail on the TPX2 promoter was identified using immunoprecipitation and chromatin immunoprecipitation assays. Both short hairpin RNA (shRNA)-mediated knockdown of HDAC1 and JSL-1 treatment exhibited anti-proliferative, anti-migration and anti-invasion effects on CC cells through downregulation of TPX2. The in vivo xenograft model was developed in nude mice. Consistently, the anti-tumorigenic and anti-metastatic properties of shRNA against HDAC1 and HDAC1 inhibitor were validated in the in vivo settings. Taken together, our data supported the notion that HDAC1 inhibitor retards the initiation and development of CC via mediating the TPX2/Snail axis, highlighting the anti-tumor molecular network functioned in CC.
Collapse
|
13
|
Koike Y, Yin C, Sato Y, Nagano Y, Yamamoto A, Kitajima T, Shimura T, Kawamura M, Matsushita K, Okugawa Y, Amano K, Otake K, Okita Y, Ohi M, Inoue M, Uchida K, Hirayama M, Toiyama Y. TPX2 is a prognostic marker and promotes cell proliferation in neuroblastoma. Oncol Lett 2022; 23:136. [PMID: 35317024 PMCID: PMC8907931 DOI: 10.3892/ol.2022.13256] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2021] [Accepted: 02/07/2022] [Indexed: 11/05/2022] Open
Affiliation(s)
- Yuhki Koike
- Department of Gastrointestinal and Pediatric Surgery, Division of Reparative Medicine, Institute of Life Sciences, Mie University Graduate School of Medicine, Tsu, Mie 514‑8507, Japan
| | - Chengzeng Yin
- Department of Gastrointestinal and Pediatric Surgery, Division of Reparative Medicine, Institute of Life Sciences, Mie University Graduate School of Medicine, Tsu, Mie 514‑8507, Japan
| | - Yuki Sato
- Department of Gastrointestinal and Pediatric Surgery, Division of Reparative Medicine, Institute of Life Sciences, Mie University Graduate School of Medicine, Tsu, Mie 514‑8507, Japan
| | - Yuka Nagano
- Department of Gastrointestinal and Pediatric Surgery, Division of Reparative Medicine, Institute of Life Sciences, Mie University Graduate School of Medicine, Tsu, Mie 514‑8507, Japan
| | - Akira Yamamoto
- Department of Gastrointestinal and Pediatric Surgery, Division of Reparative Medicine, Institute of Life Sciences, Mie University Graduate School of Medicine, Tsu, Mie 514‑8507, Japan
| | - Takahito Kitajima
- Department of Gastrointestinal and Pediatric Surgery, Division of Reparative Medicine, Institute of Life Sciences, Mie University Graduate School of Medicine, Tsu, Mie 514‑8507, Japan
| | - Tadanobu Shimura
- Department of Gastrointestinal and Pediatric Surgery, Division of Reparative Medicine, Institute of Life Sciences, Mie University Graduate School of Medicine, Tsu, Mie 514‑8507, Japan
| | - Mikio Kawamura
- Department of Gastrointestinal and Pediatric Surgery, Division of Reparative Medicine, Institute of Life Sciences, Mie University Graduate School of Medicine, Tsu, Mie 514‑8507, Japan
| | - Kohei Matsushita
- Department of Gastrointestinal and Pediatric Surgery, Division of Reparative Medicine, Institute of Life Sciences, Mie University Graduate School of Medicine, Tsu, Mie 514‑8507, Japan
| | - Yoshinaga Okugawa
- Department of Gastrointestinal and Pediatric Surgery, Division of Reparative Medicine, Institute of Life Sciences, Mie University Graduate School of Medicine, Tsu, Mie 514‑8507, Japan
| | - Keishiro Amano
- Department of Pediatrics, Mie University Graduate School of Medicine, Tsu, Mie 514‑8507, Japan
| | - Kohei Otake
- Department of Surgery, Mie Prefectural General Medical Center, Yokkaichi, Mie 510‑0885, Japan
| | - Yoshiki Okita
- Department of Gastrointestinal and Pediatric Surgery, Division of Reparative Medicine, Institute of Life Sciences, Mie University Graduate School of Medicine, Tsu, Mie 514‑8507, Japan
| | - Masaki Ohi
- Department of Gastrointestinal and Pediatric Surgery, Division of Reparative Medicine, Institute of Life Sciences, Mie University Graduate School of Medicine, Tsu, Mie 514‑8507, Japan
| | - Mikihiro Inoue
- Department of Gastrointestinal and Pediatric Surgery, Division of Reparative Medicine, Institute of Life Sciences, Mie University Graduate School of Medicine, Tsu, Mie 514‑8507, Japan
| | - Keiichi Uchida
- Department of Gastrointestinal and Pediatric Surgery, Division of Reparative Medicine, Institute of Life Sciences, Mie University Graduate School of Medicine, Tsu, Mie 514‑8507, Japan
| | - Masahiro Hirayama
- Department of Pediatrics, Mie University Graduate School of Medicine, Tsu, Mie 514‑8507, Japan
| | - Yuji Toiyama
- Department of Gastrointestinal and Pediatric Surgery, Division of Reparative Medicine, Institute of Life Sciences, Mie University Graduate School of Medicine, Tsu, Mie 514‑8507, Japan
| |
Collapse
|
14
|
Kahl I, Mense J, Finke C, Boller AL, Lorber C, Győrffy B, Greve B, Götte M, Espinoza-Sánchez NA. The cell cycle-related genes RHAMM, AURKA, TPX2, PLK1, and PLK4 are associated with the poor prognosis of breast cancer patients. J Cell Biochem 2022; 123:581-600. [PMID: 35014077 DOI: 10.1002/jcb.30205] [Citation(s) in RCA: 26] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2021] [Revised: 12/13/2021] [Accepted: 12/15/2021] [Indexed: 01/02/2023]
Abstract
Breast cancer is the third most common type of cancer diagnosed. Cell cycle is a complex but highly organized and controlled process, in which normal cells sense mitogenic growth signals that instruct them to enter and progress through their cell cycle. This process culminates in cell division generating two daughter cells with identical amounts of genetic material. Uncontrolled proliferation is one of the hallmarks of cancer. In this study, we analyzed the expression of the cell cycle-related genes receptor for hyaluronan (HA)-mediated motility (RHAMM), AURKA, TPX2, PLK1, and PLK4 and correlated them with the prognosis in a collective of 3952 breast cancer patients. A high messenger RNA expression of all studied genes correlated with a poor prognosis. Stratifying the patients according to the expression of hormonal receptors, we found that in patients with estrogen and progesterone receptor-positive and human epithelial growth factor receptor 2-negative tumors, and Luminal A and Luminal B tumors, the expression of the five analyzed genes correlates with worse survival. qPCR analysis of a panel of breast cancer cell lines representative of major molecular subtypes indicated a predominant expression in the luminal subtype. In vitro experiments showed that radiation influences the expression of the five analyzed genes both in luminal and triple-negative model cell lines. Functional analysis of MDA-MB-231 cells showed that small interfering RNA knockdown of PLK4 and TPX2 and pharmacological inhibition of PLK1 had an impact on the cell cycle and colony formation. Looking for a potential upstream regulation by microRNAs, we observed a differential expression of RHAMM, AURKA, TPX2, PLK1, and PLK4 after transfecting the MDA-MB-231 cells with three different microRNAs. Survival analysis of miR-34c-5p, miR-375, and miR-142-3p showed a different impact on the prognosis of breast cancer patients. Our study suggests that RHAMM, AURKA, TPX2, PLK1, and PLK4 can be used as potential targets for treatment or as a prognostic value in breast cancer patients.
Collapse
Affiliation(s)
- Iris Kahl
- Department of Gynecology and Obstetrics, Münster University Hospital, Münster, Germany
| | - Julian Mense
- Department of Gynecology and Obstetrics, Münster University Hospital, Münster, Germany
| | - Christopher Finke
- Department of Gynecology and Obstetrics, Münster University Hospital, Münster, Germany
| | - Anna-Lena Boller
- Department of Gynecology and Obstetrics, Münster University Hospital, Münster, Germany
| | - Clara Lorber
- Department of Gynecology and Obstetrics, Münster University Hospital, Münster, Germany
| | - Balázs Győrffy
- Department of Bioinformatics, Semmelweis University, Budapest, Hungary.,Cancer Biomarker Research Group, Research Centre for Natural Sciences, Budapest, Hungary
| | - Burkhard Greve
- Department of Radiotherapy-Radiooncology, Münster University Hospital, Münster, Germany
| | - Martin Götte
- Department of Gynecology and Obstetrics, Münster University Hospital, Münster, Germany
| | - Nancy A Espinoza-Sánchez
- Department of Gynecology and Obstetrics, Münster University Hospital, Münster, Germany.,Department of Radiotherapy-Radiooncology, Münster University Hospital, Münster, Germany
| |
Collapse
|
15
|
Wang L, Hou S, Li J, Tian T, Hu R, Yu N. Circular RNA circ-LARP1B contributes to cutaneous squamous cell carcinoma progression by targeting microRNA-515-5p/TPX2 microtubule nucleation factor axis. Bioengineered 2022; 13:1209-1223. [PMID: 34982022 PMCID: PMC8805892 DOI: 10.1080/21655979.2021.2019172] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
Circular RNAs (circRNAs) have shown pivotal regulatory roles in tumorigenesis and progression. Our purpose was to analyze the role of circRNA La ribonucleoprotein 1B (circ-LARP1B; hsa_circ_0070934) in cutaneous squamous cell carcinoma (CSCC) progression and its associated mechanism. Cell viability, colony formation ability, migration, and invasion were analyzed by 3-(4, 5-dimethylthiazol-2-yl)-2, 5 diphenyltetrazolium bromide (MTT) assay, colony formation assay, wound healing assay, and transwell invasion assay. Flow cytometry was performed to analyze cell apoptosis and cell cycle progression. Cell glycolytic metabolism was analyzed using Glucose Uptake Colorimetric Assay kit, Lactate Assay Kit II, and ATP colorimetric Assay kit. Dual-luciferase reporter assay and RNA immunoprecipitation (RIP) assay were performed to verify the interaction between microRNA-515-5p (miR-515-5p) and circ-LARP1B or TPX2 microtubule nucleation factor (TPX2). Circ-LARP1B expression was up-regulated in CSCC tissues and cell lines. Circ-LARP1B knockdown suppressed cell viability, colony formation ability, migration, invasion, cell cycle progression, and glycolysis and triggered cell apoptosis in CSCC cells. miR-515-5p was a direct target of circ-LARP1B in CSCC cells, and circ-LARP1B silencing-mediated anti-tumor effects were largely counteracted by miR-515-5p knockdown. miR-515-5p directly interacted with the 3' untranslated region (3'UTR) of TPX2. TPX2 overexpression largely overturned miR-515-5p-mediated anti-tumor effects in CSCC cells. Circ-LARP1B could up-regulate TPX2 expression by sponging miR-515-5p in CSCC cells. Circ-LARP1B knockdown suppressed tumor growth in vivo. In conclusion, circ-LARP1B contributed to CSCC progression by targeting miR-515-5p/TPX2 axis. The circ-LARP1B/miR-515-5p/TPX2 axis might provide novel therapeutic targets for CSCC patients.
Collapse
Affiliation(s)
- Lipeng Wang
- Department of Dermatology, General Hospital of Ningxia Medical University, Yinchuan City, China
| | - Shaozhang Hou
- Department of Pathology, School of Basic Medicine, Ningxia Medical University, Yinchuan City, China.,Ningxia Innovation Team of the Foundation and Clinical Researches of Diabetes and Its Complications, Yinchuan City, China
| | - Jianning Li
- Department of Biochemistry and Molecular Biology, School of Basic Medicine, Ningxia Medical University, Yinchuan City, China
| | - Tian Tian
- Department of Dermatology, General Hospital of Ningxia Medical University, Yinchuan City, China
| | - Rongying Hu
- Department of Dermatology, General Hospital of Ningxia Medical University, Yinchuan City, China
| | - Nan Yu
- Department of Dermatology, General Hospital of Ningxia Medical University, Yinchuan City, China
| |
Collapse
|
16
|
Zhou X, Xue D, Qiu J. Identification of biomarkers related to glycolysis with weighted gene co-expression network analysis in oral squamous cell carcinoma. Head Neck 2021; 44:89-103. [PMID: 34713497 DOI: 10.1002/hed.26910] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2020] [Revised: 09/10/2021] [Accepted: 10/05/2021] [Indexed: 12/24/2022] Open
Abstract
BACKGROUND Oral squamous cell carcinoma (OSCC) is the most common tumor in the oral cavity and maxillofacial region. Increasing evidence suggests that aerobic glycolysis plays an important role in the occurrence, development, and prognosis of OSCC. Therefore, the identification of biomarkers related to glycolysis in OSCC represents considerable potential for improving its treatment. METHODS In the present study, a single-sample gene-set enrichment analysis (ssGSEA) algorithm with weighted gene co-expression network analysis (WGCNA) were used to quantify the degree of glycolysis and identify key modules with the greatest correlation with glycolysis. RESULTS Glycolytic scores significantly correlated with prognosis. In the key module 5 HUB genes were finally selected, which displayed a robust predictive effect. The expressions of key genes were associated with glycolysis. CONCLUSIONS The research comprehensively analyzed the glycolysis of OSCC and identified several biomarkers related to glycolysis. These biomarkers may represent potential therapeutic targets for future OSCC therapy.
Collapse
Affiliation(s)
- Xiongming Zhou
- Department of Oral and Maxillofacial Surgery, The First Affiliated Hospital of Nanchang University, Nanchang, Jiangxi, China
| | - Danfeng Xue
- Department of Oral and Maxillofacial Surgery, The First Affiliated Hospital of Nanchang University, Nanchang, Jiangxi, China
| | - Jiaxuan Qiu
- Department of Oral and Maxillofacial Surgery, The First Affiliated Hospital of Nanchang University, Nanchang, Jiangxi, China
| |
Collapse
|
17
|
Wu J, Wang X, Wang N, Ma L, Xie X, Zhang H, Kang H, Zhou Z. Identification of novel antioxidant gene signature to predict the prognosis of patients with gastric cancer. World J Surg Oncol 2021; 19:219. [PMID: 34284774 PMCID: PMC8293592 DOI: 10.1186/s12957-021-02328-w] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2021] [Accepted: 07/08/2021] [Indexed: 01/15/2023] Open
Abstract
Background Gastric cancer (GC) commonly relates to dismal prognosis and lacks efficient biomarkers. This study aimed to establish an antioxidant-related gene signature and a comprehensive nomogram to explore novel biomarkers and predict GC prognosis. Methods Clinical and expression data of GC patients were extracted from The Cancer Genome Atlas database. Univariate and multivariate Cox analyses were utilized to construct a score-based gene signature and survival analyses were conducted between high- and low-risk groups. Furthermore, we established a prognostic nomogram integrating clinical variables and antioxidant-related gene signature. Its predictive ability was validated by Harrell' concordance index and calibration curves and an independent internal cohort verified the consistency of the antioxidant gene signature-based nomogram. Results Four antioxidant-related genes (CHAC1, GGT5, GPX8, and PXDN) were significantly associated with overall survival of GC patients but only two genes, CHAC1 (HR = 0.803, P < 0.05) and GPX8 (HR = 1.358, P < 0.05), were confirmed as independent factors. A score-based signature was constructed and could act as an independent prognosis predictor (P < 0.05). Patients with lower scores showed significantly better prognosis (P < 0.05). Comprehensive nomogram combining the antioxidant-related gene signature and clinical parameters (age, gender, grade, and stage) was established and effectively predicted overall survival of GC patients [3-year survival AUC = 0.680, C index = 0.665 (95% CI 0.614–0.716)]. The independent internal validation cohort verified the reliability and good consistency of the model [3-year survival AUC = 0.703, C index = 0.706 (95% CI 0.612–0.800)]. Conclusions Innovative antioxidant-related gene signature and nomogram performed well in assessing GC prognoses. This study enlightened further investigation of antioxidant system and provided novel tools for GC patient management. Supplementary Information The online version contains supplementary material available at 10.1186/s12957-021-02328-w.
Collapse
Affiliation(s)
- Jianhua Wu
- Department of Oncology, The Second Affiliated Hospital of Xi'an Jiaotong University, Xi'an, China
| | - Xuan Wang
- Department of Surgical Oncology, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, China
| | - Nan Wang
- Department of Oncology, The Second Affiliated Hospital of Xi'an Jiaotong University, Xi'an, China
| | - Li Ma
- Department of Oncology, The Second Affiliated Hospital of Xi'an Jiaotong University, Xi'an, China
| | - Xin Xie
- Department of Surgical Oncology, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, China
| | - Hao Zhang
- Department of Surgical Oncology, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, China
| | - Huafeng Kang
- Department of Oncology, The Second Affiliated Hospital of Xi'an Jiaotong University, Xi'an, China.
| | - Zhangjian Zhou
- Department of Oncology, The Second Affiliated Hospital of Xi'an Jiaotong University, Xi'an, China.
| |
Collapse
|
18
|
Cen L, Liu R, Liu W, Li Q, Cui H. Competing Endogenous RNA Networks in Glioma. Front Genet 2021; 12:675498. [PMID: 33995499 PMCID: PMC8117106 DOI: 10.3389/fgene.2021.675498] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2021] [Accepted: 03/22/2021] [Indexed: 12/12/2022] Open
Abstract
Gliomas are the most common and malignant primary brain tumors. Various hallmarks of glioma, including sustained proliferation, migration, invasion, heterogeneity, radio- and chemo-resistance, contribute to the dismal prognosis of patients with high-grade glioma. Dysregulation of cancer driver genes is a leading cause for these glioma hallmarks. In recent years, a new mechanism of post-transcriptional gene regulation was proposed, i.e., "competing endogenous RNA (ceRNA)." Long non-coding RNAs, circular RNAs, and transcribed pseudogenes act as ceRNAs to regulate the expression of related genes by sponging the shared microRNAs. Moreover, coding RNA can also exert a regulatory role, independent of its protein coding function, through the ceRNA mechanism. In the latest glioma research, various studies have reported that dysregulation of certain ceRNA regulatory networks (ceRNETs) accounts for the abnormal expression of cancer driver genes and the establishment of glioma hallmarks. These achievements open up new avenues to better understand the hidden aspects of gliomas and provide new biomarkers and potential efficient targets for glioma treatment. In this review, we summarize the existing knowledge about the concept and logic of ceRNET and highlight the emerging roles of some recently found ceRNETs in glioma progression.
Collapse
Affiliation(s)
- Liang Cen
- State Key Laboratory of Silkworm Genome Biology, Southwest University, Chongqing, China
- Cancer Center, Medical Research Institute, Southwest University, Chongqing, China
| | - Ruochen Liu
- State Key Laboratory of Silkworm Genome Biology, Southwest University, Chongqing, China
- Cancer Center, Medical Research Institute, Southwest University, Chongqing, China
| | - Wei Liu
- State Key Laboratory of Silkworm Genome Biology, Southwest University, Chongqing, China
- Cancer Center, Medical Research Institute, Southwest University, Chongqing, China
| | - Qianqian Li
- Department of Psychology, The Second Affiliated Hospital of Chongqing Medical University, Chongqing, China
| | - Hongjuan Cui
- State Key Laboratory of Silkworm Genome Biology, Southwest University, Chongqing, China
- Cancer Center, Medical Research Institute, Southwest University, Chongqing, China
- Ministry of Education Key Laboratory of Child Development and Disorders, Department of Neurosurgery, National Clinical Research Center for Child Health and Disorders, Children’s Hospital of Chongqing Medical University, Chongqing, China
| |
Collapse
|
19
|
Cell division cycle proteinising prognostic biomarker of breast cancer. Biosci Rep 2021; 40:222644. [PMID: 32285914 PMCID: PMC7201563 DOI: 10.1042/bsr20191227] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2019] [Revised: 04/07/2020] [Accepted: 04/09/2020] [Indexed: 12/18/2022] Open
Abstract
Cell division cycle protein (CDC20) has been observed to be expressed higher in various kinds of human cancers and was associated with poor prognosis. However, studies on role of CDC20 in breast cancer are seldom reported till now, most of which are not systematic and conclusive. The present study was performed to analyze the expression pattern, potential function, and distinct prognostic effect of CDC20 in breast cancer using several online databases including Oncomine, bc-GenExMiner, PrognoScan, and UCSC Xena. To verify the results from databases, we compared the mRNA CDC20 expression in breast cancer tissues and adjacent normal tissues of patients by real-time PCR. We found that CDC20 was expressed higher in different types of breast cancer, comparing with normal tissues. Moreover, the patients with a more advanced stage of breast cancer tended to express higher level CDC20. CDC20 was expressed higher in breast cancer tissues than normal tissues from patients in our hospital, consistent with the results from databases. Estrogen receptor (ER) and progesterone receptor (PR) status were negatively correlated with CDC20 level. Conversely, Scarff–Bloom–Richardson (SBR) grade, Nottingham prognostic index (NPI), epidermal growth factor receptor-2 (HER-2) status, basal-like status, and triple-negative status were positively related to CDC20 expression in breast cancer patients with respect to normal individuals. Higher CDC20 expression correlated with worse survival. Finally, a positive correlation between CDC20 and Targeting protein for Xenopus kinesin-like protein 2 (TPX2) expression was revealed. CDC20 could be considered as a potential predictive indicator for prognosis of breast cancer with co-expressed TPX2 gene.
Collapse
|
20
|
Zhang B, Zhang M, Li Q, Yang Y, Shang Z, Luo J. TPX2 mediates prostate cancer epithelial-mesenchymal transition through CDK1 regulated phosphorylation of ERK/GSK3β/SNAIL pathway. Biochem Biophys Res Commun 2021; 546:1-6. [PMID: 33556637 DOI: 10.1016/j.bbrc.2021.01.106] [Citation(s) in RCA: 28] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2021] [Accepted: 01/28/2021] [Indexed: 02/07/2023]
Abstract
Prostate cancer with high Gleason grade is prone to metastasis, which is one of the factors that seriously threaten the survival of patients, and it is also a treatment difficulty. In this study, we first revealed the potential connection between TPX2 and prostate cancer metastasis. We found that TPX2 is highly expressed in high-grade prostate cancer and is significantly related to poor prognosis. Depletion of TPX2 can significantly inhibit cell activity and migration, and in vivo experiments show that knockdown of TPX2 can significantly inhibit tumor growth. In terms of mechanism, we found that knocking down TPX2 can inhibit the expression of CDK1, repress the phosphorylation of ERK/GSK3β/SNAIL signaling pathway, and thereby inhibit tumor epithelial-mesenchymal transition. Subsequently, we found that after rescuing TPX2, all related proteins and phenotype changes were restored, and this effect can be inhibited by CDK1 inhibitor, RO-3306. Our findings suggest the potential of TPX2 as an important target in anti-tumor metastasis therapy, which is conducive to precision medicine for prostate cancer.
Collapse
Affiliation(s)
- Boya Zhang
- Tianjin Institute of Urology, the Second Hospital of Tianjin Medical University, Tianjin, 300211, China
| | - Mingpeng Zhang
- Tianjin Institute of Urology, the Second Hospital of Tianjin Medical University, Tianjin, 300211, China
| | - Qi Li
- Tianjin Institute of Urology, the Second Hospital of Tianjin Medical University, Tianjin, 300211, China
| | - Yanjie Yang
- Tianjin Institute of Urology, the Second Hospital of Tianjin Medical University, Tianjin, 300211, China
| | - Zhiqun Shang
- Tianjin Institute of Urology, the Second Hospital of Tianjin Medical University, Tianjin, 300211, China.
| | - Jun Luo
- Tianjin Institute of Urology, the Second Hospital of Tianjin Medical University, Tianjin, 300211, China.
| |
Collapse
|
21
|
Weng Y, Liang W, Ji Y, Li Z, Jia R, Liang Y, Ning P, Xu Y. Key Genes and Prognostic Analysis in HER2+ Breast Cancer. Technol Cancer Res Treat 2021; 20:1533033820983298. [PMID: 33499770 PMCID: PMC7844453 DOI: 10.1177/1533033820983298] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023] Open
Abstract
Human epidermal growth factor 2 (HER2)+ breast cancer is considered the most dangerous type of breast cancers. Herein, we used bioinformatics methods to identify potential key genes in HER2+ breast cancer to enable its diagnosis, treatment, and prognosis prediction. Datasets of HER2+ breast cancer and normal tissue samples retrieved from Gene Expression Omnibus and The Cancer Genome Atlas databases were subjected to analysis for differentially expressed genes using R software. The identified differentially expressed genes were subjected to gene ontology and Kyoto Encyclopedia of Genes and Genomes pathway enrichment analyses followed by construction of protein-protein interaction networks using the STRING database to identify key genes. The genes were further validated via survival and differential gene expression analyses. We identified 97 upregulated and 106 downregulated genes that were primarily associated with processes such as mitosis, protein kinase activity, cell cycle, and the p53 signaling pathway. Visualization of the protein-protein interaction network identified 10 key genes (CCNA2, CDK1, CDC20, CCNB1, DLGAP5, AURKA, BUB1B, RRM2, TPX2, and MAD2L1), all of which were upregulated. Survival analysis using PROGgeneV2 showed that CDC20, CCNA2, DLGAP5, RRM2, and TPX2 are prognosis-related key genes in HER2+ breast cancer. A nomogram showed that high expression of RRM2, DLGAP5, and TPX2 was positively associated with the risk of death. TPX2, which has not previously been reported in HER2+ breast cancer, was associated with breast cancer development, progression, and prognosis and is therefore a potential key gene. It is hoped that this study can provide a new method for the diagnosis and treatment of HER2 + breast cancer.
Collapse
Affiliation(s)
- Yujie Weng
- College of Computer and Information, Inner Mongolia Medical University, Hohhot, Inner Mongolia Autonomous Region, China
| | - Wei Liang
- College of Computer and Information, Inner Mongolia Medical University, Hohhot, Inner Mongolia Autonomous Region, China
| | - Yucheng Ji
- College of Computer and Information, Inner Mongolia Medical University, Hohhot, Inner Mongolia Autonomous Region, China
| | - Zhongxian Li
- College of Computer and Information, Inner Mongolia Medical University, Hohhot, Inner Mongolia Autonomous Region, China
| | - Rong Jia
- College of Computer and Information, Inner Mongolia Medical University, Hohhot, Inner Mongolia Autonomous Region, China
| | - Ying Liang
- College of Computer and Information, Inner Mongolia Medical University, Hohhot, Inner Mongolia Autonomous Region, China
| | - Pengfei Ning
- College of Computer and Information, Inner Mongolia Medical University, Hohhot, Inner Mongolia Autonomous Region, China
| | - Yingqi Xu
- College of Bioinformatics Science and Technology, Harbin Medical University, Harbin, Heilongjiang Province, China
| |
Collapse
|
22
|
Zhu H, Liu J, Feng J, Zhang Q, Bian T, Li X, Sun H, Zhang J, Liu Y. Overexpression of TPX2 predicts poor clinical outcome and is associated with immune infiltration in hepatic cell cancer. Medicine (Baltimore) 2020; 99:e23554. [PMID: 33285774 PMCID: PMC7717782 DOI: 10.1097/md.0000000000023554] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/18/2023] Open
Abstract
Targeting protein for Xenopus kinesin-like protein 2 (TPX2) has been identified as an oncogene in multiple cancers. However, the associations among TPX2 expression, prognosis, and tumor immunity in hepatic cell cancer (HCC) have not been explored. We analyzed TPX2 expression by multiple gene expression databases, including Oncomine, TIMER, and UALCAN. The prognosis effect of TPX2 was analyzed by Kaplan--Meier plotter. The coexpressed genes with TPX2 were analyzed using Linked Omics. The association among TPX2 and immune infiltrates and immune checkpoints was determined by TIMER. It was found that TPX2 expression was notably upregulated in multiple HCC tissues. Overexpression of TPX2 has associations with race, age, weight, clinical stage and tumor grade, as well as poor prognosis in overall survival (OS), progression-free survival (PFS), disease-free survival (DFS), and disease-specific survival (DSS). In addition, TPX2 expression has a positive association with the infiltration of immune cells and the expression of immune checkpoint molecules. Coexpressed genes and functional network analysis suggested several potential mechanisms of TPX2 affecting HCC progression. The findings reveal that TPX2 has associations with prognosis and infiltration of immune cells in HCC patients, which has laid a basis for in-depth study of TPX2 role in HCC.
Collapse
Affiliation(s)
- Hongjun Zhu
- Departments of Pathology, Affiliated Hospital of Nantong University
- Department of Oncology, The Third People's Hospital of Nantong
| | - Jian Liu
- Departments of Chemotherapy, Affiliated Hospital of Nantong University, Nantong, Jiangsu 226001, China
| | - Jia Feng
- Departments of Pathology, Affiliated Hospital of Nantong University
| | - Qing Zhang
- Departments of Pathology, Affiliated Hospital of Nantong University
| | - Tingting Bian
- Departments of Pathology, Affiliated Hospital of Nantong University
| | - Xiaoli Li
- Departments of Pathology, Affiliated Hospital of Nantong University
| | - Hui Sun
- Departments of Pathology, Affiliated Hospital of Nantong University
| | - Jianguo Zhang
- Departments of Pathology, Affiliated Hospital of Nantong University
| | - Yifei Liu
- Departments of Pathology, Affiliated Hospital of Nantong University
| |
Collapse
|
23
|
Chen X, Zhang D, Jiang F, Shen Y, Li X, Hu X, Wei P, Shen X. Prognostic Prediction Using a Stemness Index-Related Signature in a Cohort of Gastric Cancer. Front Mol Biosci 2020; 7:570702. [PMID: 33134315 PMCID: PMC7504590 DOI: 10.3389/fmolb.2020.570702] [Citation(s) in RCA: 34] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2020] [Accepted: 08/14/2020] [Indexed: 12/24/2022] Open
Abstract
Background With characteristic self-renewal and multipotent differentiation, cancer stem cells (CSCs) have a crucial influence on the metastasis, relapse and drug resistance of gastric cancer (GC). However, the genes that participates in the stemness of GC stem cells have not been identified. Methods The mRNA expression-based stemness index (mRNAsi) was analyzed with differential expressions in GC. The weighted gene co-expression network analysis (WGCNA) was utilized to build a co-expression network targeting differentially expressed genes (DEG) and discover mRNAsi-related modules and genes. We assessed the association between the key genes at both the transcription and protein level. Gene Expression Omnibus (GEO) database was used to validate the expression levels of the key genes. The risk model was established according to the least absolute shrinkage and selection operator (LASSO) Cox regression analysis. Furthermore, we determined the prognostic value of the model by employing Kaplan-Meier (KM) plus multivariate Cox analysis. Results GC tissues exhibited a substantially higher mRNAsi relative to the healthy non-tumor tissues. Based on WGCNA, 17 key genes (ARHGAP11A, BUB1, BUB1B, C1orf112, CENPF, KIF14, KIF15, KIF18B, KIF4A, NCAPH, PLK4, RACGAP1, RAD54L, SGO2, TPX2, TTK, and XRCC2) were identified. These key genes were clearly overexpressed in GC and validated in the GEO database. The protein-protein interaction (PPI) network as assessed by STRING indicated that the key genes were tightly connected. After LASSO analysis, a nine-gene risk model (BUB1B, NCAPH, KIF15, RAD54L, KIF18B, KIF4A, TTK, SGO2, C1orf112) was constructed. The overall survival in the high-risk group was relatively poor. The area under curve (AUC) of risk score was higher compared to that of clinicopathological characteristics. According to the multivariate Cox analysis, the nine-gene risk model was a predictor of disease outcomes in GC patients (HR, 7.606; 95% CI, 3.037-19.051; P < 0.001). We constructed a prognostic nomogram with well-fitted calibration curve based on risk score and clinical data. Conclusion The 17 mRNAsi-related key genes identified in this study could be potential treatment targets in GC treatment, considering that they can inhibit the stemness properties. The nine-gene risk model can be employed to predict the disease outcomes of the patients.
Collapse
Affiliation(s)
- Xiaowei Chen
- Key Laboratory of Environmental Medicine Engineering, Ministry of Education, School of Public Health, Southeast University, Nanjing, China.,Department of Epidemiology and Health Statistics, School of Public Health, Southeast University, Nanjing, China
| | - Dawei Zhang
- Nanjing Municipal Center for Disease Control and Prevention, Nanjing, China
| | - Fei Jiang
- Key Laboratory of Environmental Medicine Engineering, Ministry of Education, School of Public Health, Southeast University, Nanjing, China.,Department of Epidemiology and Health Statistics, School of Public Health, Southeast University, Nanjing, China
| | - Yan Shen
- Key Laboratory of Environmental Medicine Engineering, Ministry of Education, School of Public Health, Southeast University, Nanjing, China.,Department of Epidemiology and Health Statistics, School of Public Health, Southeast University, Nanjing, China
| | - Xin Li
- Key Laboratory of Environmental Medicine Engineering, Ministry of Education, School of Public Health, Southeast University, Nanjing, China
| | - Xueju Hu
- Key Laboratory of Environmental Medicine Engineering, Ministry of Education, School of Public Health, Southeast University, Nanjing, China
| | - Pingmin Wei
- Key Laboratory of Environmental Medicine Engineering, Ministry of Education, School of Public Health, Southeast University, Nanjing, China.,Department of Epidemiology and Health Statistics, School of Public Health, Southeast University, Nanjing, China
| | - Xiaobing Shen
- Key Laboratory of Environmental Medicine Engineering, Ministry of Education, School of Public Health, Southeast University, Nanjing, China.,Department of Epidemiology and Health Statistics, School of Public Health, Southeast University, Nanjing, China
| |
Collapse
|
24
|
Long N, Chu L, Jia J, Peng S, Gao Y, Yang H, Yang Y, Zhao Y, Liu J. CircPOSTN/miR-361-5p/TPX2 axis regulates cell growth, apoptosis and aerobic glycolysis in glioma cells. Cancer Cell Int 2020; 20:374. [PMID: 32774168 PMCID: PMC7409503 DOI: 10.1186/s12935-020-01454-x] [Citation(s) in RCA: 26] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2020] [Accepted: 07/25/2020] [Indexed: 01/17/2023] Open
Abstract
Background Glioma is the most primary central nervous system tumor in adults. The 5 year survival rate for glioma patients remains poor, although treatment strategies had improved in the past few decades. The cumulative studies have shown that circular RNA (circRNA) is associated with glioma process, so the purpose of this study is to clarify the function of circPOSTN in glioma. Methods The expression levels of circPOSTN, miR-361-5p, and targeting protein for Xenopus kinesin-like protein 2 (TPX2) were assessed with real-time quantitative polymerase chain reaction (RT-qPCR). The 3-(4, 5-dimethylthiazol-2-yl)-2, 5-diphenyl-2H-tetrazol-3-ium bromide (MTT) and flow cytometry assays were executed to examine proliferation and apoptosis of glioma cells, respectively. Western blot was applied to assess protein expression. The glucose metabolism of glioma cells was analyzed by testing the glucose consumption, lactate production, ATP level, reactive oxygen species (ROS) accumulation and performing Seahorse XF assay. The interaction relationship between miR-361-5p and circPOSTN or TPX2 was analyzed by bioinformatics database and dual-luciferase reporter assay. The influences of circPOSTN silencing in vivo were observed by a xenograft experiment. Results CircPOSTN was overexpressed in glioma tissues and cells. Absence of circPOSTN in glioma cells promoted apoptosis while impeded proliferation and aerobic glycolysis, which were mitigated by silencing miR-361-5p. What’s more, loss-of-functional experiment suggested that knockdown of TPX2 repressed proliferation and aerobic glycolysis, while induced apoptosis in glioma cells. In addition, circPOSTN targetedly regulated TPX2 expression in glioma cells via sponging miR-361-5p. In vivo study revealed that deficiency of circPOSTN restrained tumor growth. Conclusion Mechanistically, circPOSTN regulated cell growth, apoptosis, and aerobic glycolysis in glioma through miR-361-5p/TPX2 axis.
Collapse
Affiliation(s)
- Niya Long
- Department of Pathology, Guizhou Medical University, No. 9 Beijing Road, Guiyang, 550004 Guizhou China.,Key Laboratory of Endemic and Ethnic Diseases, (Guizhou Medical University) Ministry of Education, No. 9 Beijing Road, Guiyang, 550004 Guizhou China.,Key Laboratory of Molecular Biology, Guizhou Medical University, Guiyang, Guizhou 550004 China.,Department of Neurosurgery, Affiliated Hospital of Guizhou Medical University, Guiyang, Guizhou China
| | - Liangzhao Chu
- Department of Pathology, Guizhou Medical University, No. 9 Beijing Road, Guiyang, 550004 Guizhou China.,Department of Neurosurgery, Affiliated Hospital of Guizhou Medical University, Guiyang, Guizhou China
| | - Jun Jia
- Department of Pathology, Guizhou Medical University, No. 9 Beijing Road, Guiyang, 550004 Guizhou China.,Department of Neurosurgery, Affiliated Hospital of Guizhou Medical University, Guiyang, Guizhou China
| | - Shuo Peng
- Department of Neurosurgery, Affiliated Hospital of Guizhou Medical University, Guiyang, Guizhou China
| | - Yuan Gao
- Department of Neurosurgery, Affiliated Hospital of Guizhou Medical University, Guiyang, Guizhou China
| | - Hua Yang
- Department of Pathology, Guizhou Medical University, No. 9 Beijing Road, Guiyang, 550004 Guizhou China.,Department of Neurosurgery, Affiliated Hospital of Guizhou Medical University, Guiyang, Guizhou China
| | - Yaoming Yang
- Department of Biology, Guizhou Medical University, No. 9 Beijing Road, Guiyang, 550004 Guizhou China
| | - Yan Zhao
- Key Laboratory of Endemic and Ethnic Diseases, (Guizhou Medical University) Ministry of Education, No. 9 Beijing Road, Guiyang, 550004 Guizhou China.,Key Laboratory of Molecular Biology, Guizhou Medical University, Guiyang, Guizhou 550004 China
| | - Jian Liu
- Department of Pathology, Guizhou Medical University, No. 9 Beijing Road, Guiyang, 550004 Guizhou China.,Key Laboratory of Endemic and Ethnic Diseases, (Guizhou Medical University) Ministry of Education, No. 9 Beijing Road, Guiyang, 550004 Guizhou China.,Key Laboratory of Molecular Biology, Guizhou Medical University, Guiyang, Guizhou 550004 China.,Department of Neurosurgery, Affiliated Hospital of Guizhou Medical University, Guiyang, Guizhou China
| |
Collapse
|
25
|
Huang J, Wen F, Huang W, Bai Y, Lu X, Shu P. Identification of hub genes and discovery of promising compounds in gastric cancer based on bioinformatics analysis. Biomark Med 2020; 14:1069-1084. [PMID: 32969243 DOI: 10.2217/bmm-2019-0608] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
Aim: To explore the mechanism of gastric carcinogenesis by mining potential hub genes and to search for promising small-molecular compounds for gastric cancer (GC). Materials & methods: The microarray datasets were downloaded from Gene Expression Omnibus database and the genes and compounds were analyzed by bioinformatics-related tools and software. Results: Six hub genes (MKI67, PLK1, COL1A1, TPX2, COL1A2 and SPP1) related to the prognosis of GC were confirmed to be upregulated in GC and their high expression was correlated with poor overall survival rate in GC patients. In addition, eight candidate compounds with potential anti-GC activity were identified, among which resveratrol was closely correlated with six hub genes. Conclusion: Six hub genes identified in the present study may contribute to a more comprehensive understanding of the mechanism of gastric carcinogenesis and the predicted potential of resveratrol may provide valuable clues for the future development of targeted anti-GC inhibitors.
Collapse
Affiliation(s)
- Jiani Huang
- Nanjing University of Chinese Medicine, Nanjing210029, Jiangsu Province, China
- College of Traditional ChineseMedicine, College of Integrated Traditional Chinese and Western Medicine, Nanjing University of Chinese Medicine, Nanjing 210023, China
| | - Fang Wen
- Nanjing University of Chinese Medicine, Nanjing210029, Jiangsu Province, China
- Department of Oncology, Affiliated Hospital ofNanjing University of Chinese Medicine, Nanjing 210029, Jiangsu Province, China
- Department of Oncology, Jiangsu Province Hospitalof Chinese Medicine, Nanjing 210029, Jiangsu Province, China
| | - Wenjie Huang
- Nanjing University of Chinese Medicine, Nanjing210029, Jiangsu Province, China
- Department of Oncology, Affiliated Hospital ofNanjing University of Chinese Medicine, Nanjing 210029, Jiangsu Province, China
- Department of Oncology, Jiangsu Province Hospitalof Chinese Medicine, Nanjing 210029, Jiangsu Province, China
| | - Yingfeng Bai
- Nanjing University of Chinese Medicine, Nanjing210029, Jiangsu Province, China
- College of Traditional ChineseMedicine, College of Integrated Traditional Chinese and Western Medicine, Nanjing University of Chinese Medicine, Nanjing 210023, China
| | - Xiaona Lu
- Nanjing University of Chinese Medicine, Nanjing210029, Jiangsu Province, China
- Department of Oncology, Affiliated Hospital ofNanjing University of Chinese Medicine, Nanjing 210029, Jiangsu Province, China
- Department of Oncology, Jiangsu Province Hospitalof Chinese Medicine, Nanjing 210029, Jiangsu Province, China
| | - Peng Shu
- Nanjing University of Chinese Medicine, Nanjing210029, Jiangsu Province, China
- Department of Oncology, Affiliated Hospital ofNanjing University of Chinese Medicine, Nanjing 210029, Jiangsu Province, China
- Department of Oncology, Jiangsu Province Hospitalof Chinese Medicine, Nanjing 210029, Jiangsu Province, China
| |
Collapse
|
26
|
Song L, Zhang S, Yu S, Ma F, Wang B, Zhang C, Sun J, Mao X, Wei L. Cellular heterogeneity landscape in laryngeal squamous cell carcinoma. Int J Cancer 2020; 147:2879-2890. [PMID: 32638385 DOI: 10.1002/ijc.33192] [Citation(s) in RCA: 41] [Impact Index Per Article: 8.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2020] [Revised: 06/24/2020] [Accepted: 06/29/2020] [Indexed: 12/13/2022]
Abstract
Laryngeal squamous cell carcinoma (LSCC) is a highly malignant tumor originated from respiratory system. Although there have been many improvements in therapy until now, reducing the high mortality remains difficult. Understanding the cellular heterogeneity of LSCC could contribute to improve this problem. Single-cell RNA sequencing was applied to dissect the cell composition and molecular characteristics of LSCC tissues. Immunohistochemistry staining of the LSCC tissues was performed to identify the spatial location of tumor cells. Survival analysis of marker genes was executed in The Cancer Genome Atlas to verify the correlation between each cell clusters and patients' prognosis. The LSCC tissue cells were finely grouped into various clusters, including tumor cells, immune cells, epithelial cells, fibroblasts and endothelial cells. Notably, in tumor cells, keratinocyte-like cells were in the core of tumor while malignant proliferating cells were located at the tumor edge. The malignant proliferating cells were correlated with poor prognosis. In summary, this is the first study to delineate a landscape of the LSCC intratumor heterogeneity. Our work might help researchers have a better understanding for tumor progression.
Collapse
Affiliation(s)
- Lianhao Song
- Department of Microbiology, Harbin Medical University, Harbin, China.,Wu Lien-Teh Institute, Harbin Medical University, Harbin, China
| | - Siwei Zhang
- Department of Microbiology, Harbin Medical University, Harbin, China.,Wu Lien-Teh Institute, Harbin Medical University, Harbin, China
| | - Siyang Yu
- Department of Microbiology, Harbin Medical University, Harbin, China.,Wu Lien-Teh Institute, Harbin Medical University, Harbin, China
| | - Fen Ma
- Department of Microbiology, Harbin Medical University, Harbin, China.,Wu Lien-Teh Institute, Harbin Medical University, Harbin, China
| | - Bozhi Wang
- Department of Microbiology, Harbin Medical University, Harbin, China.,Wu Lien-Teh Institute, Harbin Medical University, Harbin, China
| | - Congcong Zhang
- Department of Microbiology, Harbin Medical University, Harbin, China.,Wu Lien-Teh Institute, Harbin Medical University, Harbin, China
| | - Ji Sun
- Department of Otolaryngology, Head and Neck Surgery, Harbin Medical University Cancer Hospital, Harbin, China
| | - Xionghui Mao
- Department of Otolaryngology, Head and Neck Surgery, Harbin Medical University Cancer Hospital, Harbin, China
| | - Lanlan Wei
- Department of Microbiology, Harbin Medical University, Harbin, China.,Wu Lien-Teh Institute, Harbin Medical University, Harbin, China
| |
Collapse
|
27
|
Guo L, Zhang Y, Yin Z, Ji Y, Yang G, Qian B, Li S, Wang J, Liang T, Li C, Li X. Screening and identification of genes associated with cell proliferation in cholangiocarcinoma. Aging (Albany NY) 2020; 12:2626-2646. [PMID: 32040444 PMCID: PMC7041743 DOI: 10.18632/aging.102766] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2019] [Accepted: 01/12/2020] [Indexed: 11/25/2022]
Abstract
Cholangiocarcinoma (CCA), an aggressive tumor with poor prognosis, is a malignant cancer with increasing incidence and mortality rates. It is important to survey crucial genes in CCA to find and design potential drug targets, especially for those genes associated with cell proliferation that is a key biological process in tumorgenesis. Herein, we surveyed genes associated with cell proliferation via a comprehensive pan-cancer analysis. Candidate genes were further analyzed using multiple approaches, including cross-analysis from diverse molecular levels, examination of potential function and interactions, and additional experimental validation. We primarily screened 15 potential genes based on 11 validated genes, and these 26 genes were further examined to delineate their biological functions and potential roles in cancer treatment. Several of them were involved synthetically lethal genetic interactions, especially for RECQL4, TOP2A, MKI67 and ASPM, indicating their potential roles in drug design and cancer treatment. Further experimental validation indicated that some genes were significantly upregulated in several cancer cell lines, implying their important roles in tumorigenesis. Our study identifies some genes associated with cell proliferation, which may be potential future targets in molecular targeted therapy.
Collapse
Affiliation(s)
- Li Guo
- Department of Bioinformatics, Smart Health Big Data Analysis and Location Services Engineering Lab of Jiangsu Province, School of Geographic and Biologic Information, Nanjing University of Posts and Telecommunications, Nanjing 210023, China
| | - Yaodong Zhang
- Hepatobiliary Center, The First Affiliated Hospital of Nanjing Medical University, Nanjing 210029, China
| | - Zibo Yin
- Department of Bioinformatics, Smart Health Big Data Analysis and Location Services Engineering Lab of Jiangsu Province, School of Geographic and Biologic Information, Nanjing University of Posts and Telecommunications, Nanjing 210023, China
| | - Yaya Ji
- Jiangsu Key Laboratory for Molecular and Medical Biotechnology, School of Life Science, Nanjing Normal University, Nanjing 210023, China
| | - Guowei Yang
- Department of Bioinformatics, Smart Health Big Data Analysis and Location Services Engineering Lab of Jiangsu Province, School of Geographic and Biologic Information, Nanjing University of Posts and Telecommunications, Nanjing 210023, China
| | - Bowen Qian
- Department of Bioinformatics, Smart Health Big Data Analysis and Location Services Engineering Lab of Jiangsu Province, School of Geographic and Biologic Information, Nanjing University of Posts and Telecommunications, Nanjing 210023, China
| | - Sunjing Li
- Department of Bioinformatics, Smart Health Big Data Analysis and Location Services Engineering Lab of Jiangsu Province, School of Geographic and Biologic Information, Nanjing University of Posts and Telecommunications, Nanjing 210023, China
| | - Jun Wang
- Department of Bioinformatics, Smart Health Big Data Analysis and Location Services Engineering Lab of Jiangsu Province, School of Geographic and Biologic Information, Nanjing University of Posts and Telecommunications, Nanjing 210023, China
| | - Tingming Liang
- Jiangsu Key Laboratory for Molecular and Medical Biotechnology, School of Life Science, Nanjing Normal University, Nanjing 210023, China
| | - Changxian Li
- Hepatobiliary Center, The First Affiliated Hospital of Nanjing Medical University, Nanjing 210029, China
| | - Xiangcheng Li
- Hepatobiliary Center, The First Affiliated Hospital of Nanjing Medical University, Nanjing 210029, China
| |
Collapse
|
28
|
Xiong X, Schober M, Tassone E, Khodadadi-Jamayran A, Sastre-Perona A, Zhou H, Tsirigos A, Shen S, Chang M, Melamed J, Ossowski L, Wilson EL. KLF4, A Gene Regulating Prostate Stem Cell Homeostasis, Is a Barrier to Malignant Progression and Predictor of Good Prognosis in Prostate Cancer. Cell Rep 2019; 25:3006-3020.e7. [PMID: 30540935 PMCID: PMC6405286 DOI: 10.1016/j.celrep.2018.11.065] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2017] [Revised: 11/07/2018] [Accepted: 11/15/2018] [Indexed: 12/18/2022] Open
Abstract
There is a considerable need to identify those individuals with prostate cancer who have indolent disease. We propose that
genes that control adult stem cell homeostasis in organs with slow turnover, such as the prostate, control cancer fate. One such
gene, KLF4, overexpressed in murine prostate stem cells, regulates their homeostasis, blocks malignant transformation, and
controls the self-renewal of tumor-initiating cells. KLF4 loss induces the molecular features of aggressive cancer and converts
PIN lesions to invasive sarcomatoid carcinomas; its re-expression in vivo reverses this process. Bioinformatic
analysis links these changes to human cancer. KLF4 and its downstream targets make up a gene signature that identifies indolent
tumors and predicts recurrence-free survival. This approach may improve prognosis and identify therapeutic targets for advanced
cancer. Available criteria for segregating prostate cancer patients into those requiring therapeutic intervention and those who can
be followed are inadequate. Xiong et al. show that KLF4 and its downstream targets make up a gene signature that identifies
indolent tumors. This approach may improve prognosis and identify therapeutic targets for advanced cancer.
Collapse
Affiliation(s)
- Xiaozhong Xiong
- Department of Cell Biology, NYU School of Medicine, New York, NY 10016, USA.
| | - Markus Schober
- Department of Cell Biology, NYU School of Medicine, New York, NY 10016, USA; Department of Dermatology, NYU School of Medicine, New York, NY 10016, USA
| | - Evelyne Tassone
- Department of Cell Biology, NYU School of Medicine, New York, NY 10016, USA
| | - Alireza Khodadadi-Jamayran
- Department of Pathology, NYU School of Medicine, New York, NY 10016, USA; Applied Bioinformatics Laboratories, NYU School of Medicine, New York, NY 10016, USA
| | - Ana Sastre-Perona
- Department of Dermatology, NYU School of Medicine, New York, NY 10016, USA
| | - Hua Zhou
- Department of Pathology, NYU School of Medicine, New York, NY 10016, USA; Applied Bioinformatics Laboratories, NYU School of Medicine, New York, NY 10016, USA
| | - Aristotelis Tsirigos
- Department of Pathology, NYU School of Medicine, New York, NY 10016, USA; Applied Bioinformatics Laboratories, NYU School of Medicine, New York, NY 10016, USA
| | - Steven Shen
- Institute for Health Informatics, University of Minnesota, Minneapolis, MN 55455, USA
| | - Miao Chang
- Department of Cell Biology, NYU School of Medicine, New York, NY 10016, USA
| | - Jonathan Melamed
- Department of Pathology, NYU School of Medicine, New York, NY 10016, USA
| | - Liliana Ossowski
- Department of Medicine, Mt. Sinai School of Medicine, New York, NY 10029, USA
| | - Elaine L Wilson
- Department of Cell Biology, NYU School of Medicine, New York, NY 10016, USA; Department of Urology, NYU School of Medicine, New York, NY 10016, USA.
| |
Collapse
|
29
|
Sun C, Li H, Mills RE, Guan Y. Prognostic model for multiple myeloma progression integrating gene expression and clinical features. Gigascience 2019; 8:giz153. [PMID: 31886876 PMCID: PMC6936209 DOI: 10.1093/gigascience/giz153] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2019] [Revised: 12/05/2019] [Accepted: 12/06/2019] [Indexed: 01/18/2023] Open
Abstract
BACKGROUND Multiple myeloma (MM) is a hematological cancer caused by abnormal accumulation of monoclonal plasma cells in bone marrow. With the increase in treatment options, risk-adapted therapy is becoming more and more important. Survival analysis is commonly applied to study progression or other events of interest and stratify the risk of patients. RESULTS In this study, we present the current state-of-the-art model for MM prognosis and the molecular biomarker set for stratification: the winning algorithm in the 2017 Multiple Myeloma DREAM Challenge, Sub-Challenge 3. Specifically, we built a non-parametric complete hazard ranking model to map the right-censored data into a linear space, where commonplace machine learning techniques, such as Gaussian process regression and random forests, can play their roles. Our model integrated both the gene expression profile and clinical features to predict the progression of MM. Compared with conventional models, such as Cox model and random survival forests, our model achieved higher accuracy in 3 within-cohort predictions. In addition, it showed robust predictive power in cross-cohort validations. Key molecular signatures related to MM progression were identified from our model, which may function as the core determinants of MM progression and provide important guidance for future research and clinical practice. Functional enrichment analysis and mammalian gene-gene interaction network revealed crucial biological processes and pathways involved in MM progression. The model is dockerized and publicly available at https://www.synapse.org/#!Synapse:syn11459638. Both data and reproducible code are included in the docker. CONCLUSIONS We present the current state-of-the-art prognostic model for MM integrating gene expression and clinical features validated in an independent test set.
Collapse
Affiliation(s)
- Chen Sun
- Department of Computational Medicine and Bioinformatics, University of Michigan, 100 Washtenaw Avenue, Ann Arbor, MI 48109, USA
| | - Hongyang Li
- Department of Computational Medicine and Bioinformatics, University of Michigan, 100 Washtenaw Avenue, Ann Arbor, MI 48109, USA
| | - Ryan E Mills
- Department of Computational Medicine and Bioinformatics, University of Michigan, 100 Washtenaw Avenue, Ann Arbor, MI 48109, USA
- Department of Human Genetics, University of Michigan, 1241 East Catherine Street, Ann Arbor, MI 48109, USA
| | - Yuanfang Guan
- Department of Computational Medicine and Bioinformatics, University of Michigan, 100 Washtenaw Avenue, Ann Arbor, MI 48109, USA
- Department of Internal Medicine, Nephrology Division, University of Michigan, 1150 West Medical Center Drive, Ann Arbor, MI 48109, USA
| |
Collapse
|
30
|
Fu Y, Zhou QZ, Zhang XL, Wang ZZ, Wang P. Identification of Hub Genes Using Co-Expression Network Analysis in Breast Cancer as a Tool to Predict Different Stages. Med Sci Monit 2019; 25:8873-8890. [PMID: 31758680 PMCID: PMC6886326 DOI: 10.12659/msm.919046] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
Background Breast cancer has a high mortality rate and is the most common cancer of women worldwide. Our gene co-expression network analysis identified the genes closely related to the pathological stage of breast cancer. Material/Methods We performed weighted gene co-expression network analysis (WGCNA) from the Gene Expression Omnibus (GEO) database, and performed pathway enrichment analysis on genes from significant modules. Results A non-metastatic sample (374) of breast cancer from GSE102484 was used to construct the gene co-expression network. All 49 hub genes have been shown to be upregulated, and 19 of the 49 hub genes are significantly upregulated in breast cancer tissue. The roles of the genes CASC5, CKAP2L, FAM83D, KIF18B, KIF23, SKA1, GINS1, CDCA5, and MCM6 in breast cancer are unclear, so in order to better reveal the staging of breast cancer markers, it is necessary to study those hub genes. Gene Ontology and Kyoto Encyclopedia of Genes and Genomes indicated that 49 hub genes were enriched to sister chromatid cohesion, spindle midzone, microtubule motor activity, cell cycle, and something else. Additionally, there is an independent data set – GSE20685 – for module preservation analysis, survival analysis, and gene validation. Conclusions This study identified 49 hub genes that were associated with pathologic stage of breast cancer, 19 of which were significantly upregulated in breast cancer. Risk stratification, therapeutic decision making, and prognosis predication might be improved by our study results. This study provides new insights into biomarkers of breast cancer, which might influence the future direction of breast cancer research.
Collapse
Affiliation(s)
- Yun Fu
- Department of General Surgery, Luoyang First People's Hospital, Luoyang, Henan, China (mainland)
| | - Qu-Zhi Zhou
- Department of Breast Surgery, Guangdong Province Chinese Traditional Medical Hospital, Guangzhou, Guangdong, China (mainland)
| | - Xiao-Lei Zhang
- Department of Hand Surgery, Luoyang Orthopedic-Traumatological Hospital, Luoyang, Henan, China (mainland)
| | - Zhen-Zhen Wang
- Department of Pathology, Luoyang First People's Hospital, Luoyang, Henan, China (mainland)
| | - Peng Wang
- Department of General Surgery, Luoyang First People's Hospital, Luoyang, Henan, China (mainland)
| |
Collapse
|
31
|
Yang W, Wan H, Shan R, Wen W, Li J, Luo D, Wan RH. The clinical significance and prognostic value of Xenopus kinesin-like protein 2 expressions in human tumors: A systematic review and meta-analysis. J Cell Physiol 2019; 234:14991-14998. [PMID: 30779127 DOI: 10.1002/jcp.28343] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2018] [Revised: 01/23/2019] [Accepted: 01/24/2019] [Indexed: 01/24/2023]
Abstract
Targeting protein for Xenopus kinesin-like protein 2 (TPX2) is a microtubule-associated protein that plays a pivotal part in the formation of spindles. There is accumulating evidence that the expression of TPX2 is upregulated in many kinds of human cancers and that this protein is involved in the occurrence and progression of tumors. The purpose of this meta-analysis was to investigate the relationship between the overexpression of TPX2 and poor prognosis in cancer patients. A total of 18 eligible studies encompassing 3115 patients were included by searching relevant databases. Hazard ratios (HRs) or odds ratios (ORs) with 95% confidence intervals (CIs) were pooled under random-/fixed-effect models. After calculation, the results showed that patients with increased TPX2 expression had a significantly shorter overall survival (HR = 2.21; 95% CI: 1.70-2.86), and disease-free survival (HR = 2.10; 95% CI: 1.67-2.64). In addition, it was found that increased TPX2 expression was significantly associated with TNM stage (OR = 2.17; 95% CI:1.42-3.32), lymph node metastasis (OR = 2.98; 95% CI: 2.28-3.89), distant metastasis (OR = 2.25; 95% CI:1.03-4.92), and vascular invasion (OR = 2.22; 95% CI:1.26-3.91). Nevertheless, there was no significant correlation between increased expression of TPX2 and either gender, tumor differentiation, or tumor size. Thus, we can come to the conclusion that the overexpression of TPX2 is related to poor clinical outcomes and can be used as a biomarker for the prognosis of patients with cancer.
Collapse
Affiliation(s)
- Weina Yang
- Department of General Surgery, The First Affiliated Hospital of Nanchang University, Nanchang, China
| | - Haiting Wan
- Department of General Surgery, The First Affiliated Hospital of Nanchang University, Nanchang, China
| | - Renfeng Shan
- Department of General Surgery, The First Affiliated Hospital of Nanchang University, Nanchang, China
| | - Wu Wen
- Department of General Surgery, The First Affiliated Hospital of Nanchang University, Nanchang, China
| | - Jianfeng Li
- Department of General Surgery, The First Affiliated Hospital of Nanchang University, Nanchang, China
| | - Daya Luo
- Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Nanchang University, Nanchang, China
| | - Ren-Hua Wan
- Department of General Surgery, The First Affiliated Hospital of Nanchang University, Nanchang, China
| |
Collapse
|
32
|
Sun J, Long Y, Peng X, Xiao D, Zhou J, Tao Y, Liu S. The survival analysis and oncogenic effects of CFP1 and 14-3-3 expression on gastric cancer. Cancer Cell Int 2019; 19:225. [PMID: 31496919 PMCID: PMC6717331 DOI: 10.1186/s12935-019-0946-3] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2019] [Accepted: 08/18/2019] [Indexed: 12/28/2022] Open
Abstract
Background & aim Gastric cancer (GC) is the third-leading cause of cancer-related deaths. We established a prospective database of patients with GC who underwent surgical treatment. In this study, we explored the prognostic significance of the expression of CFP1 and 14-3-3 in gastric cancer, by studying the specimens collected from clinical subjects. Materials & methods Immunohistochemistry was used to detect the expression of CFP1 and 14-3-3 in 84 GC subjects, including 73 patients who have undergone radical gastrectomy and 11 patients who have not undergone radical surgery. Survival analysis was performed by km-plot data. Results According to the survival analysis, we can see that the survival time of patients with high expression of CFP1 is lower than the patients with low expression in gastric cancer, while the effect of 14-3-3 is just the opposite. The survival time of patients with higher expression of 14-3-3 is also longer. Conclusion The CFP1 and 14-3-3 genes can be used as prognostic markers in patients with GC, but the study is still needed to confirm.
Collapse
Affiliation(s)
- Jingyue Sun
- 1Key Laboratory of Carcinogenesis and Cancer Invasion, Ministry of Education, Department of Pathology, Xiangya Hospital, Central South University, Hunan, 410078 China.,2NHC Key Laboratory of Carcinogenesis of Ministry of Health (Central South University), Cancer Research Institute, School of Basic Medicine, Central South University, Changsha, 410078 Hunan China.,3Department of Pathology, Xiangya Hospital, Central South University, Changsha, 410008 Hunan China.,5Department of Oncology, Institute of Medical Sciences, Xiangya Hospital, Central South University, Changsha, 410008 Hunan China
| | - Yao Long
- 1Key Laboratory of Carcinogenesis and Cancer Invasion, Ministry of Education, Department of Pathology, Xiangya Hospital, Central South University, Hunan, 410078 China.,2NHC Key Laboratory of Carcinogenesis of Ministry of Health (Central South University), Cancer Research Institute, School of Basic Medicine, Central South University, Changsha, 410078 Hunan China.,3Department of Pathology, Xiangya Hospital, Central South University, Changsha, 410008 Hunan China.,4Hunan Key Laboratory of Tumor Models and Individualized Medicine, Department of Thoracic Surgery, Second Xiangya Hospital, Central South University, Changsha, China
| | - Xin Peng
- 1Key Laboratory of Carcinogenesis and Cancer Invasion, Ministry of Education, Department of Pathology, Xiangya Hospital, Central South University, Hunan, 410078 China.,2NHC Key Laboratory of Carcinogenesis of Ministry of Health (Central South University), Cancer Research Institute, School of Basic Medicine, Central South University, Changsha, 410078 Hunan China.,3Department of Pathology, Xiangya Hospital, Central South University, Changsha, 410008 Hunan China.,5Department of Oncology, Institute of Medical Sciences, Xiangya Hospital, Central South University, Changsha, 410008 Hunan China
| | - Desheng Xiao
- 3Department of Pathology, Xiangya Hospital, Central South University, Changsha, 410008 Hunan China
| | - Jianhua Zhou
- 3Department of Pathology, Xiangya Hospital, Central South University, Changsha, 410008 Hunan China
| | - Yongguang Tao
- 1Key Laboratory of Carcinogenesis and Cancer Invasion, Ministry of Education, Department of Pathology, Xiangya Hospital, Central South University, Hunan, 410078 China.,2NHC Key Laboratory of Carcinogenesis of Ministry of Health (Central South University), Cancer Research Institute, School of Basic Medicine, Central South University, Changsha, 410078 Hunan China.,3Department of Pathology, Xiangya Hospital, Central South University, Changsha, 410008 Hunan China.,4Hunan Key Laboratory of Tumor Models and Individualized Medicine, Department of Thoracic Surgery, Second Xiangya Hospital, Central South University, Changsha, China
| | - Shuang Liu
- 1Key Laboratory of Carcinogenesis and Cancer Invasion, Ministry of Education, Department of Pathology, Xiangya Hospital, Central South University, Hunan, 410078 China.,2NHC Key Laboratory of Carcinogenesis of Ministry of Health (Central South University), Cancer Research Institute, School of Basic Medicine, Central South University, Changsha, 410078 Hunan China.,3Department of Pathology, Xiangya Hospital, Central South University, Changsha, 410008 Hunan China.,5Department of Oncology, Institute of Medical Sciences, Xiangya Hospital, Central South University, Changsha, 410008 Hunan China
| |
Collapse
|
33
|
Cai Y, Mei J, Xiao Z, Xu B, Jiang X, Zhang Y, Zhu Y. Identification of five hub genes as monitoring biomarkers for breast cancer metastasis in silico. Hereditas 2019; 156:20. [PMID: 31285741 PMCID: PMC6588910 DOI: 10.1186/s41065-019-0096-6] [Citation(s) in RCA: 39] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2019] [Accepted: 06/12/2019] [Indexed: 12/13/2022] Open
Abstract
BACKGROUND Breast cancer is one of the most common endocrine cancers among females worldwide. Distant metastasis of breast cancer is causing an increasing number of breast cancer-related deaths. However, the potential mechanisms of metastasis and candidate biomarkers remain to be further explored. RESULTS The gene expression profiles of GSE102484 were downloaded from the Gene Expression Omnibus (GEO) database. Weighted gene co-expression network analysis (WGCNA) was used to screen for the most potent gene modules associated with the metastatic risk of breast cancer, and a total of 12 modules were identified based on the analysis. In the most significant module (R2 = 0.68), 21 network hub genes (MM > 0.90) were retained for further analyses. Next, protein-protein interaction (PPI) networks were used to further explore the biomarkers with the most interactions in gene modules. According to the PPI networks, five hub genes (TPX2, KIF2C, CDCA8, BUB1B, and CCNA2) were identified as key genes associated with breast cancer progression. Furthermore, the prognostic value and differential expression of these genes were validated based on data from The Cancer Genome Atlas (TCGA) and Kaplan-Meier (KM) Plotter. Receiver operating characteristic (ROC) curve analysis revealed that the mRNA expression levels of these five hub genes showed excellent diagnostic value for breast cancer and adjacent tissues. Moreover, these five hub genes were significantly associated with worse distant metastasis-free survival (DMFS) in the patient cohort based on KM Plotter. CONCLUSION Five hub genes (TPX2, KIF2C, CDCA8, BUB1B, and CCNA2) associated with the risk of distant metastasis were extracted for further research, which might be used as biomarkers to predict distant metastasis of breast cancer.
Collapse
Affiliation(s)
- Yun Cai
- Department of Physiology, Nanjing Medical University, Nanjing, 211166 China
- Department of Bioinformatics, Nanjing Medical University, Nanjing, 211166 China
| | - Jie Mei
- Department of Physiology, Nanjing Medical University, Nanjing, 211166 China
| | - Zhuang Xiao
- Department of Physiology, Nanjing Medical University, Nanjing, 211166 China
| | - Bujie Xu
- Department of Physiology, Nanjing Medical University, Nanjing, 211166 China
| | - Xiaozheng Jiang
- Department of Physiology, Nanjing Medical University, Nanjing, 211166 China
| | - Yongjie Zhang
- Department of Human Anatomy, Nanjing Medical University, Nanjing, 211166 China
- Key Laboratory for Aging & Diseases of Nanjing Medical University, Nanjing Medical University, Nanjing, 211166 China
| | - Yichao Zhu
- Department of Physiology, Nanjing Medical University, Nanjing, 211166 China
- State Key Laboratory of Reproductive Medicine, Nanjing Medical University, Nanjing, 211166 China
| |
Collapse
|
34
|
Ding L, Zhang S, Chen S, Zheng L, Xiao L. Effect and mechanism of lentivirus-mediated silencing of TPX2 gene on proliferation and apoptosis of human hepatoma cells. J Cell Biochem 2019; 120:8352-8358. [PMID: 30548299 DOI: 10.1002/jcb.28119] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2018] [Accepted: 10/31/2018] [Indexed: 01/24/2023]
Abstract
This study aimed to investigate the role and mechanism of action of targeting protein for Xklp2 (TPX2) in liver cancer, we compared TPX messenger RNA (mRNA) expression in liver cancer tissue samples and adjacent normal liver tissue samples as well as in human liver cancer cell lines and nonmalignant cell line by quantitative reverse transcription polymerase chain reaction (qRT-PCR). TPX2 gene was silenced in HepG2 cells by transfection with the lentiviral vector expressing TPX2-targeting short hairpin RNA (shRNA), and the knockdown efficiency was evaluated by RT-qPCR. Cell proliferation, apoptosis as well as protein level of c-Myc, cyclin D1, caspase-3, phosphorylated glycogen synthase kinase-3β (p-GSK-3β), and β-catenin in HepG2 cells were evaluated before and after the TPX2 knockdown. Wnt/β-catenin signaling pathway was inhibited by treatment with 20 μM of XAV-939 or activated by treatment with 20 mM of LiCl. We found that TPX2 mRNA level was significantly increased in liver cancer tissue samples and cell lines comparing to noncancerous counterparts (P < 0.05). TPX2 knockdown significantly reduces TPX2 expression (P < 0.01), cell proliferation (P < 0.05), protein level of c-Myc and cyclin D1 (P < 0.01), activation of Wnt/β-catenin signaling in HepG2 cells (P < 0.01) while increasing cell apoptosis (P < 0.01). Treatment with XAV-939 significantly reduced HepG2 cell proliferation (P < 0.05) while increasing cell apoptosis (P < 0.01). Treatment with LiCl significantly attenuated the antiproliferative and apoptosis-promoting effect of TPX2 knockdown on HepG2 cells (P < 0.05). Lentivirus-mediated silencing of TPX2 gene could inhibit proliferation and induce apoptosis in hepatoma cells by inhibiting Wnt signaling pathway and regulating cyclin and apoptosis-related proteins.
Collapse
Affiliation(s)
- Lei Ding
- Department of Infectious Diseases, Jinan Central Hospital Affiliated to Shandong University, Jinan, China
| | - Shuhong Zhang
- Department of Infectious Diseases, Jinan Central Hospital Affiliated to Shandong University, Jinan, China
| | - Shijun Chen
- Department of infectious diseases, Jinan Infectious Diseases Hospital Affiliated to Shandong University, Jinan, China
| | - Lixue Zheng
- Department of Infectious Diseases, Jinan Central Hospital Affiliated to Shandong University, Jinan, China
| | - Lianxiang Xiao
- Department of MRI Diagnosis, Shandong Medical Imaging Research Institute, Shandong University, Jinan, China
| |
Collapse
|
35
|
van Gijn SE, Wierenga E, van den Tempel N, Kok YP, Heijink AM, Spierings DCJ, Foijer F, van Vugt MATM, Fehrmann RSN. TPX2/Aurora kinase A signaling as a potential therapeutic target in genomically unstable cancer cells. Oncogene 2019; 38:852-867. [PMID: 30177840 PMCID: PMC6367211 DOI: 10.1038/s41388-018-0470-2] [Citation(s) in RCA: 40] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2018] [Revised: 06/30/2018] [Accepted: 07/30/2018] [Indexed: 12/17/2022]
Abstract
Genomic instability is a hallmark feature of cancer cells, and can be caused by defective DNA repair, for instance due to inactivation of BRCA2. Paradoxically, loss of Brca2 in mice results in embryonic lethality, whereas cancer cells can tolerate BRCA2 loss. This holds true for multiple DNA repair genes, and suggests that cancer cells are molecularly "rewired" to cope with defective DNA repair and the resulting high levels of genomic instability. In this study, we aim to identify genes that genomically unstable cancer cells rely on for their survival. Using functional genomic mRNA (FGmRNA) profiling, 16,172 cancer samples were previously ranked based on their degree of genomic instability. We analyzed the top 250 genes that showed a positive correlation between FGmRNA levels and the degree of genomic instability, in a co-functionality network. Within this co-functionality network, a strong cluster of 11 cell cycle-related genes was identified, including TPX2. We then assessed the dependency on these 11 genes in the context of survival of genomically unstable cancer cells, induced by BRCA2 inactivation. Depletion of TPX2 or its associated kinase Aurora-A preferentially reduced cell viability in a panel of BRCA2-deficient cancer cells. In line with these findings, BRCA2-depleted and BRCA2-mutant human cell lines, or tumor cell lines derived from Brca2-/-;p53-/- mice showed increased sensitivity to the Aurora-A kinase inhibitor alisertib, with delayed mitotic progression and frequent mitotic failure. Our findings reveal that BRCA2-deficient cancer cells show enhanced sensitivity to inactivation of TPX2 or its partner Aurora-A, which points at an actionable dependency of genomically unstable cancers.
Collapse
Affiliation(s)
- Stephanie E van Gijn
- Department of Medical Oncology, University Medical Center Groningen, University of Groningen, Groningen, The Netherlands
| | - Elles Wierenga
- Department of Medical Oncology, University Medical Center Groningen, University of Groningen, Groningen, The Netherlands
| | - Nathalie van den Tempel
- Department of Medical Oncology, University Medical Center Groningen, University of Groningen, Groningen, The Netherlands
| | - Yannick P Kok
- Department of Medical Oncology, University Medical Center Groningen, University of Groningen, Groningen, The Netherlands
| | - Anne Margriet Heijink
- Department of Medical Oncology, University Medical Center Groningen, University of Groningen, Groningen, The Netherlands
- European Research Institute for the Biology of Ageing, University Medical Center Groningen, University of Groningen, Groningen, The Netherlands
| | - Diana C J Spierings
- European Research Institute for the Biology of Ageing, University Medical Center Groningen, University of Groningen, Groningen, The Netherlands
| | - Floris Foijer
- European Research Institute for the Biology of Ageing, University Medical Center Groningen, University of Groningen, Groningen, The Netherlands
| | - Marcel A T M van Vugt
- Department of Medical Oncology, University Medical Center Groningen, University of Groningen, Groningen, The Netherlands.
| | - Rudolf S N Fehrmann
- Department of Medical Oncology, University Medical Center Groningen, University of Groningen, Groningen, The Netherlands.
| |
Collapse
|
36
|
Liu W, Xu J, Zhang C. Prognostic and clinical value of Targeting protein for Xenopus kinesin-like protein 2 in patients with gastrointestinal tract cancers: A meta-analysis. Medicine (Baltimore) 2018; 97:e13303. [PMID: 30431618 PMCID: PMC6257341 DOI: 10.1097/md.0000000000013303] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/27/2022] Open
Abstract
BACKGROUND Accumulating studies have indicated that Targeting protein for Xenopus kinesin-like protein 2 (TPX2) was overexpressed in various types of human cancers. However, the prognostic and clinical value of TPX2 in gastrointestinal (GI) tract cancers was not well-understood. This study was aimed to comprehensively explore the prognostic and clinical significance of TPX2 in GI tract cancers. METHODS Eligible studies were systematically retrieved in PubMed, Embase, Web of Science, China National Knowledge Infrastructure (CNKI) and Wanfang database. The eligible studies were collected to evaluate the association of TPX2 with prognosis and clinicopathological features, with the pooling hazard ratio (HR) and odds ratio (OR) with 95% confidence interval (CI). RESULT The meta-analysis suggested that overexpression of TPX2 protein was significantly correlated with poor overall survival (OS) (HR: 2.20, 95% CI: 1.60-2.80, P <.001) in GI tract cancers, the subgroup meta-analysis also confirmed the prognostic value of TPX2 protein. Furthermore, clinical significances of TPX2 protein in gastric cancer were discussed. CONCLUSION Upregulated TPX2 protein was correlated with poor clinical outcomes, suggesting that TPX2 protein can serve as a promising predictive biomarker in patients with GI tract cancers.
Collapse
|
37
|
A molecular and staging model predicts survival in patients with resected non-small cell lung cancer. BMC Cancer 2018; 18:966. [PMID: 30305064 PMCID: PMC6180609 DOI: 10.1186/s12885-018-4881-9] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2018] [Accepted: 10/01/2018] [Indexed: 01/16/2023] Open
Abstract
Background The current TNM staging system is far from perfect in predicting the survival of individual non-small cell lung cancer (NSCLC) patients. In this study, we aim to combine clinical variables and molecular biomarkers to develop a prognostic model for patients with NSCLC. Methods Candidate molecular biomarkers were extracted from the Gene Expression Omnibus (GEO), and Cox regression analysis was performed to determine significant prognostic factors. The survival prediction model was constructed based on multivariable Cox regression analysis in a cohort of 152 NSCLC patients. The predictive performance of the model was assessed by the Area under the Receiver Operating Characteristic Curve (AUC) and Kaplan–Meier survival analysis. Results The survival prediction model consisting of two genes (TPX2 and MMP12) and two clinicopathological factors (tumor stage and grade) was developed. The patients could be divided into either high-risk group or low-risk group. Both disease-free survival and overall survival were significantly different among the diverse groups (P < 0.05). The AUC of the prognostic model was higher than that of the TNM staging system for predicting survival. Conclusions We developed a novel prognostic model which can accurately predict outcomes for patients with NSCLC after surgery. Electronic supplementary material The online version of this article (10.1186/s12885-018-4881-9) contains supplementary material, which is available to authorized users.
Collapse
|
38
|
Yang G, Chen Q, Xiao J, Zhang H, Wang Z, Lin X. Identification of genes and analysis of prognostic values in nonsmoking females with non-small cell lung carcinoma by bioinformatics analyses. Cancer Manag Res 2018; 10:4287-4295. [PMID: 30349363 PMCID: PMC6183654 DOI: 10.2147/cmar.s174409] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022] Open
Abstract
Background This study was performed to identify disease-related genes and analyze prognostic values in nonsmoking females with non-small cell lung carcinoma (NSCLC). Materials and methods Gene expression profile GSE19804 was downloaded from the Gene Expression Omnibus (GEO) database and analyzed by using GEO2R. Gene Ontology and Kyoto Encyclopedia of Genes and Genomes were used for the functional and pathway enrichment analysis. Then, the Search Tool for the Retrieval of Interacting Genes, Cytoscape, and Molecular Complex Detection were used to construct the protein–protein interaction (PPI) network and identify hub genes. Finally, the Kaplan–Meier plotter online tool was used for the overall survival analysis of hub genes. Results A cohort of 699 differentially expressed genes was screened, and they were mainly enriched in the terms of ECM–receptor interaction, focal adhesion, and cell adhesion molecules. A PPI network was constructed, and 15 hub genes were identified base on the subset of PPI network. Then, two significant modules were detected and several genes were found to be associated with the cell cycle pathway. Finally, nine hub genes’ (UBE2C, DLGAP5, TPX2, CCNB2, BIRC5, KIF20A, TOP2A, GNG11, and ANXA1) expressions were found to be associated with the prognosis of the patients. Conclusion Overall, we propose that the cell cycle pathway may play an important role in nonsmoking females with NSCLC and the nine hub genes may be further explored as potential targets for NSCLC diagnosis and treatment.
Collapse
Affiliation(s)
- Guangda Yang
- Department of Cancer Chemotherapy, Zengcheng District People's Hospital of Guangzhou (BoJi-Affiliated Hospital of Sun Yat-Sen University), Guangzhou, China,
| | - Qianya Chen
- Department of Cancer Chemotherapy, Zengcheng District People's Hospital of Guangzhou (BoJi-Affiliated Hospital of Sun Yat-Sen University), Guangzhou, China,
| | - Jieming Xiao
- Department of Emergency, Zengcheng District People's Hospital of Guangzhou (BoJi-Affiliated Hospital of Sun Yat-Sen University), Guangzhou, China
| | - Hailiang Zhang
- Department of Cancer Chemotherapy, Zengcheng District People's Hospital of Guangzhou (BoJi-Affiliated Hospital of Sun Yat-Sen University), Guangzhou, China,
| | - Zhichao Wang
- Department of Cancer Chemotherapy, Zengcheng District People's Hospital of Guangzhou (BoJi-Affiliated Hospital of Sun Yat-Sen University), Guangzhou, China,
| | - Xiangan Lin
- Department of Cancer Chemotherapy, Sun Yat-sen Memorial Hospital of Sun Yat-sen University, Guangzhou, China,
| |
Collapse
|
39
|
Wang S, Chen Y, Chai Y. Prognostic role of targeting protein for Xklp2 in solid tumors: A PRISMA-compliant systematic review and meta-analysis. Medicine (Baltimore) 2018; 97:e13018. [PMID: 30412141 PMCID: PMC6221728 DOI: 10.1097/md.0000000000013018] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/11/2023] Open
Abstract
BACKGROUND The prognostic role of targeting protein for Xklp2 (TPX2) in solid tumors has been investigated in several researches, but the results remain controversial. Here we present a meta-analysis to systematically review the association between TPX2 expression levels and prognosis of human solid tumors. METHODS Studies published until December 2017 were searched in PubMed, Web of Science, and EBSCO, 13 studies (2134 patients) were collected for analysis. Odds ratios (ORs) for overall survival (OS) and disease-free survival (DFS) from individual studies were calculated by the application of Mantel-Haenszel random effect model. Pooled ORs were estimated by Z test. Publication bias and interstudy heterogeneity analyses were also performed. RESULTS TPX2 overexpression was associated with poor OS at 3 and 5 years [OR = 4.63, 95% confidence interval (CI): 3.27-6.56, P < .00001; OR = 4.05, 95% CI: 2.32-7.07, P < .00001, respectively] of solid tumors. Similar results were observed with DFS at 3 and 5 years (OR = 3.35, 95% CI: 1.83-6.14, P < .0001; OR = 2.94, 95% CI: 1.74-4.98, P < .0001, respectively). Subgroup analysis revealed that increased TPX2 expression was related to worse prognosis of gastric cancer and hepatocellular cancer, while irrelevant to esophageal squamous cell cancer at 5-year survival rate. CONCLUSIONS Overexpression of TPX2 is related to poor survival rate in most solid tumors, which indicates that the expression level of TPX2 is a significant prognostic parameter and potential therapeutic target in various solid tumors.
Collapse
|
40
|
Zhou X, Wang P, Zhao H. The Association Between AURKA Gene rs2273535 Polymorphism and Gastric Cancer Risk in a Chinese Population. Front Physiol 2018; 9:1124. [PMID: 30174615 PMCID: PMC6108025 DOI: 10.3389/fphys.2018.01124] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2018] [Accepted: 07/27/2018] [Indexed: 12/21/2022] Open
Abstract
The Aurora kinase A (AURKA) gene is frequently amplified and overexpressed in gastric cancer (GC). The overexpression of AURKA promotes inflammation and tumorigenesis in GC. We performed co-expression analysis to identify genes associated with AURKA and speculated its function through the COXPRESdb and STRING databases. We also conducted a hospital-based case-control study involving 385 GC cases and 470 controls in a Chinese population to evaluate the role of AURKA gene rs2273535 polymorphism in the risk of GC. Genotyping was performed using a custom-by-design 48-Plex single nucleotide polymorphism (SNP) Scan™ Kit. Co-expression analysis indicated that the overexpression of AURKA may be associated with poor prognosis of GC. In addition, TT genotypes of rs2273535 polymorphism increased the risk of GC by 72% compared to the AA genotypes. This significant correlation was also observed in the allelic and dominant models. The stratified analysis suggested that TT+AT genotypes showed positive correlation with the risk of GC among female, age <55 years group and non-smokers compared to AA genotypes. In conclusion, AURKA plays an important role in the development of GC. Larger studies with more diverse ethnic populations are needed to confirm these results.
Collapse
Affiliation(s)
- Xiaoyan Zhou
- Department of Oncology, Affiliated Hospital of Shaanxi University of Chinese Medicine, Xianyang, China
| | - Pengli Wang
- Department of General Surgery, Affiliated Hospital of Shaanxi University of Chinese Medicine, Xianyang, China
| | - Hui Zhao
- Department of General Surgery, Third Affiliated Hospital of Nantong University, Wuxi, China
| |
Collapse
|
41
|
Jiang T, Sui D, You D, Yao S, Zhang L, Wang Y, Zhao J, Zhang Y. MiR-29a-5p inhibits proliferation and invasion and induces apoptosis in endometrial carcinoma via targeting TPX2. Cell Cycle 2018; 17:1268-1278. [PMID: 29888640 DOI: 10.1080/15384101.2018.1475829] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022] Open
Abstract
This study was aimed to explore the effects of miR-29a-5p expression and its target gene TPX2 (target protein for Xenopus kinesin-like protein 2) on endometrial cancer (EC) devel on EC development and to assess the prognostic impacts of TPX2. Microarray-based GEO and TCGA (the Cancer Genome Atlas) EC expression data were used to identify differentially expressed miRNAs and mRNAs. The observed potential target relationship between miR-29a-5p and TPX2 was verified using TargetScan and luciferase reporter assays. The mRNA and protein expression levels of miR-29a-5p and TPX2 were confirmed by qRT-PCR and western blot, respectively. Associations between TPX2 expression and patient prognosis were assessed using Kaplan-Meier and log-rank assays. Changes in EC-derived cell proliferation, invasion and apoptosis after exogenous miR-29a-5p and TPX2 over-expression and/or silencing were assessed using CCK-8 (cell counting kit-8), colony formation, Transwell and flow cytometry assays, respectively. We found that in primary EC tissues the expression of miR-29a-5p was down-regulated and the expression of TPX2 was up-regulated. We also found that low expression of TPX2 were associated with a better prognosis, and vice versa. Subsequent exogenous miR-29a-5p over-expression and TPX2 silencing could inhibit EC-derived cell proliferation and invasion, and to induce apoptosis. We also found that miR-29a-5p might target and repress TPX2, thereby inhibiting EC-derived cell proliferation and invasion and enhancing apoptosis. We conclude that miR-29a-5p could inhibit the proliferation and invasion of EC-derived cells and enhance the apoptosis of EC-derived cells via TPX2 down-regulation. A high TPX2 expression in primary EC tissues was found to be associated with a poor prognosis. As such, these biomarkers may serve as promising prognostic indicators. ABBREVIATIONS EC: Endometrial cancer; 3'-UTR: 3'-untranslated regions; TPX2: target protein for Xenopus kinesin-like protein 2; TCGA: the Cancer Genome Atlas; UCEC: uterine corpus endometrial carcinoma; CCK-8: cell counting kit-8; OD: optical density; FCM: flow cytometry; EMT: epithelial-mesenchymal transition.
Collapse
Affiliation(s)
- Tiechao Jiang
- a Department of Cardiology , China-Japan Union Hospital of Jilin University , Jilin , China.,b Jilin Provincial Precision Medicine Key Laboratory for Cardiovascular Genetic Diagnosis , Jilin , China
| | - Dongming Sui
- c Department of Asset Management , The First Hospital of Jilin University , Jilin , China
| | - Dong You
- d Department of Thoracic Surgery , The First Hospital of Jilin University , Jilin , China
| | - Songmei Yao
- e Department of Traditional Chinese Medicine , China-Japan Union Hospital of Jilin University , Jilin , China
| | - Lirong Zhang
- f Department of Pathology , China-Japan Union Hospital of Jilin University , Jilin , China
| | - Yingjian Wang
- g Department of Gynaecology and Obstetrics , China-Japan Union Hospital of Jilin University , Jilin , China
| | - Jixue Zhao
- h Department of Pediatric Surgery , The First Hospital of Jilin University , Jilin , China
| | - Yaozhong Zhang
- i Department of Anesthesiology , China-Japan Union Hospital of Jilin University , Jilin , China
| |
Collapse
|
42
|
Liu X, Wu J, Zhang D, Bing Z, Tian J, Ni M, Zhang X, Meng Z, Liu S. Identification of Potential Key Genes Associated With the Pathogenesis and Prognosis of Gastric Cancer Based on Integrated Bioinformatics Analysis. Front Genet 2018; 9:265. [PMID: 30065754 PMCID: PMC6056647 DOI: 10.3389/fgene.2018.00265] [Citation(s) in RCA: 117] [Impact Index Per Article: 16.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2018] [Accepted: 07/02/2018] [Indexed: 12/23/2022] Open
Abstract
Background and Objective: Despite striking advances in multimodality management, gastric cancer (GC) remains the third cause of cancer mortality globally and identifying novel diagnostic and prognostic biomarkers is urgently demanded. The study aimed to identify potential key genes associated with the pathogenesis and prognosis of GC. Methods: Differentially expressed genes between GC and normal gastric tissue samples were screened by an integrated analysis of multiple gene expression profile datasets. Key genes related to the pathogenesis and prognosis of GC were identified by employing protein–protein interaction network and Cox proportional hazards model analyses. Results: We identified nine hub genes (TOP2A, COL1A1, COL1A2, NDC80, COL3A1, CDKN3, CEP55, TPX2, and TIMP1) which might be tightly correlated with the pathogenesis of GC. A prognostic gene signature consisted of CST2, AADAC, SERPINE1, COL8A1, SMPD3, ASPN, ITGBL1, MAP7D2, and PLEKHS1 was constructed with a good performance in predicting overall survivals. Conclusion: The findings of this study would provide some directive significance for further investigating the diagnostic and prognostic biomarkers to facilitate the molecular targeting therapy of GC.
Collapse
Affiliation(s)
- Xinkui Liu
- Department of Clinical Chinese Pharmacy, School of Chinese Materia Medica, Beijing University of Chinese Medicine, Beijing, China
| | - Jiarui Wu
- Department of Clinical Chinese Pharmacy, School of Chinese Materia Medica, Beijing University of Chinese Medicine, Beijing, China
| | - Dan Zhang
- Department of Clinical Chinese Pharmacy, School of Chinese Materia Medica, Beijing University of Chinese Medicine, Beijing, China
| | - Zhitong Bing
- Evidence Based Medicine Center, School of Basic Medical Science, Lanzhou University, Lanzhou, China.,Key Laboratory of Evidence Based Medicine and Knowledge Translation of Gansu Province, Lanzhou, China.,Institute of Modern Physics, Chinese Academy of Sciences, Lanzhou, China
| | - Jinhui Tian
- Evidence Based Medicine Center, School of Basic Medical Science, Lanzhou University, Lanzhou, China.,Key Laboratory of Evidence Based Medicine and Knowledge Translation of Gansu Province, Lanzhou, China
| | - Mengwei Ni
- Department of Clinical Chinese Pharmacy, School of Chinese Materia Medica, Beijing University of Chinese Medicine, Beijing, China
| | - Xiaomeng Zhang
- Department of Clinical Chinese Pharmacy, School of Chinese Materia Medica, Beijing University of Chinese Medicine, Beijing, China
| | - Ziqi Meng
- Department of Clinical Chinese Pharmacy, School of Chinese Materia Medica, Beijing University of Chinese Medicine, Beijing, China
| | - Shuyu Liu
- Department of Clinical Chinese Pharmacy, School of Chinese Materia Medica, Beijing University of Chinese Medicine, Beijing, China
| |
Collapse
|
43
|
Sawaki K, Kanda M, Kodera Y. Review of recent efforts to discover biomarkers for early detection, monitoring, prognosis, and prediction of treatment responses of patients with gastric cancer. Expert Rev Gastroenterol Hepatol 2018; 12:657-670. [PMID: 29902383 DOI: 10.1080/17474124.2018.1489233] [Citation(s) in RCA: 33] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Gastric cancer (GC) is the leading cause of cancer-related death worldwide. Despite recent advances in diagnosis and therapy, the prognosis of patients with GC is poor. Many patients have inoperable disease upon diagnosis or experience recurrent disease after curative gastrectomy. Unfortunately, tumor markers for GC, such as serum carcinoembryonic antigen and carbohydrate antigen 19-9, lack sufficient sensitivity and specificity. Therefore, effective biomarkers are required to detect early GC and to predict tumor recurrence and chemosensitivity. Areas covered: Here we aimed to review recent developments in techniques that improve the detection of aberrant expression of GC-associated molecules, including protein coding genes, microRNAs, long noncoding RNAs, and methylated promoter DNAs. Expert commentary: Detection of genetic and epigenetic alterations in gastric tissue or in the circulation will likely improve the diagnosis and management of GC to achieve significantly improved outcomes.
Collapse
Affiliation(s)
- Koichi Sawaki
- a Department of Gastroenterological Surgery (Surgery II) , Nagoya University Graduate School of Medicine , Nagoya , Japan
| | - Mitsuro Kanda
- a Department of Gastroenterological Surgery (Surgery II) , Nagoya University Graduate School of Medicine , Nagoya , Japan
| | - Yasuhiro Kodera
- a Department of Gastroenterological Surgery (Surgery II) , Nagoya University Graduate School of Medicine , Nagoya , Japan
| |
Collapse
|
44
|
Zou J, Huang RY, Jiang FN, Chen DX, Wang C, Han ZD, Liang YX, Zhong WD. Overexpression of TPX2 is associated with progression and prognosis of prostate cancer. Oncol Lett 2018; 16:2823-2832. [PMID: 30127868 PMCID: PMC6096215 DOI: 10.3892/ol.2018.9016] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2017] [Accepted: 04/06/2018] [Indexed: 12/17/2022] Open
Abstract
Targeting protein for Xenopus kinesin-like protein 2 (TPX2) activates Aurora kinase A during mitosis and targets its activity to the mitotic spindle, serving an important role in mitosis. It has been associated with different types of cancer and is considered to promote tumor growth. The aim of the present study was to explore the role of TPX2 in diagnosing prostate cancer (PCa). It was identified that TPX2 expression in PCa tissues was increased compared with benign prostate tissues. Microarray analysis demonstrated that TPX2 was positively associated with the Gleason score, tumor-node-metastasis (TNM) stage, clinicopathological stage, metastasis, overall survival and biochemical relapse-free survival. In vitro studies revealed that the high expression of TPX2 in PCa cells improved proliferative, invasive and migratory abilities, and repressed apoptosis of the PCa cells, without affecting tolerance to docetaxel. The results suggested that TPX2 serves as a tumorigenesis-promoting gene in PCa, and a potential therapeutic target for patients with PCa.
Collapse
Affiliation(s)
- Jun Zou
- Department of Emergency Surgery, The Third Affiliated Hospital of Guangzhou Medical University, Guangzhou Medical University, Guangzhou, Guangdong 510150, P.R. China
| | - Rui-Yan Huang
- Department of Ultrasonography and Electrocardiograms, State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Sun Yat-sen University Cancer Center, Guangzhou, Guangdong 510060, P.R. China
| | - Fu-Neng Jiang
- Department of Urology, Guangdong Key Laboratory of Clinical Molecular Medicine and Diagnostics, The Second Affiliated Hospital of South China University of Technology, Guangzhou, Guangdong 510180, P.R. China
| | - De-Xiong Chen
- Department of Emergency Surgery, The Third Affiliated Hospital of Guangzhou Medical University, Guangzhou Medical University, Guangzhou, Guangdong 510150, P.R. China
| | - Cong Wang
- Department of Clinical Pharmacy, School of Pharmaceutical Sciences, Wenzhou Medical University, Wenzhou, Zhejiang 325035, P.R. China
| | - Zhao-Dong Han
- Department of Urology, Guangdong Key Laboratory of Clinical Molecular Medicine and Diagnostics, The Second Affiliated Hospital of South China University of Technology, Guangzhou, Guangdong 510180, P.R. China
| | - Yu-Xiang Liang
- Department of Urology, Guangdong Key Laboratory of Clinical Molecular Medicine and Diagnostics, The Second Affiliated Hospital of South China University of Technology, Guangzhou, Guangdong 510180, P.R. China
| | - Wei-De Zhong
- Department of Urology, Guangdong Key Laboratory of Clinical Molecular Medicine and Diagnostics, The Second Affiliated Hospital of South China University of Technology, Guangzhou, Guangdong 510180, P.R. China.,Department of Urology, Huadu District People's Hospital, Southern Medical University, Guangzhou, Guangdong 510800, P.R. China
| |
Collapse
|
45
|
Chen JS, Yeh CN, Cheng CT, Yen CC, Chen YY, Huang SC, Chiang KC, Yeh TS, Chen SC, Chao TC, Yang MH, Chao Y. Role of PLK1 signaling pathway genes in gastrointestinal stromal tumors. Oncol Lett 2018; 16:3070-3082. [PMID: 30127898 PMCID: PMC6096274 DOI: 10.3892/ol.2018.9003] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2017] [Accepted: 05/14/2018] [Indexed: 02/06/2023] Open
Abstract
In previous studies by the authors, aurora kinase A (AURKA) was demonstrated as an independent poor prognostic marker for the recurrence of localized gastrointestinal stromal tumors (GISTs) and for the progression of advanced GISTs. In the present study, the prognostic effect of genes involved in cell cycle regulation in GISTs was further examined. Leading edge analysis in gene set enrichment analysis was used to identify the most common genes in the top 10 enriched gene sets of high-risk patients with GISTs in a Japanese study. The obtained gene list was uploaded to the Pathway Interaction Database to search for critical pathways. Selected genes within the pathway were subsequently verified through immunohistochemistry (IHC) in another cohort of patients. A total of 5 genes in 'PLK1 signaling events,' namely AURKA, polo-like kinase 1 (PLK1), cell division cycle 25C (CDC25C), budding uninhibited by benzimidazoles (BUB1), and targeting protein for Xklp2 (TPX2), were identified for subsequent study. Among the Japanese cohort, all 5 genes, except BUB1, were significant prognostic factors for poor recurrence-free survival (RFS). Among 141 patients enrolled for the IHC study, all 5 genes exhibited variable expression patterns. In the association study, only AURKA exhibited significant overexpression in non-gastric tumors. Although all 5 genes were considered as risk factors for poor RFS based on a univariate analysis, only the mitotic count and expression levels of CDC25C, BUB1, and TPX2 retained prognostic effects in the multivariate analysis. The PLK1 signaling pathway is crucial in the disease progression of GISTs. Genes within this pathway may serve as predictive markers for adjuvant therapy.
Collapse
Affiliation(s)
- Jen-Shi Chen
- Division of Hematology-Oncology, Linkou Chang Gung Memorial Hospital and Chang Gung University, Taoyuan 333, Taiwan, R.O.C.,GIST Team, Linkou Chang Gung Memorial Hospital and Chang Gung University, Taoyuan 333, Taiwan, R.O.C
| | - Chun-Nan Yeh
- GIST Team, Linkou Chang Gung Memorial Hospital and Chang Gung University, Taoyuan 333, Taiwan, R.O.C.,Department of Surgery, Linkou Chang Gung Memorial Hospital and Chang Gung University, Taoyuan 333, Taiwan, R.O.C
| | - Chi-Tung Cheng
- GIST Team, Linkou Chang Gung Memorial Hospital and Chang Gung University, Taoyuan 333, Taiwan, R.O.C.,Department of Surgery, Linkou Chang Gung Memorial Hospital and Chang Gung University, Taoyuan 333, Taiwan, R.O.C.,Institute of Biomedical Informatics, National Yang-Ming University, Taipei 112, Taiwan, R.O.C
| | - Chueh-Chuan Yen
- School of Medicine, National Yang-Ming University, Taipei 112, Taiwan, R.O.C.,Division of Medical Oncology, Center for Immuno-Oncology, Department of Oncology, Taipei Veterans General Hospital, Taipei 112, Taiwan, R.O.C
| | - Yen-Yang Chen
- Division of Hematology-Oncology, Department of Internal Medicine, Kaohsiung Chang Gung Memorial Hospital and Chang Gung University College of Medicine, Kaohsiung 833, Taiwan, R.O.C
| | - Shih-Chiang Huang
- GIST Team, Linkou Chang Gung Memorial Hospital and Chang Gung University, Taoyuan 333, Taiwan, R.O.C.,Department of Pathology, Linkou Chang Gung Memorial Hospital and Chang Gung University, Taoyuan 333, Taiwan, R.O.C
| | - Kun-Chun Chiang
- Department of Surgery, Keelung Medical Center, Chang Gung Memorial Hospital and University, Keelung 204, Taiwan, R.O.C
| | - Ta-Sen Yeh
- GIST Team, Linkou Chang Gung Memorial Hospital and Chang Gung University, Taoyuan 333, Taiwan, R.O.C.,Department of Surgery, Linkou Chang Gung Memorial Hospital and Chang Gung University, Taoyuan 333, Taiwan, R.O.C
| | - San-Chi Chen
- School of Medicine, National Yang-Ming University, Taipei 112, Taiwan, R.O.C.,Division of Medical Oncology, Center for Immuno-Oncology, Department of Oncology, Taipei Veterans General Hospital, Taipei 112, Taiwan, R.O.C
| | - Ta-Chung Chao
- School of Medicine, National Yang-Ming University, Taipei 112, Taiwan, R.O.C.,Division of Medical Oncology, Center for Immuno-Oncology, Department of Oncology, Taipei Veterans General Hospital, Taipei 112, Taiwan, R.O.C
| | - Muh-Hwa Yang
- School of Medicine, National Yang-Ming University, Taipei 112, Taiwan, R.O.C.,Division of Medical Oncology, Center for Immuno-Oncology, Department of Oncology, Taipei Veterans General Hospital, Taipei 112, Taiwan, R.O.C
| | - Yee Chao
- School of Medicine, National Yang-Ming University, Taipei 112, Taiwan, R.O.C.,Division of Medical Oncology, Center for Immuno-Oncology, Department of Oncology, Taipei Veterans General Hospital, Taipei 112, Taiwan, R.O.C
| |
Collapse
|
46
|
Chen H, Liu L, Li X, Shi Y, Liu N. MicroRNA-1294 inhibits the proliferation and enhances the chemosensitivity of glioma to temozolomide via the direct targeting of TPX2. Am J Cancer Res 2018; 8:291-301. [PMID: 29511599 PMCID: PMC5835696] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2018] [Accepted: 01/30/2018] [Indexed: 06/08/2023] Open
Abstract
MicroRNA-1294 (miR-1294) has been reported to be involved in the progression of esophageal squamous cell carcinoma. However, the function and the mechanisms of miR-1294 in glioma remain unclear. In this study, we explore the potential biological roles of miR-1294 in glioma cell lines. First, we detected the aberrant down-regulation of miR-1294 in glioma tissues and cell lines. Second, we determined that miR-1294 suppresses the proliferation, migration and invasiveness and enhances the chemosensitivity of glioma cells lines to temozolomide. Third, we found that the targeting protein for Xenopus kinesin-like protein 2 (TPX2) is the functional target of miR-1294; miR-1294 acts through TPX2 to exert an important biological effect in glioma. Importantly, TPX2 knockdown had the same effect on glioma cell lines as miR-1294 overexpression. In addition, when TPX2 was up-regulated in these cells, the effects of miR-1294 on glioma cell lines were suppressed. Moreover, the effect of miR-1294 on glioma was verified using a xenograft model. These findings demonstrated that miR-1294 inhibits the development of glioma by targeting TPX2. These findings provide a new potential therapeutic target for glioma treatment.
Collapse
Affiliation(s)
- Hua Chen
- Department of Neurosurgery, The First Affiliated Hospital of Nanjing Medical UniversityNanjing 210029, Jiangsu, China
- Department of Neurosurgery, Nanjing First Hospital, Nanjing Medical UniversityNanjing 210006, Jiangsu, China
| | - Liang Liu
- Department of Neurosurgery, Nanjing Children’s Hospital, Nanjing Medical UniversityNanjing 210029, Jiangsu, China
| | - Xiaojian Li
- Department of Neurosurgery, Nanjing First Hospital, Nanjing Medical UniversityNanjing 210006, Jiangsu, China
| | - Yan Shi
- Department of Neurosurgery, Nanjing First Hospital, Nanjing Medical UniversityNanjing 210006, Jiangsu, China
| | - Ning Liu
- Department of Neurosurgery, The First Affiliated Hospital of Nanjing Medical UniversityNanjing 210029, Jiangsu, China
| |
Collapse
|
47
|
Ma S, Rong X, Gao F, Yang Y, Wei L. TPX2 promotes cell proliferation and migration via PLK1 in OC. Cancer Biomark 2018; 22:443-451. [PMID: 29865033 DOI: 10.3233/cbm-171056] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
BACKGROUND Targeting protein for Xenopus kinesin-like protein 2 (TPX2) is a microtubule-associated proteinrequired for mitosis and spindle assembly. It has been revealed that TPX2 is overexpressedin various human cancers and promotes cancer progression. METHODS The expression of TPX2 was examined in ovarian cancer (OC) tissues and by Western blotting, quantitative real-time reverse transcription PCR (qRT-PCR) and immunohistochemistry. The effects of TPX2 on proliferation and migration of two OC cell lines SKOV3and RMG1 were analyzed using the methylthiazol tetrazolium (MTT) assay, flow cytometry and transwell assay. The mechanisms underlying the effects of TPX2 on OC cells were explored by qRT-PCR and Western blot. RESULTS In this study, we found that TPX2 was upregulated in OC tissues. We observed knockdown of TPX2 inhibited the expression of Polo-like kinase 1 (PLK1), which has an important role in the regulation of M phase of the cell cycle, and the activity of Cdc2, induced cell arrested at the G2/M phase and decreased proliferation. Moreover, our data revealed that the levels of PLK1, β-catenin, MMP7 and MMP9 were inhibited following TPX2 knockdown, leading to decrease of cell migration. Finally, we showed that the restoration of PLK1 expression attenuated the anti-proliferation and anti-migration effects of TPX2 knockdown in OC cells. CONCLUSIONS TPX2 promotes the proliferation and migration of human OC cells by regulating PLK1 expression.
Collapse
Affiliation(s)
- Shuyun Ma
- Clinical Experimental Teaching Center, The First Affiliated Hospital of Xi'an Medical University, Xi'an 710077, Shaanxi, China
| | - Xuan Rong
- Department of Gynaecology, Shaanxi Provincial People's Hospital, Xi'an 710068, Shaanxi, China
| | - Fei Gao
- Department of Neurology, The First Affiliated Hospital of Xi'an Medical University, Xi'an 710077, Shaanxi, China
| | - Yang Yang
- Department of Gynaecology and Obstetrics, The First Affiliated Hospital of Xi'an Medical University, Xi'an 710077, Shaanxi, China
| | - Lin Wei
- Department of Gynaecology and Obstetrics, The First Affiliated Hospital of Xi'an Medical University, Xi'an 710077, Shaanxi, China
| |
Collapse
|
48
|
Li S, Liu X, Liu T, Meng X, Yin X, Fang C, Huang D, Cao Y, Weng H, Zeng X, Wang X. Identification of Biomarkers Correlated with the TNM Staging and Overall Survival of Patients with Bladder Cancer. Front Physiol 2017; 8:947. [PMID: 29234286 PMCID: PMC5712410 DOI: 10.3389/fphys.2017.00947] [Citation(s) in RCA: 69] [Impact Index Per Article: 8.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2017] [Accepted: 11/08/2017] [Indexed: 12/27/2022] Open
Abstract
Objective: To identify candidate biomarkers correlated with clinical prognosis of patients with bladder cancer (BC). Methods: Weighted gene co-expression network analysis was applied to build a co-expression network to identify hub genes correlated with tumor node metastasis (TNM) staging of BC patients. Functional enrichment analysis was conducted to functionally annotate the hub genes. Protein-protein interaction network analysis of hub genes was performed to identify the interactions among the hub genes. Survival analyses were conducted to characterize the role of hub genes on the survival of BC patients. Gene set enrichment analyses were conducted to find the potential mechanisms involved in the tumor proliferation promoted by hub genes. Results: Based on the results of topological overlap measure based clustering and the inclusion criteria, top 50 hub genes were identified. Hub genes were enriched in cell proliferation associated gene ontology terms (mitotic sister chromatid segregation, mitotic cell cycle and, cell cycle, etc.) and Kyoto Encyclopedia of Genes and Genomes (KEGG) pathways (cell cycle, Oocyte meiosis, etc.). 17 hub genes were found to interact with ≥5 of the hub genes. Survival analysis of hub genes suggested that lower expression of MMP11, COL5A2, CDC25B, TOP2A, CENPF, CDCA3, TK1, TPX2, CDCA8, AEBP1, and FOXM1were associated with better overall survival of BC patients. BC samples with higher expression of hub genes were enriched in gene sets associated with P53 pathway, apical junction, mitotic spindle, G2M checkpoint, and myogenesis, etc. Conclusions: We identified several candidate biomarkers correlated with the TNM staging and overall survival of BC patients. Accordingly, they might be used as potential diagnostic biomarkers and therapeutic targets with clinical utility.
Collapse
Affiliation(s)
- Sheng Li
- Department of Urology, Zhongnan Hospital of Wuhan University, Wuhan, China
- Department of Biological Repositories, Zhongnan Hospital of Wuhan University, Wuhan, China
- Center for Evidence-Based and Translational Medicine, Zhongnan Hospital of Wuhan University, Wuhan, China
| | - Xiaoping Liu
- Center for Evidence-Based and Translational Medicine, Zhongnan Hospital of Wuhan University, Wuhan, China
| | - Tongzu Liu
- Department of Urology, Zhongnan Hospital of Wuhan University, Wuhan, China
| | - Xiangyu Meng
- Center for Evidence-Based and Translational Medicine, Zhongnan Hospital of Wuhan University, Wuhan, China
| | - Xiaohong Yin
- Center for Evidence-Based and Translational Medicine, Zhongnan Hospital of Wuhan University, Wuhan, China
| | - Cheng Fang
- Center for Evidence-Based and Translational Medicine, Zhongnan Hospital of Wuhan University, Wuhan, China
| | - Di Huang
- Center for Evidence-Based and Translational Medicine, Zhongnan Hospital of Wuhan University, Wuhan, China
| | - Yue Cao
- Center for Evidence-Based and Translational Medicine, Zhongnan Hospital of Wuhan University, Wuhan, China
| | - Hong Weng
- Department of Urology, Zhongnan Hospital of Wuhan University, Wuhan, China
| | - Xiantao Zeng
- Department of Urology, Zhongnan Hospital of Wuhan University, Wuhan, China
- Center for Evidence-Based and Translational Medicine, Zhongnan Hospital of Wuhan University, Wuhan, China
| | - Xinghuan Wang
- Department of Urology, Zhongnan Hospital of Wuhan University, Wuhan, China
- Center for Evidence-Based and Translational Medicine, Zhongnan Hospital of Wuhan University, Wuhan, China
| |
Collapse
|
49
|
Yan L, Li Q, Yang J, Qiao B. TPX2-p53-GLIPR1 regulatory circuitry in cell proliferation, invasion, and tumor growth of bladder cancer. J Cell Biochem 2017; 119:1791-1803. [PMID: 28799673 DOI: 10.1002/jcb.26340] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2017] [Accepted: 08/08/2017] [Indexed: 12/11/2022]
Abstract
The targeting protein for Xenopus kinesin-like protein 2 (TPX2) is associated with the metastasis and prognosis of bladder cancer. p53 is closely related to the progression of bladder cancer. Human glioma pathogenesis-related protein 1 (GLIPR1) is a p53 target gene with antitumor activity. This study aims to explore the interplay between TPX2, p53, and GLIPR1 and its correlation with cell proliferation, invasion, and tumor growth in bladder cancer. Here, Western blot and qRT-PCR analysis revealed that TPX2 at both mRNA and protein levels was up-regulated in bladder carcinoma tissues compared to their paired adjacent normal tissues. Additionally, tissues expressing high TPX2 level exhibited high p53 level and low GLIPR1 level. The expressions of TPX2 and p53 in non-muscle-invasive bladder cancer cells (KK47 and RT4) were lower than those in muscle-invasive bladder cancer cells (T24, 5637, and UM-UC-3), while GLIPR1 showed the converse expression pattern. Further investigation revealed that TPX2 activated the synthesis of p53; and GLIPR1 is up-regulated by wild-type (wt)-p53 but not affected by mutated p53; Additionally, GLIPR1 inhibited TPX2. These data suggested a TPX2-p53-GLIPR1 regulatory circuitry. Meanwhile, TPX2 overexpression promoted while overexpression of GLIPR1 or p53 inhibited bladder cancer growth. Interestingly, in T24 cells with mutated p53, p53 silence suppressed bladder cancer growth. This study identified a novel TPX2-p53-GLIPR1 regulatory circuitry which modulated cell proliferation, migration, invasion, and tumorigenicity of bladder cancer. Our findings provide new insight into underlying mechanisms of tumorigenesis and novel therapeutic options in bladder cancer.
Collapse
Affiliation(s)
- Liang Yan
- Department of, Urology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| | - Qi Li
- Department of, Urology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| | - Juan Yang
- Department of, Ultrasound, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, People's Republic of China
| | - Baoping Qiao
- Department of, Urology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| |
Collapse
|