1
|
Pouladvand N, Azarnia M, Zeinali H, Fathi R, Tavana S. An overview of different methods to establish a murine premature ovarian failure model. Animal Model Exp Med 2024. [PMID: 39219374 DOI: 10.1002/ame2.12477] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2024] [Accepted: 07/14/2024] [Indexed: 09/04/2024] Open
Abstract
Premature ovarian failure (POF)is defined as the loss of normal ovarian function before the age of 40 and is characterized by increased gonadotropin levels and decreased estradiol levels and ovarian reserve, often leading to infertility. The incomplete understanding of the pathogenesis of POF is a major impediment to the development of effective treatments for this disease, so the use of animal models is a promising option for investigating and identifying the molecular mechanisms involved in POF patients and developing therapeutic agents. As mice and rats are the most commonly used models in animal research, this review article considers studies that used murine POF models. In this review based on the most recent studies, first, we introduce 10 different methods for inducing murine POF models, then we demonstrate the advantages and disadvantages of each one, and finally, we suggest the most practical method for inducing a POF model in these animals. This may help researchers find the method of creating a POF model that is most appropriate for their type of study and suits the purpose of their research.
Collapse
Affiliation(s)
- Negar Pouladvand
- Department of Embryology, Reproductive Biomedicine Research Center, Royan Institute for Reproductive Biomedicine, ACECR, Tehran, Iran
- Department of Animal Biology, Faculty of Biological Sciences, Kharazmi University, Tehran, Iran
| | - Mahnaz Azarnia
- Department of Animal Biology, Faculty of Biological Sciences, Kharazmi University, Tehran, Iran
| | - Hadis Zeinali
- Department of Animal Biology, Faculty of Biological Sciences, Kharazmi University, Tehran, Iran
| | - Rouhollah Fathi
- Department of Embryology, Reproductive Biomedicine Research Center, Royan Institute for Reproductive Biomedicine, ACECR, Tehran, Iran
| | - Somayeh Tavana
- Department of Embryology, Reproductive Biomedicine Research Center, Royan Institute for Reproductive Biomedicine, ACECR, Tehran, Iran
| |
Collapse
|
2
|
Zhang X, Wang F, Zhu X, Xu L, Qin L, Xu W, Fan B. Mechanism of Zuogui pill enhancing ovarian function and skin elastic repair in premature aging rats based on artificial intelligence medical image analysis. Skin Res Technol 2024; 30:e70050. [PMID: 39246259 PMCID: PMC11381913 DOI: 10.1111/srt.70050] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2024] [Revised: 08/20/2024] [Accepted: 08/25/2024] [Indexed: 09/10/2024]
Abstract
BACKGROUND AI medical image analysis shows potential applications in research on premature aging and skin. The purpose of this study was to explore the mechanism of the Zuogui pill based on artificial intelligence medical image analysis on ovarian function enhancement and skin elasticity repair in rats with premature aging. MATERIALS AND METHODS The premature aging rat model was established by using an experimental animal model. Then Zuogui pills were injected into the rats with premature aging, and the images were detected by an optical microscope. Then, through the analysis of artificial intelligence medical images, the image data is analyzed to evaluate the indicators of ovarian function. RESULTS Through optical microscope image detection, we observed that the Zuogui pill played an active role in repairing ovarian tissue structure and increasing the number of follicles in mice, and Zuogui pill also significantly increased the level of progesterone in the blood of mice. CONCLUSION Most of the ZGP-induced outcomes are significantly dose-dependent.
Collapse
Affiliation(s)
- Xinpei Zhang
- Department of Obstetrics and Gynecology, Putuo Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Fuju Wang
- Department of Gynecology of Traditional Chinese Medicine, Putuo Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Xiaodan Zhu
- Department of Obstetrics and Gynecology, Putuo Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Lan Xu
- Department of Obstetrics and Gynecology, Putuo Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Ling Qin
- Department of Obstetrics and Gynecology, Putuo Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Wenjuan Xu
- Department of Obstetrics and Gynecology, Putuo Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Bozhen Fan
- Department of Obstetrics and Gynecology, Putuo Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| |
Collapse
|
3
|
Xiao X, Wu L, Deng J, Li J, Zhou Y, He S, Li F, Wang Y. Effects of insonification on repairing the renal injury of diabetic nephropathy rats. BMJ Open Diabetes Res Care 2024; 12:e004146. [PMID: 39025793 PMCID: PMC11261688 DOI: 10.1136/bmjdrc-2024-004146] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/22/2024] [Accepted: 07/05/2024] [Indexed: 07/20/2024] Open
Abstract
INTRODUCTION Prolonged hyperglycemia in diabetes mellitus can result in the development of diabetic nephropathy (DN) and increase the susceptibility to kidney failure. Low-intensity pulsed ultrasound (LIPUS) is a non-invasive modality that has demonstrated effective tissue repair capabilities. The objective of this study was to showcase the reparative potential of LIPUS on renal injury at both animal and cellular levels, while also determining the optimal pulse length (PL). RESEARCH DESIGN AND METHODS We established a rat model of DN, and subsequently subjected the rats' kidneys to ultrasound irradiation (PL=0.2 ms, 10 ms, 20 ms). Subsequently, we assessed the structural and functional changes in the kidneys. Additionally, we induced podocyte apoptosis and evaluated its occurrence following ultrasound irradiation. RESULTS Following irradiation, DN rats exhibited improved mesangial expansion and basement membrane thickening. Uric acid expression increased while urinary microalbumin, podocalyxin in urine, blood urea nitrogen, and serum creatinine levels decreased (p<0.05). These results suggest that the optimal PL was 0.2 ms. Using the optimal PL further demonstrated the reparative effect of LIPUS on DN, it was found that LIPUS could reduce podococyte apoptosis and alleviate kidney injury. Metabolomics revealed differences in metabolites including octanoic acid and seven others and western blot results showed a significant decrease in key enzymes related to lipolysis (p<0.05). Additionally, after irradiating podocytes with different PLs, we observed suppressed apoptosis (p<0.05), confirming the optimal PL as 0.2 ms. CONCLUSIONS LIPUS has been demonstrated to effectively restore renal structure and function in DN rats, with an optimal PL of 0.2 ms. The mechanism underlying the alleviation of DN by LIPUS is attributed to its ability to improve lipid metabolism disorder. These findings suggest that LIPUS may provide a novel perspective for future research in this field.
Collapse
Affiliation(s)
- Xinfang Xiao
- State Key Laboratory of Ultrasound in Medicine and Engineering, College of Biomedical Engineering, Chongqing Medical University, Chongqing, China
- Chongqing Key Laboratory of Biomedical Engineering, Chongqing Medical University, Chongqing, China
| | - Liu Wu
- State Key Laboratory of Ultrasound in Medicine and Engineering, College of Biomedical Engineering, Chongqing Medical University, Chongqing, China
- Chongqing Key Laboratory of Biomedical Engineering, Chongqing Medical University, Chongqing, China
| | - Juan Deng
- State Key Laboratory of Ultrasound in Medicine and Engineering, College of Biomedical Engineering, Chongqing Medical University, Chongqing, China
- Chongqing Key Laboratory of Biomedical Engineering, Chongqing Medical University, Chongqing, China
| | - Junfen Li
- State Key Laboratory of Ultrasound in Medicine and Engineering, College of Biomedical Engineering, Chongqing Medical University, Chongqing, China
- Chongqing Key Laboratory of Biomedical Engineering, Chongqing Medical University, Chongqing, China
| | - Yiqing Zhou
- State Key Laboratory of Ultrasound in Medicine and Engineering, College of Biomedical Engineering, Chongqing Medical University, Chongqing, China
- Chongqing Key Laboratory of Biomedical Engineering, Chongqing Medical University, Chongqing, China
| | - Sicheng He
- State Key Laboratory of Ultrasound in Medicine and Engineering, College of Biomedical Engineering, Chongqing Medical University, Chongqing, China
- Chongqing Key Laboratory of Biomedical Engineering, Chongqing Medical University, Chongqing, China
| | - Faqi Li
- State Key Laboratory of Ultrasound in Medicine and Engineering, College of Biomedical Engineering, Chongqing Medical University, Chongqing, China
- Chongqing Key Laboratory of Biomedical Engineering, Chongqing Medical University, Chongqing, China
| | - Yan Wang
- State Key Laboratory of Ultrasound in Medicine and Engineering, College of Biomedical Engineering, Chongqing Medical University, Chongqing, China
- Chongqing Key Laboratory of Biomedical Engineering, Chongqing Medical University, Chongqing, China
| |
Collapse
|
4
|
Zhou W, Chen A, Ye Y, Ren Y, Lu J, Xuan F, Jin R. LIPUS combined with TFSC alleviates premature ovarian failure by promoting autophagy and inhibiting apoptosis. Gynecol Endocrinol 2023; 39:2258422. [PMID: 37855244 DOI: 10.1080/09513590.2023.2258422] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/20/2023] [Accepted: 09/01/2023] [Indexed: 10/20/2023] Open
Abstract
OBJECTIVE Premature ovarian failure (POF), also known as primary ovarian insufficiency, is a major cause of infertility in female worldwide. Excessive apoptosis and impaired autophagy in ovarian granulosa cells are the main pathological mechanisms of POF. The total flavonoids from semen cuscutae (TFSC) are often used in the treatment of gynecological endocrine disorders. In addition, low intensity pulsed ultrasound (LIPUS) is report as an effective method to improve ovarian function. This study aims to investigate the protective effect of POF by the combined use of TFSC and LIPUS. METHODS POF rats model and granulosa cell model were successfully induced by tripterygium glycosides and cyclophosphamide, respectively. After that, model rats and cells received TFSC plus LIPUS administration. Then ovarian histomorphology, senescence, estrus cycle, and serum sex hormone levels were detected in rats. Ovarian tissue and granulosa cells autophagy and apoptosis levels were also assessed. RESULTS Disturbed sex hormone levels, atrophied and senescent ovaries, and abnormal estrous cycle were found in POF rats. Meanwhile, cell autophagy was inhibited and cell apoptosis was activated in POF ovarian tissue and granulosa cells. However, TFSC combined with LIPUS improved these changes, and this combination treatment exhibited synergistic effects. The abnormal expression of the cell apoptosis-, autophagy-, and PI3K/AKT/mTOR signaling pathway-related proteins were also improved by combination treatment. CONCLUSION The study found that the combination of TFSC and LIPUS can alleviate POF by modulating cell autophagy and apoptosis. The findings may provide a viable scientific basis for POF treatment.
Collapse
Affiliation(s)
- Weimei Zhou
- Department of Ultrasound, Jiaojiang Maternal and Child Health Hospital, Taizhou, China
| | - Aixue Chen
- Department of Gynecology, Changxing People's Hospital of Chongming District, Shanghai, China
| | - Yongju Ye
- Department of gynaecology, Lishui Hospital of Traditional Chinese Medicine, Lishui, China
| | - Yuefang Ren
- Department of Gynecology, Huzhou Maternity & Child Health Care Hospital, Huzhou, China
| | - Jiali Lu
- Department of Gynecology, Huzhou Maternity & Child Health Care Hospital, Huzhou, China
| | - Feilan Xuan
- Department of obstetrics and gynecology, Hospital Affiliated to Zhejiang Chinese Medical University, Hangzhou, China
| | - Ruiying Jin
- Department of Gynecology, Jiaojiang Maternal and Child Health Hospital, Taizhou, China
| |
Collapse
|
5
|
唐 文, 邓 娟, 贺 思, 李 君, 周 艺, 王 嫣. [Inhibitory effect of low-intensity pulsed ultrasound on apoptosis of splenic lymphocytes in septic rats]. NAN FANG YI KE DA XUE XUE BAO = JOURNAL OF SOUTHERN MEDICAL UNIVERSITY 2023; 43:1789-1795. [PMID: 37933656 PMCID: PMC10630200 DOI: 10.12122/j.issn.1673-4254.2023.10.18] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Subscribe] [Scholar Register] [Received: 02/26/2023] [Indexed: 11/08/2023]
Abstract
OBJECTIVE To investigate the inhibitory effect of low- intensity pulsed ultrasound (LIPUS) on apoptosis of splenic lymphocytes in rats with sepsis and explore its possible mechanism. METHODS Seventy-eight female SD rats were randomly divided into LIPUS group, cecal ligation and puncture (CLP) group and sham-operated group (Sham) (n=26), and in the former two groups, rat model of sepsis were established by CLP. Immediately after the operation, the rats in LIPUS group received pulsed ultrasound therapy with an ultrasound intensity of 200 mW/cm2, irradiation time of 20 min, and frequency of 0.37 MHz. The survival of the rats in each group was observed within 72 h after CLP. The changes in splenic lymphocyte counts were observed using HE staining, and apoptosis of the splenic lymphocytes was detected using TUNEL assay and flow cytometry. The expression levels of Bcl-2, Bcl2-associated X protein (Bax) and caspase-3 were detected by immunohistochemistry, Western blotting and RT-qPCR. RESULTS All the rats in the sham-operated group survived for over 72 h. The survival rates of the rats was significantly higher in LIPUS group than in CLP group (P<0.05). Compared with those in CLP group, the apoptosis rate of the splenic lymphocytes in LIPUS group was significantly decreased (P<0.05), the protein and mRNA expression levels of Bcl-2 were increased (P<0.05), and the protein and mRNA expression levels of Bax and caspase-3 were decreased (P<0.05). CONCLUSIONS LIPUS inhibits apoptosis of splenic lymphocytes in septic SD rats possibly by regulating the key molecules in the mitochondrial pathway, thereby improving the survival rate and prolonging the survival time of the rats.
Collapse
Affiliation(s)
- 文韬 唐
- 重庆医科大学生物医学工程学院、超声医学工程国家重点实验室,重庆 400016State Key Laboratory of Ultrasound in Medicine and Engineering, College of Biomedical Engineering, Chongqing Medical University, Chongqing 400016, China
- 重庆市生物医学工程学重点实验室,重庆 400016Chongqing Key Laboratory of Biomedical Engineering, Chongqing 400016, China
| | - 娟 邓
- 重庆医科大学生物医学工程学院、超声医学工程国家重点实验室,重庆 400016State Key Laboratory of Ultrasound in Medicine and Engineering, College of Biomedical Engineering, Chongqing Medical University, Chongqing 400016, China
- 重庆市生物医学工程学重点实验室,重庆 400016Chongqing Key Laboratory of Biomedical Engineering, Chongqing 400016, China
| | - 思程 贺
- 重庆医科大学生物医学工程学院、超声医学工程国家重点实验室,重庆 400016State Key Laboratory of Ultrasound in Medicine and Engineering, College of Biomedical Engineering, Chongqing Medical University, Chongqing 400016, China
- 重庆市生物医学工程学重点实验室,重庆 400016Chongqing Key Laboratory of Biomedical Engineering, Chongqing 400016, China
| | - 君粉 李
- 重庆医科大学生物医学工程学院、超声医学工程国家重点实验室,重庆 400016State Key Laboratory of Ultrasound in Medicine and Engineering, College of Biomedical Engineering, Chongqing Medical University, Chongqing 400016, China
- 重庆市生物医学工程学重点实验室,重庆 400016Chongqing Key Laboratory of Biomedical Engineering, Chongqing 400016, China
| | - 艺情 周
- 重庆医科大学生物医学工程学院、超声医学工程国家重点实验室,重庆 400016State Key Laboratory of Ultrasound in Medicine and Engineering, College of Biomedical Engineering, Chongqing Medical University, Chongqing 400016, China
- 重庆市生物医学工程学重点实验室,重庆 400016Chongqing Key Laboratory of Biomedical Engineering, Chongqing 400016, China
| | - 嫣 王
- 重庆医科大学生物医学工程学院、超声医学工程国家重点实验室,重庆 400016State Key Laboratory of Ultrasound in Medicine and Engineering, College of Biomedical Engineering, Chongqing Medical University, Chongqing 400016, China
- 重庆市生物医学工程学重点实验室,重庆 400016Chongqing Key Laboratory of Biomedical Engineering, Chongqing 400016, China
| |
Collapse
|
6
|
Shi YQ, Zhu XT, Zhang SN, Ma YF, Han YH, Jiang Y, Zhang YH. Premature ovarian insufficiency: a review on the role of oxidative stress and the application of antioxidants. Front Endocrinol (Lausanne) 2023; 14:1172481. [PMID: 37600717 PMCID: PMC10436748 DOI: 10.3389/fendo.2023.1172481] [Citation(s) in RCA: 9] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/28/2023] [Accepted: 07/03/2023] [Indexed: 08/22/2023] Open
Abstract
Normal levels of reactive oxygen species (ROS) play an important role in regulating follicular growth, angiogenesis and sex hormone synthesis in ovarian tissue. When the balance between ROS and antioxidants is disrupted, however, it can cause serious consequences of oxidative stress (OS), and the quantity and quality of oocytes will decline. Therefore, this review discusses the interrelationship between OS and premature ovarian insufficiency (POI), the potential mechanisms and the methods by which antioxidants can improve POI through controlling the level of OS. We found that OS can mediate changes in genetic materials, signal pathways, transcription factors and ovarian microenvironment, resulting in abnormal apoptosis of ovarian granulosa cells (GCs) and abnormal meiosis as well as decreased mitochondrial Deoxyribonucleic Acid(mtDNA) and other changes, thus accelerating the process of ovarian aging. However, antioxidants, mesenchymal stem cells (MSCs), biological enzymes and other antioxidants can delay the disease process of POI by reducing the ROS level in vivo.
Collapse
Affiliation(s)
- Yu-Qian Shi
- Department of First Clinical Medical College, Heilongjiang University of Chinese Medicine, Harbin, China
| | - Xi-Ting Zhu
- Department of First Clinical Medical College, Heilongjiang University of Chinese Medicine, Harbin, China
| | - Su-Na Zhang
- Department of First Clinical Medical College, Heilongjiang University of Chinese Medicine, Harbin, China
| | - Yi-Fu Ma
- Department of First Clinical Medical College, Heilongjiang University of Chinese Medicine, Harbin, China
| | - Yan-Hua Han
- Department of Obstetrics and Gynecology, Key Laboratory and Unit of Infertility in Chinese Medicine, First Affiliated Hospital, Heilongjiang University of Chinese Medicine, Harbin, China
| | - Yue Jiang
- Department of Obstetrics and Gynecology, Key Laboratory and Unit of Infertility in Chinese Medicine, First Affiliated Hospital, Heilongjiang University of Chinese Medicine, Harbin, China
| | - Yue-Hui Zhang
- Department of Obstetrics and Gynecology, Key Laboratory and Unit of Infertility in Chinese Medicine, First Affiliated Hospital, Heilongjiang University of Chinese Medicine, Harbin, China
| |
Collapse
|
7
|
Rajabi A, Mogheiseh A, Nazifi S, Ahrari-Khafi M, Dehghanian A, Vesal N, Bigham-Sadegh A. Effect of direct therapeutic ultrasound exposure of ovaries on histopathology, inflammatory response, and oxidative stress in dogs. BMC Vet Res 2023; 19:88. [PMID: 37474957 PMCID: PMC10360222 DOI: 10.1186/s12917-023-03657-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/25/2022] [Accepted: 07/14/2023] [Indexed: 07/22/2023] Open
Abstract
BACKGROUND This research was designed to evaluate the effects of therapeutic ultrasound waves on ovarian germinal tissue and inflammatory cytokines (interleukin-6 (IL-6), IL1β, tumor necrosis factor-α (TNF-α)), acute phase proteins (serum amyloid A (SAA), C reactive protein (CRP)) and oxidative stress (total antioxidant capacity (TAC), and malondialdehyde (MDA)) in dogs. Twenty-six clinically healthy adult mix-breed female dogs were aligned into three groups. Laparotomy was performed in control (n = 6) and treatment (T5, n = 10; T10, n = 10) groups. The ultrasonic exposure of ovaries in treatment groups was performed during laparotomy by round motions of the therapeutic ultrasonic transducer on both ovaries (1 MHz frequency, 1.5 W⁄cm2) for 5 min in the T5 group and for 10 min in the T10 group. Blood samples were collected from the jugular vein into a plain glass tube on days 0 (before laparotomy), 3, 6, and 9 after surgery. All control and treatment groups' dogs were ovariectomized for histological evaluation on day 60 after laparotomy or laparotomy + ultrasound exposure. RESULTS Direct exposure of ovaries with therapeutic ultrasound waves induced inflammation and oxidative stress comparison with the control group. Histopathological evaluation of treated ovaries with ultrasound waves indicated a decreased number of primordial follicles (ovarian reserve) and oocyte preservation scores compared with ovaries in the control group. CONCLUSIONS These changes may cause subfertility in the long term. It seems that inflammatory response and oxidative stress are factors in the permanent damage of ovarian tissue.
Collapse
Affiliation(s)
- Arian Rajabi
- Department of Clinical Sciences, School of Veterinary Medicine, Shiraz University, Shiraz, Fars, Iran
| | - Asghar Mogheiseh
- Department of Clinical Sciences, School of Veterinary Medicine, Shiraz University, Shiraz, Fars, Iran
| | - Saeed Nazifi
- Department of Clinical Sciences, School of Veterinary Medicine, Shiraz University, Shiraz, Fars, Iran
| | | | - AmirReza Dehghanian
- Department of Pathobiology, School of Medicine, Shiraz University of Medical Sciences, Shiraz, Fars, Iran
| | - Nasser Vesal
- Department of Clinical Sciences, School of Veterinary Medicine, Shiraz University, Shiraz, Fars, Iran
| | - Amin Bigham-Sadegh
- Department of Clinical Sciences, School of Veterinary Medicine, Shiraz University, Shiraz, Fars, Iran
| |
Collapse
|
8
|
Tang W, Xia Y, Deng J, Xu H, Tang Y, Xiao X, Wu L, Song G, Qin J, Wang Y. Anti-inflammatory Effect of Low-Intensity Ultrasound in Septic Rats. ULTRASOUND IN MEDICINE & BIOLOGY 2023; 49:1602-1610. [PMID: 37105771 DOI: 10.1016/j.ultrasmedbio.2023.03.008] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/03/2022] [Revised: 02/17/2023] [Accepted: 03/07/2023] [Indexed: 05/17/2023]
Abstract
OBJECTIVE Sepsis is a severe systemic inflammatory response caused by infection. Here, the spleen region of Sprague-Dawley (SD) rats with sepsis was irradiated with low-intensity ultrasound (LIUS) to explore the regulation of inflammation and its mechanism by LIUS. METHODS In this study, 30 rats used for survival analysis were randomly divided into the sham-operated group (Sham, n = 10), the group in which sepsis was induced by cecal ligation and puncture (CLP, n = 10) and the group treated with LIUS immediately after CLP (LIUS, n = 10). The other 120 rats were randomly divided into the aforementioned three groups for detection at each time point. The parameters used in the LIUS group were 200 mW/cm2, 0.37 MHz, 20% duty cycle and 20 min, and no ultrasonic energy was produced in the Sham and CLP groups. Seven-day survival rate, histopathology and expression of inflammatory factors and proteins were evaluated in the three groups. RESULTS LIUS was able to improve the survival rate of septic SD rats (p < 0.05), significantly inhibit the expression of tumor necrosis factor α (TNF-α), interleukin 1β (IL-1β), interleukin 6 (IL-6) and nuclear factor-κB p65 (NF-κB p65) (p < 0.05) and restore the ultrastructure of the spleen. CONCLUSION Our study determined that LIUS can relieve spleen damage and alleviate severe cytokine storm to improve survival outcomes in septic SD rats, and its mechanism may be related to the inhibition of the NF-κB signaling pathway by downregulation of IL-1β.
Collapse
Affiliation(s)
- Wentao Tang
- State Key Laboratory of Ultrasound in Medicine and Engineering, College of Biomedical Engineering, Chongqing Key Laboratory of Biomedical Engineering, Chongqing Medical University, Chongqing, China
| | - Yi Xia
- State Key Laboratory of Ultrasound in Medicine and Engineering, College of Biomedical Engineering, Chongqing Key Laboratory of Biomedical Engineering, Chongqing Medical University, Chongqing, China
| | - Juan Deng
- State Key Laboratory of Ultrasound in Medicine and Engineering, College of Biomedical Engineering, Chongqing Key Laboratory of Biomedical Engineering, Chongqing Medical University, Chongqing, China
| | - Haopeng Xu
- State Key Laboratory of Ultrasound in Medicine and Engineering, College of Biomedical Engineering, Chongqing Key Laboratory of Biomedical Engineering, Chongqing Medical University, Chongqing, China
| | - Yilin Tang
- State Key Laboratory of Ultrasound in Medicine and Engineering, College of Biomedical Engineering, Chongqing Key Laboratory of Biomedical Engineering, Chongqing Medical University, Chongqing, China
| | - Xinfang Xiao
- State Key Laboratory of Ultrasound in Medicine and Engineering, College of Biomedical Engineering, Chongqing Key Laboratory of Biomedical Engineering, Chongqing Medical University, Chongqing, China
| | - Liu Wu
- State Key Laboratory of Ultrasound in Medicine and Engineering, College of Biomedical Engineering, Chongqing Key Laboratory of Biomedical Engineering, Chongqing Medical University, Chongqing, China
| | - Guolin Song
- Department of Emergency, Second Affiliated Hospital of Guizhou University of Traditional Chinese Medicine, Guizhou, China.
| | - Juan Qin
- Department of Obstetrics and Gynecology, Guiyang Maternal and Child Health Care Hospital, Guizhou Medical University, Guizhou, China.
| | - Yan Wang
- State Key Laboratory of Ultrasound in Medicine and Engineering, College of Biomedical Engineering, Chongqing Key Laboratory of Biomedical Engineering, Chongqing Medical University, Chongqing, China.
| |
Collapse
|
9
|
Kahrizi MS, Mousavi E, Khosravi A, Rahnama S, Salehi A, Nasrabadi N, Ebrahimzadeh F, Jamali S. Recent advances in pre-conditioned mesenchymal stem/stromal cell (MSCs) therapy in organ failure; a comprehensive review of preclinical studies. Stem Cell Res Ther 2023; 14:155. [PMID: 37287066 DOI: 10.1186/s13287-023-03374-9] [Citation(s) in RCA: 7] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2022] [Accepted: 05/10/2023] [Indexed: 06/09/2023] Open
Abstract
Mesenchymal stem/stromal cells (MSCs)-based therapy brings the reassuring capability to regenerative medicine through their self-renewal and multilineage potency. Also, they secret a diversity of mediators, which are complicated in moderation of deregulated immune responses, and yielding angiogenesis in vivo. Nonetheless, MSCs may lose biological performance after procurement and prolonged expansion in vitro. Also, following transplantation and migration to target tissue, they encounter a harsh milieu accompanied by death signals because of the lack of proper tensegrity structure between the cells and matrix. Accordingly, pre-conditioning of MSCs is strongly suggested to upgrade their performances in vivo, leading to more favored transplantation efficacy in regenerative medicine. Indeed, MSCs ex vivo pre-conditioning by hypoxia, inflammatory stimulus, or other factors/conditions may stimulate their survival, proliferation, migration, exosome secretion, and pro-angiogenic and anti-inflammatory characteristics in vivo. In this review, we deliver an overview of the pre-conditioning methods that are considered a strategy for improving the therapeutic efficacy of MSCs in organ failures, in particular, renal, heart, lung, and liver.
Collapse
Affiliation(s)
| | - Elnaz Mousavi
- Department of Endodontics, School of Dentistry, Guilan University of Medical Sciences, Rasht, Iran
| | - Armin Khosravi
- Department of Periodontics, Dental School, Islamic Azad University, Isfahan (Khorasgan) Branch, Isfahan, Iran
| | - Sara Rahnama
- Department of Pediatric Dentistry, School of Dentistry, Semnan University of Medical Sciences, Semnan, Iran
| | - Ali Salehi
- Department of Oral and Maxillofacial Radiology, School of Dentistry, Islamic Azad University, Isfahan (Khorasgan) Branch, Isfahan, Iran
| | - Navid Nasrabadi
- Department of Endodontics, School of Dentistry, Birjand University of Medical Sciences, Birjand, Iran
| | - Farnoosh Ebrahimzadeh
- Department of Internal Medicine, Faculty of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran.
| | - Samira Jamali
- Department of Endodontics, Stomatological Hospital, College of Stomatology, Xi'an Jiaotong University, Shaanxi, People's Republic of China.
| |
Collapse
|
10
|
Luo Q, Tang Y, Jiang Z, Bao H, Fu Q, Zhang H. hUCMSCs reduce theca interstitial cells apoptosis and restore ovarian function in premature ovarian insufficiency rats through regulating NR4A1-mediated mitochondrial mechanisms. Reprod Biol Endocrinol 2022; 20:125. [PMID: 35986315 PMCID: PMC9389823 DOI: 10.1186/s12958-022-00992-5] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/05/2022] [Accepted: 08/03/2022] [Indexed: 11/18/2022] Open
Abstract
BACKGROUND Human umbilical cord mesenchymal stem cells (hUCMSCs, retrospectively registered) have a lot of promise for treating theca interstitial cells(TICs) dysfunction in premature ovarian insufficiency (POI). The mechanisms, however, are still unknown. METHODS To examine the therapeutic and find the cause, we used both in vivo cisplatin-induced POI rat model and in vitro TICs model. HUCMSCs were injected into the tail veins of POI rats in an in vivo investigation. Then, using ELISA, HE staining, TUNEL apoptosis test kit, immunohistochemistry and western blot, researchers examined hormonal levels, ovarian morphology, TICs apoptosis, NR4A1 and Cyp17a1 in response to cisplatin treatment and hUCMSCs. TICs were obtained from the ovaries of rats and treated with the cisplatin, hUCMSCs supernatant, and the antagonist of NR4A1--DIM-C-pPhOH. ELISA, immunofluorescence, flow cytometry, JC-1 labeling and western blot analysis were used to detect T levels, Cyp17a1, NR4A1, and the anti-apoptotic protein Bcl-2, as well as pro-apoptotic proteins Bax, caspase-9, caspase-3, and cytochrome C(cytc). RESULTS We discovered that hUCMSCs restored the ovarian function, particularly TICs function based on measures of Cyp17a1 and T expression. NR4A1 was found in ovarian TICs of each group and NR4A1 expression was lower in the POI rats but higher following hUCMSCs therapy. The apoptosis of TICs generated by cisplatin was reduced after treatment with hUCMSCs. In vitro, NR4A1 was expressed in the nucleus of TICs, and NR4A1 as well as phospho-NR4A1 were decreased, following the apoptosis of TICs was emerged after cisplatin treatment. Interestingly, the localization of NR4A1 was translocated from the nucleus to the cytoplasm due to cisplatin. HUCMSCs were able to boost NR4A1 and phospho-NR4A1 expression while TICs' apoptosis and JC-1 polymorimonomor fluorescence ratios reduced. Furthermore, Bcl-2 expression dropped following cisplatin treatment, whereas Bax, cytc, caspase-9, and caspase-3 expression rose; however, hUCMSCs treatment reduced their expression. In addition, DIM-C-pPhOH had no effect on the NR4A1 expression, but it did increase the expression of apoptosis-related factors such as Bax, cytc, caspase-9, and caspase-3, causing the apoptosis of TICs. CONCLUSIONS These data show that hUCMSCs therapy improves ovarian function in POI rats by inhibiting TICs apoptosis through regulating NR4A1 -mediated mitochondrial mechanisms.
Collapse
Affiliation(s)
- Qianqian Luo
- Xu Rongxiang Regenerative Medicine Research Center, Binzhou Medical University, Yantai, 264003, Shandong, China
- Basic Medical College, Binzhou Medical University, Yantai, 264003, China
| | - Yu Tang
- Basic Medical College, Binzhou Medical University, Yantai, 264003, China
| | - Zhonglin Jiang
- Xu Rongxiang Regenerative Medicine Research Center, Binzhou Medical University, Yantai, 264003, Shandong, China
- Basic Medical College, Binzhou Medical University, Yantai, 264003, China
| | - Hongchu Bao
- Department of Clinical Medicine, Yantai Yuhuangding Hospital, Yantai, 264000, China
| | - Qiang Fu
- School of Pharmacology, Institute of Aging Medicine, Binzhou Medical University, Yantai, 264003, China.
| | - Hongqin Zhang
- Xu Rongxiang Regenerative Medicine Research Center, Binzhou Medical University, Yantai, 264003, Shandong, China.
- Basic Medical College, Binzhou Medical University, Yantai, 264003, China.
| |
Collapse
|