1
|
Shen C, Mackeigan DT, Shoara AA, Bhoria P, Zhu G, Karakas D, Ma W, Chen ZY, Xu R, Slavkovic S, Zhang D, Prifti V, Liu Z, Cerenzia EG, Chen P, Neves MAD, Li H, Xue F, Yang R, Liu J, Lai R, Li R, Ni H. Novel GPIb-independent platelet aggregation induced by botrocetin: implications for diagnosis and antithrombotic therapy. J Thromb Haemost 2024; 22:3249-3265. [PMID: 39147240 DOI: 10.1016/j.jtha.2024.06.030] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2023] [Revised: 05/25/2024] [Accepted: 06/07/2024] [Indexed: 08/17/2024]
Abstract
BACKGROUND Snake venom botrocetin facilitates von Willebrand factor (VWF) binding to platelet GPIbα and has been widely used for the diagnosis of von Willebrand disease and GPIb-related disorders. Botrocetin is also commonly employed for the development/characterization of antithrombotics targeting the GPIb-VWF axis. OBJECTIVES To explore the alternative receptor(s)/mechanisms that participate in botrocetin-induced platelet aggregation. METHODS The effects of botrocetin on platelet aggregation were examined using platelets from wild-type, VWF- and fibrinogen-deficient, GPIbα-deficient, IL4Rα/GPIbα-transgenic, ITGA2B and ITGB3-deficient mice, and Bernard-Soulier syndrome and healthy human samples. Platelet-fibrinogen and platelet-VWF interaction were measured using flow cytometry. GPIbα-VWF binding was evaluated utilizing enzyme-linked immunosorbent assay. Botrocetin-αIIbβ3 and botrocetin-GPIbα interactions were measured using enzyme-linked immunosorbent assay and fluorescence anisotropy assays. Heparinized whole blood from healthy donors was examined for thrombus formation and growth in a perfusion chamber. RESULTS Botrocetin could induce aggregation of platelets from a Bernard-Soulier syndrome patient and GPIbα-deficient mice as well as platelets lacking the N-terminal extracellular domain of GPIbα. Botrocetin could interact with αIIbβ3 and facilitated αIIbβ3-VWF interaction independent of GPIb. Botrocetin competitively bound to the ligand-binding domain of activated rather than resting αIIbβ3. Although botrocetin-induced platelet aggregation requires VWF, strikingly, in the absence of VWF, botrocetin blocked fibrinogen and other ligand binding to αIIbβ3 and inhibited platelet aggregation and thrombus formation. Consistently, recombinant botrocetin defective in VWF binding inhibited αIIbβ3- and GPIb-mediated platelet aggregation, spreading, and thrombus formation. CONCLUSION Our study provides insights into avoiding the misdiagnosis of GPIb-related disorders and developing botrocetin mutants as potential new antithrombotics that may simultaneously target both αIIbβ3 and GPIbα.
Collapse
Affiliation(s)
- Chuanbin Shen
- Department of Laboratory Medicine and Pathobiology, University of Toronto, Toronto, Ontario, Canada; Department of Laboratory Medicine, Li Ka Shing Knowledge Institute (LKSKI)-Keenan Research Centre for Biomedical Science, St. Michael's Hospital, and Toronto Platelet Immunobiology Group, Toronto, Ontario, Canada; CCOA Therapeutics Inc, Toronto, Ontario, Canada; School of Medicine and Pharmacy, Ocean University of China, Qingdao, Shandong, China.
| | - Daniel T Mackeigan
- Department of Laboratory Medicine, Li Ka Shing Knowledge Institute (LKSKI)-Keenan Research Centre for Biomedical Science, St. Michael's Hospital, and Toronto Platelet Immunobiology Group, Toronto, Ontario, Canada; Department of Physiology, University of Toronto, Toronto, Ontario, Canada
| | - Aron A Shoara
- Department of Laboratory Medicine, Li Ka Shing Knowledge Institute (LKSKI)-Keenan Research Centre for Biomedical Science, St. Michael's Hospital, and Toronto Platelet Immunobiology Group, Toronto, Ontario, Canada; Department of Physiology, University of Toronto, Toronto, Ontario, Canada; Canadian Blood Services Centre for Innovation, Toronto, Ontario, Canada
| | - Preeti Bhoria
- Department of Laboratory Medicine and Pathobiology, University of Toronto, Toronto, Ontario, Canada; Department of Laboratory Medicine, Li Ka Shing Knowledge Institute (LKSKI)-Keenan Research Centre for Biomedical Science, St. Michael's Hospital, and Toronto Platelet Immunobiology Group, Toronto, Ontario, Canada; CCOA Therapeutics Inc, Toronto, Ontario, Canada
| | - Guangheng Zhu
- Department of Laboratory Medicine, Li Ka Shing Knowledge Institute (LKSKI)-Keenan Research Centre for Biomedical Science, St. Michael's Hospital, and Toronto Platelet Immunobiology Group, Toronto, Ontario, Canada; CCOA Therapeutics Inc, Toronto, Ontario, Canada
| | - Danielle Karakas
- Department of Laboratory Medicine and Pathobiology, University of Toronto, Toronto, Ontario, Canada; Department of Laboratory Medicine, Li Ka Shing Knowledge Institute (LKSKI)-Keenan Research Centre for Biomedical Science, St. Michael's Hospital, and Toronto Platelet Immunobiology Group, Toronto, Ontario, Canada
| | - Wenjing Ma
- Department of Laboratory Medicine and Pathobiology, University of Toronto, Toronto, Ontario, Canada; Department of Laboratory Medicine, Li Ka Shing Knowledge Institute (LKSKI)-Keenan Research Centre for Biomedical Science, St. Michael's Hospital, and Toronto Platelet Immunobiology Group, Toronto, Ontario, Canada; CCOA Therapeutics Inc, Toronto, Ontario, Canada
| | - Zi Yan Chen
- Department of Laboratory Medicine and Pathobiology, University of Toronto, Toronto, Ontario, Canada; Department of Laboratory Medicine, Li Ka Shing Knowledge Institute (LKSKI)-Keenan Research Centre for Biomedical Science, St. Michael's Hospital, and Toronto Platelet Immunobiology Group, Toronto, Ontario, Canada
| | - Runjia Xu
- Department of Laboratory Medicine, Li Ka Shing Knowledge Institute (LKSKI)-Keenan Research Centre for Biomedical Science, St. Michael's Hospital, and Toronto Platelet Immunobiology Group, Toronto, Ontario, Canada
| | - Sladjana Slavkovic
- Department of Laboratory Medicine and Pathobiology, University of Toronto, Toronto, Ontario, Canada; Department of Laboratory Medicine, Li Ka Shing Knowledge Institute (LKSKI)-Keenan Research Centre for Biomedical Science, St. Michael's Hospital, and Toronto Platelet Immunobiology Group, Toronto, Ontario, Canada; CCOA Therapeutics Inc, Toronto, Ontario, Canada; Canadian Blood Services Centre for Innovation, Toronto, Ontario, Canada
| | - Dachuan Zhang
- Department of Laboratory Medicine and Pathobiology, University of Toronto, Toronto, Ontario, Canada; Department of Laboratory Medicine, Li Ka Shing Knowledge Institute (LKSKI)-Keenan Research Centre for Biomedical Science, St. Michael's Hospital, and Toronto Platelet Immunobiology Group, Toronto, Ontario, Canada; CCOA Therapeutics Inc, Toronto, Ontario, Canada
| | - Viktor Prifti
- Department of Laboratory Medicine and Pathobiology, University of Toronto, Toronto, Ontario, Canada; Department of Laboratory Medicine, Li Ka Shing Knowledge Institute (LKSKI)-Keenan Research Centre for Biomedical Science, St. Michael's Hospital, and Toronto Platelet Immunobiology Group, Toronto, Ontario, Canada
| | - Zhenze Liu
- Department of Laboratory Medicine and Pathobiology, University of Toronto, Toronto, Ontario, Canada; Department of Laboratory Medicine, Li Ka Shing Knowledge Institute (LKSKI)-Keenan Research Centre for Biomedical Science, St. Michael's Hospital, and Toronto Platelet Immunobiology Group, Toronto, Ontario, Canada; CCOA Therapeutics Inc, Toronto, Ontario, Canada
| | - Eric G Cerenzia
- Department of Laboratory Medicine, Li Ka Shing Knowledge Institute (LKSKI)-Keenan Research Centre for Biomedical Science, St. Michael's Hospital, and Toronto Platelet Immunobiology Group, Toronto, Ontario, Canada; Department of Physiology, University of Toronto, Toronto, Ontario, Canada
| | - Pingguo Chen
- Department of Laboratory Medicine, Li Ka Shing Knowledge Institute (LKSKI)-Keenan Research Centre for Biomedical Science, St. Michael's Hospital, and Toronto Platelet Immunobiology Group, Toronto, Ontario, Canada; Canadian Blood Services Centre for Innovation, Toronto, Ontario, Canada
| | - Miguel A D Neves
- Department of Laboratory Medicine and Pathobiology, University of Toronto, Toronto, Ontario, Canada; Department of Laboratory Medicine, Li Ka Shing Knowledge Institute (LKSKI)-Keenan Research Centre for Biomedical Science, St. Michael's Hospital, and Toronto Platelet Immunobiology Group, Toronto, Ontario, Canada; CCOA Therapeutics Inc, Toronto, Ontario, Canada; Canadian Blood Services Centre for Innovation, Toronto, Ontario, Canada
| | - Huiyuan Li
- State Key Laboratory of Experimental Hematology, National Clinical Research Center for Blood Diseases, Haihe Laboratory of Cell Ecosystem, Institute of Hematology & Blood Diseases Hospital, Key Laboratory of Gene Therapy for Blood Diseases, Chinese Academy of Medical Sciences & Peking Union Medical College, Tianjin, China
| | - Feng Xue
- State Key Laboratory of Experimental Hematology, National Clinical Research Center for Blood Diseases, Haihe Laboratory of Cell Ecosystem, Institute of Hematology & Blood Diseases Hospital, Key Laboratory of Gene Therapy for Blood Diseases, Chinese Academy of Medical Sciences & Peking Union Medical College, Tianjin, China
| | - Renchi Yang
- State Key Laboratory of Experimental Hematology, National Clinical Research Center for Blood Diseases, Haihe Laboratory of Cell Ecosystem, Institute of Hematology & Blood Diseases Hospital, Key Laboratory of Gene Therapy for Blood Diseases, Chinese Academy of Medical Sciences & Peking Union Medical College, Tianjin, China
| | - Junling Liu
- Department of Biochemistry and Molecular Cell Biology, Key Laboratory of Cell Differentiation and Apoptosis of Chinese Ministry of Education, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Ren Lai
- Key Laboratory of Animal Models and Human Disease Mechanisms of the Chinese Academy of Sciences/Key Laboratory of Bioactive Peptides of Yunnan Province, Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming, Yunnan, China
| | - Renhao Li
- Aflac Cancer and Blood Disorders Center, Department of Pediatrics, Children's Healthcare of Atlanta, Emory University School of Medicine Atlanta, Atlanta, Georgia, Georgia, USA
| | - Heyu Ni
- Department of Laboratory Medicine and Pathobiology, University of Toronto, Toronto, Ontario, Canada; Department of Laboratory Medicine, Li Ka Shing Knowledge Institute (LKSKI)-Keenan Research Centre for Biomedical Science, St. Michael's Hospital, and Toronto Platelet Immunobiology Group, Toronto, Ontario, Canada; CCOA Therapeutics Inc, Toronto, Ontario, Canada; Department of Physiology, University of Toronto, Toronto, Ontario, Canada; Canadian Blood Services Centre for Innovation, Toronto, Ontario, Canada; Department of Medicine, University of Toronto, Toronto, Ontario, Canada.
| |
Collapse
|
2
|
Wang T, Zheng R, Zhang S, Qin H, Jin H, Teng Y, Ma S, Zhang M. Association between platelet-to-high-density lipoprotein cholesterol ratio and cognitive function in older americans: insights from a cross-sectional study. Sci Rep 2024; 14:25769. [PMID: 39468327 PMCID: PMC11519474 DOI: 10.1038/s41598-024-77813-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2024] [Accepted: 10/25/2024] [Indexed: 10/30/2024] Open
Abstract
The main aim of this study was to explore the correlation between the platelet/high-density lipoprotein cholesterol ratio (PHR) and cognitive function in elderly individuals from the United States. This investigation leveraged data encompassing 2299 participants, all aged 60 years and above, from the National Health and Nutrition Examination Survey conducted from 2011 to 2014. Inclusion criteria were based on the availability of complete datasets for PHR and cognitive function assessments. The analytical approach incorporated multivariate logistic regression to discern the association between PHR and cognitive function. Additionally, the study employed restricted cubic splines (RCS) to explore potential non-linear relationships and subgroup analyses to identify variations in the observed associations across different demographic and clinical subgroups. In the fully adjusted model, an increment of 10 units in PHR was associated with a decline of 0.014 in cognitive scores (β=-0.014, 95% CI: -0.025, -0.002; P < 0.05). Compared to the lowest quartile, participants in the highest quartile exhibited a 38.4% increased prevalence of cognitive impairment per one-unit increase in PHR (OR = 1.384, 95% CI: 1.012, 1.893; P < 0.05). Subgroup analysis revealed consistent results regarding the relationship between PHR and cognitive impairment across all subgroups. A non-linear relationship between PHR and cognitive impairment was observed using RCS, indicating that an increase in PHR above 111.49 significantly elevated the incidence of cognitive impairment (P < 0.05). Our study demonstrates that a higher PHR is associated with a greater risk of cognitive decline in an older U.S. population, and although further validation is needed, this warrants consideration in clinical assessments and interventions.
Collapse
Affiliation(s)
- Tianyi Wang
- Heilongjiang University of Chinese Medicine, Harbin, 150040, China
| | - Ruwen Zheng
- Heilongjiang University of Chinese Medicine, Harbin, 150040, China
| | - Siqi Zhang
- Heilongjiang University of Chinese Medicine, Harbin, 150040, China
| | - Hongyu Qin
- Heilongjiang University of Chinese Medicine, Harbin, 150040, China
| | - Hong Jin
- Heilongjiang University of Chinese Medicine, Harbin, 150040, China
| | - Yubo Teng
- Heilongjiang University of Chinese Medicine, Harbin, 150040, China
| | - Shuai Ma
- The Second Hospital Affiliated of Heilongjiang, University of Chinese Medicine, Harbin, 150001, China
| | - Miao Zhang
- The Second Hospital Affiliated of Heilongjiang, University of Chinese Medicine, Harbin, 150001, China.
- The Second Affiliated Hospital of Heilongjiang, University of Traditional Chinese Medicine, No.411 Gogol Street, Nangang District, Harbin, 150001, China.
| |
Collapse
|
3
|
Kwon N, Lu YC, Thompson EN, Mancuso RI, Wang L, Zhang PX, Krause DS. CDK9 phosphorylates RUNX1 to promote megakaryocytic fate in megakaryocytic-erythroid progenitors. Blood 2024; 144:1800-1812. [PMID: 39102635 PMCID: PMC11530366 DOI: 10.1182/blood.2024023963] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2024] [Revised: 07/10/2024] [Accepted: 07/26/2024] [Indexed: 08/07/2024] Open
Abstract
ABSTRACT The specification of megakaryocytic (Mk) or erythroid (E) lineages from primary human megakaryocytic-erythroid progenitors (MEPs) is crucial for hematopoietic homeostasis, yet the underlying mechanisms regulating fate specification remain elusive. In this study, we identify RUNX1 as a key modulator of gene expression during MEP fate specification. Overexpression of RUNX1 in primary human MEPs promotes Mk specification, whereas pan-RUNX inhibition favors E specification. Although total RUNX1 levels do not differ between Mk progenitors (MkPs) and E progenitors (ErPs), there are higher levels of serine-phosphorylated RUNX1 in MkPs than ErPs, and mutant RUNX1 with phosphorylated-serine/threonine mimetic mutations (RUNX1-4D) significantly enhances the functional efficacy of RUNX1. To model the effects of RUNX1 variants, we use human erythroleukemia (HEL) cell lines expressing wild-type (WT), phosphomimetic (RUNX1-4D), and nonphosphorylatable (RUNX1-4A) mutants showing that the 3 forms of RUNX1 differentially regulate expression of 2625 genes. Both WT and RUNX1-4D variants increase expression in 40%, and decrease expression in another 40%, with lesser effects of RUNX1-4A. We find a significant overlap between the upregulated genes in WT and RUNX1-4D-expressing HEL cells and those upregulated in primary human MkPs vs MEPs. Although inhibition of known RUNX1 serine/threonine kinases does not affect phosphoserine RUNX1 levels in primary MEPs, specific inhibition of cyclin dependent kinase 9 (CDK9) in MEPs leads to both decreased RUNX1 phosphorylation and increased E commitment. Collectively, our findings show that serine/threonine phosphorylation of RUNX1 promotes Mk fate specification and introduce a novel kinase for RUNX1 linking the fundamental transcriptional machinery with activation of a cell type-specific transcription factor.
Collapse
Affiliation(s)
- Nayoung Kwon
- Department of Cell Biology, Yale University, New Haven, CT
- Yale Stem Cell Center, Yale University, New Haven, CT
| | - Yi-Chien Lu
- Yale Stem Cell Center, Yale University, New Haven, CT
- Department of Laboratory Medicine, Yale University, New Haven, CT
| | - Evrett N. Thompson
- Department of Cell Biology, Yale University, New Haven, CT
- Yale Stem Cell Center, Yale University, New Haven, CT
| | - Rubia Isler Mancuso
- Yale Stem Cell Center, Yale University, New Haven, CT
- Department of Laboratory Medicine, Yale University, New Haven, CT
| | - Lin Wang
- Yale Stem Cell Center, Yale University, New Haven, CT
- Department of Laboratory Medicine, Yale University, New Haven, CT
| | - Ping-Xia Zhang
- Yale Stem Cell Center, Yale University, New Haven, CT
- Department of Laboratory Medicine, Yale University, New Haven, CT
| | - Diane S. Krause
- Department of Cell Biology, Yale University, New Haven, CT
- Yale Stem Cell Center, Yale University, New Haven, CT
- Department of Laboratory Medicine, Yale University, New Haven, CT
- Department of Pathology, Yale School of Medicine, New Haven, CT
| |
Collapse
|
4
|
Xie Q, Zhou J, He C, Xu Y, Tao F, Hu M. Unlocking the intricacies: Exploring the complex interplay between platelets and ovarian cancer. Crit Rev Oncol Hematol 2024; 202:104465. [PMID: 39097249 DOI: 10.1016/j.critrevonc.2024.104465] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2024] [Revised: 07/24/2024] [Accepted: 07/28/2024] [Indexed: 08/05/2024] Open
Abstract
Ovarian cancer, an aggressive malignancy of the female reproductive tract, is frequently linked to an elevated risk of thrombotic events. This association is manifested by a pronounced rise in platelet counts and activation levels. Current research firmly supports the pivotal role of platelets in the oncogenic processes of ovarian cancer, influencing tumor cell proliferation and metastasis. Platelets influence these processes through direct interactions with tumor cells or by secreting cytokines and growth factors that enhance tumor growth, angiogenesis, and metastasis. This review aims to thoroughly dissect the interactions between platelets and ovarian cancer cells, emphasizing their combined role in tumor progression and associated thrombotic events. Additionally, it summarizes therapeutic strategies targeting platelet-cancer interface which show significant promise. Such approaches could not only be effective in managing the primary ovarian tumor but also play a pivotal role in preventing metastasis and attenuating thrombotic complications associated with ovarian cancer.
Collapse
Affiliation(s)
- Qianxin Xie
- Department of Immunology and Microbiology, School of Basic Medical Sciences, Zhejiang Chinese Medical University, Hangzhou, China
| | - Jie Zhou
- Department of Immunology and Microbiology, School of Basic Medical Sciences, Zhejiang Chinese Medical University, Hangzhou, China
| | - Chaonan He
- Department of Immunology and Microbiology, School of Basic Medical Sciences, Zhejiang Chinese Medical University, Hangzhou, China
| | - Ye Xu
- Department of Immunology and Microbiology, School of Basic Medical Sciences, Zhejiang Chinese Medical University, Hangzhou, China
| | - Fangfang Tao
- Department of Immunology and Microbiology, School of Basic Medical Sciences, Zhejiang Chinese Medical University, Hangzhou, China.
| | - Mengjiao Hu
- Department of Immunology and Microbiology, School of Basic Medical Sciences, Zhejiang Chinese Medical University, Hangzhou, China.
| |
Collapse
|
5
|
MacKeigan DT, Yu SY, Chazot N, Zhang D, Khoury CJ, Lei X, Bhoria P, Shen C, Chen P, Zhu G, Rand ML, Heximer S, Ni H. Apolipoprotein A-IV polymorphisms Q360H and T347S attenuate its endogenous inhibition of thrombosis. Biochem Biophys Res Commun 2024; 712-713:149946. [PMID: 38643717 DOI: 10.1016/j.bbrc.2024.149946] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2024] [Accepted: 04/15/2024] [Indexed: 04/23/2024]
Abstract
Platelets are small anucleate cells that play a key role in thrombosis and hemostasis. Our group previously identified apolipoprotein A-IV (apoA-IV) as an endogenous inhibitor of thrombosis by competitive blockade of the αIIbβ3 integrin on platelets. ApoA-IV inhibition of platelets was dependent on the N-terminal D5/D13 residues, and enhanced with absence of the C-terminus, suggesting it sterically hinders its N-terminal platelet binding site. The C-terminus is also the site of common apoA-IV polymorphisms apoA-IV-1a (T347S) and apoA-IV-2 (Q360H). Interestingly, both are linked with an increased risk of cardiovascular disease, however, the underlying mechanism remains unclear. Here, we generated recombinant apoA-IV and found that the Q360H or T347S polymorphisms dampened its inhibition of platelet aggregation in human platelet-rich plasma and gel-filtered platelets, reduced its inhibition of platelet spreading, and its inhibition of P-selectin on activated platelets. Using an ex vivo thrombosis assay, we found that Q360H and T347S attenuated its inhibition of thrombosis at both high (1800s-1) and low (300s-1) shear rates. We then demonstrate a conserved monomer-dimer distribution among apoA-IV WT, Q360H, and T347S and use protein structure modelling software to show Q360H and T347S enhance C-terminal steric hindrance over the N-terminal platelet-binding site. These data provide critical insight into increased cardiovascular risk for individuals with Q360H or T347S polymorphisms.
Collapse
Affiliation(s)
- Daniel T MacKeigan
- Department of Physiology, University of Toronto, ON, Canada; Department of Laboratory Medicine, Keenan Research Centre for Biomedical Science of St. Michael's Hospital, Toronto, ON, Canada; Toronto Platelet Immunobiology Group, Toronto, ON, Canada
| | - Si-Yang Yu
- Department of Cardiology, The First Affiliated Hospital, Jiangxi Medical College, Nanchang University, Nanchang, China; Department of Laboratory Medicine and Pathobiology, University of Toronto, Toronto, ON, Canada
| | - Noa Chazot
- Department of Laboratory Medicine, Keenan Research Centre for Biomedical Science of St. Michael's Hospital, Toronto, ON, Canada; Toronto Platelet Immunobiology Group, Toronto, ON, Canada; Department of Laboratory Medicine and Pathobiology, University of Toronto, Toronto, ON, Canada
| | - Dachuan Zhang
- Department of Laboratory Medicine, Keenan Research Centre for Biomedical Science of St. Michael's Hospital, Toronto, ON, Canada; Toronto Platelet Immunobiology Group, Toronto, ON, Canada; Department of Laboratory Medicine and Pathobiology, University of Toronto, Toronto, ON, Canada
| | - Christopher J Khoury
- Department of Laboratory Medicine, Keenan Research Centre for Biomedical Science of St. Michael's Hospital, Toronto, ON, Canada; Toronto Platelet Immunobiology Group, Toronto, ON, Canada; Department of Laboratory Medicine and Pathobiology, University of Toronto, Toronto, ON, Canada
| | - Xi Lei
- Department of Laboratory Medicine, Keenan Research Centre for Biomedical Science of St. Michael's Hospital, Toronto, ON, Canada; Toronto Platelet Immunobiology Group, Toronto, ON, Canada; CCOA Therapeutics Inc., Toronto, ON, Canada
| | - Preeti Bhoria
- Department of Laboratory Medicine, Keenan Research Centre for Biomedical Science of St. Michael's Hospital, Toronto, ON, Canada; Toronto Platelet Immunobiology Group, Toronto, ON, Canada; Department of Laboratory Medicine and Pathobiology, University of Toronto, Toronto, ON, Canada; CCOA Therapeutics Inc., Toronto, ON, Canada
| | - Chuanbin Shen
- Department of Laboratory Medicine, Keenan Research Centre for Biomedical Science of St. Michael's Hospital, Toronto, ON, Canada; Toronto Platelet Immunobiology Group, Toronto, ON, Canada; Department of Laboratory Medicine and Pathobiology, University of Toronto, Toronto, ON, Canada
| | - Pingguo Chen
- Department of Laboratory Medicine, Keenan Research Centre for Biomedical Science of St. Michael's Hospital, Toronto, ON, Canada; Toronto Platelet Immunobiology Group, Toronto, ON, Canada; Canadian Blood Services Centre for Innovation, Toronto, ON, Canada
| | - Guangheng Zhu
- Department of Laboratory Medicine, Keenan Research Centre for Biomedical Science of St. Michael's Hospital, Toronto, ON, Canada; Toronto Platelet Immunobiology Group, Toronto, ON, Canada; CCOA Therapeutics Inc., Toronto, ON, Canada
| | - Margaret L Rand
- Toronto Platelet Immunobiology Group, Toronto, ON, Canada; Department of Laboratory Medicine and Pathobiology, University of Toronto, Toronto, ON, Canada; Division of Haematology/Oncology, Translational Medicine, Research Institute, The Hospital for Sick Children, Toronto, ON, Canada
| | - Scott Heximer
- Department of Physiology, University of Toronto, ON, Canada; Translational Biology and Engineering Program, Ted Rogers Centre for Heart Research, University of Toronto, Toronto, ON, Canada
| | - Heyu Ni
- Department of Physiology, University of Toronto, ON, Canada; Department of Laboratory Medicine, Keenan Research Centre for Biomedical Science of St. Michael's Hospital, Toronto, ON, Canada; Toronto Platelet Immunobiology Group, Toronto, ON, Canada; Department of Laboratory Medicine and Pathobiology, University of Toronto, Toronto, ON, Canada; CCOA Therapeutics Inc., Toronto, ON, Canada; Canadian Blood Services Centre for Innovation, Toronto, ON, Canada; Department of Medicine, University of Toronto, ON, Canada.
| |
Collapse
|
6
|
Bekker GJ, Oshima K, Araki M, Okuno Y, Kamiya N. Binding Mechanism between Platelet Glycoprotein and Cyclic Peptide Elucidated by McMD-Based Dynamic Docking. J Chem Inf Model 2024; 64:4158-4167. [PMID: 38751042 DOI: 10.1021/acs.jcim.4c00100] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/28/2024]
Abstract
The cyclic peptide OS1 (amino acid sequence: CTERMALHNLC), which has a disulfide bond between both termini cysteine residues, inhibits complex formation between the platelet glycoprotein Ibα (GPIbα) and the von Willebrand factor (vWF) by forming a complex with GPIbα. To study the binding mechanism between GPIbα and OS1 and, therefore, the inhibition mechanism of the protein-protein GPIbα-vWF complex, we have applied our multicanonical molecular dynamics (McMD)-based dynamic docking protocol starting from the unbound state of the peptide. Our simulations have reproduced the experimental complex structure, although the top-ranking structure was an intermediary one, where the peptide was bound in the same location as in the experimental structure; however, the β-switch of GPIbα attained a different conformation. Our analysis showed that subsequent refolding of the β-switch results in a more stable binding configuration, although the transition to the native configuration appears to take some time, during which OS1 could dissociate. Our results show that conformational changes in the β-switch are crucial for successful binding of OS1. Furthermore, we identified several allosteric binding sites of GPIbα that might also interfere with vWF binding, and optimization of the peptide to target these allosteric sites might lead to a more effective inhibitor, as these are not dependent on the β-switch conformation.
Collapse
Affiliation(s)
- Gert-Jan Bekker
- Institute for Protein Research, Osaka University, 3-2 Yamadaoka, Suita, Osaka 565-0871, Japan
| | - Kanji Oshima
- Bio-Pharma Research Laboratories, Kaneka Corporation, 1-8 Miyamae-cho, Takasago-cho, Takasago, Hyogo 676-8688, Japan
| | - Mitsugu Araki
- Graduate School of Medicine, Kyoto University, 53 Shogoin-Kawaharacho, Sakyo-ku, Kyoto 606-8507, Japan
| | - Yasushi Okuno
- Graduate School of Medicine, Kyoto University, 53 Shogoin-Kawaharacho, Sakyo-ku, Kyoto 606-8507, Japan
| | - Narutoshi Kamiya
- Graduate School of Information Science, University of Hyogo, 7-1-28 minatojima Minami-machi, Chuo-ku, Kobe, Hyogo 650-0047, Japan
| |
Collapse
|
7
|
Wang A, Yue K, Yan X, Zhong W, Zhang G, Wang L, Zhang H, Zhang X. Inhibition of platelet adhesion to exposed subendothelial collagen by steric hindrance with blocking peptide nanoparticles. Colloids Surf B Biointerfaces 2024; 237:113866. [PMID: 38520952 DOI: 10.1016/j.colsurfb.2024.113866] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2024] [Revised: 03/04/2024] [Accepted: 03/19/2024] [Indexed: 03/25/2024]
Abstract
The inhibition of platelet adhesion to collagen in exposed vessels represents an innovative approach to the treatment of atherosclerosis and thrombosis. This study aimed to engineer peptide-based nanoparticles that prevent platelet binding to subendothelial collagen by engaging with collagen with high affinity. We examined the interactions between integrin α2/ glycoprotein VI/ von Willebrand factor A3 domain and collagen, as well as between the synthesized peptide nanoparticles and collagen, utilizing molecular dynamics simulations and empirical assays. Our findings indicated that the bond between von Willebrand factor and collagen was more robust. Specifically, the sequences SITTIDV, VDVMQRE, and YLTSEMH in von Willebrand factor were identified as essential for its attachment to collagen. Based on these sequences, three peptide nanoparticles were synthesized (BPa: Capric-GNNQQNYK-SITTIDV, BPb: Capric-GNNQQNYK-VDVMQRE, BPc: Capric-GNNQQNYK-YLTSEMH), each displaying significant affinity towards collagen. Of these, the BPa nanoparticles exhibited the most potent interaction with collagen, leading to a 75% reduction in platelet adhesion.
Collapse
Affiliation(s)
- Anqi Wang
- School of Energy and Environmental Engineering, University of Science and Technology Beijing, Beijing 100083, China
| | - Kai Yue
- School of Energy and Environmental Engineering, University of Science and Technology Beijing, Beijing 100083, China; Shunde Graduate School of University of Science and Technology Beijing, Shunde, Guangdong Province 528399, China.
| | - Xiaotong Yan
- School of Energy and Environmental Engineering, University of Science and Technology Beijing, Beijing 100083, China
| | - Weishen Zhong
- School of Energy and Environmental Engineering, University of Science and Technology Beijing, Beijing 100083, China
| | - Genpei Zhang
- School of Energy and Environmental Engineering, University of Science and Technology Beijing, Beijing 100083, China
| | - Lei Wang
- CAS Key Laboratory for Biomedical Effects of Nanomaterials and Nanosafety, National Center for Nanoscience and Technology (NCNST), Beijing 100190, China
| | - Hua Zhang
- Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100730, China
| | - Xinxin Zhang
- School of Energy and Environmental Engineering, University of Science and Technology Beijing, Beijing 100083, China; Shunde Graduate School of University of Science and Technology Beijing, Shunde, Guangdong Province 528399, China
| |
Collapse
|
8
|
Lee DU, Kayumov M, Park J, Park SK, Kang Y, Ahn Y, Kim W, Yoo SH, Park JK, Kim BG, Oh YS, Jeong IS, Choi DY. Antibiofilm and antithrombotic hydrogel coating based on superhydrophilic zwitterionic carboxymethyl chitosan for blood-contacting devices. Bioact Mater 2024; 34:112-124. [PMID: 38204564 PMCID: PMC10777421 DOI: 10.1016/j.bioactmat.2023.12.009] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2023] [Revised: 12/11/2023] [Accepted: 12/11/2023] [Indexed: 01/12/2024] Open
Abstract
Blood-contacting devices must be designed to minimize the risk of bloodstream-associated infections, thrombosis, and intimal lesions caused by surface friction. However, achieving effective prevention of both bloodstream-associated infections and thrombosis poses a challenge due to the conflicting nature of antibacterial and antithrombotic activities, specifically regarding electrostatic interactions. This study introduced a novel biocompatible hydrogel of sodium alginate and zwitterionic carboxymethyl chitosan (ZW@CMC) with antibacterial and antithrombotic activities for use in catheters. The ZW@CMC hydrogel demonstrates a superhydrophilic surface and good hygroscopic properties, which facilitate the formation of a stable hydration layer with low friction. The zwitterionic-functionalized CMC incorporates an additional negative sulfone group and increased negative charge density in the carboxyl group. This augmentation enhances electrostatic repulsion and facilitates the formation of hydration layer. This leads to exceptional prevention of blood clotting factor adhesion and inhibition of biofilm formation. Subsequently, the ZW@CMC hydrogel exhibited biocompatibility with tests of in vitro cytotoxicity, hemolysis, and catheter friction. Furthermore, in vivo tests of antithrombotic and systemic inflammation models with catheterization indicated that ZW@CMC has significant advantages for practical applications in cardiovascular-related and sepsis treatment. This study opens a new avenue for the development of chitosan-based multifunctional hydrogel for applications in blood-contacting devices.
Collapse
Affiliation(s)
- Dong Uk Lee
- Biomedical Manufacturing Technology Center, Korea Institute of Industrial Technology, Yeongcheon, 38822, Republic of Korea
| | - Mukhammad Kayumov
- Department of Thoracic and Cardiovascular Surgery, Chonnam National University Hospital and Medical School, Gwangju, 61469, Republic of Korea
| | - Junghun Park
- Biomedical Manufacturing Technology Center, Korea Institute of Industrial Technology, Yeongcheon, 38822, Republic of Korea
| | - Se Kye Park
- Biomedical Manufacturing Technology Center, Korea Institute of Industrial Technology, Yeongcheon, 38822, Republic of Korea
| | - Yeongkwon Kang
- Research Institute of Advanced Materials, Seoul National University, Seoul, 08826, Republic of Korea
| | - Yejin Ahn
- Department of Organic and Nano System Engineering, Konkuk University, Seoul, 05029, Republic of Korea
| | - Woojin Kim
- Biomedical Manufacturing Technology Center, Korea Institute of Industrial Technology, Yeongcheon, 38822, Republic of Korea
| | - Seung Hwa Yoo
- Department of Quantum System Engineering, Jeonbuk National University, Jeonju-si, 54896, Republic of Korea
| | | | - Bong-Gi Kim
- Department of Organic and Nano System Engineering, Konkuk University, Seoul, 05029, Republic of Korea
| | - Yong Suk Oh
- Department of Mechanical Engineering, Changwon National University, Changwon, 51140, Republic of Korea
| | - In-Seok Jeong
- Department of Thoracic and Cardiovascular Surgery, Chonnam National University Hospital and Medical School, Gwangju, 61469, Republic of Korea
| | - Dong Yun Choi
- Biomedical Manufacturing Technology Center, Korea Institute of Industrial Technology, Yeongcheon, 38822, Republic of Korea
| |
Collapse
|
9
|
Li J, Xie F, Ma X. Advances in nanomedicines: a promising therapeutic strategy for ischemic cerebral stroke treatment. Nanomedicine (Lond) 2024; 19:811-835. [PMID: 38445614 DOI: 10.2217/nnm-2023-0266] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/07/2024] Open
Abstract
Ischemic stroke, prevalent among the elderly, necessitates attention to reperfusion injury post treatment. Limited drug access to the brain, owing to the blood-brain barrier, restricts clinical applications. Identifying efficient drug carriers capable of penetrating this barrier is crucial. Blood-brain barrier transporters play a vital role in nutrient transport to the brain. Recently, nanoparticles emerged as drug carriers, enhancing drug permeability via surface-modified ligands. This article introduces the blood-brain barrier structure, elucidates reperfusion injury pathogenesis, compiles ischemic stroke treatment drugs, explores nanomaterials for drug encapsulation and emphasizes their advantages over conventional drugs. Utilizing nanoparticles as drug-delivery systems offers targeting and efficiency benefits absent in traditional drugs. The prospects for nanomedicine in stroke treatment are promising.
Collapse
Affiliation(s)
- Jun Li
- Faculty of Environment & Life, Beijing University of Technology, Beijing, 100124, PR China
- Beijing Molecular Hydrogen Research Center, Beijing, 100124, PR China
| | - Fei Xie
- Faculty of Environment & Life, Beijing University of Technology, Beijing, 100124, PR China
- Beijing Molecular Hydrogen Research Center, Beijing, 100124, PR China
| | - Xuemei Ma
- Faculty of Environment & Life, Beijing University of Technology, Beijing, 100124, PR China
- Beijing Molecular Hydrogen Research Center, Beijing, 100124, PR China
| |
Collapse
|
10
|
Feely C, Kaushal N, D’Avino PP, Martin J. Modifying platelets at their birth: anti-thrombotic therapy without haemorrhage. Front Pharmacol 2024; 15:1343896. [PMID: 38562457 PMCID: PMC10982340 DOI: 10.3389/fphar.2024.1343896] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2023] [Accepted: 02/27/2024] [Indexed: 04/04/2024] Open
Abstract
Cardiovascular disease is a leading cause of death. The current approach to the prevention of arterial thrombosis in cardiovascular disease is dependent on the use of therapies which inhibit the activation of platelets. Predictably these are associated with an increased risk of haemorrhage which causes significant morbidity. The thrombotic potential of an activated platelet is modifiable; being determined before thrombopoiesis. Increased megakaryocyte ploidy is associated with larger and more active platelets carrying an increased risk of thrombosis. The reduction in the ploidy of megakaryocytes is therefore a novel area of therapeutic interest for reducing thrombosis. We propose a new therapeutic approach for the prevention and treatment of thrombosis by targeting the reduction in ploidy of megakaryocytes. We examine the role of a receptor mediated event causing megakaryocytes to increase ploidy, the potential for targeting the molecular mechanisms underpinning megakaryocyte endomitosis and the existence of two separate regulatory pathways to maintain haemostasis by altering the thrombotic potential of platelets as targets for novel therapeutic approaches producing haemostatically competent platelets which are not prothrombotic.
Collapse
Affiliation(s)
- Conor Feely
- Centre for Clinical Pharmacology, Institute of Health Informatics, University College London, London, United Kingdom
| | - Nitika Kaushal
- Centre for Clinical Pharmacology, Institute of Health Informatics, University College London, London, United Kingdom
| | - Pier Paolo D’Avino
- Department of Pathology, University of Cambridge, Cambridge, United Kingdom
| | - John Martin
- Centre for Clinical Pharmacology, Institute of Health Informatics, University College London, London, United Kingdom
- Division of Medicine, University College London, London, United Kingdom
| |
Collapse
|
11
|
Li Y, Girard R, Srinath A, Cruz DV, Ciszewski C, Chen C, Lightle R, Romanos S, Sone JY, Moore T, DeBiasse D, Stadnik A, Lee JJ, Shenkar R, Koskimäki J, Lopez-Ramirez MA, Marchuk DA, Ginsberg MH, Kahn ML, Shi C, Awad IA. Transcriptomic signatures of individual cell types in cerebral cavernous malformation. Cell Commun Signal 2024; 22:23. [PMID: 38195510 PMCID: PMC10775676 DOI: 10.1186/s12964-023-01301-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2023] [Accepted: 08/30/2023] [Indexed: 01/11/2024] Open
Abstract
Cerebral cavernous malformation (CCM) is a hemorrhagic neurovascular disease with no currently available therapeutics. Prior evidence suggests that different cell types may play a role in CCM pathogenesis. The contribution of each cell type to the dysfunctional cellular crosstalk remains unclear. Herein, RNA-seq was performed on fluorescence-activated cell sorted endothelial cells (ECs), pericytes, and neuroglia from CCM lesions and non-lesional brain tissue controls. Differentially Expressed Gene (DEG), pathway and Ligand-Receptor (LR) analyses were performed to characterize the dysfunctional genes of respective cell types within CCMs. Common DEGs among all three cell types were related to inflammation and endothelial-to-mesenchymal transition (EndMT). DEG and pathway analyses supported a role of lesional ECs in dysregulated angiogenesis and increased permeability. VEGFA was particularly upregulated in pericytes. Further pathway and LR analyses identified vascular endothelial growth factor A/ vascular endothelial growth factor receptor 2 signaling in lesional ECs and pericytes that would result in increased angiogenesis. Moreover, lesional pericytes and neuroglia predominantly showed DEGs and pathways mediating the immune response. Further analyses of cell specific gene alterations in CCM endorsed potential contribution to EndMT, coagulation, and a hypoxic microenvironment. Taken together, these findings motivate mechanistic hypotheses regarding non-endothelial contributions to lesion pathobiology and may lead to novel therapeutic targets. Video Abstract.
Collapse
Affiliation(s)
- Ying Li
- Department of Neurosurgery, First Affiliated Hospital of Harbin Medical University, Harbin, Heilongjiang, China
- Department of Neurological Surgery, Neurovascular Surgery Program, The University of Chicago, Chicago, IL, USA
| | - Romuald Girard
- Department of Neurological Surgery, Neurovascular Surgery Program, The University of Chicago, Chicago, IL, USA
| | - Abhinav Srinath
- Department of Neurological Surgery, Neurovascular Surgery Program, The University of Chicago, Chicago, IL, USA
| | - Diana Vera Cruz
- Center for Research Informatics, The University of Chicago, Chicago, IL, USA
| | - Cezary Ciszewski
- Human Disease and Immune Discovery Core, The University of Chicago, Chicago, IL, USA
| | - Chang Chen
- Center for Research Informatics, The University of Chicago, Chicago, IL, USA
| | - Rhonda Lightle
- Department of Neurological Surgery, Neurovascular Surgery Program, The University of Chicago, Chicago, IL, USA
| | - Sharbel Romanos
- Department of Neurological Surgery, Neurovascular Surgery Program, The University of Chicago, Chicago, IL, USA
| | - Je Yeong Sone
- Department of Neurological Surgery, Neurovascular Surgery Program, The University of Chicago, Chicago, IL, USA
| | - Thomas Moore
- Department of Neurological Surgery, Neurovascular Surgery Program, The University of Chicago, Chicago, IL, USA
| | - Dorothy DeBiasse
- Department of Neurological Surgery, Neurovascular Surgery Program, The University of Chicago, Chicago, IL, USA
| | - Agnieszka Stadnik
- Department of Neurological Surgery, Neurovascular Surgery Program, The University of Chicago, Chicago, IL, USA
| | - Justine J Lee
- Department of Neurological Surgery, Neurovascular Surgery Program, The University of Chicago, Chicago, IL, USA
| | - Robert Shenkar
- Department of Neurological Surgery, Neurovascular Surgery Program, The University of Chicago, Chicago, IL, USA
| | - Janne Koskimäki
- Department of Neurosurgery, Division of Clinical Neurosciences, Turku University Hospital and University of Turku, Turku, Finland
- Department of Neurosurgery, Oulu University Hospital, Neurocenter, Oulu, Finland
| | - Miguel A Lopez-Ramirez
- Department of Medicine, University of California, La Jolla, San Diego, CA, USA
- Department of Pharmacology, University of California, La Jolla, San Diego, CA, USA
| | - Douglas A Marchuk
- Department of Molecular Genetics and Microbiology, Duke University School of Medicine, Durham, NC, USA
| | - Mark H Ginsberg
- Department of Medicine, University of California, La Jolla, San Diego, CA, USA
| | - Mark L Kahn
- Department of Medicine and Cardiovascular Institute, University of Pennsylvania, Philadelphia, PA, USA
| | - Changbin Shi
- Department of Neurosurgery, First Affiliated Hospital of Harbin Medical University, Harbin, Heilongjiang, China
| | - Issam A Awad
- Department of Neurological Surgery, Neurovascular Surgery Program, The University of Chicago, Chicago, IL, USA.
- Department of Neurological Surgery, University of Chicago Medicine, 5841 S Maryland, MC3026/Neurosurgery J341, Chicago, IL, 60637, USA.
| |
Collapse
|
12
|
da Costa NMM, Parisi L, Ghezzi B, Elviri L, de Souza SLS, Novaes AB, de Oliveira PT, Macaluso GM, Palioto DB. Anti-Fibronectin Aptamer Modifies Blood Clot Pattern and Stimulates Osteogenesis: An Ex Vivo Study. Biomimetics (Basel) 2023; 8:582. [PMID: 38132522 PMCID: PMC10741424 DOI: 10.3390/biomimetics8080582] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2023] [Revised: 11/18/2023] [Accepted: 11/22/2023] [Indexed: 12/23/2023] Open
Abstract
BACKGROUND Scaffold (SCA) functionalization with aptamers (APT) provides adsorption of specific bioactive molecules on biomaterial surfaces. The aim of this study was to observe if SCA enriched with anti-fibronectin APT can favor coagulum (PhC) and osteoblasts (OSB) differentiation. METHODS 20 μg of APT was functionalized on SCA by simple adsorption. For PhC formation, SCAs were inserted into rat calvaria defects for 17 h. Following proper transportation (buffer solution PB), OSBs (UMR-106 lineage) were seeded over PhC + SCAs with and without APT. Cells and PhC morphology, PhC cell population, protein labeling and gene expression were observed in different time points. RESULTS The APT induced higher alkaline phosphatase and bone sialoprotein immunolabeling in OSB. Mesenchymal stem cells, leukocytes and lymphocytes cells were detected more in the APT group than when scaffolds were not functionalized. Additionally, an enriched and dense fibrin network and different cell types were observed, with more OSB and white blood cells in PhC formed on SCA with APT. The gene expression showed higher transforming growth factor beta 1 (TGF-b1) detection in SCA with APT. CONCLUSIONS The SCA functionalization with fibronectin aptamers may alter key morphological and functional features of blood clot formation, and provides a selective expression of proteins related to osteo differentiation. Additionally, aptamers increase TGF-b1 gene expression, which is highly associated with improvements in regenerative therapies.
Collapse
Affiliation(s)
- Natacha Malu Miranda da Costa
- Department of Oral and Maxillofacial Surgery and Periodontology, School of Dentistry of Ribeirão Preto, University of São Paulo, Avenida Do Café-Subsetor Oeste-11 (N-11), Ribeirão Preto 14040-904, SP, Brazil; (N.M.M.d.C.); (S.L.S.d.S.); (A.B.N.J.)
| | - Ludovica Parisi
- Laboratory for Oral Molecular Biology, Department of Orthodontics and Dentofacial Orthopedics, University of Bern, Freiburgstrasse 3, 3010 Bern, Switzerland;
| | - Benedetta Ghezzi
- Centro Universitario di Odontoiatria, Dipartimento di Medicina e Chirurgia, University of Parma, Via Gramsci 14, 43126 Parma, Italy;
| | - Lisa Elviri
- Istituto dei Materiali per l’Elettronica ed il Magnetismo, Consiglio Nazionale Delle Ricerche, Parco Area Delle Scienze 37/A, 43124 Parma, Italy;
| | - Sergio Luis Scombatti de Souza
- Department of Oral and Maxillofacial Surgery and Periodontology, School of Dentistry of Ribeirão Preto, University of São Paulo, Avenida Do Café-Subsetor Oeste-11 (N-11), Ribeirão Preto 14040-904, SP, Brazil; (N.M.M.d.C.); (S.L.S.d.S.); (A.B.N.J.)
| | - Arthur Belém Novaes
- Department of Oral and Maxillofacial Surgery and Periodontology, School of Dentistry of Ribeirão Preto, University of São Paulo, Avenida Do Café-Subsetor Oeste-11 (N-11), Ribeirão Preto 14040-904, SP, Brazil; (N.M.M.d.C.); (S.L.S.d.S.); (A.B.N.J.)
| | - Paulo Tambasco de Oliveira
- Department of Basic and Oral Biology, School of Dentistry of Ribeirão Preto, University of São Paulo, Avenida Do Café-Subsetor Oeste-11 (N-11), Ribeirão Preto 14040-904, SP, Brazil;
| | - Guido Maria Macaluso
- Dipartimento di Scienze Degli Alimenti e del Farmaco, Parco Area Delle Scienze 27/A, 43124 Parma, Italy;
| | - Daniela Bazan Palioto
- Department of Oral and Maxillofacial Surgery and Periodontology, School of Dentistry of Ribeirão Preto, University of São Paulo, Avenida Do Café-Subsetor Oeste-11 (N-11), Ribeirão Preto 14040-904, SP, Brazil; (N.M.M.d.C.); (S.L.S.d.S.); (A.B.N.J.)
| |
Collapse
|
13
|
Zou J, Sun R, He M, Chen Y, Cheng Y, Xia C, Ma Y, Zheng S, Fu X, Yuan Z, Lan M, Lou K, Chen X, Gao F. Sequential Rocket-Mode Bioactivating Ticagrelor Prodrug Nanoplatform Combining Light-Switchable Diphtherin Transgene System for Breast Cancer Metastasis Inhibition. ACS APPLIED MATERIALS & INTERFACES 2023; 15:53198-53216. [PMID: 37942626 DOI: 10.1021/acsami.3c11594] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/10/2023]
Abstract
The increased risk of breast cancer metastasis is closely linked to the effects of platelets. Our previously light-switchable diphtheria toxin A fragment (DTA) gene system, known as the LightOn system, has demonstrated significant therapeutic potential; it lacks antimetastatic capabilities. In this study, we devised an innovative system by combining cell membrane fusion liposomes (CML) loaded with the light-switchable transgene DTA (pDTA) and a ticagrelor (Tig) prodrug. This innovative system, named the sequential rocket-mode bioactivating drug delivery system (pDTA-Tig@CML), aims to achieve targeted pDTA delivery while concurrently inhibiting platelet activity through the sequential release of Tig triggered by reactive oxygen species with the tumor microenvironment. In vitro investigations have indicated that pDTA-Tig@CML, with its ability to sequentially release Tig and pDTA, effectively suppresses platelet activity, resulting in improved therapeutic outcomes and the mitigation of platelet driven metastasis in breast cancer. Furthermore, pDTA-Tig@CML exhibits enhanced tumor aggregation and successfully restrains tumor growth and metastasis. It also reduces the levels of ADP, ATP, TGF-β, and P-selectin both in vitro and in vivo, underscoring the advantages of combining the bioactivating Tig prodrug nanoplatform with the LightOn system. Consequently, pDTA-Tig@CML emerges as a promising light-switchable DTA transgene system, offering a novel bioactivating prodrug platform for breast cancer treatment.
Collapse
Affiliation(s)
- Jiafeng Zou
- Shanghai Frontier Science Research Base of Optogenetic Techniques for Cell Metabolism, School of Pharmacy, East China University of Science and Technology, Shanghai 200237, China
- Shanghai Key Laboratory of Functional Materials Chemistry, East China University of Science and Technology, Shanghai 200237, China
- Shanghai Key Laboratory of New Drug Design, School of Pharmacy, East China University of Science and Technology, Shanghai 200237, China
| | - Rui Sun
- Shanghai Frontier Science Research Base of Optogenetic Techniques for Cell Metabolism, School of Pharmacy, East China University of Science and Technology, Shanghai 200237, China
| | - Muye He
- Shanghai Frontier Science Research Base of Optogenetic Techniques for Cell Metabolism, School of Pharmacy, East China University of Science and Technology, Shanghai 200237, China
| | - You Chen
- Shanghai Frontier Science Research Base of Optogenetic Techniques for Cell Metabolism, School of Pharmacy, East China University of Science and Technology, Shanghai 200237, China
| | - Yi Cheng
- Shanghai Frontier Science Research Base of Optogenetic Techniques for Cell Metabolism, School of Pharmacy, East China University of Science and Technology, Shanghai 200237, China
| | - Chuanhe Xia
- Shanghai Frontier Science Research Base of Optogenetic Techniques for Cell Metabolism, School of Pharmacy, East China University of Science and Technology, Shanghai 200237, China
| | - Ying Ma
- Shanghai Frontier Science Research Base of Optogenetic Techniques for Cell Metabolism, School of Pharmacy, East China University of Science and Technology, Shanghai 200237, China
| | - Shulei Zheng
- Shanghai Frontier Science Research Base of Optogenetic Techniques for Cell Metabolism, School of Pharmacy, East China University of Science and Technology, Shanghai 200237, China
| | - Xiuzhi Fu
- Shanghai Frontier Science Research Base of Optogenetic Techniques for Cell Metabolism, School of Pharmacy, East China University of Science and Technology, Shanghai 200237, China
| | - Zeting Yuan
- Shanghai Frontier Science Research Base of Optogenetic Techniques for Cell Metabolism, School of Pharmacy, East China University of Science and Technology, Shanghai 200237, China
- Interventional Cancer Institute of Chinese Integrative Medicine, Putuo Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai 200062, China
| | - Minbo Lan
- Shanghai Key Laboratory of Functional Materials Chemistry, East China University of Science and Technology, Shanghai 200237, China
| | - Kaiyan Lou
- Shanghai Frontier Science Research Base of Optogenetic Techniques for Cell Metabolism, School of Pharmacy, East China University of Science and Technology, Shanghai 200237, China
- Shanghai Key Laboratory of New Drug Design, School of Pharmacy, East China University of Science and Technology, Shanghai 200237, China
| | - Xianjun Chen
- Shanghai Frontier Science Research Base of Optogenetic Techniques for Cell Metabolism, School of Pharmacy, East China University of Science and Technology, Shanghai 200237, China
- Optogenetics and Synthetic Biology Interdisciplinary Research Center, State Key Laboratory of Bioreactor Engineering, East China University of Science and Technology, Shanghai 200237, China
- CAS Center for Excellence in Brain Science, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, Shanghai 200031, China
- Research Unit of New Techniques for Live-Cell Metabolic Imaging, Chinese Academy of Medical Sciences, Beijing 100050, China
| | - Feng Gao
- Shanghai Frontier Science Research Base of Optogenetic Techniques for Cell Metabolism, School of Pharmacy, East China University of Science and Technology, Shanghai 200237, China
- Shanghai Key Laboratory of Functional Materials Chemistry, East China University of Science and Technology, Shanghai 200237, China
- Shanghai Key Laboratory of New Drug Design, School of Pharmacy, East China University of Science and Technology, Shanghai 200237, China
- Optogenetics and Synthetic Biology Interdisciplinary Research Center, State Key Laboratory of Bioreactor Engineering, East China University of Science and Technology, Shanghai 200237, China
- Engineering Research Center of Pharmaceutical Process Chemistry, Ministry of Education, School of Pharmacy, East China University of Science and Technology, Shanghai 200237, China
| |
Collapse
|
14
|
Beura SK, Dhapola R, Panigrahi AR, Yadav P, Kumar R, Reddy DH, Singh SK. Antiplatelet drugs: Potential therapeutic options for the management of neurodegenerative diseases. Med Res Rev 2023; 43:1835-1877. [PMID: 37132460 DOI: 10.1002/med.21965] [Citation(s) in RCA: 9] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2022] [Revised: 03/13/2023] [Accepted: 04/12/2023] [Indexed: 05/04/2023]
Abstract
The blood platelet plays an important role but often remains under-recognized in several vascular complications and associated diseases. Surprisingly, platelet hyperactivity and hyperaggregability have often been considered the critical risk factors for developing vascular dysfunctions in several neurodegenerative diseases (NDDs) like Alzheimer's disease, Parkinson's disease, Huntington's disease, and multiple sclerosis. In addition, platelet structural and functional impairments promote prothrombotic and proinflammatory environment that can aggravate the progression of several NDDs. These findings provide the rationale for using antiplatelet agents not only to prevent morbidity but also to reduce mortality caused by NDDs. Therefore, we thoroughly review the evidence supporting the potential pleiotropic effects of several novel classes of synthetic antiplatelet drugs, that is, cyclooxygenase inhibitors, adenosine diphosphate receptor antagonists, protease-activated receptor blockers, and glycoprotein IIb/IIIa receptor inhibitors in NDDs. Apart from this, the review also emphasizes the recent developments of selected natural antiplatelet phytochemicals belonging to key classes of plant-based bioactive compounds, including polyphenols, alkaloids, terpenoids, and flavonoids as potential therapeutic candidates in NDDs. We believe that the broad analysis of contemporary strategies and specific approaches for plausible therapeutic treatment for NDDs presented in this review could be helpful for further successful research in this area.
Collapse
Affiliation(s)
- Samir K Beura
- Department of Zoology, School of Biological Sciences, Central University of Punjab, Ghudda, Bathinda, Punjab, India
| | - Rishika Dhapola
- Department of Pharmacology, School of Health Sciences, Central University of Punjab, Ghudda, Bathinda, Punjab, India
| | - Abhishek R Panigrahi
- Department of Zoology, School of Biological Sciences, Central University of Punjab, Ghudda, Bathinda, Punjab, India
| | - Pooja Yadav
- Department of Zoology, School of Biological Sciences, Central University of Punjab, Ghudda, Bathinda, Punjab, India
| | - Reetesh Kumar
- Department of Agricultural Sciences, Institute of Applied Sciences and Humanities, GLA University, Mathura, Uttar Pradesh, India
| | - Dibbanti H Reddy
- Department of Pharmacology, School of Health Sciences, Central University of Punjab, Ghudda, Bathinda, Punjab, India
| | - Sunil K Singh
- Department of Zoology, School of Biological Sciences, Central University of Punjab, Ghudda, Bathinda, Punjab, India
| |
Collapse
|
15
|
Zhou L, Zhang Z, Tian Y, Li Z, Liu Z, Zhu S. The critical role of platelet in cancer progression and metastasis. Eur J Med Res 2023; 28:385. [PMID: 37770941 PMCID: PMC10537080 DOI: 10.1186/s40001-023-01342-w] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2023] [Accepted: 09/04/2023] [Indexed: 09/30/2023] Open
Abstract
Platelets play a crucial role in cancer blood metastasis. Various cancer-related factors such as Toll-like receptors (TLRs), adenosine diphosphate (ADP) or extracellular matrix (ECM) can activate these small particles that function in hemostasis and thrombosis. Moreover, platelets induce Epithelial Mesenchymal Transition (EMT) to promote cancer progression and invasiveness. The activated platelets protect circulating tumor cells from immune surveillance and anoikis. They also mediate tumor cell arrest, extravasation and angiogenesis in distant organs through direct or indirect modulation, creating a metastatic microenvironment. This review summarizes the recent advances and progress of mechanisms in platelet activation and its interaction with cancer cells in metastasis.
Collapse
Affiliation(s)
- Lin Zhou
- Department of Microbiology, Immunology and Molecular Genetics, University of California, Los Angeles, CA, 90095, USA
| | - Zhe Zhang
- Department of Gastrointestinal Surgery, Huizhou Municipal Central Hospital, Huizhou, Guangdong, 516001, People's Republic of China
| | - Yizhou Tian
- Department of Oncology, Zhoushan Hospital of Traditional Chinese Medicine (Affiliated to Zhejiang University of Traditional Chinese Medicine), Zhoushan, 316000, China
| | - Zefei Li
- Department of Oncology, Zhoushan Hospital of Traditional Chinese Medicine (Affiliated to Zhejiang University of Traditional Chinese Medicine), Zhoushan, 316000, China
| | - Zhongliang Liu
- Department of Oncology, Zhoushan Hospital of Traditional Chinese Medicine (Affiliated to Zhejiang University of Traditional Chinese Medicine), Zhoushan, 316000, China.
| | - Sibo Zhu
- Department of Oncology, Zhoushan Hospital of Traditional Chinese Medicine (Affiliated to Zhejiang University of Traditional Chinese Medicine), Zhoushan, 316000, China.
- School of Life Sciences, Fudan University, Shanghai, 200438, China.
| |
Collapse
|
16
|
Zhao J, Xu X, Gao Y, Yu Y, Li C. Crosstalk between Platelets and SARS-CoV-2: Implications in Thrombo-Inflammatory Complications in COVID-19. Int J Mol Sci 2023; 24:14133. [PMID: 37762435 PMCID: PMC10531760 DOI: 10.3390/ijms241814133] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2023] [Revised: 08/14/2023] [Accepted: 08/22/2023] [Indexed: 09/29/2023] Open
Abstract
The SARS-CoV-2 virus, causing the devastating COVID-19 pandemic, has been reported to affect platelets and cause increased thrombotic events, hinting at the possible bidirectional interactions between platelets and the virus. In this review, we discuss the potential mechanisms underlying the increased thrombotic events as well as altered platelet count and activity in COVID-19. Inspired by existing knowledge on platelet-pathogen interactions, we propose several potential antiviral strategies that platelets might undertake to combat SARS-CoV-2, including their abilities to internalize the virus, release bioactive molecules to interfere with viral infection, and modulate the functions of immune cells. Moreover, we discuss current and potential platelet-targeted therapeutic strategies in controlling COVID-19, including antiplatelet drugs, anticoagulants, and inflammation-targeting treatments. These strategies have shown promise in clinical settings to alleviate the severity of thrombo-inflammatory complications and reduce the mortality rate among COVID-19 patients. In conclusion, an in-depth understanding of platelet-SARS-CoV-2 interactions may uncover novel mechanisms underlying severe COVID-19 complications and could provide new therapeutic avenues for managing this disease.
Collapse
Affiliation(s)
| | | | | | - Yijing Yu
- School of Medicine, The Chinese University of Hong Kong, Shenzhen 518172, China; (J.Z.); (X.X.); (Y.G.)
| | - Conglei Li
- School of Medicine, The Chinese University of Hong Kong, Shenzhen 518172, China; (J.Z.); (X.X.); (Y.G.)
| |
Collapse
|
17
|
Amalia M, Puteri MU, Saputri FC, Sauriasari R, Widyantoro B. Platelet Glycoprotein-Ib (GPIb) May Serve as a Bridge between Type 2 Diabetes Mellitus (T2DM) and Atherosclerosis, Making It a Potential Target for Antiplatelet Agents in T2DM Patients. Life (Basel) 2023; 13:1473. [PMID: 37511848 PMCID: PMC10381765 DOI: 10.3390/life13071473] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2023] [Revised: 06/23/2023] [Accepted: 06/26/2023] [Indexed: 07/30/2023] Open
Abstract
Type 2 diabetes mellitus (T2DM) is a persistent metabolic condition that contributes to the development of cardiovascular diseases. Numerous studies have provided evidence that individuals with T2DM are at a greater risk of developing cardiovascular diseases, typically two to four times more likely than those without T2DM, mainly due to an increased risk of atherosclerosis. The rupture of an atherosclerotic plaque leading to pathological thrombosis is commonly recognized as a significant factor in advancing cardiovascular diseases caused by TD2M, with platelets inducing the impact of plaque rupture in established atherosclerosis and predisposing to the primary expansion of atherosclerosis. Studies suggest that individuals with T2DM have platelets that display higher baseline activation and reactivity than those without the condition. The expression enhancement of several platelet receptors is known to regulate platelet activation signaling, including platelet glycoprotein-Ib (GPIb). Furthermore, the high expression of platelet GP1b has been reported to increase the risk of platelet adhesion, platelet-leucocyte interaction, and thrombo-inflammatory pathology. However, the study exploring the role of GP1b in promoting platelet activation-induced cardiovascular diseases in T2DM patients is still limited. Therefore, we summarize the important findings regarding pathophysiological continuity between T2DM, platelet GPIb, and atherosclerosis and highlight the potential therapy targeting GPIb as a novel antiplatelet agent for preventing further cardiovascular incidents in TD2M patients.
Collapse
Affiliation(s)
- Muttia Amalia
- Doctoral Program, Faculty of Pharmacy, Universitas Indonesia, Kampus UI Depok, Depok 16424, Indonesia
| | - Meidi Utami Puteri
- Laboratory of Pharmacology-Toxicology, Faculty of Pharmacy, Universitas Indonesia, Kampus UI Depok, Depok 16424, Indonesia
| | - Fadlina Chany Saputri
- Laboratory of Pharmacology-Toxicology, Faculty of Pharmacy, Universitas Indonesia, Kampus UI Depok, Depok 16424, Indonesia
| | - Rani Sauriasari
- Faculty of Pharmacy, Universitas Indonesia, Kampus UI Depok, Depok 16424, Indonesia
| | - Bambang Widyantoro
- National Cardiovascular Center Harapan Kita, Department of Cardiology and Vascular Medicine, Faculty of Medicine, Universitas Indonesia, Jakarta 11420, Indonesia
| |
Collapse
|
18
|
Dhanesha N, Ansari J, Pandey N, Kaur H, Virk C, Stokes KY. Poststroke venous thromboembolism and neutrophil activation: an illustrated review. Res Pract Thromb Haemost 2023; 7:100170. [PMID: 37274177 PMCID: PMC10236222 DOI: 10.1016/j.rpth.2023.100170] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2022] [Revised: 04/21/2023] [Accepted: 04/22/2023] [Indexed: 06/06/2023] Open
Abstract
Patients with acute ischemic stroke are at a high risk of venous thromboembolism (VTE), such as deep vein thrombosis (DVT), estimated to affect approximately 80,000 patients with stroke each year in the United States. The prevalence of symptomatic DVT after acute stroke is approximately 10%. VTE is associated with increased rates of in-hospital death and disability, with higher prevalence of in-hospital complications and increased 1-year mortality in patients with stroke. Current guidelines recommend the use of pharmacologic VTE prophylaxis in patients with acute ischemic stroke. However, thromboprophylaxis prevents only half of expected VTE events and is associated with high risk of bleeding, suggesting the need for targeted alternative treatments to reduce VTE risk in these patients. Neutrophils are among the first cells in blood to respond after ischemic stroke. Importantly, coordinated interactions among neutrophils, platelets, and endothelial cells contribute to the development of DVT. In case of stroke and other related immune disorders, such as antiphospholipid syndrome, neutrophils potentiate thrombus propagation through the formation of neutrophil-platelet aggregates, secreting inflammatory mediators, complement activation, releasing tissue factor, and producing neutrophil extracellular traps. In this illustrated review article, we present epidemiology and management of poststroke VTE, preclinical and clinical evidence of neutrophil hyperactivation in stroke, and mechanisms for neutrophil-mediated VTE in the context of stroke. Given the hyperactivation of circulating neutrophils in patients with stroke, we propose that a better understanding of molecular mechanisms leading to neutrophil activation may result in the development of novel therapeutics to reduce the risk of VTE in this patient population.
Collapse
Affiliation(s)
- Nirav Dhanesha
- Department of Pathology and Translational Pathobiology, Louisiana State University Health Sciences Center at Shreveport, Shreveport, USA
| | - Junaid Ansari
- Department of Neurology, Louisiana State University Health Sciences Center at Shreveport, Shreveport, USA
| | - Nilesh Pandey
- Department of Pathology and Translational Pathobiology, Louisiana State University Health Sciences Center at Shreveport, Shreveport, USA
| | - Harpreet Kaur
- Department of Pathology and Translational Pathobiology, Louisiana State University Health Sciences Center at Shreveport, Shreveport, USA
| | - Chiranjiv Virk
- Division of Vascular Surgery and Endovascular Surgery, Louisiana State University Health Sciences Center at Shreveport, Shreveport, USA
| | - Karen Y. Stokes
- Department of Molecular and Cellular Physiology, Louisiana State University Health Sciences Center at Shreveport, Shreveport, USA
| |
Collapse
|
19
|
Ma X, Liang J, Zhu G, Bhoria P, Shoara AA, MacKeigan DT, Khoury CJ, Slavkovic S, Lin L, Karakas D, Chen Z, Prifti V, Liu Z, Shen C, Li Y, Zhang C, Dou J, Rousseau Z, Zhang J, Ni T, Lei X, Chen P, Wu X, Shaykhalishahi H, Mubareka S, Connelly KA, Zhang H, Rotstein O, Ni H. SARS-CoV-2 RBD and Its Variants Can Induce Platelet Activation and Clearance: Implications for Antibody Therapy and Vaccinations against COVID-19. RESEARCH (WASHINGTON, D.C.) 2023; 6:0124. [PMID: 37223472 PMCID: PMC10202384 DOI: 10.34133/research.0124] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/20/2022] [Accepted: 03/28/2023] [Indexed: 10/10/2023]
Abstract
The COVID-19 pandemic caused by SARS-CoV-2 virus is an ongoing global health burden. Severe cases of COVID-19 and the rare cases of COVID-19 vaccine-induced-thrombotic-thrombocytopenia (VITT) are both associated with thrombosis and thrombocytopenia; however, the underlying mechanisms remain inadequately understood. Both infection and vaccination utilize the spike protein receptor-binding domain (RBD) of SARS-CoV-2. We found that intravenous injection of recombinant RBD caused significant platelet clearance in mice. Further investigation revealed the RBD could bind platelets, cause platelet activation, and potentiate platelet aggregation, which was exacerbated in the Delta and Kappa variants. The RBD-platelet interaction was partially dependent on the β3 integrin as binding was significantly reduced in β3-/- mice. Furthermore, RBD binding to human and mouse platelets was significantly reduced with related αIIbβ3 antagonists and mutation of the RGD (arginine-glycine-aspartate) integrin binding motif to RGE (arginine-glycine-glutamate). We developed anti-RBD polyclonal and several monoclonal antibodies (mAbs) and identified 4F2 and 4H12 for their potent dual inhibition of RBD-induced platelet activation, aggregation, and clearance in vivo, and SARS-CoV-2 infection and replication in Vero E6 cells. Our data show that the RBD can bind platelets partially though αIIbβ3 and induce platelet activation and clearance, which may contribute to thrombosis and thrombocytopenia observed in COVID-19 and VITT. Our newly developed mAbs 4F2 and 4H12 have potential not only for diagnosis of SARS-CoV-2 virus antigen but also importantly for therapy against COVID-19.
Collapse
Affiliation(s)
- Xiaoying Ma
- Department of Laboratory Medicine and Pathobiology,
University of Toronto, Toronto, ON, Canada
- Department of Laboratory Medicine,
Keenan Research Centre for Biomedical Science of St. Michael’s Hospital, Toronto, ON, Canada
- Toronto Platelet Immunobiology Group, Toronto, ON, Canada
| | - Jady Liang
- Department of Laboratory Medicine,
Keenan Research Centre for Biomedical Science of St. Michael’s Hospital, Toronto, ON, Canada
- Department of Physiology,
University of Toronto, Toronto, ON, Canada
| | - Guangheng Zhu
- Department of Laboratory Medicine,
Keenan Research Centre for Biomedical Science of St. Michael’s Hospital, Toronto, ON, Canada
- Toronto Platelet Immunobiology Group, Toronto, ON, Canada
- CCOA Therapeutics Inc., Toronto, ON, Canada
| | - Preeti Bhoria
- Department of Laboratory Medicine and Pathobiology,
University of Toronto, Toronto, ON, Canada
- Department of Laboratory Medicine,
Keenan Research Centre for Biomedical Science of St. Michael’s Hospital, Toronto, ON, Canada
- Toronto Platelet Immunobiology Group, Toronto, ON, Canada
- CCOA Therapeutics Inc., Toronto, ON, Canada
| | - Aron A. Shoara
- Department of Laboratory Medicine,
Keenan Research Centre for Biomedical Science of St. Michael’s Hospital, Toronto, ON, Canada
- Toronto Platelet Immunobiology Group, Toronto, ON, Canada
- Department of Physiology,
University of Toronto, Toronto, ON, Canada
| | - Daniel T. MacKeigan
- Department of Laboratory Medicine,
Keenan Research Centre for Biomedical Science of St. Michael’s Hospital, Toronto, ON, Canada
- Toronto Platelet Immunobiology Group, Toronto, ON, Canada
- Department of Physiology,
University of Toronto, Toronto, ON, Canada
| | - Christopher J. Khoury
- Department of Laboratory Medicine and Pathobiology,
University of Toronto, Toronto, ON, Canada
- Department of Laboratory Medicine,
Keenan Research Centre for Biomedical Science of St. Michael’s Hospital, Toronto, ON, Canada
- Toronto Platelet Immunobiology Group, Toronto, ON, Canada
| | - Sladjana Slavkovic
- Department of Laboratory Medicine and Pathobiology,
University of Toronto, Toronto, ON, Canada
- Department of Laboratory Medicine,
Keenan Research Centre for Biomedical Science of St. Michael’s Hospital, Toronto, ON, Canada
- CCOA Therapeutics Inc., Toronto, ON, Canada
- Canadian Blood Services Centre for Innovation, Toronto, ON, Canada
| | - Lisha Lin
- Department of Laboratory Medicine,
Keenan Research Centre for Biomedical Science of St. Michael’s Hospital, Toronto, ON, Canada
- Toronto Platelet Immunobiology Group, Toronto, ON, Canada
| | - Danielle Karakas
- Department of Laboratory Medicine and Pathobiology,
University of Toronto, Toronto, ON, Canada
- Department of Laboratory Medicine,
Keenan Research Centre for Biomedical Science of St. Michael’s Hospital, Toronto, ON, Canada
- Toronto Platelet Immunobiology Group, Toronto, ON, Canada
| | - Ziyan Chen
- Department of Laboratory Medicine and Pathobiology,
University of Toronto, Toronto, ON, Canada
- Department of Laboratory Medicine,
Keenan Research Centre for Biomedical Science of St. Michael’s Hospital, Toronto, ON, Canada
- Toronto Platelet Immunobiology Group, Toronto, ON, Canada
- Canadian Blood Services Centre for Innovation, Toronto, ON, Canada
| | - Viktor Prifti
- Department of Laboratory Medicine and Pathobiology,
University of Toronto, Toronto, ON, Canada
- Department of Laboratory Medicine,
Keenan Research Centre for Biomedical Science of St. Michael’s Hospital, Toronto, ON, Canada
- Toronto Platelet Immunobiology Group, Toronto, ON, Canada
| | - Zhenze Liu
- Department of Laboratory Medicine and Pathobiology,
University of Toronto, Toronto, ON, Canada
- Department of Laboratory Medicine,
Keenan Research Centre for Biomedical Science of St. Michael’s Hospital, Toronto, ON, Canada
- Toronto Platelet Immunobiology Group, Toronto, ON, Canada
| | - Chuanbin Shen
- Department of Laboratory Medicine and Pathobiology,
University of Toronto, Toronto, ON, Canada
- Department of Laboratory Medicine,
Keenan Research Centre for Biomedical Science of St. Michael’s Hospital, Toronto, ON, Canada
- Toronto Platelet Immunobiology Group, Toronto, ON, Canada
| | - Yuchong Li
- Department of Laboratory Medicine,
Keenan Research Centre for Biomedical Science of St. Michael’s Hospital, Toronto, ON, Canada
- The State Key Laboratory of Respiratory Disease, Guangzhou Institute of Respiratory Disease,
The First Affiliated Hospital of Guangzhou Medical University, Guangzhou, Guangdong, China
| | - Cheng Zhang
- CCOA Therapeutics Inc., Toronto, ON, Canada
- Department of Laboratory Medicine,
The Second Affiliated Hospital of Guangzhou University of Chinese Medicine, Guangzhou, China
| | - Jiayu Dou
- Department of Laboratory Medicine,
Keenan Research Centre for Biomedical Science of St. Michael’s Hospital, Toronto, ON, Canada
- Toronto Platelet Immunobiology Group, Toronto, ON, Canada
| | - Zack Rousseau
- Department of Laboratory Medicine and Pathobiology,
University of Toronto, Toronto, ON, Canada
- Department of Laboratory Medicine,
Keenan Research Centre for Biomedical Science of St. Michael’s Hospital, Toronto, ON, Canada
- Toronto Platelet Immunobiology Group, Toronto, ON, Canada
| | - Jiamin Zhang
- Department of Laboratory Medicine and Pathobiology,
University of Toronto, Toronto, ON, Canada
- Department of Laboratory Medicine,
Keenan Research Centre for Biomedical Science of St. Michael’s Hospital, Toronto, ON, Canada
- Toronto Platelet Immunobiology Group, Toronto, ON, Canada
| | - Tiffany Ni
- Department of Laboratory Medicine and Pathobiology,
University of Toronto, Toronto, ON, Canada
- Department of Laboratory Medicine,
Keenan Research Centre for Biomedical Science of St. Michael’s Hospital, Toronto, ON, Canada
- Toronto Platelet Immunobiology Group, Toronto, ON, Canada
| | - Xi Lei
- Department of Laboratory Medicine,
Keenan Research Centre for Biomedical Science of St. Michael’s Hospital, Toronto, ON, Canada
- Toronto Platelet Immunobiology Group, Toronto, ON, Canada
- CCOA Therapeutics Inc., Toronto, ON, Canada
| | - Pingguo Chen
- Department of Laboratory Medicine and Pathobiology,
University of Toronto, Toronto, ON, Canada
- Department of Laboratory Medicine,
Keenan Research Centre for Biomedical Science of St. Michael’s Hospital, Toronto, ON, Canada
- Toronto Platelet Immunobiology Group, Toronto, ON, Canada
- Canadian Blood Services Centre for Innovation, Toronto, ON, Canada
| | - Xiaoyu Wu
- Advanced Pharmaceutics & Drug Delivery Laboratory, Leslie Dan Faculty of Pharmacy,
University of Toronto, Toronto, ON, Canada
| | - Hamed Shaykhalishahi
- Department of Laboratory Medicine,
Keenan Research Centre for Biomedical Science of St. Michael’s Hospital, Toronto, ON, Canada
- Toronto Platelet Immunobiology Group, Toronto, ON, Canada
- CCOA Therapeutics Inc., Toronto, ON, Canada
| | - Samira Mubareka
- Department of Laboratory Medicine and Pathobiology,
University of Toronto, Toronto, ON, Canada
- Department of Medical Microbiology and Infectious Disease,
Sunnybrook Health Science Centre, Toronto, ON, Canada
| | - Kim A. Connelly
- Department of Laboratory Medicine,
Keenan Research Centre for Biomedical Science of St. Michael’s Hospital, Toronto, ON, Canada
- Department of Medicine,
University of Toronto, Toronto, ON, Canada
- Division of Cardiology,
St. Michael's Hospital, Toronto, ON, Canada
| | - Haibo Zhang
- Department of Laboratory Medicine,
Keenan Research Centre for Biomedical Science of St. Michael’s Hospital, Toronto, ON, Canada
- The State Key Laboratory of Respiratory Disease, Guangzhou Institute of Respiratory Disease,
The First Affiliated Hospital of Guangzhou Medical University, Guangzhou, Guangdong, China
- Department of Medical Microbiology and Infectious Disease,
Sunnybrook Health Science Centre, Toronto, ON, Canada
- Department of Anesthesiology and Pain Medicine and Division of Critical Care Medicine,
University of Toronto, Toronto, ON, Canada
- Interdepartmental Division of Critical Care Medicine,
University of Toronto, Toronto, ON, Canada
| | - Ori Rotstein
- Department of Laboratory Medicine,
Keenan Research Centre for Biomedical Science of St. Michael’s Hospital, Toronto, ON, Canada
- Department of Surgery,
University of Toronto, Toronto, ON, Canada
| | - Heyu Ni
- Department of Laboratory Medicine and Pathobiology,
University of Toronto, Toronto, ON, Canada
- Department of Laboratory Medicine,
Keenan Research Centre for Biomedical Science of St. Michael’s Hospital, Toronto, ON, Canada
- Toronto Platelet Immunobiology Group, Toronto, ON, Canada
- Department of Physiology,
University of Toronto, Toronto, ON, Canada
- CCOA Therapeutics Inc., Toronto, ON, Canada
- Canadian Blood Services Centre for Innovation, Toronto, ON, Canada
- Department of Medicine,
University of Toronto, Toronto, ON, Canada
| |
Collapse
|
20
|
Mu X, Gerhard-Herman MD, Zhang YS. Building Blood Vessel Chips with Enhanced Physiological Relevance. ADVANCED MATERIALS TECHNOLOGIES 2023; 8:2201778. [PMID: 37693798 PMCID: PMC10489284 DOI: 10.1002/admt.202201778] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/20/2022] [Indexed: 09/12/2023]
Abstract
Blood vessel chips are bioengineered microdevices, consisting of biomaterials, human cells, and microstructures, which recapitulate essential vascular structure and physiology and allow a well-controlled microenvironment and spatial-temporal readouts. Blood vessel chips afford promising opportunities to understand molecular and cellular mechanisms underlying a range of vascular diseases. The physiological relevance is key to these blood vessel chips that rely on bioinspired strategies and bioengineering approaches to translate vascular physiology into artificial units. Here, we discuss several critical aspects of vascular physiology, including morphology, material composition, mechanical properties, flow dynamics, and mass transport, which provide essential guidelines and a valuable source of bioinspiration for the rational design of blood vessel chips. We also review state-of-art blood vessel chips that exhibit important physiological features of the vessel and reveal crucial insights into the biological processes and disease pathogenesis, including rare diseases, with notable implications for drug screening and clinical trials. We envision that the advances in biomaterials, biofabrication, and stem cells improve the physiological relevance of blood vessel chips, which, along with the close collaborations between clinicians and bioengineers, enable their widespread utility.
Collapse
Affiliation(s)
- Xuan Mu
- Division of Engineering in Medicine, Department of Medicine, Brigham and Women's Hospital, Harvard Medical School, Cambridge, MA 02139, USA; Roy J. Carver Department of Biomedical Engineering, College of Engineering, University of Iowa, Iowa City, IA 52242, USA
| | - Marie Denise Gerhard-Herman
- Division of Cardiovascular Medicine, Department of Medicine, Brigham and Women's Hospital, Harvard Medical School, Boston, MA 02114, USA
| | - Yu Shrike Zhang
- Division of Engineering in Medicine, Department of Medicine, Brigham and Women's Hospital, Harvard Medical School, Cambridge, MA 02139, USA
| |
Collapse
|
21
|
Fu L, MacKeigan DT, Gong Q, Che D, Xu Y, Pi L, Sun C, Yu H, Chen K, Zhou H, Jiang Z, Wang Z, Zhang L, Cerenzia EG, Ni H, Gu X. Thymic stromal lymphopoietin induces platelet mitophagy and promotes thrombosis in Kawasaki disease. Br J Haematol 2023; 200:776-791. [PMID: 36341698 DOI: 10.1111/bjh.18531] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2022] [Revised: 09/29/2022] [Accepted: 10/12/2022] [Indexed: 11/09/2022]
Abstract
Kawasaki disease (KD) is an acute systemic vasculitis primarily affecting infants and children. Activated platelets predispose patients to coronary artery structural lesions that may lead to thrombotic cardiovascular events. To discover potential proteins underlying platelet activation in KD, we conducted a protein chip assay of 34 cytokines and discovered thymic stromal lymphopoietin (TSLP) was aberrantly expressed, which remained elevated after intravenous immunoglobulin G (IVIG) treatment and during convalescence in KD patients in comparison to healthy controls. Enzyme-linked immunosorbent assay (ELISA) corroborated the upregulation of TSLP in KD patients, which was exacerbated in convalescent patients complicated with thrombosis. TSLP receptors on platelets were also significantly upregulated in KD patients complicated with thrombosis. Platelet activation, apoptosis, and mitochondrial autophagy (mitophagy) were increased in convalescence KD patients complicated with thrombosis. In vitro, TSLP induced platelet activation and platelet mitophagy in healthy blood donors, as observed in KD patients. TSLP, similar to mitophagy agonist carbonyl cyanide 3-chlorophenyl hydrazone (CCCP), promoted thrombosis, which was attenuated by the mitophagy inhibitor Mdivi-1. Co-immunoprecipitation in TSLP-treated platelets revealed TSLP receptor (TSLPR) bound to mitophagy regulators, Parkin and Voltage Dependent Anion Channel Protein 1 (VDAC1).Thus, our results demonstrated that TSLP induced platelet mitophagy via a novel TSLPR/Parkin/VDAC1 pathway that promoted thrombosis in KD. These results suggest TSLP as a novel therapeutic target against KD-associated thrombosis.
Collapse
Affiliation(s)
- Lanyan Fu
- Department of Clinical Biological Resource Bank, Guangzhou Institute of Pediatrics, Guangzhou Women and Children's Medical Center, Guangzhou Medical University, Guangzhou, China
| | - Daniel Thomas MacKeigan
- Department of Physiology, University of Toronto, Toronto, Ontario, Canada.,Department of Laboratory Medicine, Keenan Research Centre for Biomedical Science, St. Michael's Hospital, University of Toronto, Toronto, Ontario, Canada
| | - Qing Gong
- Department of Biochemistry and Molecular Biology, GMU-GIBH Joint School of Life Sciences, Guangzhou Medical University, Guangzhou, China
| | - Di Che
- Department of Clinical Biological Resource Bank, Guangzhou Institute of Pediatrics, Guangzhou Women and Children's Medical Center, Guangzhou Medical University, Guangzhou, China
| | - Yufen Xu
- Department of Clinical Biological Resource Bank, Guangzhou Institute of Pediatrics, Guangzhou Women and Children's Medical Center, Guangzhou Medical University, Guangzhou, China
| | - Lei Pi
- Department of Clinical Biological Resource Bank, Guangzhou Institute of Pediatrics, Guangzhou Women and Children's Medical Center, Guangzhou Medical University, Guangzhou, China
| | - Chaonan Sun
- School of Pharmaceutical Sciences, Sun Yat-Sen University, Guangzhou, China
| | - Hongyan Yu
- Department of Clinical Biological Resource Bank, Guangzhou Institute of Pediatrics, Guangzhou Women and Children's Medical Center, Guangzhou Medical University, Guangzhou, China
| | - Kaining Chen
- Department of Clinical Biological Resource Bank, Guangzhou Institute of Pediatrics, Guangzhou Women and Children's Medical Center, Guangzhou Medical University, Guangzhou, China
| | - Huazhong Zhou
- Department of Clinical Biological Resource Bank, Guangzhou Institute of Pediatrics, Guangzhou Women and Children's Medical Center, Guangzhou Medical University, Guangzhou, China
| | - Zhiyong Jiang
- Department of Clinical Lab, Guangzhou Women and Children's Medical Center, Guangzhou Medical University, Guangzhou, China
| | - Zhouping Wang
- Department of Cardiology, Guangzhou Women and Children's Medical Center, Guangzhou Medical University, Guangzhou, China
| | - Li Zhang
- Department of Cardiology, Guangzhou Women and Children's Medical Center, Guangzhou Medical University, Guangzhou, China
| | - Eric G Cerenzia
- Department of Physiology, University of Toronto, Toronto, Ontario, Canada.,Department of Laboratory Medicine, Keenan Research Centre for Biomedical Science, St. Michael's Hospital, University of Toronto, Toronto, Ontario, Canada
| | - Heyu Ni
- Department of Physiology, University of Toronto, Toronto, Ontario, Canada.,Department of Laboratory Medicine, Keenan Research Centre for Biomedical Science, St. Michael's Hospital, University of Toronto, Toronto, Ontario, Canada.,Canadian Blood Services Centre for Innovation, Toronto, Ontario, Canada.,Department of Laboratory Medicine and Pathobiology, University of Toronto, Toronto, Ontario, Canada.,Department of Medicine, University of Toronto, Toronto, Ontario, Canada
| | - Xiaoqiong Gu
- Department of Clinical Biological Resource Bank, Guangzhou Institute of Pediatrics, Guangzhou Women and Children's Medical Center, Guangzhou Medical University, Guangzhou, China
| |
Collapse
|
22
|
Jiang Y, Yang Y, Peng Z, Li Y, Peng J, Zhang Y, Jin H, Tan D, Tao L, Ding Y. Sustainable sepiolite-based composites for fast clotting and wound healing. BIOMATERIALS ADVANCES 2023; 149:213402. [PMID: 37058779 DOI: 10.1016/j.bioadv.2023.213402] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/10/2022] [Revised: 02/12/2023] [Accepted: 02/21/2023] [Indexed: 03/30/2023]
Abstract
Uncontrolled bleeding and bacterial coinfection are the major causes of death after an injury. Fast hemostatic capacity, good biocompatibility, and bacterial coinfection inhibition pose great challenges to hemostatic agent development. A prospective sepiolite/Ag nanoparticles (sepiolite@AgNPs) composite has been prepared by using natural clay sepiolite as template. A tail vein hemorrhage mouse model and a rabbit hemorrhage model were used to evaluate the hemostatic properties of the composite. The sepiolite@AgNPs composite can quickly absorb fluid to subsequently stop bleeding due to the natural fibrous crystal structure of sepiolite, and inhibit bacterial growth with the antibacterial ability of AgNPs. Compared with commercially-available zeolite material, the as-prepared composite exhibits competitive hemostatic properties without exothermic reaction in the rabbit model of femoral and carotid artery injury. The rapid hemostatic effect was due to the efficient absorption of erythrocyte and activation of the coagulation cascade factors and platelets. Besides, after heat-treatment, the composites can be recycled without significant reduction of hemostatic performance. Our results also prove that sepiolite@AgNPs nanocomposites can stimulate wound healing. The sustainability, lower-cost, higher bioavailability, and stronger hemostatic efficacy of sepiolite@AgNPs composite render these nanocomposites as more favorable hemostatic agents for hemostasis and wound healing.
Collapse
|
23
|
Han C, Ren P, Mamtimin M, Kruk L, Sarukhanyan E, Li C, Anders HJ, Dandekar T, Krueger I, Elvers M, Goebel S, Adler K, Münch G, Gudermann T, Braun A, Mammadova-Bach E. Minimal Collagen-Binding Epitope of Glycoprotein VI in Human and Mouse Platelets. Biomedicines 2023; 11:biomedicines11020423. [PMID: 36830959 PMCID: PMC9952969 DOI: 10.3390/biomedicines11020423] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2022] [Revised: 01/22/2023] [Accepted: 01/25/2023] [Indexed: 02/04/2023] Open
Abstract
Glycoprotein VI (GPVI) is a platelet-specific receptor for collagen and fibrin, regulating important platelet functions such as platelet adhesion and thrombus growth. Although the blockade of GPVI function is widely recognized as a potent anti-thrombotic approach, there are limited studies focused on site-specific targeting of GPVI. Using computational modeling and bioinformatics, we analyzed collagen- and CRP-binding surfaces of GPVI monomers and dimers, and compared the interacting surfaces with other mammalian GPVI isoforms. We could predict a minimal collagen-binding epitope of GPVI dimer and designed an EA-20 antibody that recognizes a linear epitope of this surface. Using platelets and whole blood samples donated from wild-type and humanized GPVI transgenic mice and also humans, our experimental results show that the EA-20 antibody inhibits platelet adhesion and aggregation in response to collagen and CRP, but not to fibrin. The EA-20 antibody also prevents thrombus formation in whole blood, on the collagen-coated surface, in arterial flow conditions. We also show that EA-20 does not influence GPVI clustering or receptor shedding. Therefore, we propose that blockade of this minimal collagen-binding epitope of GPVI with the EA-20 antibody could represent a new anti-thrombotic approach by inhibiting specific interactions between GPVI and the collagen matrix.
Collapse
Affiliation(s)
- Chao Han
- Walther-Straub-Institute for Pharmacology and Toxicology, Ludwig-Maximilian-University, 80336 Munich, Germany
- Division of Nephrology, Department of Medicine IV, Hospital of the Ludwig-Maximilian-University, 80336 Munich, Germany
| | - Pengxuan Ren
- School of Life Science and Technology, Shanghai Institute for Advanced Immunochemical Studies, ShanghaiTech University, Shanghai 201210, China
| | - Medina Mamtimin
- Walther-Straub-Institute for Pharmacology and Toxicology, Ludwig-Maximilian-University, 80336 Munich, Germany
- Division of Nephrology, Department of Medicine IV, Hospital of the Ludwig-Maximilian-University, 80336 Munich, Germany
| | - Linus Kruk
- Walther-Straub-Institute for Pharmacology and Toxicology, Ludwig-Maximilian-University, 80336 Munich, Germany
- Division of Nephrology, Department of Medicine IV, Hospital of the Ludwig-Maximilian-University, 80336 Munich, Germany
| | - Edita Sarukhanyan
- Department of Bioinformatics, Biocenter, University of Würzburg, 97074 Würzburg, Germany
| | - Chenyu Li
- Division of Nephrology, Department of Medicine IV, Hospital of the Ludwig-Maximilian-University, 80336 Munich, Germany
| | - Hans-Joachim Anders
- Division of Nephrology, Department of Medicine IV, Hospital of the Ludwig-Maximilian-University, 80336 Munich, Germany
| | - Thomas Dandekar
- Department of Bioinformatics, Biocenter, University of Würzburg, 97074 Würzburg, Germany
| | - Irena Krueger
- Department of Vascular and Endovascular Surgery, Heinrich-Heine University Medical Center, 40225 Düsseldorf, Germany
| | - Margitta Elvers
- Department of Vascular and Endovascular Surgery, Heinrich-Heine University Medical Center, 40225 Düsseldorf, Germany
| | | | | | - Götz Münch
- AdvanceCOR GmbH, 82152 Martinsried, Germany
| | - Thomas Gudermann
- Walther-Straub-Institute for Pharmacology and Toxicology, Ludwig-Maximilian-University, 80336 Munich, Germany
- German Center for Lung Research (DZL), 80336 Munich, Germany
| | - Attila Braun
- Walther-Straub-Institute for Pharmacology and Toxicology, Ludwig-Maximilian-University, 80336 Munich, Germany
- Correspondence: (A.B.); (E.M.-B.)
| | - Elmina Mammadova-Bach
- Walther-Straub-Institute for Pharmacology and Toxicology, Ludwig-Maximilian-University, 80336 Munich, Germany
- Division of Nephrology, Department of Medicine IV, Hospital of the Ludwig-Maximilian-University, 80336 Munich, Germany
- Correspondence: (A.B.); (E.M.-B.)
| |
Collapse
|
24
|
Shi Q, Ji T, Tang X, Guo W. The role of tumor-platelet interplay and micro tumor thrombi during hematogenous tumor metastasis. Cell Oncol (Dordr) 2023; 46:521-532. [PMID: 36652166 DOI: 10.1007/s13402-023-00773-1] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 01/10/2023] [Indexed: 01/19/2023] Open
Abstract
BACKGROUND In addition to their pivotal roles in coagulation and thrombosis, platelets are crucial in tumor progression, with plenty of clinical and experimental data demonstrating that the interplay of platelets and tumor cells is essential for hematogenous tumor metastasis. After detach from primary sites, tumor cells intravasate into the blood circulation becoming circulating tumor cells and induce platelet activation, aggregation and encasement around tumor cells to form micro tumor thrombi, which create a permissive tumor microenvironment for metastasis. Platelets in micro tumor thrombi protect tumor cells from immune surveillance and anoikis (detachment-triggered apoptosis) through various pathways, which are significant for tumor cell survival in the bloodstream. Moreover, platelets can facilitate tumor metastasis by expediting epithelial-mesenchymal transition (EMT), adhesion to the endothelium, angiogenesis, tumor proliferation processes and platelet-derived microvesicle (PMV) formation. CONCLUSIONS Here, we provide a synopsis of the current understanding of the formation of micro tumor thrombi and the role of micro tumor thrombi in tumor hematogenous metastasis based on the tumor-platelet interplay. We also highlight potential therapeutic strategies targeting platelets for tumor treatment, including cancer-associated platelet-targeted nanomedicines.
Collapse
Affiliation(s)
- Qianyu Shi
- Department of Musculoskeletal Tumor, People's Hospital, Peking University, 100044, Beijing, China
- Beijing Key Laboratory of Musculoskeletal Tumor, Beijing, People's Republic of China
| | - Tao Ji
- Department of Musculoskeletal Tumor, People's Hospital, Peking University, 100044, Beijing, China.
- Beijing Key Laboratory of Musculoskeletal Tumor, Beijing, People's Republic of China.
| | - Xiaodong Tang
- Department of Musculoskeletal Tumor, People's Hospital, Peking University, 100044, Beijing, China
| | - Wei Guo
- Department of Musculoskeletal Tumor, People's Hospital, Peking University, 100044, Beijing, China
- Beijing Key Laboratory of Musculoskeletal Tumor, Beijing, People's Republic of China
| |
Collapse
|
25
|
Shen C, Mackeigan DT, Shoara AA, Xu R, Bhoria P, Karakas D, Ma W, Cerenzia E, Chen Z, Hoard B, Lin L, Lei X, Zhu G, Chen P, Johnson PE, Ni H. Dual roles of fucoidan-GPIbα interaction in thrombosis and hemostasis: implications for drug development targeting GPIbα. JOURNAL OF THROMBOSIS AND HAEMOSTASIS : JTH 2023; 21:1274-1288. [PMID: 36732162 DOI: 10.1016/j.jtha.2022.12.030] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/03/2022] [Revised: 12/14/2022] [Accepted: 12/27/2022] [Indexed: 01/11/2023]
Abstract
BACKGROUND Platelet GPIbα-von Willebrand factor (VWF) interaction initiates platelet adhesion, activation, and thrombus growth, especially under high shear conditions. Therefore, the GPIb-VWF axis has been suggested as a promising target against arterial thrombosis. The polysaccharide fucoidan has been reported to have opposing prothrombotic and antithrombotic effects; however, its binding mechanism with platelets has not been adequately studied. OBJECTIVE The objective of this study was to explore the mechanism of fucoidan and its hydrolyzed products in thrombosis and hemostasis. METHODS Natural fucoidan was hydrolyzed by using hydrochloric acid and was characterized by using size-exclusion chromatography, UV-visible spectroscopy, and fluorometry techniques. The effects of natural and hydrolyzed fucoidan on platelet aggregation were examined by using platelets from wild-type, VWF and fibrinogen-deficient, GPIbα-deficient, and IL4Rα/GPIbα-transgenic and αIIb-deficient mice and from human beings. Platelet activation markers (P-selectin expression, PAC-1, and fibrinogen binding) and platelet-VWF A1 interaction were measured by using flow cytometry. GPIbα-VWF A1 interaction was evaluated by using enzyme-linked immunosorbent assay. GPIb-IX-induced signal transduction was detected by using western blot. Heparinized whole blood from healthy donors was used to test thrombus formation and growth in a perfusion chamber. RESULTS We found that GPIbα is critical for fucoidan-induced platelet activation. Fucoidan interacted with the extracellular domain of GPIbα and blocked its interaction with VWF but itself could lead to GPIbα-mediated signal transduction and, subsequently, αIIbβ3 activation and platelet aggregation. Conversely, low-molecular weight fucoidan inhibited GPIb-VWF-mediated platelet aggregation, spreading, and thrombus growth at high shear. CONCLUSION Fucoidan-GPIbα interaction may have unique therapeutic potential against bleeding disorders in its high-molecular weight state and protection against arterial thrombosis by blocking GPIb-VWF interaction after fucoidan is hydrolyzed.
Collapse
Affiliation(s)
- Chuanbin Shen
- Department of Laboratory Medicine and Pathobiology, University of Toronto, Toronto, M5S 1A1, ON, Canada; Key Laboratory of Marine Drugs, Chinese Ministry of Education, School of Medicine and Pharmacy, Ocean University of China, Shandong, China; Department of Laboratory Medicine, LKSKI-Keenan Research Centre for Biomedical Science, St. Michael's Hospital, and Toronto Platelet Immunobiology Group, Toronto, Canada
| | - Daniel T Mackeigan
- Department of Laboratory Medicine, LKSKI-Keenan Research Centre for Biomedical Science, St. Michael's Hospital, and Toronto Platelet Immunobiology Group, Toronto, Canada; Department of Physiology, University of Toronto, Toronto, Canada
| | - Aron A Shoara
- Department of Laboratory Medicine and Pathobiology, University of Toronto, Toronto, M5S 1A1, ON, Canada; Department of Laboratory Medicine, LKSKI-Keenan Research Centre for Biomedical Science, St. Michael's Hospital, and Toronto Platelet Immunobiology Group, Toronto, Canada
| | - Runjia Xu
- Department of Laboratory Medicine and Pathobiology, University of Toronto, Toronto, M5S 1A1, ON, Canada; Department of Laboratory Medicine, LKSKI-Keenan Research Centre for Biomedical Science, St. Michael's Hospital, and Toronto Platelet Immunobiology Group, Toronto, Canada
| | - Preeti Bhoria
- Department of Laboratory Medicine and Pathobiology, University of Toronto, Toronto, M5S 1A1, ON, Canada; Department of Laboratory Medicine, LKSKI-Keenan Research Centre for Biomedical Science, St. Michael's Hospital, and Toronto Platelet Immunobiology Group, Toronto, Canada; CCOA Therapeutics Inc Toronto, Canada
| | - Danielle Karakas
- Department of Laboratory Medicine and Pathobiology, University of Toronto, Toronto, M5S 1A1, ON, Canada; Department of Laboratory Medicine, LKSKI-Keenan Research Centre for Biomedical Science, St. Michael's Hospital, and Toronto Platelet Immunobiology Group, Toronto, Canada
| | - Wenjing Ma
- Department of Laboratory Medicine and Pathobiology, University of Toronto, Toronto, M5S 1A1, ON, Canada; Department of Laboratory Medicine, LKSKI-Keenan Research Centre for Biomedical Science, St. Michael's Hospital, and Toronto Platelet Immunobiology Group, Toronto, Canada; CCOA Therapeutics Inc Toronto, Canada
| | - Eric Cerenzia
- Department of Laboratory Medicine, LKSKI-Keenan Research Centre for Biomedical Science, St. Michael's Hospital, and Toronto Platelet Immunobiology Group, Toronto, Canada; Department of Physiology, University of Toronto, Toronto, Canada
| | - ZiYan Chen
- Department of Laboratory Medicine and Pathobiology, University of Toronto, Toronto, M5S 1A1, ON, Canada; Department of Laboratory Medicine, LKSKI-Keenan Research Centre for Biomedical Science, St. Michael's Hospital, and Toronto Platelet Immunobiology Group, Toronto, Canada
| | - Brock Hoard
- Department of Laboratory Medicine and Pathobiology, University of Toronto, Toronto, M5S 1A1, ON, Canada; Department of Laboratory Medicine, LKSKI-Keenan Research Centre for Biomedical Science, St. Michael's Hospital, and Toronto Platelet Immunobiology Group, Toronto, Canada
| | - Lisha Lin
- Department of Laboratory Medicine and Pathobiology, University of Toronto, Toronto, M5S 1A1, ON, Canada; Department of Laboratory Medicine, LKSKI-Keenan Research Centre for Biomedical Science, St. Michael's Hospital, and Toronto Platelet Immunobiology Group, Toronto, Canada; State Key Laboratory of Phytochemistry and Plant Resources in West China, Kunming Institute of Botany, Chinese Academy of Sciences, Kunming, China
| | - Xi Lei
- Department of Laboratory Medicine, LKSKI-Keenan Research Centre for Biomedical Science, St. Michael's Hospital, and Toronto Platelet Immunobiology Group, Toronto, Canada; CCOA Therapeutics Inc Toronto, Canada
| | - Guangheng Zhu
- Department of Laboratory Medicine, LKSKI-Keenan Research Centre for Biomedical Science, St. Michael's Hospital, and Toronto Platelet Immunobiology Group, Toronto, Canada; CCOA Therapeutics Inc Toronto, Canada
| | - Pingguo Chen
- Department of Laboratory Medicine, LKSKI-Keenan Research Centre for Biomedical Science, St. Michael's Hospital, and Toronto Platelet Immunobiology Group, Toronto, Canada; Canadian Blood Services Centre for Innovation, Toronto, Canada
| | - Philip E Johnson
- Department of Chemistry and Centre for Research on Biomolecular Interactions, York University, Toronto, Canada
| | - Heyu Ni
- Department of Laboratory Medicine and Pathobiology, University of Toronto, Toronto, M5S 1A1, ON, Canada; Department of Laboratory Medicine, LKSKI-Keenan Research Centre for Biomedical Science, St. Michael's Hospital, and Toronto Platelet Immunobiology Group, Toronto, Canada; Department of Physiology, University of Toronto, Toronto, Canada; CCOA Therapeutics Inc Toronto, Canada; Canadian Blood Services Centre for Innovation, Toronto, Canada; Department of Medicine, University of Toronto, Toronto, Canada.
| |
Collapse
|
26
|
Li Y, Wang H, Zhao Z, Yang Y, Meng Z, Qin L. Effects of the interactions between platelets with other cells in tumor growth and progression. Front Immunol 2023; 14:1165989. [PMID: 37153586 PMCID: PMC10158495 DOI: 10.3389/fimmu.2023.1165989] [Citation(s) in RCA: 6] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2023] [Accepted: 03/31/2023] [Indexed: 05/09/2023] Open
Abstract
It has been confirmed that platelets play a key role in tumorigenesis. Tumor-activated platelets can recruit blood cells and immune cells to migrate, establish an inflammatory tumor microenvironment at the sites of primary and metastatic tumors. On the other hand, they can also promote the differentiation of mesenchymal cells, which can accelerate the proliferation, genesis and migration of blood vessels. The role of platelets in tumors has been well studied. However, a growing number of studies suggest that interactions between platelets and immune cells (e.g., dendritic cells, natural killer cells, monocytes, and red blood cells) also play an important role in tumorigenesis and tumor development. In this review, we summarize the major cells that are closely associated with platelets and discuss the essential role of the interaction between platelets with these cells in tumorigenesis and tumor development.
Collapse
|
27
|
Qiao W, Sha S, Song J, Chen Y, Lian G, Wang J, Zhou X, Peng L, Li L, Tian F, Jing C. Association between multiple coagulation-related factors and lymph node metastasis in patients with gastric cancer: A retrospective cohort study. Front Oncol 2023; 13:1099857. [PMID: 36910598 PMCID: PMC9996287 DOI: 10.3389/fonc.2023.1099857] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2022] [Accepted: 01/30/2023] [Indexed: 02/25/2023] Open
Abstract
Background Patients with tumors generally present with accompanying activation of the coagulation system, which may be related to tumor stage. To our knowledge, few studies have examined the activation of the coagulation system in reference to lymph node metastasis within gastric cancer. This study aimed to investigate the correlation between multiple coagulation-related factors and lymph node metastasis in patients with gastric cancer after excluding the influence of tumor T stage. Materials and methods We retrospectively evaluated the relationship between lymph node metastasis and coagulation-related factors in 516 patients with T4a stage gastric cancer. We further analyzed influencing factors for lymph node metastasis and verified the predictive value of maximum amplitude (MA, a parameter of thromboelastography which is widely used to assess the strength of platelet-fibrinogen interaction in forming clots) in reference to lymph node metastasis. Results Platelet counts (P=0.011), fibrinogen levels (P=0.002) and MA values (P=0.006) were statistically significantly higher in patients with T4a stage gastric cancer presenting with lymph node metastasis than in those without lymph node metastasis. Moreover, tumor N stage was statistically significantly and positively correlated with platelet count (P<0.001), fibrinogen level (P=0.003), MA value (P<0.001), and D-dimer level (P=0.010). The MA value was an independent factor for lymph node metastasis (β=0.098, 95% CI: 1.020-1.193, P=0.014) and tumor N stage (β=0.059, 95% CI: 0.015-0.104, P=0.009), and could be used to predict the presence of lymph node metastasis in patients with gastric cancer (sensitivity 0.477, specificity 0.783, P=0.006). The independent influencing factors for MA value mainly included platelet levels, fibrinogen levels, D-dimer and hemoglobin levels; we found no statistically significant correlations with tumor diameter, tumor area, and other evaluated factors. Conclusion We conclude that MA value is an independent influencing factor for lymph node metastasis and tumor N stage in patients with T4a stage gastric cancer. The MA value has important value in predicting the presence or absence of lymph node metastasis in patients with gastric cancer. Clinical trial registration http://www.chictr.org.cn, identifier ChiCTR2200064936.
Collapse
Affiliation(s)
- Wenhao Qiao
- Department of Gastrointestinal Surgery, Shandong Provincial Hospital, Shandong University, Jinan, Shandong, China
| | - Shengxu Sha
- Department of Gastrointestinal Surgery, Shandong Provincial Hospital, Shandong University, Jinan, Shandong, China
| | - Jiyuan Song
- Department of Gastrointestinal Surgery, Shandong Provincial Hospital, Shandong University, Jinan, Shandong, China
| | - Yuezhi Chen
- Department of Gastrointestinal Surgery, Shandong Provincial Hospital, Shandong University, Jinan, Shandong, China.,Department of Gastrointestinal Surgery, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan, Shandong, China
| | - Guodong Lian
- Department of Gastrointestinal Surgery, Shandong Provincial Hospital, Shandong University, Jinan, Shandong, China.,Department of Gastrointestinal Surgery, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan, Shandong, China
| | - Junke Wang
- Department of Gastrointestinal Surgery, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan, Shandong, China
| | - Xinxiu Zhou
- Department of Gastrointestinal Surgery, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan, Shandong, China
| | - Lipan Peng
- Department of Gastrointestinal Surgery, Shandong Provincial Hospital, Shandong University, Jinan, Shandong, China.,Department of Gastrointestinal Surgery, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan, Shandong, China
| | - Leping Li
- Department of Gastrointestinal Surgery, Shandong Provincial Hospital, Shandong University, Jinan, Shandong, China.,Department of Gastrointestinal Surgery, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan, Shandong, China
| | - Feng Tian
- Department of Gastrointestinal Surgery, Shandong Provincial Hospital, Shandong University, Jinan, Shandong, China.,Department of Gastrointestinal Surgery, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan, Shandong, China
| | - Changqing Jing
- Department of Gastrointestinal Surgery, Shandong Provincial Hospital, Shandong University, Jinan, Shandong, China.,Department of Gastrointestinal Surgery, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan, Shandong, China
| |
Collapse
|
28
|
Siritapetawee J, Attarataya J, Charoenwattanasatien R. Sequence analysis and crystal structure of a glycosylated protease from Euphorbia resinifera latex for its proteolytic activity aspect. Biotechnol Appl Biochem 2022; 69:2580-2591. [PMID: 34967474 DOI: 10.1002/bab.2307] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2021] [Accepted: 12/19/2021] [Indexed: 12/27/2022]
Abstract
The investigation of a plant glycosylated serine protease (EuRP-61) isolated from Euphorbia resinifera latex for potential antiplatelet and anticoagulation activities has been previously reported. In the present study, the protein sequence and native crystal structure of EuRP-61 were characterized. The structure was identified using single-wavelength anomalous diffraction with a refinement resolution of 1.7 Å (PDB ID: 7EOX). The main structural components of EuRP-61 were composed of three domains: catalytic, protease-associated (PA), and fibronectin type III (Fn3)-like domains. The crystal structure revealed that some loops in the PA and catalytic domains of EuRP-61 were different from the other subtilisin-like proteases (cucumisin and SBT3). These different loops might be involved in the general monomer formation of EuRP-61, substrate specificity, and maintenance of the catalytic domain. The Fn3-like domain may provide flexibility to the enzyme to bind with various substrates and cell receptors. Additionally, the active site of EuRP-61 consisted of the catalytic triad of Ser434, His106, and Asp32, similar to other serine proteases. The present study provides additional information and insight into the protease and antithrombotic activities of EuRP-61, which could contribute to further development of this enzyme for biomedical treatment.
Collapse
Affiliation(s)
- Jaruwan Siritapetawee
- Biochemistry-Electrochemistry Research Unit, School of Chemistry, Institute of Science, Suranaree University of Technology, Nakhon Ratchasima, Thailand
| | - Jakrada Attarataya
- Synchrotron Light Research Institute (Public Organization), Nakhon Ratchasima, Thailand
| | | |
Collapse
|
29
|
Li M, Tang X, Liao Z, Shen C, Cheng R, Fang M, Wang G, Li Y, Tang S, Xie L, Zhang Z, Kamau PM, Mwangi J, Lu Q, Li Y, Wang Y, MacKeigan DT, Cerenzia EG, Ni H, Lai R. Hypoxia and low temperature upregulate transferrin to induce hypercoagulability at high altitude. Blood 2022; 140:2063-2075. [PMID: 36040436 PMCID: PMC10653030 DOI: 10.1182/blood.2022016410] [Citation(s) in RCA: 22] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2022] [Accepted: 08/16/2022] [Indexed: 11/20/2022] Open
Abstract
Studies have shown significantly increased thromboembolic events at high altitude. We recently reported that transferrin could potentiate blood coagulation, but the underlying mechanism for high altitude-related thromboembolism is still poorly understood. Here, we examined the activity and concentration of plasma coagulation factors and transferrin in plasma collected from long-term human residents and short-stay mice exposed to varying altitudes. We found that the activities of thrombin and factor XIIa (FXIIa) along with the concentrations of transferrin were significantly increased in the plasma of humans and mice at high altitudes. Furthermore, both hypoxia (6% O2) and low temperature (0°C), 2 critical high-altitude factors, enhanced hypoxia-inducible factor 1α (HIF-1α) levels to promote the expression of the transferrin gene, whose enhancer region contains HIF-1α binding site, and consequently, to induce hypercoagulability by potentiating thrombin and FXIIa. Importantly, thromboembolic disorders and pathological insults in mouse models induced by both hypoxia and low temperature were ameliorated by transferrin interferences, including transferrin antibody treatment, transferrin downregulation, and the administration of our designed peptides that inhibit the potentiation of transferrin on thrombin and FXIIa. Thus, low temperature and hypoxia upregulated transferrin expression-promoted hypercoagulability. Our data suggest that targeting the transferrin-coagulation pathway is a novel and potentially powerful strategy against thromboembolic events caused by harmful environmental factors under high-altitude conditions.
Collapse
Affiliation(s)
- Meiquan Li
- Key Laboratory of Animal Models and Human Disease Mechanisms of the Chinese Academy of Sciences/Key Laboratory of Bioactive Peptides of Yunnan Province, Kunming Institute of Zoology-The Chinese University of Hong Kong Joint Laboratory of Bioresources and Molecular Research in Common Diseases, National Resource Center for Non-Human Primates, Kunming Primate Research Center, National Research Facility for Phenotypic and Genetic Analysis of Model Animals (Primate Facility), Sino-African Joint Research Center, and Engineering Laboratory of Peptides, Kunming Institute of Zoology, Kunming, China
- College of Agriculture and Life Sciences, Kunming University, Kunming, China
| | - Xiaopeng Tang
- Key Laboratory of Animal Models and Human Disease Mechanisms of the Chinese Academy of Sciences/Key Laboratory of Bioactive Peptides of Yunnan Province, Kunming Institute of Zoology-The Chinese University of Hong Kong Joint Laboratory of Bioresources and Molecular Research in Common Diseases, National Resource Center for Non-Human Primates, Kunming Primate Research Center, National Research Facility for Phenotypic and Genetic Analysis of Model Animals (Primate Facility), Sino-African Joint Research Center, and Engineering Laboratory of Peptides, Kunming Institute of Zoology, Kunming, China
- Institutes for Drug Discovery and Development, Chinese Academy of Sciences, Shanghai, China
| | - Zhiyi Liao
- Key Laboratory of Animal Models and Human Disease Mechanisms of the Chinese Academy of Sciences/Key Laboratory of Bioactive Peptides of Yunnan Province, Kunming Institute of Zoology-The Chinese University of Hong Kong Joint Laboratory of Bioresources and Molecular Research in Common Diseases, National Resource Center for Non-Human Primates, Kunming Primate Research Center, National Research Facility for Phenotypic and Genetic Analysis of Model Animals (Primate Facility), Sino-African Joint Research Center, and Engineering Laboratory of Peptides, Kunming Institute of Zoology, Kunming, China
- Kunming College of Life Science, University of Chinese Academy of Sciences, Beijing, China
| | - Chuanbin Shen
- Department of Laboratory Medicine and Pathobiology, University of Toronto, Toronto, ON, Canada
- Department of Laboratory Medicine, Keenan Research Centre for Biomedical Science, St. Michael’s Hospital and Toronto Platelet Immunobiology Group, Toronto, ON, Canada
| | - Ruomei Cheng
- Key Laboratory of Animal Models and Human Disease Mechanisms of the Chinese Academy of Sciences/Key Laboratory of Bioactive Peptides of Yunnan Province, Kunming Institute of Zoology-The Chinese University of Hong Kong Joint Laboratory of Bioresources and Molecular Research in Common Diseases, National Resource Center for Non-Human Primates, Kunming Primate Research Center, National Research Facility for Phenotypic and Genetic Analysis of Model Animals (Primate Facility), Sino-African Joint Research Center, and Engineering Laboratory of Peptides, Kunming Institute of Zoology, Kunming, China
- Kunming College of Life Science, University of Chinese Academy of Sciences, Beijing, China
| | - Mingqian Fang
- Key Laboratory of Animal Models and Human Disease Mechanisms of the Chinese Academy of Sciences/Key Laboratory of Bioactive Peptides of Yunnan Province, Kunming Institute of Zoology-The Chinese University of Hong Kong Joint Laboratory of Bioresources and Molecular Research in Common Diseases, National Resource Center for Non-Human Primates, Kunming Primate Research Center, National Research Facility for Phenotypic and Genetic Analysis of Model Animals (Primate Facility), Sino-African Joint Research Center, and Engineering Laboratory of Peptides, Kunming Institute of Zoology, Kunming, China
- Kunming College of Life Science, University of Chinese Academy of Sciences, Beijing, China
| | - Gan Wang
- Key Laboratory of Animal Models and Human Disease Mechanisms of the Chinese Academy of Sciences/Key Laboratory of Bioactive Peptides of Yunnan Province, Kunming Institute of Zoology-The Chinese University of Hong Kong Joint Laboratory of Bioresources and Molecular Research in Common Diseases, National Resource Center for Non-Human Primates, Kunming Primate Research Center, National Research Facility for Phenotypic and Genetic Analysis of Model Animals (Primate Facility), Sino-African Joint Research Center, and Engineering Laboratory of Peptides, Kunming Institute of Zoology, Kunming, China
- Institutes for Drug Discovery and Development, Chinese Academy of Sciences, Shanghai, China
| | - Ya Li
- Department of Clinical Laboratory, Yunnan Key Laboratory of Laboratory Medicine, Yunnan Innovation Team of Clinical Laboratory and Diagnosis, the First Affiliated Hospital of Kunming Medical University, Kunming, China
| | - Shuzhen Tang
- Department of Clinical Laboratory, the People’s Hospital of Diqing Tibetan Autonomous Prefecture, Shangri-La, China
| | - Li Xie
- Department of Clinical Laboratory, the Second Affiliated Hospital of Guangxi Medical University, Nanning, China
| | - Zhiye Zhang
- Key Laboratory of Animal Models and Human Disease Mechanisms of the Chinese Academy of Sciences/Key Laboratory of Bioactive Peptides of Yunnan Province, Kunming Institute of Zoology-The Chinese University of Hong Kong Joint Laboratory of Bioresources and Molecular Research in Common Diseases, National Resource Center for Non-Human Primates, Kunming Primate Research Center, National Research Facility for Phenotypic and Genetic Analysis of Model Animals (Primate Facility), Sino-African Joint Research Center, and Engineering Laboratory of Peptides, Kunming Institute of Zoology, Kunming, China
- Institutes for Drug Discovery and Development, Chinese Academy of Sciences, Shanghai, China
| | - Peter Muiruri Kamau
- Key Laboratory of Animal Models and Human Disease Mechanisms of the Chinese Academy of Sciences/Key Laboratory of Bioactive Peptides of Yunnan Province, Kunming Institute of Zoology-The Chinese University of Hong Kong Joint Laboratory of Bioresources and Molecular Research in Common Diseases, National Resource Center for Non-Human Primates, Kunming Primate Research Center, National Research Facility for Phenotypic and Genetic Analysis of Model Animals (Primate Facility), Sino-African Joint Research Center, and Engineering Laboratory of Peptides, Kunming Institute of Zoology, Kunming, China
- Kunming College of Life Science, University of Chinese Academy of Sciences, Beijing, China
| | - James Mwangi
- Key Laboratory of Animal Models and Human Disease Mechanisms of the Chinese Academy of Sciences/Key Laboratory of Bioactive Peptides of Yunnan Province, Kunming Institute of Zoology-The Chinese University of Hong Kong Joint Laboratory of Bioresources and Molecular Research in Common Diseases, National Resource Center for Non-Human Primates, Kunming Primate Research Center, National Research Facility for Phenotypic and Genetic Analysis of Model Animals (Primate Facility), Sino-African Joint Research Center, and Engineering Laboratory of Peptides, Kunming Institute of Zoology, Kunming, China
- Kunming College of Life Science, University of Chinese Academy of Sciences, Beijing, China
| | - Qiumin Lu
- Key Laboratory of Animal Models and Human Disease Mechanisms of the Chinese Academy of Sciences/Key Laboratory of Bioactive Peptides of Yunnan Province, Kunming Institute of Zoology-The Chinese University of Hong Kong Joint Laboratory of Bioresources and Molecular Research in Common Diseases, National Resource Center for Non-Human Primates, Kunming Primate Research Center, National Research Facility for Phenotypic and Genetic Analysis of Model Animals (Primate Facility), Sino-African Joint Research Center, and Engineering Laboratory of Peptides, Kunming Institute of Zoology, Kunming, China
- Institutes for Drug Discovery and Development, Chinese Academy of Sciences, Shanghai, China
| | - Yaxiong Li
- Department of Cardiovascular Surgery, Yan’an Affiliated Hospital of Kunming Medical University, Kunming, China
| | - Yuming Wang
- Department of Clinical Laboratory, the Second Affiliated Hospital of Kunming Medical University, Kunming, China
| | - Daniel Thomas MacKeigan
- Department of Laboratory Medicine, Keenan Research Centre for Biomedical Science, St. Michael’s Hospital and Toronto Platelet Immunobiology Group, Toronto, ON, Canada
- Department of Physiology, University of Toronto, Toronto, ON, Canada
| | - Eric G. Cerenzia
- Department of Laboratory Medicine, Keenan Research Centre for Biomedical Science, St. Michael’s Hospital and Toronto Platelet Immunobiology Group, Toronto, ON, Canada
- Department of Physiology, University of Toronto, Toronto, ON, Canada
| | - Heyu Ni
- Department of Laboratory Medicine and Pathobiology, University of Toronto, Toronto, ON, Canada
- Department of Laboratory Medicine, Keenan Research Centre for Biomedical Science, St. Michael’s Hospital and Toronto Platelet Immunobiology Group, Toronto, ON, Canada
- Department of Physiology, University of Toronto, Toronto, ON, Canada
- Canadian Blood Services Centre for Innovation, Toronto, ON, Canada
- Department of Medicine, University of Toronto, Toronto, ON, Canada
| | - Ren Lai
- Key Laboratory of Animal Models and Human Disease Mechanisms of the Chinese Academy of Sciences/Key Laboratory of Bioactive Peptides of Yunnan Province, Kunming Institute of Zoology-The Chinese University of Hong Kong Joint Laboratory of Bioresources and Molecular Research in Common Diseases, National Resource Center for Non-Human Primates, Kunming Primate Research Center, National Research Facility for Phenotypic and Genetic Analysis of Model Animals (Primate Facility), Sino-African Joint Research Center, and Engineering Laboratory of Peptides, Kunming Institute of Zoology, Kunming, China
- Institutes for Drug Discovery and Development, Chinese Academy of Sciences, Shanghai, China
| |
Collapse
|
30
|
Yang Y, Cao Y. The impact of VEGF on cancer metastasis and systemic disease. Semin Cancer Biol 2022; 86:251-261. [PMID: 35307547 DOI: 10.1016/j.semcancer.2022.03.011] [Citation(s) in RCA: 105] [Impact Index Per Article: 52.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2021] [Revised: 03/08/2022] [Accepted: 03/15/2022] [Indexed: 01/27/2023]
Abstract
Metastasis is the leading cause of cancer-associated mortality and the underlying mechanisms of cancer metastasis remain elusive. Both blood and lymphatic vasculatures are essential structures for mediating distal metastasis. The vasculature plays multiple functions, including accelerating tumor growth, sustaining the tumor microenvironment, supplying growth and invasive signals, promoting metastasis, and causing cancer-associated systemic disease. VEGF is one of the key angiogenic factors in tumors and participates in the initial stage of tumor development, progression and metastasis. Consequently, VEGF and its receptor-mediated signaling pathways have become one of the most important therapeutic targets for treating various cancers. Today, anti-VEGF-based antiangiogenic drugs (AADs) are widely used in the clinic for treating different types of cancer in human patients. Despite nearly 20-year clinical experience with AADs, the impact of these drugs on cancer metastasis and systemic disease remains largely unknown. In this review article, we focus our discussion on tumor VEGF in cancer metastasis and systemic disease and mechanisms underlying AADs in clinical benefits.
Collapse
Affiliation(s)
- Yunlong Yang
- Department of Cellular and Genetic Medicine, School of Basic Medical Sciences, Fudan University, Shanghai 200032, China.
| | - Yihai Cao
- Department of Microbiology, Tumor and Cell Biology, Biomedicum, Karolinska Institute, 171 77 Stockholm, Sweden.
| |
Collapse
|
31
|
Yang HY, Zhang C, Hu L, Liu C, Pan N, Li M, Han H, Zhou Y, Li J, Zhao LY, Liu YS, Luo BZ, Huang XQ, Lv XF, Li ZC, Li J, Li ZH, Wang RM, Wang L, Guan YY, Liu CZ, Zhang B, Wang GL. Platelet CFTR inhibition enhances arterial thrombosis via increasing intracellular Cl - concentration and activation of SGK1 signaling pathway. Acta Pharmacol Sin 2022; 43:2596-2608. [PMID: 35241769 PMCID: PMC9525590 DOI: 10.1038/s41401-022-00868-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2021] [Accepted: 01/17/2022] [Indexed: 11/09/2022] Open
Abstract
Platelet hyperactivity is essential for thrombus formation in coronary artery diseases (CAD). Dysfunction of the cystic fibrosis transmembrane conductance regulator (CFTR) in patients with cystic fibrosis elevates intracellular Cl- levels ([Cl-]i) and enhanced platelet hyperactivity. In this study, we explored whether alteration of [Cl-]i has a pathological role in regulating platelet hyperactivity and arterial thrombosis formation. CFTR expression was significantly decreased, while [Cl-]i was increased in platelets from CAD patients. In a FeCl3-induced mouse mesenteric arteriole thrombosis model, platelet-specific Cftr-knockout and/or pre-administration of ion channel inhibitor CFTRinh-172 increased platelet [Cl-]i, which accelerated thrombus formation, enhanced platelet aggregation and ATP release, and increased P2Y12 and PAR4 expression in platelets. Conversely, Cftr-overexpressing platelets resulted in subnormal [Cl-]i, thereby decreasing thrombosis formation. Our results showed that clamping [Cl-]i at high levels or Cftr deficiency-induced [Cl-]i increasement dramatically augmented phosphorylation (Ser422) of serum and glucocorticoid-regulated kinase (SGK1), subsequently upregulated P2Y12 and PAR4 expression via NF-κB signaling. Constitutively active mutant S422D SGK1 markedly increased P2Y12 and PAR4 expression. The specific SGK1 inhibitor GSK-650394 decreased platelet aggregation in wildtype and platelet-specific Cftr knockout mice, and platelet SGK1 phosphorylation was observed in line with increased [Cl-]i and decreased CFTR expression in CAD patients. Co-transfection of S422D SGK1 and adenovirus-induced CFTR overexpression in MEG-01 cells restored platelet activation signaling cascade. Our results suggest that [Cl-]i is a novel positive regulator of platelet activation and arterial thrombus formation via the activation of a [Cl-]i-sensitive SGK1 signaling pathway. Therefore, [Cl-]i in platelets is a novel potential biomarker for platelet hyperactivity, and CFTR may be a potential therapeutic target for platelet activation in CAD.
Collapse
Affiliation(s)
- Han-Yan Yang
- Department of Pharmacology, Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou, 510080, China
| | - Chao Zhang
- Department of Pharmacology, Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou, 510080, China
| | - Liang Hu
- Academy of Integrative Medicine, Shanghai University of Traditional Chinese Medicine, Shanghai, 201203, China
| | - Chang Liu
- Department of Pharmacology, Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou, 510080, China
| | - Ni Pan
- Department of Pharmacology, Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou, 510080, China
- Institute of Pediatrics, Guangzhou Women and Children's Medical Center affiliated to Guangzhou Medical College, Guangzhou, 510623, China
| | - Mei Li
- VIP Healthcare Center, the Third Affiliated Hospital of Sun Yat-sen University, Guangzhou, 510630, China
| | - Hui Han
- Department of Pharmacology, Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou, 510080, China
| | - Yi Zhou
- Guangdong Cardiovascular Institute, Guangdong Provincial People's Hospital, Guangdong Academy of Medical Sciences, Guangzhou, 510080, China
| | - Jie Li
- Department of Anesthesiology, The Second Affiliated Hospital of Guangzhou University of Chinese Medicine, Guangzhou, 510120, China
| | - Li-Yan Zhao
- Department of Pharmacy, The First Affiliated Hospital of Sun Yat-sen University, Guangzhou, 510080, China
| | - Yao-Sheng Liu
- Department of Pharmacology, Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou, 510080, China
| | - Bing-Zheng Luo
- Guangdong Cardiovascular Institute, Guangdong Provincial People's Hospital, Guangdong Academy of Medical Sciences, Guangzhou, 510080, China
| | - Xiong-Qing Huang
- Department of Anesthesiology, the First Affiliated Hospital, Sun Yat-sen University, Guangzhou, 510080, China
| | - Xiao-Fei Lv
- Department of Pharmacology, Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou, 510080, China
| | - Zi-Cheng Li
- Department of Pharmacology, Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou, 510080, China
| | - Jun Li
- Department of Pharmacology, Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou, 510080, China
| | - Zhi-Hong Li
- Department of Pharmacology, Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou, 510080, China
| | - Ruo-Mei Wang
- School of Computer Science and Engineering, Sun Yat-sen University, Guangzhou, 510006, China
| | - Li Wang
- Division of Biological Sciences, University of California, San Diego, La Jolla, CA, USA
| | - Yong-Yuan Guan
- Department of Pharmacology, Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou, 510080, China
| | - Can-Zhao Liu
- Department of Cardiovascular Medicine, Translational Medicine Research Center, Zhujiang Hospital, Southern Medical University, Guangzhou, 510280, China.
| | - Bin Zhang
- Guangdong Cardiovascular Institute, Guangdong Provincial People's Hospital, Guangdong Academy of Medical Sciences, Guangzhou, 510080, China.
| | - Guan-Lei Wang
- Department of Pharmacology, Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou, 510080, China.
| |
Collapse
|
32
|
Fakhri S, Moradi SZ, Nouri Z, Cao H, Wang H, Khan H, Xiao J. Modulation of integrin receptor by polyphenols: Downstream Nrf2-Keap1/ARE and associated cross-talk mediators in cardiovascular diseases. Crit Rev Food Sci Nutr 2022; 64:1592-1616. [PMID: 36073725 DOI: 10.1080/10408398.2022.2118226] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2022]
Abstract
As a group of heterodimeric and transmembrane glycoproteins, integrin receptors are widely expressed in various cell types overall the body. During cardiovascular dysfunction, integrin receptors apply inhibitory effects on the antioxidative pathways, including nuclear factor erythroid 2-related factor 2 (Nrf2)-Kelch like ECH Associated Protein 1 (Keap1)/antioxidant response element (ARE) and interconnected mediators. As such, dysregulation in integrin signaling pathways influences several aspects of cardiovascular diseases (CVDs) such as heart failure, arrhythmia, angina, hypertension, hyperlipidemia, platelet aggregation and coagulation. So, modulation of integrin pathway could trigger the downstream antioxidant pathways toward cardioprotection. Regarding the involvement of multiple aforementioned mediators in the pathogenesis of CVDs, as well as the side effects of conventional drugs, seeking for novel alternative drugs is of great importance. Accordingly, the plant kingdom could pave the road in the treatment of CVDs. Of natural entities, polyphenols are multi-target and accessible phytochemicals with promising potency and low levels of toxicity. The present study aims at providing the cardioprotective roles of integrin receptors and downstream antioxidant pathways in heart failure, arrhythmia, angina, hypertension, hyperlipidemia, platelet aggregation and coagulation. The potential role of polyphenols has been also revealed in targeting the aforementioned dysregulated signaling mediators in those CVDs.
Collapse
Affiliation(s)
- Sajad Fakhri
- Pharmaceutical Sciences Research Center, Health Institute, Kermanshah University of Medical Sciences, Kermanshah, Iran
| | - Seyed Zachariah Moradi
- Pharmaceutical Sciences Research Center, Health Institute, Kermanshah University of Medical Sciences, Kermanshah, Iran
- Medical Biology Research Center, Health Technology Institute, Kermanshah University of Medical Sciences, Kermanshah, Iran
| | - Zeinab Nouri
- Student Research Committee, Kermanshah University of Medical Sciences, Kermanshah, Iran
| | - Hui Cao
- Department of Analytical and Food Chemistry, Faculty of Sciences, Universidade de Vigo, Nutrition and Bromatology Group, Ourense, Spain
| | - Hui Wang
- State Key Laboratory of Food Science and Technology, China-Canada Joint Lab of Food Science and Technology (Nanchang), Key Laboratory of Bioactive Polysaccharides of Jiangxi Province, Nanchang University, Nanchang, China
| | - Haroon Khan
- Department of Pharmacy, Abdul Wali Khan University Mardan, Mardan, Pakistan
| | - Jianbo Xiao
- Department of Analytical and Food Chemistry, Faculty of Sciences, Universidade de Vigo, Nutrition and Bromatology Group, Ourense, Spain
- International Research Center for Food Nutrition and Safety, Jiangsu University, Zhenjiang, China
| |
Collapse
|
33
|
Kazandzhieva K, Mammadova-Bach E, Dietrich A, Gudermann T, Braun A. TRP channel function in platelets and megakaryocytes: basic mechanisms and pathophysiological impact. Pharmacol Ther 2022; 237:108164. [PMID: 35247518 DOI: 10.1016/j.pharmthera.2022.108164] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2021] [Revised: 01/29/2022] [Accepted: 02/28/2022] [Indexed: 12/30/2022]
Abstract
Transient receptor potential (TRP) proteins form a superfamily of cation channels that are expressed in a wide range of tissues and cell types. During the last years, great progress has been made in understanding the molecular complexity and the functions of TRP channels in diverse cellular processes, including cell proliferation, migration, adhesion and activation. The diversity of functions depends on multiple regulatory mechanisms by which TRP channels regulate Ca2+ entry mechanisms and intracellular Ca2+ dynamics, either through membrane depolarization involving cation influx or store- and receptor-operated mechanisms. Abnormal function or expression of TRP channels results in vascular pathologies, including hypertension, ischemic stroke and inflammatory disorders through effects on vascular cells, including the components of blood vessels and platelets. Moreover, some TRP family members also regulate megakaryopoiesis and platelet production, indicating a complex role of TRP channels in pathophysiological conditions. In this review, we describe potential roles of TRP channels in megakaryocytes and platelets, as well as their contribution to diseases such as thrombocytopenia, thrombosis and stroke. We also critically discuss the potential of TRP channels as possible targets for disease prevention and treatment.
Collapse
Affiliation(s)
- Kalina Kazandzhieva
- Walther-Straub-Institute for Pharmacology and Toxicology, Ludwig-Maximilians-University, Munich, Germany
| | - Elmina Mammadova-Bach
- Walther-Straub-Institute for Pharmacology and Toxicology, Ludwig-Maximilians-University, Munich, Germany; Division of Nephrology, Department of Medicine IV, Ludwig-Maximilians-University Hospital, Munich, Germany
| | - Alexander Dietrich
- Walther-Straub-Institute for Pharmacology and Toxicology, Ludwig-Maximilians-University, Munich, Germany; German Center for Lung Research (DZL), Munich, Germany
| | - Thomas Gudermann
- Walther-Straub-Institute for Pharmacology and Toxicology, Ludwig-Maximilians-University, Munich, Germany; German Center for Lung Research (DZL), Munich, Germany.
| | - Attila Braun
- Walther-Straub-Institute for Pharmacology and Toxicology, Ludwig-Maximilians-University, Munich, Germany.
| |
Collapse
|
34
|
Ma Y, Deng K, Liu J, Ma B, Mei F, Hui W, Luo X, Yao M, Liu Y, Qin X, Zhou X, Zou K, Li L, Sun X. The add-on effects of Danhong injection among patients with ischemic stroke receiving Western medicines: A systematic review and meta-analysis. Front Pharmacol 2022; 13:937369. [PMID: 36081951 PMCID: PMC9445550 DOI: 10.3389/fphar.2022.937369] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2022] [Accepted: 07/08/2022] [Indexed: 11/21/2022] Open
Abstract
Background: Danhong injection is widely used for treating ischemic stroke in China. However, its effects on ischemic stroke patients when given along with Western medicines (i.e., the add-on effect) were not well-established. Methods: We searched PubMed, Embase, Cochrane Central Register of Controlled Trials (CENTRAL), and three Chinese databases from inception to 20 July 2020 to identify randomized controlled trials (RCTs) that assessed the effects of Danhong injection as add-on therapy in patients with ischemic stroke. Pairs of trained reviewers independently screened for eligible studies, assessed risk of bias, and extracted the data. The outcomes were the National Institutes of Health Stroke Scale Score (NIHSS), Barthel index, activities of daily living (ADL), total cholesterol, and homocysteine (Hcy). Results: Sixty-seven RCTs of 6594 patients with varying risk of bias were included. Compared with Western medicine alone, the addition of Danhong injection to Western medicine significantly lowered the NIHSS score (45 RCTs with 4565 patients; MD −4.21, 95% CI −4.96 to −3.46), total cholesterol (10 trials with 1019 patients; MD −1.14 mmol/L, 95% CI −1.57 to −0.72), and Hcy (four trials with 392 patients; MD −3.54 μmol/L, 95% CI −4.38 to −2.07). The addition of Danhong also increased the Barthel index (14 trials with 1270 patients; MD 8.71, 95% CI 3.68–13.74) and ADL (12 trials with 1114 patients; MD 14.48, 95% CI 9.04–19.92) scores. Subgroup analyses showed differential effects in the average cerebral blood flow rate by mean age of patients (<60 years: MD 0.74 cm/s, 95% CI 0.29–1.19; ≥60 years: MD 4.09 cm/s, 95% CI 2.02–6.16; interaction p = 0.002) and the NIHSS score by type of baseline Western medicines (interaction p < 0.00001). Conclusion: The addition of Danhong injection to Western medicine may improve neurological function, self-care ability, and blood lipid level of ischemic stroke patients. However, given most included trials with unclear risk of bias, current evidence is not definitive, and more carefully designed and conducted trials are warranted to confirm our findings. Systematic Review Registration: [https://www.crd.york.ac.uk/PROSPERO/], identifier [CRD42022298628].
Collapse
Affiliation(s)
- Yu Ma
- Chinese Evidence-Based Medicine Center, West China Hospital, Sichuan University, Chengdu, Sichuan, China
- NMPA Key Laboratory for Real World Data Research and Evaluation in Hainan, Chengdu, Sichuan, China
- Sichuan Center of Technology Innovation for Real World Data, Chengdu, Sichuan, China
| | - Ke Deng
- Chinese Evidence-Based Medicine Center, West China Hospital, Sichuan University, Chengdu, Sichuan, China
- NMPA Key Laboratory for Real World Data Research and Evaluation in Hainan, Chengdu, Sichuan, China
- Sichuan Center of Technology Innovation for Real World Data, Chengdu, Sichuan, China
| | - Jiali Liu
- Chinese Evidence-Based Medicine Center, West China Hospital, Sichuan University, Chengdu, Sichuan, China
- NMPA Key Laboratory for Real World Data Research and Evaluation in Hainan, Chengdu, Sichuan, China
- Sichuan Center of Technology Innovation for Real World Data, Chengdu, Sichuan, China
| | - Bin Ma
- Evidence-Based Medicine Center, School of Basic Medical Sciences, Lanzhou University, Lanzhou, Gansu, China
| | - Fan Mei
- Evidence-Based Medicine Center, School of Basic Medical Sciences, Lanzhou University, Lanzhou, Gansu, China
| | - Wen Hui
- Department of Science and Technology, West China Hospital, Sichuan University, Chengdu, Sichuan, China
| | - Xiaochao Luo
- Chinese Evidence-Based Medicine Center, West China Hospital, Sichuan University, Chengdu, Sichuan, China
- NMPA Key Laboratory for Real World Data Research and Evaluation in Hainan, Chengdu, Sichuan, China
- Sichuan Center of Technology Innovation for Real World Data, Chengdu, Sichuan, China
| | - Minghong Yao
- Chinese Evidence-Based Medicine Center, West China Hospital, Sichuan University, Chengdu, Sichuan, China
- NMPA Key Laboratory for Real World Data Research and Evaluation in Hainan, Chengdu, Sichuan, China
- Sichuan Center of Technology Innovation for Real World Data, Chengdu, Sichuan, China
| | - Yanmei Liu
- Chinese Evidence-Based Medicine Center, West China Hospital, Sichuan University, Chengdu, Sichuan, China
- NMPA Key Laboratory for Real World Data Research and Evaluation in Hainan, Chengdu, Sichuan, China
- Sichuan Center of Technology Innovation for Real World Data, Chengdu, Sichuan, China
| | - Xuan Qin
- Chinese Evidence-Based Medicine Center, West China Hospital, Sichuan University, Chengdu, Sichuan, China
- NMPA Key Laboratory for Real World Data Research and Evaluation in Hainan, Chengdu, Sichuan, China
- Sichuan Center of Technology Innovation for Real World Data, Chengdu, Sichuan, China
| | - Xu Zhou
- Evidence-Based Medicine Research Center, School of Basic Science, Jiangxi University of Traditional Chinese Medicine, Nanchang, Jiangxi, China
| | - Kang Zou
- Chinese Evidence-Based Medicine Center, West China Hospital, Sichuan University, Chengdu, Sichuan, China
- NMPA Key Laboratory for Real World Data Research and Evaluation in Hainan, Chengdu, Sichuan, China
- Sichuan Center of Technology Innovation for Real World Data, Chengdu, Sichuan, China
| | - Ling Li
- Chinese Evidence-Based Medicine Center, West China Hospital, Sichuan University, Chengdu, Sichuan, China
- NMPA Key Laboratory for Real World Data Research and Evaluation in Hainan, Chengdu, Sichuan, China
- Sichuan Center of Technology Innovation for Real World Data, Chengdu, Sichuan, China
- *Correspondence: Ling Li,
| | - Xin Sun
- Chinese Evidence-Based Medicine Center, West China Hospital, Sichuan University, Chengdu, Sichuan, China
- NMPA Key Laboratory for Real World Data Research and Evaluation in Hainan, Chengdu, Sichuan, China
- Sichuan Center of Technology Innovation for Real World Data, Chengdu, Sichuan, China
| |
Collapse
|
35
|
YANG QQ, FANG MS, TU J, MA QX, SHEN LY, XU YY, CHEN J, CHEN ML. Guanxinning tablet inhibits the interaction between leukocyte integrin Mac-1 and platelet GPIbα for antithrombosis without increased bleeding risk. Chin J Nat Med 2022; 20:589-600. [DOI: 10.1016/s1875-5364(22)60183-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2022] [Indexed: 11/03/2022]
|
36
|
Relationship between the Soluble F11 Receptor and Annexin A5 in African Americans Patients with Type-2 Diabetes Mellitus. Biomedicines 2022; 10:biomedicines10081818. [PMID: 36009365 PMCID: PMC9405000 DOI: 10.3390/biomedicines10081818] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2022] [Revised: 06/10/2022] [Accepted: 06/15/2022] [Indexed: 11/17/2022] Open
Abstract
Type 2 diabetes mellitus (T2DM) is characterized by endothelial dysfunction, increased thrombogenicity, and inflammation. The soluble human F11 receptor (sF11R) and annexin A5 (ANXA5) play crucial roles in inflammatory thrombosis and atherosclerosis. We examined the relationship between circulating sF11R and ANXA5 and their impact on endothelial function. The study included 125 patients with T2DM. Plasma levels of sF11R and ANXA5 were quantified by ELISA. Microvascular function was assessed using the vascular reactivity index (VRI). Large artery stiffness was assessed by carotid-femoral pulse wave velocity (PWV). Carotid intima-media thickness (CIMT) was assessed by B-mode ultrasound imaging. The mean age of patients in the study was 59.7 ± 7.8 years, 78% had hypertension, 76% had dyslipidemia, and 12% had CKD. sF11R correlated positively with ANXA5 levels (β = 0.250, p = 0.005), and correlated inversely with VRI and total nitic oxide (NO), (β = −0.201, p = 0.024; β = −0.357, p = 0.0001, respectively). Multivariate regression analysis revealed that sF11R was independently associated with ANXA5 in the total population and in patients with HbA1c > 6.5% (β = 0.366, p = 0.007; β = 0.425, p = 0.0001, respectively). sF11R and ANXA5 were not associated with vascular outcome, suggesting that they may not be reliable markers of vascular dysfunction in diabetes. The clinical significance of sF11R/ANXA5 association in diabetes warrants further investigation in a larger population.
Collapse
|
37
|
Sun Y, Liu R, Xia X, Xing L, Jiang J, Bian W, Zhang W, Wang C, Zhang C. Large-Scale Profiling on lncRNAs in Human Platelets: Correlation with Platelet Reactivity. Cells 2022; 11:cells11142256. [PMID: 35883699 PMCID: PMC9319970 DOI: 10.3390/cells11142256] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2022] [Revised: 07/12/2022] [Accepted: 07/18/2022] [Indexed: 11/16/2022] Open
Abstract
Recently, long noncoding RNAs (lncRNAs) have been key regulators for both mRNAs and proteins in nucleated cells. However, the expression profiles of lncRNAs in non-nucleated cells such as platelets are currently unclear. In this study, we determined the expression profiles of lncRNAs in human platelets. We found that 6109 lncRNAs were expressed in human platelets. Interestingly, 338 lncRNAs were differentially expressed in hyperreactive and hyporeactive platelets. Bioinformatics’ analysis revealed that these aberrantly expressed lncRNAs might be related to platelet activity and other platelet functions. To provide a proof of concept, we measured the expression levels of PARLncRNA-1, a down-regulated lncRNA of hyperreactive platelets, in platelets from 12 patients with acute myocardial infarction and their controls. We found that the lncRNA was also significantly down-regulated in platelets from patients, which was partially reversed by treatment with aspirin a known antiplatelet drug. LncRNAs may represent a novel class of modulators for platelet functions.
Collapse
Affiliation(s)
- Yeying Sun
- US-China Institute for Translational Medicine, College of Pharmacy, Binzhou Medical University, Yantai 264000, China; (Y.S.); (R.L.); (X.X.); (L.X.); (J.J.); (W.B.); (C.W.)
| | - Rongrong Liu
- US-China Institute for Translational Medicine, College of Pharmacy, Binzhou Medical University, Yantai 264000, China; (Y.S.); (R.L.); (X.X.); (L.X.); (J.J.); (W.B.); (C.W.)
| | - Xiangwen Xia
- US-China Institute for Translational Medicine, College of Pharmacy, Binzhou Medical University, Yantai 264000, China; (Y.S.); (R.L.); (X.X.); (L.X.); (J.J.); (W.B.); (C.W.)
| | - Luchuan Xing
- US-China Institute for Translational Medicine, College of Pharmacy, Binzhou Medical University, Yantai 264000, China; (Y.S.); (R.L.); (X.X.); (L.X.); (J.J.); (W.B.); (C.W.)
| | - Jing Jiang
- US-China Institute for Translational Medicine, College of Pharmacy, Binzhou Medical University, Yantai 264000, China; (Y.S.); (R.L.); (X.X.); (L.X.); (J.J.); (W.B.); (C.W.)
| | - Weihua Bian
- US-China Institute for Translational Medicine, College of Pharmacy, Binzhou Medical University, Yantai 264000, China; (Y.S.); (R.L.); (X.X.); (L.X.); (J.J.); (W.B.); (C.W.)
- Department of Biomedical Engineering, School of Medicine, The University of Alabama at Birmingham, Birmingham, AL 35233, USA;
| | - Wendy Zhang
- Department of Biomedical Engineering, School of Medicine, The University of Alabama at Birmingham, Birmingham, AL 35233, USA;
| | - Chunhua Wang
- US-China Institute for Translational Medicine, College of Pharmacy, Binzhou Medical University, Yantai 264000, China; (Y.S.); (R.L.); (X.X.); (L.X.); (J.J.); (W.B.); (C.W.)
| | - Chunxiang Zhang
- Department of Cardiology, The Affiliated Hospital of Southwest Medical University, Key Laboratory of Medical Electrophysiology of Ministry of Education, Institute of Cardiovascular Research, Nucleic Acid Medicine of Luzhou Key Laboratory, Metabolic Vascular Disease Key Laboratory of Sichuan Province, Southwest Medical University, Luzhou 646000, China
- Correspondence: ; Tel.: +86-001-830-3162828
| |
Collapse
|
38
|
Li Y, Xin G, Li S, Dong Y, Zhu Y, Yu X, Wan C, Li F, Wei Z, Wang Y, Zhang K, Chen Q, Niu H, Huang W. PD-L1 Regulates Platelet Activation and Thrombosis via Caspase-3/GSDME Pathway. Front Pharmacol 2022; 13:921414. [PMID: 35784685 PMCID: PMC9240427 DOI: 10.3389/fphar.2022.921414] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2022] [Accepted: 05/25/2022] [Indexed: 11/24/2022] Open
Abstract
Platelets play a central role in hemostasis and thrombosis, regulating the occurrence and development of thrombotic diseases, including ischemic stroke. Programmed death ligand 1 (PD-L1) has recently been detected in platelet, while the function of PD-L1 in platelets remain elusive. Our data reveal a novel mechanism for the role of PD-L1 on platelet activation and arterial thrombosis. PD-L1 knockout does not affect platelet morphology, count, and mean volume under homeostasis and without risk of bleeding, which inhibits platelet activation by suppressing outside-in-activation of integrin by downregulating the Caspase-3/GSDME pathway. Platelet adoptive transfer experiments demonstrate that PD-L1 knockout inhibits thrombosis. And the absence of PD-L1 improves ischemic stroke severity and increases mice survival. Immunohistochemical staining of the internal structure of the thrombus proves that PD-L1 enhances the seriousness of the thrombus by inhibiting platelet activation. This work reveals a regulatory role of PD-L1 on platelet activation and thrombosis while providing novel platelet intervention strategies to prevent thrombosis.
Collapse
|
39
|
Wang A, Meng X, Tian X, Johnston SC, Li H, Bath PM, Zuo Y, Xie X, Jing J, Lin J, Wang Y, Zhao X, Li Z, Jiang Y, Liu L, Wang F, Wang Y, Huang P, Chen G, Wang Y. Effect of Hypertension on Efficacy and Safety of Ticagrelor-Aspirin Versus Clopidogrel-Aspirin in Minor Stroke or Transient Ischemic Attack. Stroke 2022; 53:2799-2808. [PMID: 35656824 DOI: 10.1161/strokeaha.122.038662] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
BACKGROUND Hypertension is a risk factor of poor stroke outcomes and associated with antiplatelet resistance. This study aimed to explore the efficacy and safety of ticagrelor-aspirin versus clopidogrel-aspirin in patients with different hypertension status, using randomized trial data from the CHANCE-2 trial (Clopidogrel in High-Risk Patients With Acute Nondisabling Cerebrovascular Events-II). METHODS A total of 6412 patients with minor stroke or transient ischemic attack who carried CYP2C19 loss-of-function alleles were enrolled and randomized to either ticagrelor-aspirin or clopidogrel-aspirin group. Hypertension status were classified into no, newly diagnosed, and previously diagnosed hypertension according to medical history, blood pressure, and antihypertensive medications during hospitalization. The primary efficacy and safety outcomes were stroke recurrence and moderate to severe bleeding risk within 90-day follow-up. RESULTS Ticagrelor-aspirin was associated with reduced risk of new stroke in patients without hypertension (32 [4.8%] versus 60 [7.2%]; hazard ratio, 0.55 [95% CI, 0.35-0.86]), but not in those with a newly diagnosed hypertension (20 [5.3%] versus 36 [9.1%]; hazard ratio 0.59 [95% CI, 0.33-1.07]), or those with a previously diagnosed hypertension (139 [7.0%] versus 147 [7.4%]; hazard ratio, 0.93 [95% CI, 0.74-1.18]) compared with clopidogrel-aspirin (P=0.04 for interaction). The risk of bleeding for ticagrelor-aspirin was not associated with hypertension status (0.1% versus 0.4%; 0.3% versus 0.5%, 0.4% versus 0.3%, P=0.50 for interaction). All the efficacy and safety outcomes between treatments did not differ by blood pressure levels on admission. CONCLUSIONS In the CHANCE-2 trial, patients without hypertension received a significantly greater benefit from ticagrelor- aspirin than those with previous hypertension after minor stroke or transient ischemic attack, and a similar benefit trend was observed in those with newly diagnosed hypertension. REGISTRATION URL: http://www. CLINICALTRIALS gov; Unique identifier: NCT04078737.
Collapse
Affiliation(s)
- Anxin Wang
- Department of Neurology, Beijing Tiantan Hospital, Capital Medical University, China. (A.W., X.M., H.L., X.X., J.J., J.L., Yilong Wang, X.Z., Z.L., Y.J., L.L., Yongjun Wang).,China National Clinical Research Center for Neurological Diseases, Beijing Tiantan Hospital, Capital Medical University, China. (A.W., X.M., H.L., X.X., J.J., J.L., Yilong Wang, X.Z., Z.L., Y.J., L.L., Yongjun Wang)
| | - Xia Meng
- Department of Neurology, Beijing Tiantan Hospital, Capital Medical University, China. (A.W., X.M., H.L., X.X., J.J., J.L., Yilong Wang, X.Z., Z.L., Y.J., L.L., Yongjun Wang).,China National Clinical Research Center for Neurological Diseases, Beijing Tiantan Hospital, Capital Medical University, China. (A.W., X.M., H.L., X.X., J.J., J.L., Yilong Wang, X.Z., Z.L., Y.J., L.L., Yongjun Wang)
| | - Xue Tian
- Department of Epidemiology and Health Statistics, School of Public Health, Capital Medical University, Beijing, China (X.T., Y.Z.).,Beijing Municipal Key Laboratory of Clinical Epidemiology, China (X.T., Y.Z.)
| | | | - Hao Li
- Department of Neurology, Beijing Tiantan Hospital, Capital Medical University, China. (A.W., X.M., H.L., X.X., J.J., J.L., Yilong Wang, X.Z., Z.L., Y.J., L.L., Yongjun Wang).,China National Clinical Research Center for Neurological Diseases, Beijing Tiantan Hospital, Capital Medical University, China. (A.W., X.M., H.L., X.X., J.J., J.L., Yilong Wang, X.Z., Z.L., Y.J., L.L., Yongjun Wang)
| | - Philip M Bath
- Stroke Trials Unit, Mental Health & Clinical Neuroscience, University of Nottingham, United Kingdom (P.M.B.)
| | - Yingting Zuo
- Department of Epidemiology and Health Statistics, School of Public Health, Capital Medical University, Beijing, China (X.T., Y.Z.).,Beijing Municipal Key Laboratory of Clinical Epidemiology, China (X.T., Y.Z.)
| | - Xuewei Xie
- Department of Neurology, Beijing Tiantan Hospital, Capital Medical University, China. (A.W., X.M., H.L., X.X., J.J., J.L., Yilong Wang, X.Z., Z.L., Y.J., L.L., Yongjun Wang).,China National Clinical Research Center for Neurological Diseases, Beijing Tiantan Hospital, Capital Medical University, China. (A.W., X.M., H.L., X.X., J.J., J.L., Yilong Wang, X.Z., Z.L., Y.J., L.L., Yongjun Wang)
| | - Jing Jing
- Department of Neurology, Beijing Tiantan Hospital, Capital Medical University, China. (A.W., X.M., H.L., X.X., J.J., J.L., Yilong Wang, X.Z., Z.L., Y.J., L.L., Yongjun Wang).,China National Clinical Research Center for Neurological Diseases, Beijing Tiantan Hospital, Capital Medical University, China. (A.W., X.M., H.L., X.X., J.J., J.L., Yilong Wang, X.Z., Z.L., Y.J., L.L., Yongjun Wang)
| | - Jinxi Lin
- Department of Neurology, Beijing Tiantan Hospital, Capital Medical University, China. (A.W., X.M., H.L., X.X., J.J., J.L., Yilong Wang, X.Z., Z.L., Y.J., L.L., Yongjun Wang).,China National Clinical Research Center for Neurological Diseases, Beijing Tiantan Hospital, Capital Medical University, China. (A.W., X.M., H.L., X.X., J.J., J.L., Yilong Wang, X.Z., Z.L., Y.J., L.L., Yongjun Wang)
| | - Yilong Wang
- Department of Neurology, Beijing Tiantan Hospital, Capital Medical University, China. (A.W., X.M., H.L., X.X., J.J., J.L., Yilong Wang, X.Z., Z.L., Y.J., L.L., Yongjun Wang).,China National Clinical Research Center for Neurological Diseases, Beijing Tiantan Hospital, Capital Medical University, China. (A.W., X.M., H.L., X.X., J.J., J.L., Yilong Wang, X.Z., Z.L., Y.J., L.L., Yongjun Wang)
| | - Xingquan Zhao
- Department of Neurology, Beijing Tiantan Hospital, Capital Medical University, China. (A.W., X.M., H.L., X.X., J.J., J.L., Yilong Wang, X.Z., Z.L., Y.J., L.L., Yongjun Wang).,China National Clinical Research Center for Neurological Diseases, Beijing Tiantan Hospital, Capital Medical University, China. (A.W., X.M., H.L., X.X., J.J., J.L., Yilong Wang, X.Z., Z.L., Y.J., L.L., Yongjun Wang)
| | - Zixiao Li
- Department of Neurology, Beijing Tiantan Hospital, Capital Medical University, China. (A.W., X.M., H.L., X.X., J.J., J.L., Yilong Wang, X.Z., Z.L., Y.J., L.L., Yongjun Wang).,China National Clinical Research Center for Neurological Diseases, Beijing Tiantan Hospital, Capital Medical University, China. (A.W., X.M., H.L., X.X., J.J., J.L., Yilong Wang, X.Z., Z.L., Y.J., L.L., Yongjun Wang)
| | - Yong Jiang
- Department of Neurology, Beijing Tiantan Hospital, Capital Medical University, China. (A.W., X.M., H.L., X.X., J.J., J.L., Yilong Wang, X.Z., Z.L., Y.J., L.L., Yongjun Wang).,China National Clinical Research Center for Neurological Diseases, Beijing Tiantan Hospital, Capital Medical University, China. (A.W., X.M., H.L., X.X., J.J., J.L., Yilong Wang, X.Z., Z.L., Y.J., L.L., Yongjun Wang)
| | - Liping Liu
- Department of Neurology, Beijing Tiantan Hospital, Capital Medical University, China. (A.W., X.M., H.L., X.X., J.J., J.L., Yilong Wang, X.Z., Z.L., Y.J., L.L., Yongjun Wang).,China National Clinical Research Center for Neurological Diseases, Beijing Tiantan Hospital, Capital Medical University, China. (A.W., X.M., H.L., X.X., J.J., J.L., Yilong Wang, X.Z., Z.L., Y.J., L.L., Yongjun Wang)
| | - Feng Wang
- Departments of Neurology, Seventh People's Hospital of Shanghai University of Traditional Chinese Medicine, China (F.W.)
| | - Yanxia Wang
- Department of Neurology, Hejian People's Hospital, Hebei, China (Y.W.)
| | - Panbing Huang
- Department of Neurology, The third People's Hospital in Tongzhou District of Nantong, Jiangsu, China (P.H.)
| | - Guofang Chen
- Department of Neurology, Xuzhou Central Hospital, Jiangsu, China (G.C.)
| | - Yongjun Wang
- Department of Neurology, Beijing Tiantan Hospital, Capital Medical University, China. (A.W., X.M., H.L., X.X., J.J., J.L., Yilong Wang, X.Z., Z.L., Y.J., L.L., Yongjun Wang).,China National Clinical Research Center for Neurological Diseases, Beijing Tiantan Hospital, Capital Medical University, China. (A.W., X.M., H.L., X.X., J.J., J.L., Yilong Wang, X.Z., Z.L., Y.J., L.L., Yongjun Wang)
| | | |
Collapse
|
40
|
Zhang Z, Shen C, Fang M, Han Y, Long C, Liu W, Yang M, Liu M, Zhang D, Cao Q, Chen X, Fang Y, Lu Q, Hou Z, Li Y, Liu Z, Lei X, Ni H, Lai R. Novel contact-kinin inhibitor sylvestin targets thromboinflammation and ameliorates ischemic stroke. Cell Mol Life Sci 2022; 79:240. [PMID: 35416530 PMCID: PMC11071929 DOI: 10.1007/s00018-022-04257-7] [Citation(s) in RCA: 15] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2022] [Revised: 03/15/2022] [Accepted: 03/17/2022] [Indexed: 11/26/2022]
Abstract
Ischemic stroke is a leading cause of death and disability worldwide. Increasing evidence indicates that ischemic stroke is a thromboinflammatory disease in which the contact-kinin pathway has a central role by activating pro-coagulant and pro-inflammatory processes. The blocking of distinct members of the contact-kinin pathway is a promising strategy to control ischemic stroke. Here, a plasma kallikrein and active FXII (FXIIa) inhibitor (sylvestin, contained 43 amino acids, with a molecular weight of 4790.4 Da) was first identified from forest leeches (Haemadipsa sylvestris). Testing revealed that sylvestin prolonged activated partial thromboplastin time without affecting prothrombin time. Thromboelastography and clot retraction assays further showed that it extended clotting time in whole blood and inhibited clot retraction in platelet-rich plasma. In addition, sylvestin prevented thrombosis in vivo in FeCl3-induced arterial and carrageenan-induced tail thrombosis models. The potential role of sylvestin in ischemic stroke was evaluated by transient and permanent middle cerebral artery occlusion models. Sylvestin administration profoundly protected mice from ischemic stroke by counteracting intracerebral thrombosis and inflammation. Importantly, sylvestin showed no signs of bleeding tendency. The present study identifies sylvestin is a promising contact-kinin pathway inhibitor that can proffer profound protection from ischemic stroke without increased risk of bleeding.
Collapse
Affiliation(s)
- Zhiye Zhang
- Key Laboratory of Animal Models and Human Disease Mechanisms of Chinese Academy of Sciences/Key Laboratory of Bioactive Peptides of Yunnan Province, KIZ-CUHK Joint Laboratory of Bioresources and Molecular Research in Common Diseases, Kunming Institute of Zoology, Kunming, Yunnan, 650107, China
| | - Chuanbin Shen
- Department of Laboratory Medicine and Pathobiology, University of Toronto, Toronto, ON, M5S 1A1, Canada
- Department of Laboratory Medicine, Keenan Research Centre for Biomedical Science, Senior Scientist of Canadian Blood Services Centre for Innovation, Platform Director for Hematology, Cancer and Immunological Diseases, St. Michael's Hospital, Room 421, LKSKI - Keenan Research Centre, Li Ka Shing Knowledge Institute, St. Michael's Hospital, and Toronto Platelet Immunobiology Group, 209 Victoria Street, Toronto, ON, M5B 1W8, Canada
| | - Mingqian Fang
- Key Laboratory of Animal Models and Human Disease Mechanisms of Chinese Academy of Sciences/Key Laboratory of Bioactive Peptides of Yunnan Province, KIZ-CUHK Joint Laboratory of Bioresources and Molecular Research in Common Diseases, Kunming Institute of Zoology, Kunming, Yunnan, 650107, China
- Kunming College of Life Science, University of Chinese Academy of Sciences, Kunming, Yunnan, 650204, China
| | - Yajun Han
- Key Laboratory of Animal Models and Human Disease Mechanisms of Chinese Academy of Sciences/Key Laboratory of Bioactive Peptides of Yunnan Province, KIZ-CUHK Joint Laboratory of Bioresources and Molecular Research in Common Diseases, Kunming Institute of Zoology, Kunming, Yunnan, 650107, China
| | - Chengbo Long
- Key Laboratory of Animal Models and Human Disease Mechanisms of Chinese Academy of Sciences/Key Laboratory of Bioactive Peptides of Yunnan Province, KIZ-CUHK Joint Laboratory of Bioresources and Molecular Research in Common Diseases, Kunming Institute of Zoology, Kunming, Yunnan, 650107, China
- Kunming College of Life Science, University of Chinese Academy of Sciences, Kunming, Yunnan, 650204, China
| | - Weihui Liu
- Key Laboratory of Animal Models and Human Disease Mechanisms of Chinese Academy of Sciences/Key Laboratory of Bioactive Peptides of Yunnan Province, KIZ-CUHK Joint Laboratory of Bioresources and Molecular Research in Common Diseases, Kunming Institute of Zoology, Kunming, Yunnan, 650107, China
| | - Min Yang
- Key Laboratory of Animal Models and Human Disease Mechanisms of Chinese Academy of Sciences/Key Laboratory of Bioactive Peptides of Yunnan Province, KIZ-CUHK Joint Laboratory of Bioresources and Molecular Research in Common Diseases, Kunming Institute of Zoology, Kunming, Yunnan, 650107, China
- Kunming College of Life Science, University of Chinese Academy of Sciences, Kunming, Yunnan, 650204, China
| | - Ming Liu
- Department of Molecular and Cell Biology, School of Life Sciences, University of Science and Technology of China, Hefei, Anhui, 230027, China
| | - Dengdeng Zhang
- Department of Pharmaceutical Sciences, College of Pharmaceutical Sciences, Soochow University, Suzhou, Jiangsu, 215123, China
| | - Qiqi Cao
- Department of Zoology, College of Life Sciences, Nanjing Agricultural University, Nanjing, Jiangsu, 210095, China
| | - Xue Chen
- Key Laboratory of Animal Models and Human Disease Mechanisms of Chinese Academy of Sciences/Key Laboratory of Bioactive Peptides of Yunnan Province, KIZ-CUHK Joint Laboratory of Bioresources and Molecular Research in Common Diseases, Kunming Institute of Zoology, Kunming, Yunnan, 650107, China
- Kunming College of Life Science, University of Chinese Academy of Sciences, Kunming, Yunnan, 650204, China
| | - Yaqun Fang
- Key Laboratory of Animal Models and Human Disease Mechanisms of Chinese Academy of Sciences/Key Laboratory of Bioactive Peptides of Yunnan Province, KIZ-CUHK Joint Laboratory of Bioresources and Molecular Research in Common Diseases, Kunming Institute of Zoology, Kunming, Yunnan, 650107, China
| | - Qiumin Lu
- Key Laboratory of Animal Models and Human Disease Mechanisms of Chinese Academy of Sciences/Key Laboratory of Bioactive Peptides of Yunnan Province, KIZ-CUHK Joint Laboratory of Bioresources and Molecular Research in Common Diseases, Kunming Institute of Zoology, Kunming, Yunnan, 650107, China
| | - Zongliu Hou
- Central Laboratory of Yan'an Affiliated Hospital of Kunming Medical University, Kunming, Yunnan, 650000, China
| | - Yaxiong Li
- Department of Cardiovascular Surgery, Yan'an Affiliated Hospital of Kunming Medical University, Kunming, Yunnan, 650000, China
| | - Zhenze Liu
- Department of Laboratory Medicine, Keenan Research Centre for Biomedical Science, Senior Scientist of Canadian Blood Services Centre for Innovation, Platform Director for Hematology, Cancer and Immunological Diseases, St. Michael's Hospital, Room 421, LKSKI - Keenan Research Centre, Li Ka Shing Knowledge Institute, St. Michael's Hospital, and Toronto Platelet Immunobiology Group, 209 Victoria Street, Toronto, ON, M5B 1W8, Canada
| | - Xi Lei
- Department of Laboratory Medicine, Keenan Research Centre for Biomedical Science, Senior Scientist of Canadian Blood Services Centre for Innovation, Platform Director for Hematology, Cancer and Immunological Diseases, St. Michael's Hospital, Room 421, LKSKI - Keenan Research Centre, Li Ka Shing Knowledge Institute, St. Michael's Hospital, and Toronto Platelet Immunobiology Group, 209 Victoria Street, Toronto, ON, M5B 1W8, Canada
| | - Heyu Ni
- Department of Laboratory Medicine and Pathobiology, University of Toronto, Toronto, ON, M5S 1A1, Canada.
- Department of Laboratory Medicine, Keenan Research Centre for Biomedical Science, Senior Scientist of Canadian Blood Services Centre for Innovation, Platform Director for Hematology, Cancer and Immunological Diseases, St. Michael's Hospital, Room 421, LKSKI - Keenan Research Centre, Li Ka Shing Knowledge Institute, St. Michael's Hospital, and Toronto Platelet Immunobiology Group, 209 Victoria Street, Toronto, ON, M5B 1W8, Canada.
- Canadian Blood Services Centre for Innovation, Toronto, ON, M5G 2M1, Canada.
- Department of Physiology, University of Toronto, Toronto, ON, M5S 1A1, Canada.
- Department of Medicine, University of Toronto, Toronto, ON, M5S 1A1, Canada.
| | - Ren Lai
- Key Laboratory of Animal Models and Human Disease Mechanisms of Chinese Academy of Sciences/Key Laboratory of Bioactive Peptides of Yunnan Province, KIZ-CUHK Joint Laboratory of Bioresources and Molecular Research in Common Diseases, Kunming Institute of Zoology, Kunming, Yunnan, 650107, China.
- Sino-African Joint Research Center, Chinese Academy of Science, Wuhan, 430074, Hubei, China.
- Institutes for Drug Discovery and Development, Chinese Academy of Sciences, Shanghai, 201203, China.
- Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming, Yunnan, 650223, China.
| |
Collapse
|
41
|
Bendas G, Schlesinger M. The GPIb-IX complex on platelets: insight into its novel physiological functions affecting immune surveillance, hepatic thrombopoietin generation, platelet clearance and its relevance for cancer development and metastasis. Exp Hematol Oncol 2022; 11:19. [PMID: 35366951 PMCID: PMC8976409 DOI: 10.1186/s40164-022-00273-2] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2021] [Accepted: 03/19/2022] [Indexed: 12/13/2022] Open
Abstract
The glycoprotein (GP) Ib-IX complex is a platelet receptor that mediates the initial interaction with subendothelial von Willebrand factor (VWF) causing platelet arrest at sites of vascular injury even under conditions of high shear. GPIb-IX dysfunction or deficiency is the reason for the rare but severe Bernard-Soulier syndrome (BSS), a congenital bleeding disorder. Although knowledge on GPIb-IX structure, its basic functions, ligands, and intracellular signaling cascades have been well established, several advances in GPIb-IX biology have been made in the recent years. Thus, two mechanosensitive domains and a trigger sequence in GPIb were characterized and its role as a thrombin receptor was deciphered. Furthermore, it became clear that GPIb-IX is involved in the regulation of platelet production, clearance and thrombopoietin secretion. GPIb is deemed to contribute to liver cancer development and metastasis. This review recapitulates these novel findings highlighting GPIb-IX in its multiple functions as a key for immune regulation, host defense, and liver cancer development.
Collapse
Affiliation(s)
- Gerd Bendas
- Department of Pharmacy, Rheinische Friedrich-Wilhelms-University Bonn, An der Immenburg 4, 53121, Bonn, Germany
| | - Martin Schlesinger
- Department of Pharmacy, Rheinische Friedrich-Wilhelms-University Bonn, An der Immenburg 4, 53121, Bonn, Germany. .,Federal Institute for Drugs and Medical Devices (BfArM), Bonn, Germany.
| |
Collapse
|
42
|
Kim HO, Jiang B, Poon EK, Thondapu V, Kim CJ, Kurihara O, Araki M, Nakajima A, Mamon C, Dijkstra J, Lee H, Ooi A, Barlis P, Jang IK. High endothelial shear stress and stress gradient at plaque erosion persist up to 12 months. Int J Cardiol 2022; 357:1-7. [DOI: 10.1016/j.ijcard.2022.03.035] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/22/2022] [Revised: 03/08/2022] [Accepted: 03/14/2022] [Indexed: 11/29/2022]
|
43
|
Advanced drug delivery system against ischemic stroke. J Control Release 2022; 344:173-201. [DOI: 10.1016/j.jconrel.2022.02.036] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2021] [Revised: 02/28/2022] [Accepted: 02/28/2022] [Indexed: 02/06/2023]
|
44
|
Qu Z, Wang Q, Wang H, Jiao Y, Li M, Wei W, Lei Y, Zhao Z, Zhang T, Zhang Y, Gu K. The Effect of Inflammatory Markers on the Survival of Advanced Gastric Cancer Patients Who Underwent Anti-Programmed Death 1 Therapy. Front Oncol 2022; 12:783197. [PMID: 35178344 PMCID: PMC8845037 DOI: 10.3389/fonc.2022.783197] [Citation(s) in RCA: 16] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2021] [Accepted: 01/11/2022] [Indexed: 12/24/2022] Open
Abstract
Purpose This clinical study sought to determine whether the levels of inflammatory markers predicted the survival of advanced gastric cancer (AGC) patients who underwent anti-programmed death 1 (PD-1) therapy. Methods Using AGC patient plasma samples and baseline characteristics, we investigated the specific value of inflammatory markers in AGC from a clinical perspective in immunotherapy. Results One hundred and six patients with AGC who underwent anti-PD-1 therapy were enrolled in this study between 20 July 2019 and 16 March 2021. A significant decrease in NLR, dNLR, and SII was noticed among the PR (P=0.023; P=0.036; P=0.001), SD (P=0.048; P=0.022; P=0.023), ORR (P=0.021; P=0.032; P=0.001), and DCR (P=0.003; P=0.001; P<0.001) groups after anti-PD-1 therapy. Additionally, a significant decline of PLR was also observed in PR (P=0.010), ORR (P=0.007), and DCR (P=0.005) after anti-PD-1 therapy. Only MLR levels increased significantly at the time of anti-PD-1 immunotherapy the failure compared to baseline (P=0.039). And statistically significant elevations in NLR (P=0.001), MLR (P=0.020), dNLR (P=0.002), and SII (P=0.019) were found in failure of anti-PD-1 treatment compared to optimal efficacy in AGC patients. In first-line treatment, the number of metastatic sites (P=0.001) was an independent prognostic factor for PFS, and peritoneal metastases (P=0.004) and platelet-to-lymphocyte ratio (PLR) level (P=0.014) were independent prognostic predictors of OS according to Cox regression analysis. In second-line or posterior treatment, the number of metastatic sites (P=0.007), ECOG (P=0.011), and PLR level (P=0.033) were independent prognostic factors for PFS in AGC patients, and the number of metastatic sites (P=0.003), differentiation (P=0.030), and NLR level (P<0.001) were independent prognostic factors for OS according to Cox regression analysis. Conclusions NLR, PLR, MLR, dNLR, and SII can reflect the short-term efficacy of immunotherapy in patients who underwent anti-PD-1 therapy with AGC. PLR is an independent prognostic factor for OS in AGC patients receiving first-line immunotherapy and PFS in those receiving second-line or posterior immunotherapy. And NLR was an independent prognostic factor for OS in AGC patients receiving second-line or posterior immunotherapy. The number of metastatic sites was significantly associated with the prognosis of AGC patients who received immunotherapy.
Collapse
Affiliation(s)
- Ziting Qu
- Department of Oncology, The First Affiliated Hospital of Anhui Medical University, Hefei, China
| | - Qianling Wang
- Department of Oncology, The First Affiliated Hospital of Anhui Medical University, Hefei, China
| | - Hui Wang
- Department of Oncology, The First Affiliated Hospital of Anhui Medical University, Hefei, China
| | - Yang Jiao
- Department of Oncology, The First Affiliated Hospital of Anhui Medical University, Hefei, China
| | - Min Li
- Department of Oncology, The First Affiliated Hospital of Anhui Medical University, Hefei, China
| | - Wei Wei
- Department of Oncology, The First Affiliated Hospital of Anhui Medical University, Hefei, China
| | - Yu Lei
- Department of Oncology, The First Affiliated Hospital of Anhui Medical University, Hefei, China
| | - Zhiyan Zhao
- Department of Oncology, The First Affiliated Hospital of Anhui Medical University, Hefei, China
| | - Tengteng Zhang
- Department of Oncology, The First Affiliated Hospital of Anhui Medical University, Hefei, China
| | - Yiyin Zhang
- Department of Oncology, The First Affiliated Hospital of Anhui Medical University, Hefei, China
| | - Kangsheng Gu
- Department of Oncology, The First Affiliated Hospital of Anhui Medical University, Hefei, China
| |
Collapse
|
45
|
Antithrombotic Activity of the Antiplatelet Agent Angipur on the Model of Arterial Thrombosis in Rats with Isoproterenol-Induced Myocardial Infarction. Bull Exp Biol Med 2022; 172:314-317. [PMID: 35001313 DOI: 10.1007/s10517-022-05383-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2021] [Indexed: 10/19/2022]
Abstract
We studied the effect of Angipur on the process of experimental thrombosis induced by damage to the carotid artery wall by surface application of 50% ferric chloride (III) solution in rats without comorbidities and with isoproterenol-induced myocardial infarction. In animals without comorbidities, Angipur administered intravenously was 1.2 times less effective, in terms of ED50, than the well-known inhibitor of GPIIb/IIIa platelet receptors tirofiban. However, under conditions of non-coronary myocardial infarction, Angipur significantly prolonged the time of thrombus formation and exhibited 1.4-fold higher activity than the reference drug tirofiban.
Collapse
|
46
|
Albadawi DAI, Ravishankar D, Vallance TM, Patel K, Osborn HMI, Vaiyapuri S. Impacts of Commonly Used Edible Plants on the Modulation of Platelet Function. Int J Mol Sci 2022; 23:605. [PMID: 35054793 PMCID: PMC8775512 DOI: 10.3390/ijms23020605] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2021] [Revised: 12/28/2021] [Accepted: 01/03/2022] [Indexed: 02/07/2023] Open
Abstract
Cardiovascular diseases (CVDs) are a primary cause of deaths worldwide. Thrombotic diseases, specifically stroke and coronary heart diseases, account for around 85% of CVDs-induced deaths. Platelets (small circulating blood cells) are responsible for the prevention of excessive bleeding upon vascular injury, through blood clotting (haemostasis). However, unnecessary activation of platelets under pathological conditions, such as upon the rupture of atherosclerotic plaques, results in thrombus formation (thrombosis), which can cause life threatening conditions such as stroke or heart attack. Therefore, antiplatelet medications are usually prescribed for people who are at a high risk of thrombotic diseases. The currently used antiplatelet drugs are associated with major side effects such as excessive bleeding, and some patients are resistant to these drugs. Therefore, numerous studies have been conducted to develop new antiplatelet agents and notably, to establish the relationship between edible plants, specifically fruits, vegetables and spices, and cardiovascular health. Indeed, healthy and balanced diets have proven to be effective for the prevention of CVDs in diverse settings. A high intake of fruits and vegetables in regular diet is associated with lower risks for stroke and coronary heart diseases because of their plethora of phytochemical constituents. In this review, we discuss the impacts of commonly used selected edible plants (specifically vegetables, fruits and spices) and/or their isolated compounds on the modulation of platelet function, haemostasis and thrombosis.
Collapse
Affiliation(s)
- Dina A. I. Albadawi
- School of Pharmacy, University of Reading, Reading RG6 6UB, UK; (D.A.I.A.); (D.R.); (T.M.V.)
| | - Divyashree Ravishankar
- School of Pharmacy, University of Reading, Reading RG6 6UB, UK; (D.A.I.A.); (D.R.); (T.M.V.)
| | - Thomas M. Vallance
- School of Pharmacy, University of Reading, Reading RG6 6UB, UK; (D.A.I.A.); (D.R.); (T.M.V.)
| | - Ketan Patel
- School of Biological Sciences, University of Reading, Reading RG6 6UB, UK;
| | - Helen M. I. Osborn
- School of Pharmacy, University of Reading, Reading RG6 6UB, UK; (D.A.I.A.); (D.R.); (T.M.V.)
| | - Sakthivel Vaiyapuri
- School of Pharmacy, University of Reading, Reading RG6 6UB, UK; (D.A.I.A.); (D.R.); (T.M.V.)
| |
Collapse
|
47
|
Barale C, Melchionda E, Morotti A, Russo I. Prothrombotic Phenotype in COVID-19: Focus on Platelets. Int J Mol Sci 2021; 22:ijms222413638. [PMID: 34948438 PMCID: PMC8705811 DOI: 10.3390/ijms222413638] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2021] [Revised: 12/16/2021] [Accepted: 12/17/2021] [Indexed: 12/15/2022] Open
Abstract
COVID-19 infection is associated with a broad spectrum of presentations, but alveolar capillary microthrombi have been described as a common finding in COVID-19 patients, appearing as a consequence of a severe endothelial injury with endothelial cell membrane disruption. These observations clearly point to the identification of a COVID-19-associated coagulopathy, which may contribute to thrombosis, multi-organ damage, and cause of severity and fatality. One significant finding that emerges in prothrombotic abnormalities observed in COVID-19 patients is that the coagulation alterations are mainly mediated by the activation of platelets and intrinsically related to viral-mediated endothelial inflammation. Beyond the well-known role in hemostasis, the ability of platelets to also release various potent cytokines and chemokines has elevated these small cells from simple cell fragments to crucial modulators in the blood, including their inflammatory functions, that have a large influence on the immune response during infectious disease. Indeed, platelets are involved in the pathogenesis of acute lung injury also by promoting NET formation and affecting vascular permeability. Specifically, the deposition by activated platelets of the chemokine platelet factor 4 at sites of inflammation promotes adhesion of neutrophils on endothelial cells and thrombogenesis, and it seems deeply involved in the phenomenon of vaccine-induced thrombocytopenia and thrombosis. Importantly, the hyperactivated platelet phenotype along with evidence of cytokine storm, high levels of P-selectin, D-dimer, and, on the other hand, decreased levels of fibrinogen, von Willebrand factor, and thrombocytopenia may be considered suitable biomarkers that distinguish the late stage of COVID-19 progression in critically ill patients.
Collapse
Affiliation(s)
| | | | | | - Isabella Russo
- Correspondence: ; Tel.: +39-011-6705447; Fax: +39-011-9038639
| |
Collapse
|
48
|
Li X, Zhang Y, Ren X, Wang Y, Chen D, Li Q, Huo M, Shi J. Ischemic Microenvironment-Responsive Therapeutics for Cardiovascular Diseases. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2021; 33:e2105348. [PMID: 34623714 DOI: 10.1002/adma.202105348] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/14/2021] [Revised: 08/18/2021] [Indexed: 02/05/2023]
Abstract
Cardiovascular diseases caused by ischemia are attracting considerable attention owing to its high morbidity and mortality worldwide. Although numerous agents with cardioprotective benefits have been identified, their clinical outcomes are hampered by their low bioavailability, poor drug solubility, and systemic adverse effects. Advances in nanoscience and nanotechnology provide a new opportunity to effectively deliver drugs for treating ischemia-related diseases. In particular, cardiac ischemia leads to a characteristic pathological environment called an ischemic microenvironment (IME), significantly different from typical cardiac regions. These remarkable differences between ischemic sites and normal tissues have inspired the development of stimuli-responsive systems for the targeted delivery of therapeutic drugs to damaged cardiomyocytes. Recently, many biomaterials with intelligent properties have been developed to enhance the therapeutic benefits of drugs for the treatment of myocardial ischemia. Strategies for stimuli-responsive drug delivery and release based on IME include reactive oxygen species, pH-, hypoxia-, matrix metalloproteinase-, and platelet-inspired targeting strategies. In this review, state-of-the-art IME-responsive biomaterials for the treatment of myocardial ischemia are summarized. Perspectives, limitations, and challenges are also discussed for the further development of innovative and effective approaches to treat ischemic diseases with high effectiveness and biocompatibility.
Collapse
Affiliation(s)
- Xi Li
- Department of Anesthesiology, West China Hospital of Sichuan University, Chengdu, 610041, China
| | - Yabing Zhang
- Department of Anesthesiology, West China Hospital of Sichuan University, Chengdu, 610041, China
| | - Xiangyi Ren
- Core Facilities of West China Hospital, Sichuan University, Chengdu, 610041, China
| | - Yan Wang
- Core Facilities of West China Hospital, Sichuan University, Chengdu, 610041, China
| | - Dongxu Chen
- Department of Anesthesiology, West China Hospital of Sichuan University, Chengdu, 610041, China
| | - Qian Li
- Department of Anesthesiology, West China Hospital of Sichuan University, Chengdu, 610041, China
| | - Minfeng Huo
- State Key Laboratory of High Performance Ceramics and Superfine Microstructures, Shanghai Institute of Ceramics, Chinese Academy of Sciences, Shanghai, 200050, P. R. China
- Shanghai Tenth People's Hospital, Tongji University School of Medicine, Shanghai, 200072, P. R. China
| | - Jianlin Shi
- State Key Laboratory of High Performance Ceramics and Superfine Microstructures, Shanghai Institute of Ceramics, Chinese Academy of Sciences, Shanghai, 200050, P. R. China
- Shanghai Tenth People's Hospital, Tongji University School of Medicine, Shanghai, 200072, P. R. China
| |
Collapse
|
49
|
Díaz-Flores L, Gutiérrez R, García MP, González-Gómez M, Díaz-Flores L, Gayoso S, Carrasco JL, Álvarez-Argüelles H. Ultrastructural Study of Platelet Behavior and Interrelationship in Sprouting and Intussusceptive Angiogenesis during Arterial Intimal Thickening Formation. Int J Mol Sci 2021; 22:ijms222313001. [PMID: 34884806 PMCID: PMC8657547 DOI: 10.3390/ijms222313001] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2021] [Revised: 11/23/2021] [Accepted: 11/29/2021] [Indexed: 12/13/2022] Open
Abstract
Platelets in atherosclerosis, bypass stenosis, and restenosis have been extensively assessed. However, a sequential ultrastructural study of platelets in angiogenesis during the early phases of these lesions has received less attention. Our objective was the study of platelets in angiogenesis and vessel regression during intimal thickening (IT) formation, a precursor process of these occlusive vascular diseases. For this purpose, we used an experimental model of rat occluded arteries and procedures for ultrastructural observation. The results show (a) the absence of platelet adhesion in the de-endothelialized occluded arterial segment isolated from the circulation, (b) that intraarterial myriad platelets contributed from neovessels originated by sprouting angiogenesis from the periarterial microvasculature, (c) the association of platelets with blood components (fibrin, neutrophils, macrophages, and eosinophils) and non-polarized endothelial cells (ECs) forming aggregates (spheroids) in the arterial lumen, (d) the establishment of peg-and-socket junctions between platelets and polarized Ecs during intussusceptive angiogenesis originated from the EC aggregates, with the initial formation of IT, and (e) the aggregation of platelets in regressing neovessels (‘transitory paracrine organoid’) and IT increases. In conclusion, in sprouting and intussusceptive angiogenesis and vessel regression during IT formation, we contribute sequential ultrastructural findings on platelet behavior and relationships, which can be the basis for further studies using other procedures.
Collapse
Affiliation(s)
- Lucio Díaz-Flores
- Department of Basic Medical Sciences, Faculty of Medicine, University of La Laguna, 38071 Tenerife, Spain; (R.G.); (M.G.-G.); (L.D.-F.J.); (S.G.); (J.L.C.); (H.Á.-A.)
- Correspondence: ; Tel.: +34-922-319317; Fax: +34-922-319279
| | - Ricardo Gutiérrez
- Department of Basic Medical Sciences, Faculty of Medicine, University of La Laguna, 38071 Tenerife, Spain; (R.G.); (M.G.-G.); (L.D.-F.J.); (S.G.); (J.L.C.); (H.Á.-A.)
| | - Maria Pino García
- Department of Pathology, Eurofins Megalab–Hospiten Hospitals, 38100 Tenerife, Spain;
| | - Miriam González-Gómez
- Department of Basic Medical Sciences, Faculty of Medicine, University of La Laguna, 38071 Tenerife, Spain; (R.G.); (M.G.-G.); (L.D.-F.J.); (S.G.); (J.L.C.); (H.Á.-A.)
- Instituto de Tecnologías Biomédicas de Canarias, University of La Laguna, 38071 Tenerife, Spain
| | - Lucio Díaz-Flores
- Department of Basic Medical Sciences, Faculty of Medicine, University of La Laguna, 38071 Tenerife, Spain; (R.G.); (M.G.-G.); (L.D.-F.J.); (S.G.); (J.L.C.); (H.Á.-A.)
| | - Sara Gayoso
- Department of Basic Medical Sciences, Faculty of Medicine, University of La Laguna, 38071 Tenerife, Spain; (R.G.); (M.G.-G.); (L.D.-F.J.); (S.G.); (J.L.C.); (H.Á.-A.)
| | - Jose Luis Carrasco
- Department of Basic Medical Sciences, Faculty of Medicine, University of La Laguna, 38071 Tenerife, Spain; (R.G.); (M.G.-G.); (L.D.-F.J.); (S.G.); (J.L.C.); (H.Á.-A.)
| | - Hugo Álvarez-Argüelles
- Department of Basic Medical Sciences, Faculty of Medicine, University of La Laguna, 38071 Tenerife, Spain; (R.G.); (M.G.-G.); (L.D.-F.J.); (S.G.); (J.L.C.); (H.Á.-A.)
| |
Collapse
|
50
|
Yu L, Guo Y, Chang Z, Zhang D, Zhang S, Pei H, Pang J, Zhao ZJ, Chen Y. Bidirectional Interaction Between Cancer Cells and Platelets Provides Potential Strategies for Cancer Therapies. Front Oncol 2021; 11:764119. [PMID: 34722319 PMCID: PMC8551800 DOI: 10.3389/fonc.2021.764119] [Citation(s) in RCA: 21] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2021] [Accepted: 09/28/2021] [Indexed: 12/13/2022] Open
Abstract
Platelets are essential components in the tumor microenvironment. For decades, clinical data have demonstrated that cancer patients have a high risk of thrombosis that is associated with adverse prognosis and decreased survival, indicating the involvement of platelets in cancer progression. Increasing evidence confirms that cancer cells are able to induce production and activation of platelets. Once activated, platelets serve as allies of cancer cells in tumor growth and metastasis. They can protect circulating tumor cells (CTCs) against the immune system and detachment-induced apoptosis while facilitating angiogenesis and tumor cell adhesion and invasion. Therefore, antiplatelet agents and platelet-based therapies should be developed for cancer treatment. Here, we discuss the mechanisms underlying the bidirectional cancer-platelet crosstalk and platelet-based therapeutic approaches.
Collapse
Affiliation(s)
- Liuting Yu
- Edmond H. Fischer Translational Medical Research Laboratory, Scientific Research Center, The Seventh Affiliated Hospital, Sun Yat-Sen University, Shenzhen, China
| | - Yao Guo
- Edmond H. Fischer Translational Medical Research Laboratory, Scientific Research Center, The Seventh Affiliated Hospital, Sun Yat-Sen University, Shenzhen, China
| | - Zhiguang Chang
- Edmond H. Fischer Translational Medical Research Laboratory, Scientific Research Center, The Seventh Affiliated Hospital, Sun Yat-Sen University, Shenzhen, China
| | - Dengyang Zhang
- Edmond H. Fischer Translational Medical Research Laboratory, Scientific Research Center, The Seventh Affiliated Hospital, Sun Yat-Sen University, Shenzhen, China
| | - Shiqiang Zhang
- Department of Urology, The Seventh Affiliated Hospital, Sun Yat-sen University, Shenzhen, China
| | - Hanzhong Pei
- Edmond H. Fischer Translational Medical Research Laboratory, Scientific Research Center, The Seventh Affiliated Hospital, Sun Yat-Sen University, Shenzhen, China
| | - Jun Pang
- Department of Urology, The Seventh Affiliated Hospital, Sun Yat-sen University, Shenzhen, China
| | - Zhizhuang Joe Zhao
- Department of Pathology, University of Oklahoma Health Sciences Center, Oklahoma City, OK, United States
| | - Yun Chen
- Edmond H. Fischer Translational Medical Research Laboratory, Scientific Research Center, The Seventh Affiliated Hospital, Sun Yat-Sen University, Shenzhen, China
| |
Collapse
|