1
|
Ghossein MA, de Kok JWTM, Eerenberg F, van Rosmalen F, Boereboom R, Duisberg F, Verharen K, Sels JEM, Delnoij T, Geyik Z, Mingels AMA, Meex SJR, van Kuijk SMJ, van Stipdonk AMW, Ghossein C, Prinzen FW, van der Horst ICC, Vernooy K, van Bussel BCT, Driessen RGH. Monitoring of myocardial injury by serial measurements of QRS area and T area: The MaastrICCht cohort. Ann Noninvasive Electrocardiol 2024; 29:e70001. [PMID: 39229961 PMCID: PMC11372660 DOI: 10.1111/anec.70001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/03/2023] [Revised: 05/03/2024] [Accepted: 07/14/2024] [Indexed: 09/05/2024] Open
Abstract
BACKGROUND Manually derived electrocardiographic (ECG) parameters were not associated with mortality in mechanically ventilated COVID-19 patients in earlier studies, while increased high-sensitivity cardiac troponin-T (hs-cTnT) and N-terminal pro-B-type natriuretic peptide (NT-proBNP) were. To provide evidence for vectorcardiography (VCG) measures as potential cardiac monitoring tool, we investigated VCG trajectories during critical illness. METHODS All mechanically ventilated COVID-19 patients were included in the Maastricht Intensive Care Covid Cohort between March 2020 and October 2021. Serum hs-cTnT and NT-proBNP concentrations were measured daily. Conversion of daily 12-lead ECGs to VCGs by a MATLAB-based script provided QRS area, T area, maximal QRS amplitude, and QRS duration. Linear mixed-effect models investigated trajectories in serum and VCG markers over time between non-survivors and survivors, adjusted for confounders. RESULTS In 322 patients, 5461 hs-cTnT, 5435 NT-proBNP concentrations and 3280 ECGs and VCGs were analyzed. Non-survivors had higher hs-cTnT concentrations at intubation and both hs-cTnT and NT-proBNP significantly increased compared with survivors. In non-survivors, the following VCG parameters decreased more when compared to survivors: QRS area (-0.27 (95% CI) (-0.37 to -0.16, p < .01) μVs per day), T area (-0.39 (-0.62 to -0.16, p < .01) μVs per day), and maximal QRS amplitude (-0.01 (-0.01 to -0.01, p < .01) mV per day). QRS duration did not differ. CONCLUSION VCG-derived QRS area and T area decreased in non-survivors compared with survivors, suggesting that an increase in myocardial damage and tissue loss play a role in the course of critical illness and may drive mortality. These VCG markers may be used to monitor critically ill patients.
Collapse
Affiliation(s)
- M A Ghossein
- Cardiovascular Research Institute Maastricht (CARIM), Maastricht University, Maastricht, The Netherlands
| | - J W T M de Kok
- Cardiovascular Research Institute Maastricht (CARIM), Maastricht University, Maastricht, The Netherlands
- Department of Intensive Care Medicine, Maastricht University Medical Center+, Maastricht, The Netherlands
| | - F Eerenberg
- Cardiovascular Research Institute Maastricht (CARIM), Maastricht University, Maastricht, The Netherlands
| | - F van Rosmalen
- Cardiovascular Research Institute Maastricht (CARIM), Maastricht University, Maastricht, The Netherlands
- Department of Intensive Care Medicine, Maastricht University Medical Center+, Maastricht, The Netherlands
| | - R Boereboom
- Department of Intensive Care Medicine, Maastricht University Medical Center+, Maastricht, The Netherlands
| | - F Duisberg
- Department of Intensive Care Medicine, Maastricht University Medical Center+, Maastricht, The Netherlands
| | - K Verharen
- Department of Intensive Care Medicine, Maastricht University Medical Center+, Maastricht, The Netherlands
| | - J E M Sels
- Cardiovascular Research Institute Maastricht (CARIM), Maastricht University, Maastricht, The Netherlands
- Department of Intensive Care Medicine, Maastricht University Medical Center+, Maastricht, The Netherlands
- Department of Cardiology, Maastricht University Medical Center+, Maastricht, The Netherlands
| | - T Delnoij
- Department of Intensive Care Medicine, Maastricht University Medical Center+, Maastricht, The Netherlands
- Department of Cardiology, Maastricht University Medical Center+, Maastricht, The Netherlands
| | - Z Geyik
- Department of Intensive Care Medicine, Maastricht University Medical Center+, Maastricht, The Netherlands
- Department of Cardiology, Maastricht University Medical Center+, Maastricht, The Netherlands
| | - A M A Mingels
- Cardiovascular Research Institute Maastricht (CARIM), Maastricht University, Maastricht, The Netherlands
- Department of Clinical Chemistry, Central Diagnostic Laboratory, Maastricht University Medical Center+, Maastricht, The Netherlands
| | - S J R Meex
- Cardiovascular Research Institute Maastricht (CARIM), Maastricht University, Maastricht, The Netherlands
- Department of Clinical Chemistry, Central Diagnostic Laboratory, Maastricht University Medical Center+, Maastricht, The Netherlands
| | - S M J van Kuijk
- Clinical Epidemiology & Medical Technology Assessment (KEMTA), Maastricht University Medical Center+, Maastricht, The Netherlands
| | - A M W van Stipdonk
- Cardiovascular Research Institute Maastricht (CARIM), Maastricht University, Maastricht, The Netherlands
- Department of Cardiology, Maastricht University Medical Center+, Maastricht, The Netherlands
| | - C Ghossein
- Cardiovascular Research Institute Maastricht (CARIM), Maastricht University, Maastricht, The Netherlands
- Department of Cardiology, Maastricht University Medical Center+, Maastricht, The Netherlands
- School for Oncology and Developmental Biology (GROW), Maastricht University, Maastricht, The Netherlands
| | - F W Prinzen
- Cardiovascular Research Institute Maastricht (CARIM), Maastricht University, Maastricht, The Netherlands
| | - I C C van der Horst
- Cardiovascular Research Institute Maastricht (CARIM), Maastricht University, Maastricht, The Netherlands
- Department of Intensive Care Medicine, Maastricht University Medical Center+, Maastricht, The Netherlands
| | - K Vernooy
- Cardiovascular Research Institute Maastricht (CARIM), Maastricht University, Maastricht, The Netherlands
- Department of Cardiology, Maastricht University Medical Center+, Maastricht, The Netherlands
| | - B C T van Bussel
- Cardiovascular Research Institute Maastricht (CARIM), Maastricht University, Maastricht, The Netherlands
- Department of Intensive Care Medicine, Maastricht University Medical Center+, Maastricht, The Netherlands
- Care and Public Health Research Institute (CAPHRI), Maastricht University, Maastricht, The Netherlands
| | - R G H Driessen
- Cardiovascular Research Institute Maastricht (CARIM), Maastricht University, Maastricht, The Netherlands
- Department of Intensive Care Medicine, Maastricht University Medical Center+, Maastricht, The Netherlands
- Department of Cardiology, Maastricht University Medical Center+, Maastricht, The Netherlands
| |
Collapse
|
2
|
Aydeniz E, van Bussel BCT, de Jongh S, Schellens J, Heines SJH, van Kuijk SMJ, Tas J, van Rosmalen F, van der Horst ICC, Bergmans DCJJ. Serial electrical impedance tomography course in different treatment groups; The MaastrICCht cohort. J Crit Care 2024; 80:154506. [PMID: 38113747 DOI: 10.1016/j.jcrc.2023.154506] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2023] [Revised: 10/16/2023] [Accepted: 12/01/2023] [Indexed: 12/21/2023]
Abstract
PURPOSE To describe the effect of dexamethasone and tocilizumab on regional lung mechanics over admission in all mechanically ventilated COVID-19 patients. MATERIALS AND METHODS Dynamic compliance, alveolar overdistension and collapse were serially determined using electric impedance tomography (EIT). Patients were categorized into three groups; no anti-inflammatory therapy, dexamethasone therapy, dexamethasone + tocilizumab therapy. The EIT variables were (I) visualized using polynomial regression, (II) evaluated throughout admission using linear mixed-effects models, and (III) average respiratory variables were compared. RESULTS Visual inspection of EIT variables showed a pattern of decreasing dynamic compliance. Overall, optimal set PEEP was lower in the dexamethasone group (-1.4 cmH2O, -2.6; -0.2). Clinically applied PEEP was lower in the dexamethasone and dexamethasone + tocilizumab group (-1.5 cmH2O, -2.6; -0.2; -2.2 cmH2O, -5.1; 0.6). Dynamic compliance, alveolar overdistension, and alveolar collapse at optimal set PEEP did not significantly differ between the three groups. CONCLUSION Optimal and clinically applied PEEP were lower in the dexamethasone and dexamethasone + tocilizumab groups. The results suggest that the potential beneficial effects of these therapies do not affect lung mechanics favorably. However, this study cannot fully rule out any beneficial effect of anti-inflammatory treatment on pulmonary function due to its observational nature.
Collapse
Affiliation(s)
- Eda Aydeniz
- Department of Intensive Care Medicine, Maastricht University Medical Center+, Maastricht, the Netherlands; Department of Intensive Care Medicine, Laurentius Hospital Roermond, Roermond, the Netherlands; Cardiovascular Research Institute Maastricht (CARIM), Maastricht University, Maastricht, the Netherlands.
| | - Bas C T van Bussel
- Department of Intensive Care Medicine, Maastricht University Medical Center+, Maastricht, the Netherlands; Cardiovascular Research Institute Maastricht (CARIM), Maastricht University, Maastricht, the Netherlands; Care and Public Health Research Institute (CAPHRI), Maastricht University, Maastricht, the Netherlands
| | - Sebastiaan de Jongh
- Department of Intensive Care Medicine, Maastricht University Medical Center+, Maastricht, the Netherlands
| | - Joep Schellens
- Department of Intensive Care Medicine, Maastricht University Medical Center+, Maastricht, the Netherlands
| | - Serge J H Heines
- Department of Intensive Care Medicine, Maastricht University Medical Center+, Maastricht, the Netherlands
| | - Sander M J van Kuijk
- Department of Clinical Epidemiology and Medical Technology Assessment, Maastricht University Medical Center+, Maastricht, the Netherlands
| | - Jeanette Tas
- Department of Intensive Care Medicine, Maastricht University Medical Center+, Maastricht, the Netherlands; School for Mental Health and Neuroscience (MHeNS), Maastricht University, Maastricht, the Netherlands
| | - Frank van Rosmalen
- Department of Intensive Care Medicine, Maastricht University Medical Center+, Maastricht, the Netherlands; Cardiovascular Research Institute Maastricht (CARIM), Maastricht University, Maastricht, the Netherlands
| | - Iwan C C van der Horst
- Department of Intensive Care Medicine, Maastricht University Medical Center+, Maastricht, the Netherlands; Cardiovascular Research Institute Maastricht (CARIM), Maastricht University, Maastricht, the Netherlands
| | - Dennis C J J Bergmans
- Department of Intensive Care Medicine, Maastricht University Medical Center+, Maastricht, the Netherlands; School of Nutrition and Translational Research in Metabolism (NUTRIM), Maastricht University, Maastricht, the Netherlands
| |
Collapse
|
3
|
Liu H, Guo N, Zheng Q, Zhang Q, Chen J, Cai Y, Luo Q, Xu Q, Chen X, Yang S, Zhang S. Association of interleukin-6, ferritin, and lactate dehydrogenase with venous thromboembolism in COVID-19: a systematic review and meta-analysis. BMC Infect Dis 2024; 24:324. [PMID: 38493138 PMCID: PMC10943892 DOI: 10.1186/s12879-024-09205-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2023] [Accepted: 03/07/2024] [Indexed: 03/18/2024] Open
Abstract
BACKGROUND Coronavirus disease 2019 (COVID-19) is frequntly accompanied by venous thromboembolism (VTE), and its mechanism may be related to the abnormal inflammation and immune status of COVID-19 patients. It has been proved that interleukin-6 (IL-6), ferritin and lactate dehydrogenase (LDH) may play an important role in the occurrence of VTE in COVID-19 infection. But whether they can server as predictors for VTE in COVID-19 is still unclear. In this study, we performed a systematic review and meta-analysis to compare IL-6, ferritin and LDH in VTE and non-VTE COVID-19 patients in order to shed light on the prevention and treatment of VTE. METHODS Related literatures were searched in PubMed, Embase, Web of Science, Google Scholar, China National Knowledge Infrastructure (CNKI), WANGFANG. COVID-19 patients were divided into VTE group and non-VTE group. Meta-analysis was then conducted to compare levels of IL-6, ferritin and LDH between the two groups. RESULTS We finally included and analyzed 17 literatures from January 2019 to October 2022. There was a total of 7,035 COVID-19 patients, with a weighted mean age of 60.01 years. Males accounted for 62.64% and 61.34% patients were in intensive care unit (ICU). Weighted mean difference (WMD) of IL-6, ferritin and LDH was 31.15 (95% CI: 9.82, 52.49), 257.02 (95% CI: 51.70, 462.33) and 41.79 (95% CI: -19.38, 102.96), respectively. The above results indicated that than compared with non-VTE group, VTE group had significantly higher levels of IL-6 and ferritin but similar LDH. CONCLUSION This systematic review and meta-analysis pointed out that elevated levels of IL-6 and ferritin were significantly possitive associated with VTE, thus could be used as biological predictive indicators of VTE among COVID-19 patients. However, no association was found between level of LDH and VTE. Therefore, close monitoring of changes in IL-6 and ferritin concentrations is of great value in assisting clinicans to rapidly identify thrombotic complications among COVID-19 patients, hence facilitating the timely effective managment. Further studies are required in terms of the clinical role of cytokines in the occurrence of VTE among COVID-19 infection, with more reliable systematic controls and interventional trials.
Collapse
Affiliation(s)
- Haiyu Liu
- Department of Pulmonary and Critical Care Medicine, Fujian Medical University Union Hospital, Fuzhou, Fujian, 350001, P.R. China
| | - Ningjing Guo
- Department of Oncology Medicine, Fujian Medical University Union Hospital, Fuzhou, Fujian, 350001, P.R. China
| | - Qixian Zheng
- Department of Pulmonary and Critical Care Medicine, Fujian Medical University Union Hospital, Fuzhou, Fujian, 350001, P.R. China
| | - Qianyuan Zhang
- Department of General Medicine, Fujian Medical University Union Hospital, Fuzhou, Fujian, 350001, P.R. China
| | - Jinghan Chen
- Department of Oncology Medicine, Fujian Medical University Union Hospital, Fuzhou, Fujian, 350001, P.R. China
| | - Yuanyuan Cai
- Department of General Medicine, Fujian Medical University Union Hospital, Fuzhou, Fujian, 350001, P.R. China
| | - Qiong Luo
- Department of Oncology Medicine, Fujian Medical University Union Hospital, Fuzhou, Fujian, 350001, P.R. China
| | - Qian Xu
- Department of Oncology Medicine, Fujian Medical University Union Hospital, Fuzhou, Fujian, 350001, P.R. China
| | - Xiangqi Chen
- Department of Pulmonary and Critical Care Medicine, Fujian Medical University Union Hospital, Fuzhou, Fujian, 350001, P.R. China.
- Fujian Key Laboratory of Translational Research in Cancer and Neurodegenerative Diseases, Fuzhou, Fujian, 350001, P.R. China.
| | - Sheng Yang
- Department of Oncology Medicine, Fujian Medical University Union Hospital, Fuzhou, Fujian, 350001, P.R. China.
- Fujian Key Laboratory of Translational Research in Cancer and Neurodegenerative Diseases, Fuzhou, Fujian, 350001, P.R. China.
| | - Suyun Zhang
- Department of Internal Medicine, Fujian Medical University Union Hospital, Fuzhou, Fujian, 350001, P.R. China.
| |
Collapse
|
4
|
Hulshof AM, Nab L, van Rosmalen F, de Kok J, Mulder MMG, Hellenbrand D, Sels JWEM, Ten Cate H, Cannegieter SC, Henskens YMC, van Bussel BCT. Rotational thromboelastometry as a biomarker for mortality - The Maastricht Intensive Care COVID cohort. Thromb Res 2024; 234:51-58. [PMID: 38159324 DOI: 10.1016/j.thromres.2023.12.010] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2023] [Revised: 12/18/2023] [Accepted: 12/18/2023] [Indexed: 01/03/2024]
Abstract
BACKGROUND Patients with severe coronavirus disease 2019 (COVID-19) present with persisting hypercoagulability, hypofibrinolysis and prolonged clot initiation as measured with viscoelastic assays. The objective of this study was to investigate the trajectories of traditional assays of hemostasis, routine and tissue plasminogen activator (tPA) rotational thromboelastometry (ROTEM) in COVID-19 patients and to study their association with mortality. METHODS Patients enrolled within the Maastricht Intensive Care COVID (MaastrICCht) cohort were included. Traditional assays of hemostasis (prothrombin time; PT, fibrinogen and D-dimer) were measured daily and ROTEM EXTEM, FIBTEM and tPA assays were performed weekly. Trajectories of these biomarkers were analyzed over time for survivors and non-survivors using linear mixed-effects models. Additional Fine and Gray competing risk survival analysis was performed for the first available measurement after intubation. RESULTS Of the 138 included patients, 57 (41 %) died in the intensive care unit (ICU). Over 450, 400 and 1900 individual measurements were available for analysis of routine, tPA ROTEM and traditional assays of hemostasis, respectively, with a median [IQR] follow-up of 15 [8-24] days. Non-survivors on average had prolonged CT (clotting time) and increased fibrinogen compared to survivors. MCF (maximum clot firmness), LOT (lysis onset time), LT (lysis time) and PT measurements increased more over time in non-survivors compared to survivors. Associations persisted after adjustment for demographics and disease severity. EXTEM and FIBTEM CT at intubation were associated with increased 45-day ICU mortality. CONCLUSIONS ROTEM measurements demonstrate a further increase of hypercoagulability and (hypo)fibrinolysis parameters in non-survivors throughout ICU admission. Furthermore, prolonged CT at intubation was associated with higher 45-day ICU mortality.
Collapse
Affiliation(s)
- Anne-Marije Hulshof
- Central Diagnostic Laboratory, Maastricht University Medical Centre+, Maastricht, the Netherlands; Cardiovascular Research Institute Maastricht (CARIM), Maastricht University, Maastricht, the Netherlands.
| | - Linda Nab
- Department of Clinical Epidemiology, Leiden University Medical Center, Leiden, the Netherlands
| | - Frank van Rosmalen
- Department of Intensive Care, Maastricht University Medical Centre+, Maastricht, the Netherlands
| | - Jip de Kok
- Department of Intensive Care, Maastricht University Medical Centre+, Maastricht, the Netherlands
| | - Mark M G Mulder
- Department of Intensive Care, Maastricht University Medical Centre+, Maastricht, the Netherlands; Department of Anesthesiology, Maastricht University Medical Centre+, Maastricht, the Netherlands
| | - Dave Hellenbrand
- Central Diagnostic Laboratory, Maastricht University Medical Centre+, Maastricht, the Netherlands
| | - Jan Willem E M Sels
- Department of Intensive Care, Maastricht University Medical Centre+, Maastricht, the Netherlands
| | - Hugo Ten Cate
- Cardiovascular Research Institute Maastricht (CARIM), Maastricht University, Maastricht, the Netherlands; Department of Internal Medicine, Maastricht University Medical Centre+, Maastricht, the Netherlands; Thrombosis Expert Centre Maastricht, Maastricht University Medical Centre+, Maastricht, the Netherlands
| | - Suzanne C Cannegieter
- Department of Clinical Epidemiology, Leiden University Medical Center, Leiden, the Netherlands; Department of Medicine - Thrombosis and Haemostasis, Leiden University Medical Center, Leiden, the Netherlands
| | - Yvonne M C Henskens
- Central Diagnostic Laboratory, Maastricht University Medical Centre+, Maastricht, the Netherlands; Cardiovascular Research Institute Maastricht (CARIM), Maastricht University, Maastricht, the Netherlands
| | - Bas C T van Bussel
- Cardiovascular Research Institute Maastricht (CARIM), Maastricht University, Maastricht, the Netherlands; Department of Intensive Care, Maastricht University Medical Centre+, Maastricht, the Netherlands; Care and Public Health Research Institute (CAPHRI), Maastricht University, Maastricht, the Netherlands
| |
Collapse
|
5
|
de Godoy JMP, Dizero AG, Lopes MVCA. Prevalence of Pulmonary Embolism in COVID-19 at Quaternary Hospital Running Head: Pulmonary Embolism in COVID-19. Med Arch 2024; 78:146-148. [PMID: 38566866 PMCID: PMC10983093 DOI: 10.5455/medarh.2024.78.146-148] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2024] [Accepted: 03/03/2024] [Indexed: 04/04/2024] Open
Abstract
Background Patients with COVID-19 are at greater risk of pulmonary embolism. Objective The aim of the present study was to evaluate the monthly prevalence of pulmonary embolism diagnosed by angiotomography and mortality between March 2020 and May 2021 in more than 6000 patients hospitalized with COVID-19 at a single institution. Methods A clinical trial was conducted with evaluated medical records the patients hospitalized at the institution who developed pulmonary embolism determined by angiotomography. Monthly and overall mortality rates between March 2020 and May 2021 in this population were evaluated. Results A total of 6040 patients were hospitalized in this period, 203 of whom (3.36%) had an angiotomographic diagnosis of pulmonary embolism and 119 of these patients (58.62%) died. The largest number of patients with pulmonary embolism occurred in the periods from July to September 2020 and March to May 2021. No significant difference was found between mortality and the two peaks of the pandemic (p = 0.9, Fisher's exact test). Conclusion Pulmonary embolism is associated a higher mortality rate among patients with COVID-19. Therefore, one of the strategies is an emphasis on the prevention of thrombotic and embolic events.
Collapse
Affiliation(s)
- Jose Maria Pereira de Godoy
- Department of Cardiology and Cardiovascular Surgery in Medicine School in Sao Jose do Rio Preto-FAMERP, Brazil
| | | | | |
Collapse
|
6
|
van Herpt TTW, van Rosmalen F, Hulsewé HPMG, van der Horst-Schrivers ANA, Driessen M, Jetten R, Zelis N, de Galan BE, van Kuijk SMJ, van der Horst ICC, van Bussel BCT. Hyperglycemia and glucose variability are associated with worse survival in mechanically ventilated COVID-19 patients: the prospective Maastricht Intensive Care Covid Cohort. Diabetol Metab Syndr 2023; 15:253. [PMID: 38057908 DOI: 10.1186/s13098-023-01228-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/05/2023] [Accepted: 11/22/2023] [Indexed: 12/08/2023] Open
Abstract
BACKGROUND Data on hyperglycemia and glucose variability in relation to diabetes mellitus, either known or unknown in ICU-setting in COVID-19, are scarce. We prospectively studied daily glucose variables and mortality in strata of diabetes mellitus and glycosylated hemoglobin among mechanically ventilated COVID-19 patients. METHODS We used linear-mixed effect models in mechanically ventilated COVID-19 patients to investigate mean and maximum difference in glucose concentration per day over time. We compared ICU survivors and non-survivors and tested for effect-modification by pandemic wave 1 and 2, diabetes mellitus, and admission HbA1c. RESULTS Among 232 mechanically ventilated COVID-19 patients, 21.1% had known diabetes mellitus, whereas 16.9% in wave 2 had unknown diabetes mellitus. Non-survivors had higher mean glucose concentrations (ß 0.62 mmol/l; 95%CI 0.20-1.06; ß 11.2 mg/dl; 95% CI 3.6-19.1; P = 0.004) and higher maximum differences in glucose concentrations per day (ß 0.85 mmol/l; 95%CI 0.37-1.33; ß 15.3; 95%CI 6.7-23.9; P = 0.001). Effect modification by wave, history of diabetes mellitus and admission HbA1c in associations between glucose and survival was not present. Effect of higher mean glucose concentrations was modified by pandemic wave (wave 1 (ß 0.74; 95% CI 0.24-1.23 mmol/l) ; (ß 13.3; 95%CI 4.3-22.1 mg/dl)) vs. (wave 2 (ß 0.37 (95%CI 0.25-0.98) mmol/l) (ß 6.7 (95% ci 4.5-17.6) mg/dl)). CONCLUSIONS Hyperglycemia and glucose variability are associated with mortality in mechanically ventilated COVID-19 patients irrespective of the presence of diabetes mellitus.
Collapse
Affiliation(s)
- Thijs T W van Herpt
- Department of Intensive Care Medicine, Maastricht University Medical Centre +, Debyelaan 25, 6229 HX, Maastricht, the Netherlands.
- Cardiovascular Research Institute Maastricht (CARIM), Maastricht University, Maastricht, The Netherlands.
| | - Frank van Rosmalen
- Department of Intensive Care Medicine, Maastricht University Medical Centre +, Debyelaan 25, 6229 HX, Maastricht, the Netherlands
| | - Hendrica P M G Hulsewé
- Department of Intensive Care Medicine, Maastricht University Medical Centre +, Debyelaan 25, 6229 HX, Maastricht, the Netherlands
| | - Anouk N A van der Horst-Schrivers
- Department of Emergency Medicine, Maastricht University Medical Centre +, Maastricht, The Netherlands
- Department of Endocrinology, Maastricht University Medical Centre+, Maastricht, The Netherlands
| | - Mariëlle Driessen
- Department of Intensive Care Medicine, Maastricht University Medical Centre +, Debyelaan 25, 6229 HX, Maastricht, the Netherlands
| | - Robin Jetten
- Department of Intensive Care Medicine, Maastricht University Medical Centre +, Debyelaan 25, 6229 HX, Maastricht, the Netherlands
| | - Noortje Zelis
- Department of Internal Medicine, Maastricht University Medical Centre +, Maastricht, The Netherlands
| | - Bastiaan E de Galan
- Department of Endocrinology, Maastricht University Medical Centre+, Maastricht, The Netherlands
| | - Sander M J van Kuijk
- Department of Clinical Epidemiology and Medical Technology Assessment, Maastricht University Medical Centre+, Maastricht, The Netherlands
| | - Iwan C C van der Horst
- Department of Intensive Care Medicine, Maastricht University Medical Centre +, Debyelaan 25, 6229 HX, Maastricht, the Netherlands
- Cardiovascular Research Institute Maastricht (CARIM), Maastricht University, Maastricht, The Netherlands
| | - Bas C T van Bussel
- Department of Intensive Care Medicine, Maastricht University Medical Centre +, Debyelaan 25, 6229 HX, Maastricht, the Netherlands
- Cardiovascular Research Institute Maastricht (CARIM), Maastricht University, Maastricht, The Netherlands
- Care and Public Health Research Institute (CAPHRI), Maastricht University, Maastricht, the Netherlands
| |
Collapse
|
7
|
Schoenmakers T, van Bussel BCT, Gorissen SHM, van Loo IHM, van Rosmalen F, Verboeket-van de Venne WPHG, Wolffs PFG, van Mook WNKA, Leers MPG. Validating a clinical laboratory parameter-based deisolation algorithm for patients with COVID-19 in the intensive care unit using viability PCR: the CoLaIC multicentre cohort study protocol. BMJ Open 2023; 13:e069455. [PMID: 36854586 PMCID: PMC9979582 DOI: 10.1136/bmjopen-2022-069455] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 03/02/2023] Open
Abstract
INTRODUCTION To investigate whether biochemical and haematological changes due to the patient's host response (CoLab algorithm) in combination with a SARS-CoV-2 viability PCR (v-PCR) can be used to determine when a patient with COVID-19 is no longer infectious.We hypothesise that the CoLab algorithm in combination with v-PCR can be used to determine whether or not a patient with COVID-19 is infectious to facilitate the safe release of patients with COVID-19 from isolation. METHODS AND ANALYSIS This study consists of three parts using three different cohorts of patients. All three cohorts contain clinical, vital and laboratory parameters, as well as logistic data related to isolated patients with COVID-19, with a focus on intensive care unit (ICU) stay. The first cohort will be used to develop an algorithm for the course of the biochemical and haematological changes of the host response of the COVID-19 patient. Simultaneously, a second prospective cohort will be used to investigate the algorithm derived in the first cohort, with daily measured laboratory parameters, next to conventional SARS-CoV-2 reverse transcriptase PCRs, as well as v-PCR, to confirm the presence of intact SARS-CoV-2 particles in the patient. Finally, a third multicentre cohort, consisting of retrospectively collected data from patients with COVID-19 admitted to the ICU, will be used to validate the algorithm. ETHICS AND DISSEMINATION This study was approved by the Medical Ethics Committee from Maastricht University Medical Centre+ (cohort I: 2020-1565/300523) and Zuyderland MC (cohorts II and III: METCZ20200057). All patients will be required to provide informed consent. Results from this study will be disseminated via peer-reviewed journals and congress/consortium presentations.
Collapse
Affiliation(s)
- Tom Schoenmakers
- Department of Clinical Chemistry and Hematology, Zuyderland Medical Centre, Sittard-Geleen/Heerlen, The Netherlands
- School of Nutrition and Translational Research in Metabolism (NUTRIM), Maastricht University, Maastricht, The Netherlands
| | - Bas C T van Bussel
- Department of Intensive Care, Maastricht University Medical Centre+, Maastricht, The Netherlands
- Care and Public Health Research Institute (CAPHRI), Maastricht University, Maastricht, The Netherlands
- Cardiovascular Research Institute Maastricht (CARIM), Maastricht University, Maastricht, The Netherlands
| | - Stefan H M Gorissen
- Zuyderland Academy, Zuyderland Medical Centre, Sittard-Geleen/Heerlen, The Netherlands
| | - Inge H M van Loo
- Care and Public Health Research Institute (CAPHRI), Maastricht University, Maastricht, The Netherlands
- Department of Medical Microbiology, Infectious Diseases & Infection Prevention, Maastricht University Medical Centre+, Maastricht, The Netherlands
| | - Frank van Rosmalen
- Department of Intensive Care, Maastricht University Medical Centre+, Maastricht, The Netherlands
- Cardiovascular Research Institute Maastricht (CARIM), Maastricht University, Maastricht, The Netherlands
| | | | - Petra F G Wolffs
- Care and Public Health Research Institute (CAPHRI), Maastricht University, Maastricht, The Netherlands
- Department of Medical Microbiology, Infectious Diseases & Infection Prevention, Maastricht University Medical Centre+, Maastricht, The Netherlands
| | - Walter N K A van Mook
- Department of Intensive Care, Maastricht University Medical Centre+, Maastricht, The Netherlands
- School of Health Professions Education (SHE), Maastricht University, Maastricht, The Netherlands
| | - Mathie P G Leers
- Department of Clinical Chemistry and Hematology, Zuyderland Medical Centre, Sittard-Geleen/Heerlen, The Netherlands
- School of Nutrition and Translational Research in Metabolism (NUTRIM), Maastricht University, Maastricht, The Netherlands
- Department of Intensive Care, Maastricht University Medical Centre+, Maastricht, The Netherlands
| |
Collapse
|
8
|
van de Berg TW, Mulder MMG, Alnima T, Nagy M, van Oerle R, Beckers EAM, Hackeng TM, Hulshof AM, Sels JWEM, Henskens YMC, van der Horst ICC, ten Cate H, Spronk HMH, van Bussel BCT. Serial thrombin generation and exploration of alternative anticoagulants in critically ill COVID-19 patients: Observations from Maastricht Intensive Care COVID Cohort. Front Cardiovasc Med 2022; 9:929284. [PMID: 36277784 PMCID: PMC9582511 DOI: 10.3389/fcvm.2022.929284] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2022] [Accepted: 09/20/2022] [Indexed: 11/13/2022] Open
Abstract
Background COVID-19 associated coagulopathy (CAC) is associated with an increase in thromboembolic events. Current guidelines recommend prophylactic heparins in the management of CAC. However, the efficacy of this strategy in the intensive care population remains uncertain. Objective We aimed to measure thrombin generation (TG) to assess CAC in intensive care unit (ICU) patients receiving thromboprophylaxis with low molecular weight heparin (LMWH) or unfractionated heparin (UFH). In addition, we performed statistical modeling to link TG parameters to patient characteristics and clinical parameters. Lastly, we studied the potency of different anticoagulants as an alternative to LMWH treatment in ex vivo COVID-19 plasma. Patients/Methods We included 33 patients with confirmed COVID-19 admitted at the ICU. TG was measured at least twice over the course of 6 weeks after admission. Thrombin generation parameters peak height and endogenous thrombin potential (ETP) were compared to healthy controls. Results were subsequently correlated with a patient characteristics and laboratory measurements. In vitro spiking in TG with rivaroxaban, dabigatran, argatroban and orgaran was performed and compared to LMWH. Results Anti-Xa levels of all patients remained within the therapeutic range throughout follow-up. At baseline, the mean (SE) endogenous thrombin potential (ETP) was 1,727 (170) nM min and 1,620 (460) nM min for ellagic acid (EA) and tissue factor (TF), respectively. In line with this we found a mean (SE) peak height of 353 (45) nM and 264 (96) nM for EA and TF. Although fluctuating across the weeks of follow-up, TG parameters remained elevated despite thromboprophylaxis. In vitro comparison of LMWHs and direct thrombin inhibitors (e.g., agratroban, dabigatran) revealed a higher efficacy in reducing coagulation potential for direct thrombin inhibition in both ellagic acid (EA) and tissue factor (TF) triggered TG. Conclusion In a sub-group of mechanically ventilated, critically ill COVID-19 patients, despite apparent adequate anti-coagulation doses evaluated by anti-Xa levels, thrombin generation potential remained high during ICU admission independent of age, sex, body mass index, APACHE II score, cardiovascular disease, and smoking status. These observations could, only partially, be explained by (anti)coagulation and thrombosis, inflammation, and multi-organ failure. Our in vitro data suggested that direct thrombin inhibition compared with LMWH might offer an alternate, more effective anticoagulant strategy in COVID-19.
Collapse
Affiliation(s)
- Tom W. van de Berg
- Department of Biochemistry, Cardiovascular Research Institute Maastricht, Maastricht University, Maastricht, Netherlands,Department of Internal Medicine, Maastricht University Medical Centre+, Maastricht, Netherlands
| | - Mark M. G. Mulder
- Department of Intensive Care Medicine, Maastricht University Medical Centre+, Maastricht, Netherlands,*Correspondence: Mark M. G. Mulder
| | - Teba Alnima
- Department of Internal Medicine, Radboud University Medical Centre, Nijmegen, Netherlands
| | - Magdolna Nagy
- Department of Biochemistry, Cardiovascular Research Institute Maastricht, Maastricht University, Maastricht, Netherlands,Cardiovascular Research Institute Maastricht (CARIM), Maastricht University, Maastricht, Netherlands
| | - Rene van Oerle
- Department of Biochemistry, Cardiovascular Research Institute Maastricht, Maastricht University, Maastricht, Netherlands,Central Diagnostic Laboratory, Maastricht University Medical Centre+, Maastricht, Netherlands
| | - Erik A. M. Beckers
- Department of Internal Medicine, Maastricht University Medical Centre+, Maastricht, Netherlands,Cardiovascular Research Institute Maastricht (CARIM), Maastricht University, Maastricht, Netherlands
| | - Tilman M. Hackeng
- Department of Biochemistry, Cardiovascular Research Institute Maastricht, Maastricht University, Maastricht, Netherlands,Cardiovascular Research Institute Maastricht (CARIM), Maastricht University, Maastricht, Netherlands
| | - Anne-Marije Hulshof
- Central Diagnostic Laboratory, Maastricht University Medical Centre+, Maastricht, Netherlands
| | - Jan-Willem E. M. Sels
- Department of Intensive Care Medicine, Maastricht University Medical Centre+, Maastricht, Netherlands,Department of Cardiology, Maastricht University Medical Centre+, Maastricht, Netherlands
| | - Yvonne M. C. Henskens
- Cardiovascular Research Institute Maastricht (CARIM), Maastricht University, Maastricht, Netherlands,Central Diagnostic Laboratory, Maastricht University Medical Centre+, Maastricht, Netherlands
| | - Iwan C. C. van der Horst
- Department of Intensive Care Medicine, Maastricht University Medical Centre+, Maastricht, Netherlands,Cardiovascular Research Institute Maastricht (CARIM), Maastricht University, Maastricht, Netherlands
| | - Hugo ten Cate
- Department of Internal Medicine, Maastricht University Medical Centre+, Maastricht, Netherlands,Cardiovascular Research Institute Maastricht (CARIM), Maastricht University, Maastricht, Netherlands,Thrombosis Expertise Centre Maastricht, Maastricht University Medical Centre+, Maastricht, Netherlands
| | - Henri M. H. Spronk
- Department of Biochemistry, Cardiovascular Research Institute Maastricht, Maastricht University, Maastricht, Netherlands,Department of Internal Medicine, Maastricht University Medical Centre+, Maastricht, Netherlands,Cardiovascular Research Institute Maastricht (CARIM), Maastricht University, Maastricht, Netherlands
| | - Bas C. T. van Bussel
- Department of Intensive Care Medicine, Maastricht University Medical Centre+, Maastricht, Netherlands,Care and Public Health Research Institute, Maastricht University, Maastricht, Netherlands
| | | |
Collapse
|
9
|
Luo S, Vasbinder A, Du‐Fay‐de‐Lavallaz JM, Gomez JMD, Suboc T, Anderson E, Tekumulla A, Shadid H, Berlin H, Pan M, Azam TU, Khaleel I, Padalia K, Meloche C, O'Hayer P, Catalan T, Blakely P, Launius C, Amadi K, Pop‐Busui R, Loosen SH, Chalkias A, Tacke F, Giamarellos‐Bourboulis EJ, Altintas I, Eugen‐Olsen J, Williams KA, Volgman AS, Reiser J, Hayek SS. Soluble Urokinase Plasminogen Activator Receptor and Venous Thromboembolism in COVID-19. J Am Heart Assoc 2022; 11:e025198. [PMID: 35924778 PMCID: PMC9683642 DOI: 10.1161/jaha.122.025198] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/22/2022] [Accepted: 06/21/2022] [Indexed: 11/16/2022]
Abstract
Background Venous thromboembolism (VTE) contributes significantly to COVID-19 morbidity and mortality. The urokinase receptor system is involved in the regulation of coagulation. Levels of soluble urokinase plasminogen activator receptor (suPAR) reflect hyperinflammation and are strongly predictive of outcomes in COVID-19. Whether suPAR levels identify patients with COVID-19 at risk for VTE is unclear. Methods and Results We leveraged a multinational observational study of patients hospitalized for COVID-19 with suPAR and D-dimer levels measured on admission. In 1960 patients (mean age, 58 years; 57% men; 20% Black race), we assessed the association between suPAR and incident VTE (defined as pulmonary embolism or deep vein thrombosis) using logistic regression and Fine-Gray modeling, accounting for the competing risk of death. VTE occurred in 163 (8%) patients and was associated with higher suPAR and D-dimer levels. There was a positive association between suPAR and D-dimer (β=7.34; P=0.002). Adjusted for clinical covariables, including D-dimer, the odds of VTE were 168% higher comparing the third with first suPAR tertiles (adjusted odds ratio, 2.68 [95% CI, 1.51-4.75]; P<0.001). Findings were consistent when stratified by D-dimer levels and in survival analysis accounting for death as a competing risk. On the basis of predicted probabilities from random forest, a decision tree found the combined D-dimer <1 mg/L and suPAR <11 ng/mL cutoffs, identifying 41% of patients with only 3.6% VTE probability. Conclusions Higher suPAR was associated with incident VTE independently of D-dimer in patients hospitalized for COVID-19. Combining suPAR and D-dimer identified patients at low VTE risk. Registration URL: https://www.clinicaltrials.gov; Unique identifier: NCT04818866.
Collapse
Affiliation(s)
- Shengyuan Luo
- Department of MedicineRush University Medical CenterChicagoIL
| | - Alexi Vasbinder
- Division of Cardiology, Department of Internal MedicineUniversity of MichiganAnn ArborMI
| | | | | | - Tisha Suboc
- Department of MedicineRush University Medical CenterChicagoIL
| | - Elizabeth Anderson
- Division of Cardiology, Department of Internal MedicineUniversity of MichiganAnn ArborMI
| | - Annika Tekumulla
- Division of Cardiology, Department of Internal MedicineUniversity of MichiganAnn ArborMI
| | - Husam Shadid
- Department of Internal MedicineUniversity of MichiganAnn ArborMI
| | - Hanna Berlin
- Department of Internal MedicineUniversity of MichiganAnn ArborMI
| | - Michael Pan
- Department of Internal MedicineUniversity of MichiganAnn ArborMI
| | - Tariq U. Azam
- Division of Cardiology, Department of Internal MedicineUniversity of MichiganAnn ArborMI
| | - Ibrahim Khaleel
- Department of Internal MedicineUniversity of MichiganAnn ArborMI
| | - Kishan Padalia
- Department of Internal MedicineUniversity of MichiganAnn ArborMI
| | - Chelsea Meloche
- Department of Internal MedicineUniversity of MichiganAnn ArborMI
| | - Patrick O'Hayer
- Department of Internal MedicineUniversity of MichiganAnn ArborMI
| | - Tonimarie Catalan
- Division of Cardiology, Department of Internal MedicineUniversity of MichiganAnn ArborMI
| | - Pennelope Blakely
- Division of Cardiology, Department of Internal MedicineUniversity of MichiganAnn ArborMI
| | - Christopher Launius
- Division of Cardiology, Department of Internal MedicineUniversity of MichiganAnn ArborMI
| | - Kingsley‐Michael Amadi
- Division of Cardiology, Department of Internal MedicineUniversity of MichiganAnn ArborMI
| | - Rodica Pop‐Busui
- Division of Metabolism, Endocrinology and Diabetes, Department of Internal MedicineUniversity of MichiganAnn ArborMI
| | - Sven H. Loosen
- Clinic for Gastroenterology, Hepatology and Infectious Diseases, Medical FacultyUniversity Hospital DüsseldorfDüsseldorfGermany
| | - Athanasios Chalkias
- Department of Anesthesiology, Faculty of MedicineUniversity of ThessalyLarisaGreece
- Outcomes Research ConsortiumClevelandOH
| | - Frank Tacke
- Department of Hepatology and Gastroenterology, Campus Charité Mitte and Campus Virchow‐KlinikumCharité University Medicine BerlinBerlinGermany
| | | | - Izzet Altintas
- Department of Clinical ResearchCopenhagen University Hospital HvidovreHvidovreDenmark
| | - Jesper Eugen‐Olsen
- Department of Clinical ResearchCopenhagen University Hospital HvidovreHvidovreDenmark
| | - Kim A. Williams
- Department of Internal MedicineUniversity of Louisville School of MedicineLouisvilleKY
| | | | - Jochen Reiser
- Department of MedicineRush University Medical CenterChicagoIL
| | - Salim S. Hayek
- Division of Cardiology, Department of Internal MedicineUniversity of MichiganAnn ArborMI
| |
Collapse
|
10
|
The analysis of Fe-dependent serum enzymes in severe COVID-19 with a pulmonary thrombotic event. Cent Eur J Immunol 2022; 47:293-298. [PMID: 36817400 PMCID: PMC9901253 DOI: 10.5114/ceji.2022.124076] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2022] [Accepted: 09/25/2022] [Indexed: 01/19/2023] Open
Abstract
Introduction COVID-19 patients in critical condition requiring ICU admission are more likely to experience thromboembolic complications, especially pulmonary embolism. Since the outbreak of coronavirus disease 2019 (COVID-19), clinicians have struggled with the attempt to diagnose and manage the severe and fatal complications of COVID-19 appropriately. Several reports have described significant procoagulatory events, including life-threatening pulmonary embolism, in these patients. The aim of the study was to analyze the results of selected serum enzymes in patients with a radiologically confirmed pulmonary thrombotic event based on the pulmonary tissue involvement assessed in a computed tomography (CT) scan. Material and methods The retrospective study covered a group of 226 COVID-19 patients. Groups were divided based on the degree of lung tissue involvement in CT examinations, including patients with confirmed pulmonary embolism. The analyzed group consisted of 136 men and 90 women with mean age of 70 years. Results The group consisted of patients with < 50% of lung volume changes who had higher parameter values in each analyzed parameter, except red blood cells (RBC) (p < 0.05). Especially, the level of ferritin was much higher in the first group (p = 0.000008). Elevated ferritin levels were observed in all patients with lung tissue involvement. Discussion This line of research is critical in order to assess the predisposing conditions for pulmonary embolism occurrence in COVID-19, which can be used as a predictive factor for course of the disease. The conducted research will resolve whether there is a relationship between the selected laboratory parameters and the occurrence of pulmonary embolism in patients with COVID-19. Conclusions The study demonstrated that elevated levels of several inflammatory and thrombotic parameters such as ferritin, D-dimer, C-reactive protein (CRP) as well as hemoglobin do not correlate with the degree of lung tissue involvement in the computed tomography image.
Collapse
|
11
|
Owaidah T, Maghrabi K, Alfraih F, Haroon A, Siddiqui K, Alnounou R, AlOtair H, Alqahtany FS, Maghrabi M, Owaidah M, AlSaleh K. Report of Low Incidence of Thrombosis with Early Prophylaxis in Hospitalized Patients with COVID-19 from Two Saudi Tertiary Centers. Clin Appl Thromb Hemost 2022; 28:10760296221086286. [PMID: 35311592 PMCID: PMC8938688 DOI: 10.1177/10760296221086286] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2021] [Revised: 02/06/2022] [Accepted: 02/21/2022] [Indexed: 01/08/2023] Open
Abstract
BACKGROUND Thrombotic events can increase the COVID-19 associated disease mortality. The administration of prophylactic anticoagulants had been shown to decrease the incidence of thrombosis, mortality, and ICU admission rates in COVID-19 patients. AIMS The present study investigates the rate of thrombosis with early anticoagulation prophylaxis, the various risk factors for thrombotic events, and the overall survival rate in hospitalized COVID-19 cases. METHODS In this prospective observational study, 425 patients aged ≥14 years were included in the study who were hospitalized with COVID-19 related symptoms from March to October 2020 at two tertiary care hospitals in the Kingdom of Saudi Arabia. Venous thromboembolism (VTE) score was evaluated, and VTE prophylaxis was administered according to the hospital guidelines. Patients' demographics, comorbidities, disease presentation, and sequential hematological profiles were also recorded. Samples were collected at different time points to determine the hematological profiles. RESULTS Out of 425 with positive COVID-19 subjects, eight (1.9%) patients developed thrombosis during admission, with pulmonary embolism being the most common type. VTE prophylaxis was administered to 394 (92.7%) patients. These anticoagulants included enoxaparin (86.3%), heparin (12.7%), warfarin (0.8%) and apixaban (0.3%). Comorbid conditions were recorded in 253 (59.5%) patients. ICU admission rate was 28% (n = 119), with a median time to transfer to ICU of 1 day (r: 0-33 days). A trend of high VTE score (5.0) with ICU admission and mortality (P = <.001) was observed. The observed mortality rate for our cohort was 5.9% (25 events out of 425); however, for patients admitted in ICU, it was 16% (19 events out of 119 admissions). CONCLUSION We are reporting a low incidence of thrombosis in COVID-19 patients. We have demonstrated that the early administration of prophylactic anticoagulants might reduce the risk of thrombotic events and the associated mortality. We observed a higher VTE score and thrombosis in patients admitted to the ICU.
Collapse
Affiliation(s)
- Tarek Owaidah
- Department of Pathology and Laboratory Medicine, King Faisal Specialist Hospital and
Research Centre, Riyadh, KSA
- Alfaisal University, Riyadh, KSA
| | - Khalid Maghrabi
- Department of Critical Care, King Faisal Specialist Hospital and
Research Centre, Riyadh, KSA
| | - Feras Alfraih
- Oncology Center, King Faisal Specialist Hospital and
Research Centre, Riyadh, KSA
| | - Alfadil Haroon
- Oncology Center, King Faisal Specialist Hospital and
Research Centre, Riyadh, KSA
| | - Khawar Siddiqui
- Department of Pediatric Hematology Oncology, King Faisal Specialist Hospital and
Research Centre, Riyadh, KSA
| | - Randa Alnounou
- Department of Pathology and Laboratory Medicine, King Faisal Specialist Hospital and
Research Centre, Riyadh, KSA
| | - Hadeel AlOtair
- Department of Medicine, College of Medicine, King Saud University, Riyadh, KSA
| | - Fatmah S Alqahtany
- Department of Pathology, Hematopathology Unit, College of Medicine, King Saud University, King Saud University Medical City, Riyadh, Saudi Arabia
| | | | | | - Khalid AlSaleh
- Department of Oncology, College of Medicine, King Saud University, Riyadh, Saudi Arabia
| |
Collapse
|
12
|
Al-Kuraishy HM, Al-Gareeb AI, Mostafa-Hedeab G, Kasozi KI, Zirintunda G, Aslam A, Allahyani M, Welburn SC, Batiha GES. Effects of β-Blockers on the Sympathetic and Cytokines Storms in Covid-19. Front Immunol 2021; 12:749291. [PMID: 34867978 PMCID: PMC8637815 DOI: 10.3389/fimmu.2021.749291] [Citation(s) in RCA: 35] [Impact Index Per Article: 11.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2021] [Accepted: 10/15/2021] [Indexed: 12/24/2022] Open
Abstract
Severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) is a causative virus in the development of coronavirus disease 2019 (Covid-19) pandemic. Respiratory manifestations of SARS-CoV-2 infection such as acute lung injury (ALI) and acute respiratory distress syndrome (ARDS) leads to hypoxia, oxidative stress, and sympatho-activation and in severe cases leads to sympathetic storm (SS). On the other hand, an exaggerated immune response to the SARS-CoV-2 invasion may lead to uncontrolled release of pro-inflammatory cytokine development of cytokine storm (CS). In Covid-19, there are interactive interactions between CS and SS in the development of multi-organ failure (MOF). Interestingly, cutting the bridge between CS and SS by anti-inflammatory and anti-adrenergic agents may mitigate complications that are induced by SARS-CoV-2 infection in severely affected Covid-19 patients. The potential mechanisms of SS in Covid-19 are through different pathways such as hypoxia, which activate the central sympathetic center through carotid bodies chemosensory input and induced pro-inflammatory cytokines, which cross the blood-brain barrier and activation of the sympathetic center. β2-receptors signaling pathway play a crucial role in the production of pro-inflammatory cytokines, macrophage activation, and B-cells for the production of antibodies with inflammation exacerbation. β-blockers have anti-inflammatory effects through reduction release of pro-inflammatory cytokines with inhibition of NF-κB. In conclusion, β-blockers interrupt this interaction through inhibition of several mediators of CS and SS with prevention development of neural-cytokine loop in SARS-CoV-2 infection. Evidence from this study triggers an idea for future prospective studies to confirm the potential role of β-blockers in the management of Covid-19.
Collapse
Affiliation(s)
- Hayder M Al-Kuraishy
- Department of Clinical Pharmacology and Medicine, College of Medicine, ALmustansiriyia University, Baghdad, Iraq
| | - Ali Ismail Al-Gareeb
- Department of Clinical Pharmacology and Medicine, College of Medicine, ALmustansiriyia University, Baghdad, Iraq
| | - Gomaa Mostafa-Hedeab
- Pharmacology Department, Health Sciences Research Unit, Medical College, Jouf University, Sakaka, Saudi Arabia
| | - Keneth Iceland Kasozi
- Infection Medicine, Deanery of Biomedical Sciences, College of Medicine and Veterinary Medicine, The University of Edinburgh, Edinburgh, United Kingdom.,School of Medicine, Kabale Unviersity, Kabale, Uganda
| | - Gerald Zirintunda
- Department of Animal Production and Management, Faculty of Agriculture and Animal Sciences, Busitema University, Tororo, Uganda
| | - Akhmed Aslam
- Laboratory Medicine, Faculty of Applied Medical Sciences, Umm Al-Qura University, Makkah, Saudi Arabia
| | - Mamdouh Allahyani
- Department of Clinical Laboratory Sciences, College of Applied Medical Sciences, Taif University, Taif, Saudi Arabia
| | - Susan Christina Welburn
- Infection Medicine, Deanery of Biomedical Sciences, College of Medicine and Veterinary Medicine, The University of Edinburgh, Edinburgh, United Kingdom.,Zhejiang University-University of Edinburgh Institute, Zhejiang University School of Medicine, Zhejiang University, Haining, China
| | - Gaber El-Saber Batiha
- Department of Pharmacology and Therapeutics, Faculty of Veterinary Medicine, Damanhour University, Damanhour, Egypt
| |
Collapse
|
13
|
Cangemi R, Calvieri C, Falcone M, Cipollone F, Ceccarelli G, Pignatelli P, D'Ardes D, Pirro M, Alessandri F, Lichtner M, D'Ettorre G, Oliva A, Aronica R, Rocco M, Venditti M, Romiti GF, Tiseo G, Taliani G, Menichetti F, Pugliese F, Mastroianni CM, Violi F. Comparison of thrombotic events and mortality in patients with community-acquired pneumonia and COVID-19: a multicentre observational study. Thromb Haemost 2021; 122:257-266. [PMID: 34758488 DOI: 10.1055/a-1692-9939] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/19/2022]
Abstract
BACKGROUND It is still unclear if patients with community-acquired pneumonia (CAP) and coronavirus disease 2019 (COVID-19) have different rate, typology, and impact of thrombosis on survival. METHODS In this multicentre observational cohort study 1.138 patients, hospitalized for CAP (n=559) or COVID-19 (n=579) from 7 clinical centres in Italy, were included in the study. Consecutive adult patients (age ≥18 years) with confirmed COVID-19 related pneumonia, with or without mechanical ventilation, hospitalized from 1st March 2020 to 30 April 2020, were enrolled. Covid-19 was diagnosed based on the WHO interim guidance. Patients were followed-up until discharge or in-hospital death, registering the occurrence of thrombotic events including ischemic/embolic events. RESULTS During the in-hospital stay, 11.4% of CAP and 15.5% of COVID-19 patients experienced thrombotic events (p=0.046). In CAP patients all the events were arterial thromboses, while in COVID-19 patients 8.3% were venous and 7.2% arterial thromboses. During the in-hospital follow-up, 3% of CAP patients and 17% of COVID-19 patients died (p<0.001). The highest mortality rate was found among COVID-19 patients with thrombotic events (47.6% vs 13.4% in thrombotic-event free patients; p<0.001). In CAP, 13.8% of patients experiencing thrombotic events died vs. 1.8% of thrombotic event-free ones (p<0.001). A multivariable COX-regression analysis confirmed a higher risk of death in COVID-19 patients with thrombotic events (HR 2.1; 95% CI: 1.4-3.3; p<0.001). CONCLUSIONS Compared with CAP, COVID-19 is characterized by a higher burden of thrombotic events, different thrombosis typology and higher risk of thrombosis-related in-hospital mortality.
Collapse
Affiliation(s)
| | - Camilla Calvieri
- I Clinica Medica, Department of Clinical Internal, Anaesthesiologic and Cardiovascular Sciences, Sapienza University of Rome, Rome, Italy, Sapienza University of Rome, Rome, Italy
| | | | - Francesco Cipollone
- Department of Medicine and Aging, "G. D'Annunzio" University of Chieti-Pescara, Ita, G. D'Annunzio" University of Chieti-Pescara, Ita, Chieti, Italy
| | | | | | - Damiano D'Ardes
- 3. Department of Medicine and Aging, "G. D'Annunzio" University of Chieti-Pescara, Italy, "G. D'Annunzio" University of Chieti-Pescara, Chieti, Italy
| | | | | | | | - Gabriella D'Ettorre
- I Clinica Medica, Department of Clinical Internal, Anaesthesiologic and Cardiovascular Sciences, Sapienza University of Rome, Rome, Italy, Sapienza University of Rome, Rome, Italy
| | - Alessandra Oliva
- I Clinica Medica, Department of Clinical Internal, Anaesthesiologic and Cardiovascular Sciences, Sapienza University of Rome, Rome, Italy, Sapienza University of Rome, Rome, Italy
| | - Raissa Aronica
- Department of Public Health and Infectious Diseases, Sapienza University of Rome, Rome, Italy
| | - Monica Rocco
- Department of Public Health and Infectious Diseases, Sapienza University of Rome, Rome, Italy
| | | | | | | | - Gloria Taliani
- Department of Public Health and Infectious Diseases, Sapienza University of Rome, Rome, Italy
| | | | - Francesco Pugliese
- Department of Public Health and Infectious Diseases, Sapienza University of Rome, Rome, Italy
| | | | - Francesco Violi
- Policlinico Umberto I, I Clinica Medica, Department of Internal Medicine and Medical Specialties, Sapienza-University of Rome, Roma, Italy
| |
Collapse
|
14
|
Hulshof A, Braeken DCW, Ghossein‐Doha C, van Santen S, Sels JEM, Kuiper GJAJM, van der Horst ICC, ten Cate H, van Bussel BCT, Olie RH, Henskens YMC. Hemostasis and fibrinolysis in COVID-19 survivors 6 months after intensive care unit discharge. Res Pract Thromb Haemost 2021; 5:e12579. [PMID: 34595368 PMCID: PMC8463660 DOI: 10.1002/rth2.12579] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2021] [Revised: 07/08/2021] [Accepted: 07/15/2021] [Indexed: 12/20/2022] Open
Abstract
BACKGROUND The prothrombotic phenotype has been extensively described in patients with acute coronavirus disease 2019 (COVID-19). However, potential long-term hemostatic abnormalities are unknown. OBJECTIVE To evaluate the changes in routine hemostasis laboratory parameters and tissue-type plasminogen activator (tPA) rotational thromboelastometry (ROTEM) 6 months after COVID-19 intensive care unit (ICU) discharge in patients with and without venous thromboembolism (VTE) during admission. METHODS Patients with COVID-19 of the Maastricht Intensive Care COVID cohort with tPA ROTEM measurement at ICU and 6-month follow-up were included. TPA ROTEM is a whole blood viscoelastic assay that illustrates both clot development and fibrinolysis due to simultaneous addition of tissue factor and tPA. Analyzed ROTEM parameters include clotting time, maximum clot firmness (MCF), lysis onset time (LOT), and lysis time (LT). RESULTS Twenty-two patients with COVID-19 were included and showed extensive hemostatic abnormalities before ICU discharge. TPA ROTEM MCF (75 mm [interquartile range, 68-78]-59 mm [49-63]; P ≤ .001), LOT (3690 seconds [2963-4418]-1786 seconds [1465-2650]; P ≤ .001), and LT (7200 seconds [6144-7200]-3138 seconds [2591-4389]; P ≤ .001) normalized 6 months after ICU discharge. Of note, eight and four patients still had elevated fibrinogen and D-dimer concentrations at follow-up, respectively. In general, no difference in median hemostasis parameters at 6-month follow-up was observed between patients with (n=14) and without (n=8) VTE, although fibrinogen appeared to be lower in the VTE group (VTE-, 4.3 g/L [3.7-4.7] vs VTE+, 3.4 g/L [3.2-4.2]; P = .05). CONCLUSIONS Six months after COVID-19 ICU discharge, no persisting hypercoagulable or hypofibrinolytic profile was detected by tPA ROTEM. Nevertheless, increased D-dimer and fibrinogen concentrations persist up to 6 months in some patients, warranting further exploration of the role of hemostasis in long-term morbidity after hospital discharge.
Collapse
Affiliation(s)
- Anne‐Marije Hulshof
- Central Diagnostic LaboratoryMaastricht University Medical Centre+Maastrichtthe Netherlands
- Cardiovascular Research Institute Maastricht (CARIM)Maastricht UniversityMaastrichtthe Netherlands
| | - Dionne C. W. Braeken
- Thrombosis Expertise Centre MaastrichtMaastricht University Medical Centre+Maastrichtthe Netherlands
| | - Chahinda Ghossein‐Doha
- Department of CardiologyMaastricht University Medical Centre+Maastrichtthe Netherlands
- Department of Intensive Care MedicineMaastricht University Medical Centre+Maastrichtthe Netherlands
| | - Susanne van Santen
- Department of Intensive Care MedicineMaastricht University Medical Centre+Maastrichtthe Netherlands
| | - Jan‐Willem E. M. Sels
- Department of Intensive Care MedicineMaastricht University Medical Centre+Maastrichtthe Netherlands
| | | | - Iwan C. C. van der Horst
- Cardiovascular Research Institute Maastricht (CARIM)Maastricht UniversityMaastrichtthe Netherlands
- Department of Intensive Care MedicineMaastricht University Medical Centre+Maastrichtthe Netherlands
| | - Hugo ten Cate
- Cardiovascular Research Institute Maastricht (CARIM)Maastricht UniversityMaastrichtthe Netherlands
- Thrombosis Expertise Centre MaastrichtMaastricht University Medical Centre+Maastrichtthe Netherlands
- Department of Internal MedicineSection Vascular MedicineMaastricht University Medical Centre+Maastrichtthe Netherlands
| | - Bas C. T. van Bussel
- Department of Intensive Care MedicineMaastricht University Medical Centre+Maastrichtthe Netherlands
- Care and Public Health Research Institute (CAPHRI)Maastricht UniversityMaastrichtthe Netherlands
| | - Renske H. Olie
- Cardiovascular Research Institute Maastricht (CARIM)Maastricht UniversityMaastrichtthe Netherlands
- Thrombosis Expertise Centre MaastrichtMaastricht University Medical Centre+Maastrichtthe Netherlands
- Department of Internal MedicineSection Vascular MedicineMaastricht University Medical Centre+Maastrichtthe Netherlands
| | - Yvonne M. C. Henskens
- Central Diagnostic LaboratoryMaastricht University Medical Centre+Maastrichtthe Netherlands
| |
Collapse
|