1
|
Muir I, Herzog E, Brechmann M, Ghobrial O, Rezvani Sharif A, Hoffman M. Modelling the effects of 4-factor prothrombin complex concentrate for the management of factor Xa-associated bleeding. PLoS One 2024; 19:e0310883. [PMID: 39331637 PMCID: PMC11432878 DOI: 10.1371/journal.pone.0310883] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2024] [Accepted: 09/09/2024] [Indexed: 09/29/2024] Open
Abstract
The management of factor Xa (FXa) inhibitor-associated bleeding remains a clinical challenge. Massive bleeding is often associated with complex coagulopathy and, thus, the sole reversal of FXa inhibitors might not be sufficient to restore hemostasis, requiring instead a multimodal approach. Four-factor prothrombin complex concentrate (4F-PCC) is widely recognized as a viable treatment option for FXa inhibitor-associated bleeding. Here, we applied computational models to explore the effect 4F-PCC has on the coagulation cascade and restoration of thrombin generation in a system that simulates a patient that has received a FXa inhibitor. The coagulation model is largely based on a previously developed model with modifications incorporated from various other published sources. The model was calibrated and validated using data from a phase 3 clinical trial of vitamin K antagonist reversal with 4F-PCC. Using the parameters and initial conditions determined during the calibration and validation process, the prothrombin time (PT) test simulations predicted a PT of 11.4 seconds. The model successfully simulated the effects of rivaroxaban and apixaban on total thrombin concentration and showed that 4F-PCC increased thrombin generation in the presence of rivaroxaban or apixaban.
Collapse
Affiliation(s)
- Ineke Muir
- CSL Innovations Pty Ltd, Victoria, Australia
| | - Eva Herzog
- CSL Behring LLC, King of Prussia, PA, United States of America
| | | | - Oliver Ghobrial
- CSL Behring LLC, King of Prussia, PA, United States of America
| | | | - Maureane Hoffman
- Department of Pathology, Duke University School of Medicine, Durham, NC, United States of America
| |
Collapse
|
2
|
Betticher C, Bertaggia Calderara D, Matthey-Guirao E, Gomez FJ, Aliotta A, Lemmel E, Ceppi F, Alberio L, Rizzi M. Global coagulation assays detect an early prothrombotic state in children with acute lymphoblastic leukemia. J Thromb Haemost 2024; 22:2482-2494. [PMID: 38897386 DOI: 10.1016/j.jtha.2024.05.032] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2024] [Revised: 05/25/2024] [Accepted: 05/28/2024] [Indexed: 06/21/2024]
Abstract
BACKGROUND Pediatric patients with acute lymphoblastic leukemia (ALL) are at highest risk of venous thromboembolism during the induction therapy (IT). These events are not predictable by conventional coagulation assays. OBJECTIVES To investigate the utility of global coagulation assays (GCAs) for assessing the hemostatic state in children with ALL during IT. METHODS We included children with ALL (n = 15) and healthy controls (n = 15). Analyses were performed at different time points during IT of the AIEOP-BFM protocols. In addition to prothrombotic biomarkers, natural anticoagulant proteins, and in vivo thrombin generation (TG) markers, ex vivo TG was measured using the gold standard calibrated automated thrombogram method, automated ST Genesia, and thrombodynamics analyzer (TD). The latter also provided measurement of fibrin clot formation. RESULTS Different from conventional coagulation assays and in vivo TG markers, ex vivo GCAs detected increasing prothrombotic changes during IT. Particularly, TG measured with TD as expressed by endogenous thrombin potential was already significantly elevated at days 8 to 12 (P < .01) and continued to increase during IT compared with prior to beginning treatment, indicating a very early shift toward a procoagulant state. A similar pattern was observed for the rate of fibrin clot formation (stationary rate of clot growth: P < .01 at days 8-12). Remarkably, in patients developing thrombotic complications (n = 5), both GCAs, ST Genesia and TD, showed a significantly higher endogenous thrombin potential very early (already at days 8-12, P < .05), well before clinical manifestation. CONCLUSION GCAs capture prothrombotic changes early during IT in ALL pediatric patients. If confirmed, this approach will allow tailoring thromboprophylaxis in children with ALL at highest risk for venous thromboembolism.
Collapse
Affiliation(s)
- Coralie Betticher
- Pediatric Hematology-Oncology Unit, Division of Pediatrics, Department Woman-Mother-Child, Lausanne University Hospital (CHUV) and University of Lausanne (UNIL), Lausanne, Switzerland
| | - Debora Bertaggia Calderara
- Division of Hematology and Central Hematology Laboratory, Lausanne University Hospital (CHUV) and University of Lausanne (UNIL), Lausanne, Switzerland
| | - Elena Matthey-Guirao
- Division of Hematology and Central Hematology Laboratory, Lausanne University Hospital (CHUV) and University of Lausanne (UNIL), Lausanne, Switzerland
| | - Francisco J Gomez
- Division of Hematology and Central Hematology Laboratory, Lausanne University Hospital (CHUV) and University of Lausanne (UNIL), Lausanne, Switzerland
| | - Alessandro Aliotta
- Division of Hematology and Central Hematology Laboratory, Lausanne University Hospital (CHUV) and University of Lausanne (UNIL), Lausanne, Switzerland
| | - Elena Lemmel
- Pediatric Hematology-Oncology Unit, Division of Pediatrics, Department Woman-Mother-Child, Lausanne University Hospital (CHUV) and University of Lausanne (UNIL), Lausanne, Switzerland
| | - Francesco Ceppi
- Pediatric Hematology-Oncology Unit, Division of Pediatrics, Department Woman-Mother-Child, Lausanne University Hospital (CHUV) and University of Lausanne (UNIL), Lausanne, Switzerland
| | - Lorenzo Alberio
- Division of Hematology and Central Hematology Laboratory, Lausanne University Hospital (CHUV) and University of Lausanne (UNIL), Lausanne, Switzerland
| | - Mattia Rizzi
- Pediatric Hematology-Oncology Unit, Division of Pediatrics, Department Woman-Mother-Child, Lausanne University Hospital (CHUV) and University of Lausanne (UNIL), Lausanne, Switzerland; Pediatric Hematology-Oncology Unit, Pediatric Institute of Southern Switzerland, Ospedale San Giovanni, Ente Ospedaliero Cantonale, Bellinzona, and Faculty of Biomedical Sciences, Università della Svizzera Italiana (USI), Lugano, Switzerland.
| |
Collapse
|
3
|
Haisma B, Schols SEM, van Oerle RGM, Verbeek-Knobbe K, Hellenbrand D, Verwoerd EJ, Heubel-Moenen FCJI, Stroobants AK, Meijer D, Rijpma SR, Henskens YMC. Comparative analysis of thrombin generation platforms for patients with coagulation factor deficiencies: A comprehensive assessment. Thromb Res 2024; 240:109045. [PMID: 38834002 DOI: 10.1016/j.thromres.2024.109045] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2024] [Revised: 05/13/2024] [Accepted: 05/28/2024] [Indexed: 06/06/2024]
Abstract
INTRODUCTION Thrombin generation assays (TGAs) assess the overall functionality of the hemostatic system and thereby provide a reflection of the hemostatic capacity of patients with disorders in this system. Currently, four (semi-)automated TGA platforms are available: the Calibrated Automated Thrombogram, Nijmegen Hemostasis Assay, ST Genesia and Ceveron s100. In this study, we compared their performance for detecting patients with congenital single coagulation factor deficiencies. MATERIALS AND METHODS Pooled patient samples, healthy control samples and normal pooled plasma were tested on all four platforms, using the available reagents that vary in tissue factor and phospholipid concentrations. The TGA parameters selected for analysis were peak height and thrombin potential. Results were normalized by using the calculated mean of healthy controls and a correction for between-run variation. Outcomes were presented as relative values, with the mean of healthy controls standardized to 100 %. RESULTS Across all platforms and reagents used, thrombin potentials and peak heights of samples with coagulation factor deficiencies were lower than those of healthy controls. Reagents designed for bleeding tendencies yielded the lowest values on all platforms (relative median peak height 19-32 %, relative median thrombin potential 19-45 %). Samples representing more severe coagulation factor deficiencies generally exhibited lower relative peak heights and thrombin potentials. CONCLUSIONS Thrombin generation assays prove effective in differentiating single coagulation factor deficient samples from healthy controls, with modest discrepancies observed between the platforms. Reagents designed for assessing bleeding tendencies, featuring the lowest tissue factor and phospholipid concentrations, emerged as the most suitable option for detecting coagulation factor deficiencies.
Collapse
Affiliation(s)
- Bauke Haisma
- Department of Hematology, Radboud university medical center, Geert Grooteplein Zuid 10, 5425 GA Nijmegen, the Netherlands; Hemophilia Treatment Center Nijmegen-Eindhoven-Maastricht, Geert Grooteplein Zuid 10, 5425 GA Nijmegen, the Netherlands.
| | - Saskia E M Schols
- Department of Hematology, Radboud university medical center, Geert Grooteplein Zuid 10, 5425 GA Nijmegen, the Netherlands; Hemophilia Treatment Center Nijmegen-Eindhoven-Maastricht, Geert Grooteplein Zuid 10, 5425 GA Nijmegen, the Netherlands.
| | - René G M van Oerle
- Central Diagnostic Laboratory, Maastricht University Medical Center+, P. Debyelaan 25, 6229 HX Maastricht, the Netherlands; Biochemistry, Cardiovascular Research Institute Maastricht (CARIM), Maastricht University, Universiteitssingel 50, 6229 ER Maastricht, the Netherlands.
| | - Kitty Verbeek-Knobbe
- Hemophilia Treatment Center Nijmegen-Eindhoven-Maastricht, Geert Grooteplein Zuid 10, 5425 GA Nijmegen, the Netherlands; Department of Laboratory Medicine, Laboratory of Hematology, Radboud University Medical Center, Geert Grooteplein Zuid 10, 5425 GA Nijmegen, the Netherlands.
| | - Dave Hellenbrand
- Hemophilia Treatment Center Nijmegen-Eindhoven-Maastricht, Geert Grooteplein Zuid 10, 5425 GA Nijmegen, the Netherlands; Central Diagnostic Laboratory, Maastricht University Medical Center+, P. Debyelaan 25, 6229 HX Maastricht, the Netherlands.
| | - Evelien J Verwoerd
- Hemophilia Treatment Center Nijmegen-Eindhoven-Maastricht, Geert Grooteplein Zuid 10, 5425 GA Nijmegen, the Netherlands; Department of Laboratory Medicine, Laboratory of Hematology, Radboud University Medical Center, Geert Grooteplein Zuid 10, 5425 GA Nijmegen, the Netherlands.
| | - Floor C J I Heubel-Moenen
- Hemophilia Treatment Center Nijmegen-Eindhoven-Maastricht, Geert Grooteplein Zuid 10, 5425 GA Nijmegen, the Netherlands; Department of Hematology, Internal Medicine, Maastricht University Medical Center+, P. Debyelaan 25, 6229 HX Maastricht, the Netherlands.
| | - An K Stroobants
- Department of Laboratory Medicine, Radboudumc Laboratory of Diagnostics, Radboud university medical center, Geert Grooteplein Zuid 10, 5425 GA Nijmegen, the Netherlands.
| | - Danielle Meijer
- Hemophilia Treatment Center Nijmegen-Eindhoven-Maastricht, Geert Grooteplein Zuid 10, 5425 GA Nijmegen, the Netherlands; Department of Laboratory Medicine, Laboratory of Hematology, Radboud University Medical Center, Geert Grooteplein Zuid 10, 5425 GA Nijmegen, the Netherlands.
| | - Sanna R Rijpma
- Department of Hematology, Radboud university medical center, Geert Grooteplein Zuid 10, 5425 GA Nijmegen, the Netherlands; Department of Laboratory Medicine, Laboratory of Hematology, Radboud University Medical Center, Geert Grooteplein Zuid 10, 5425 GA Nijmegen, the Netherlands.
| | - Yvonne M C Henskens
- Hemophilia Treatment Center Nijmegen-Eindhoven-Maastricht, Geert Grooteplein Zuid 10, 5425 GA Nijmegen, the Netherlands; Central Diagnostic Laboratory, Maastricht University Medical Center+, P. Debyelaan 25, 6229 HX Maastricht, the Netherlands; Biochemistry, Cardiovascular Research Institute Maastricht (CARIM), Maastricht University, Universiteitssingel 50, 6229 ER Maastricht, the Netherlands.
| |
Collapse
|
4
|
Taune VS, Zabczyk M, He S, Ågren A, Blombäck M, Wallén H, Skeppholm M. Effects of dabigatran, rivaroxaban, and apixaban on fibrin network permeability, thrombin generation, and fibrinolysis. Scand J Clin Lab Invest 2024; 84:257-267. [PMID: 38953609 DOI: 10.1080/00365513.2024.2369993] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2023] [Revised: 05/19/2024] [Accepted: 06/16/2024] [Indexed: 07/04/2024]
Abstract
INTRODUCTION There are important pharmacological differences between direct oral anticoagulants (DOAC) and a deeper knowledge of how they influence different aspects of hemostasis in patients on treatment is desirable. MATERIALS AND METHODS Blood samples from patients on dabigatran (n = 23), rivaroxaban (n = 26), or apixaban (n = 20) were analyzed with a fibrin network permeability assay, a turbidimetric clotting and lysis assay, the calibrated automated thrombogram (CAT), plasma levels of thrombin-antithrombin complex (TAT) and D-dimer, as well as DOAC concentrations, PT-INR and aPTT. As a comparison, we also analyzed samples from 27 patients on treatment with warfarin. RESULTS Patients on dabigatran had a more permeable fibrin network, longer lag time (CAT and turbidimetric assay), and lower levels of D-dimer in plasma, compared with patients on rivaroxaban- and apixaban treatment, and a more permeable fibrin network than patients on warfarin. Clot lysis time was slightly longer in patients on dabigatran than in patients on rivaroxaban. Warfarin patients formed a more permeable fibrin network than patients on apixaban, had longer lag time than patients on rivaroxaban (CAT assay), and lower peak thrombin and ETP compared to patients on treatment with both FXa-inhibitors. CONCLUSIONS Results from this study indicate dabigatran treatment is a more potent anticoagulant than apixaban and rivaroxaban. However, as these results are not supported by clinical data, they are probably more related to the assays used and highlight the difficulty of measuring and comparing the effect of anticoagulants.
Collapse
Affiliation(s)
- Viktor Schutz Taune
- Division of Cardiovascular Medicine, Department of Clinical Sciences, Karolinska Institutet, Danderyd Hospital, Stockholm, Sweden
| | - Michal Zabczyk
- Department of Thromboembolic Disorders, Institute of Cardiology, Medical College, John Paul II Hospital, Jagiellonian University, Kraków, Poland
| | - Shu He
- Division of Cardiovascular Medicine, Department of Clinical Sciences, Karolinska Institutet, Danderyd Hospital, Stockholm, Sweden
| | - Anna Ågren
- Division of Cardiovascular Medicine, Department of Clinical Sciences, Karolinska Institutet, Danderyd Hospital, Stockholm, Sweden
- Department of Molecular Medicine & Surgery (Coagulation), Karolinska Institutet, Stockholm, Sweden
| | - Margareta Blombäck
- Department of Molecular Medicine & Surgery (Coagulation), Karolinska Institutet, Stockholm, Sweden
| | - Håkan Wallén
- Division of Cardiovascular Medicine, Department of Clinical Sciences, Karolinska Institutet, Danderyd Hospital, Stockholm, Sweden
| | - Mika Skeppholm
- Division of Cardiovascular Medicine, Department of Clinical Sciences, Karolinska Institutet, Danderyd Hospital, Stockholm, Sweden
| |
Collapse
|
5
|
Barocas A, Savard P, Carlo A, Lecompte T, de Maistre E. How to assess hypercoagulability in heparin-induced thrombocytopenia? Biomarkers of potential value to support therapeutic intensity of non-heparin anticoagulation. Thromb J 2023; 21:100. [PMID: 37726772 PMCID: PMC10508023 DOI: 10.1186/s12959-023-00546-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2023] [Accepted: 09/13/2023] [Indexed: 09/21/2023] Open
Abstract
BACKGROUND In case of heparin-induced thrombocytopenia (HIT), the switch to a non-heparin anticoagulant is mandatory, at a therapeutic dose. Such a treatment has limitations though, especially for patients with renal and/or hepatic failure. Candidate laboratory tests could detect the more coagulable HIT patients, for whom therapeutic anticoagulation would be the more justified. PATIENTS AND METHODS This was a monocentre observational prospective study in which 111 patients with suspected HIT were included. Nineteen were diagnosed with HIT (ELISA and platelet activation assay), among whom 10 were classified as HITT + when a thrombotic event was present at diagnosis or during the first following week. Two plasma prethrombotic biomarkers of in vivo activation of the haemostasis system, procoagulant phospholipids (ProcoagPPL) associated with extracellular vesicles and fibrin monomers (FM test), as well as in vitro thrombin potential (ST Genesia; low picomolar tissue factor) after heparin neutralization (heparinase), were studied. The results were primarily compared between HITT + and HITT- patients. RESULTS Those HIT + patients with thrombotic events in acute phase or shortly after (referred as HITT+) had a more coagulable phenotype than HIT + patients without thrombotic events since: (i) clotting times related to plasma procoagulant phospholipids tended to be shorter; (ii) fibrin monomers levels were statistically significantly higher (p = 0.0483); (iii) thrombin potential values were statistically significantly higher (p = 0.0404). Of note, among all patients suspected of suffering from HIT, we did not evidence a hypercoagulable phenotype in patients diagnosed with HIT compared to patients for whom the diagnosis of HIT was ruled out. CONCLUSION The three tests could help identify those HIT patients the most prone to thrombosis.
Collapse
Affiliation(s)
| | | | | | - Thomas Lecompte
- Haemostasis Unit, CHU, Dijon, France
- Vascular Medicine Division, CHU, Nancy, France
- Medicine Faculty of Nancy, Lorraine University, Lorraine, France
| | | |
Collapse
|
6
|
Shaw JR, Castellucci LA, Siegal D, Carrier M. DOAC-associated bleeding, hemostatic strategies, and thrombin generation assays - a review of the literature. J Thromb Haemost 2023; 21:433-452. [PMID: 36696204 DOI: 10.1016/j.jtha.2022.11.029] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2022] [Revised: 10/24/2022] [Accepted: 11/15/2022] [Indexed: 01/26/2023]
Abstract
Direct oral anticoagulants (DOACs) account for most oral anticoagulant use. DOAC-associated bleeding events are commonly encountered in clinical practice and are associated with substantial morbidity and mortality. Both specific reversal agents and nonspecific hemostatic therapies, such as prothrombin complex concentrates, are used in the management of DOAC-associated bleeding. Measuring hemostatic efficacy and demonstrating a clinical impact from these therapies among studies of bleeding patients is challenging. Thrombin generation assays provide information on the total hemostatic potential of plasma, and have emerged as a promising modality to both measure the impact of DOACs on coagulation and to evaluate the effects of hemostatic therapies among patients with DOAC-associated bleeding. The mechanisms by which nonspecific hemostatic agents impact coagulation and thrombin generation in the context of DOAC therapy are unclear. As a result, we undertook a review of the literature using a systematic search strategy with the goal of summarizing the effects of DOACs on thrombin generation and the effects of both specific reversal agents and nonspecific hemostatic therapies on DOAC-altered thrombin generation parameters. We sought to identify clinical studies focusing on whether altered thrombin generation is associated with clinical bleeding and whether correction of altered thrombin generation parameters predicts improvements in clinical hemostasis. Lastly, we sought to outline future directions for the application of thrombin generation assays toward anticoagulation therapies and the question of anticoagulation reversal.
Collapse
Affiliation(s)
- Joseph R Shaw
- Department of Medicine, University of Ottawa and the Ottawa Hospital Research Institute, Ottawa, Canada.
| | - Lana A Castellucci
- Department of Medicine, University of Ottawa and the Ottawa Hospital Research Institute, Ottawa, Canada
| | - Deborah Siegal
- Department of Medicine, University of Ottawa and the Ottawa Hospital Research Institute, Ottawa, Canada
| | - Marc Carrier
- Department of Medicine, University of Ottawa and the Ottawa Hospital Research Institute, Ottawa, Canada
| |
Collapse
|
7
|
de Freitas Saito R, Barion BG, da Rocha TRF, Rolband A, Afonin KA, Chammas R. Anticoagulant Activity of Nucleic Acid Nanoparticles (NANPs) Assessed by Thrombin Generation Dynamics on a Fully Automated System. Methods Mol Biol 2023; 2709:319-332. [PMID: 37572292 PMCID: PMC10482313 DOI: 10.1007/978-1-0716-3417-2_23] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/14/2023]
Abstract
Rapidly reversible anticoagulant agents have great clinical potential. Oligonucleotide-based anticoagulant agents are uniquely positioned to fill this clinical niche, as they are able to be deactivated through the introduction of the reverse complement oligo. Once the therapeutic and the antidote oligos meet in solution, they are able to undergo isothermal reassociation to form short, inactive, duplexes that are rapidly secreted via filtration by the kidneys. The formation of the duplexes interrupts the structure of the anticoagulant oligo, allowing normal coagulation to be restored. To effectively assess these new anticoagulants, a variety of methods may be employed. The measurement of thrombin generation (TG) reflects the overall capacity of plasma to produce active thrombin and provides a strong contribution to identifying new anticoagulant drugs, including DNA/RNA thrombin binding aptamer carrying fibers which are used through this chapter as an example. Here we describe the TG assessed by Calibrated Automated Thrombogram (CAT) assay in a fully automated system. This method is based on the detection of TG in plasma samples by measuring fluorescent signals released from a quenched fluorogenic thrombin substrate and the subsequent conversion of these signals in TG curves.
Collapse
Affiliation(s)
- Renata de Freitas Saito
- Comprehensive Center for Precision Oncology, Centro de Investigação Translacional em Oncologia (LIM24), Departamento de Radiologia e Oncologia, Faculdade de Medicina da Universidade de São Paulo and Instituto do Câncer do Estado de São Paulo, São Paulo, SP, Brazil.
| | - Bárbara Gomes Barion
- Laboratório de Hemostasia do Hospital das Clínicas da Faculdade de Medicina da Universidade de São Paulo, São Paulo, SP, Brazil
| | - Tania Rubia Flores da Rocha
- Laboratório de Hemostasia do Hospital das Clínicas da Faculdade de Medicina da Universidade de São Paulo, São Paulo, SP, Brazil
| | - Alex Rolband
- University of North Carolina, Charlotte, NC, USA
| | | | - Roger Chammas
- Comprehensive Center for Precision Oncology, Centro de Investigação Translacional em Oncologia (LIM24), Departamento de Radiologia e Oncologia, Faculdade de Medicina da Universidade de São Paulo and Instituto do Câncer do Estado de São Paulo, São Paulo, SP, Brazil.
| |
Collapse
|
8
|
Jackson JW, Parunov LA, Monteil DT, Ovanesov MV. Effect of wavelength and filter set choices on fluorogenic thrombin generation assay: Considerations for interlaboratory differences. Res Pract Thromb Haemost 2022. [DOI: 10.1002/rth2.12805] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Affiliation(s)
- Joseph W. Jackson
- Center for Biologics Evaluation and Research U.S. Food and Drug Administration Silver Spring Maryland USA
| | - Leonid A. Parunov
- Center for Biologics Evaluation and Research U.S. Food and Drug Administration Silver Spring Maryland USA
| | - Dominique T. Monteil
- Center for Biologics Evaluation and Research U.S. Food and Drug Administration Silver Spring Maryland USA
| | - Mikhail V. Ovanesov
- Center for Biologics Evaluation and Research U.S. Food and Drug Administration Silver Spring Maryland USA
| |
Collapse
|
9
|
Agnieszka K, Bartosz H, Jacek K, Piotr P. Hemostasis Disturbances in Continuous-Flow Left Ventricular Assist Device (CF-LVAD) Patients—Rationale and Study Design. J Clin Med 2022; 11:jcm11133712. [PMID: 35806997 PMCID: PMC9267556 DOI: 10.3390/jcm11133712] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2022] [Revised: 06/17/2022] [Accepted: 06/25/2022] [Indexed: 02/05/2023] Open
Abstract
Left ventricular assist devices are a treatment option for end-stage heart failure patients. Despite advancing technologies, bleeding and thromboembolic events strongly decrease the survival and the quality of life of these patients. Little is known about prognostic factors determining these adverse events in this group of patients. Therefore, we plan to investigate 90 consecutive left ventricular assist device (LVAD) patients and study in vitro fibrin clot properties (clot lysis time, clot permeability, fibrin ultrastructure using a scanning electron microscope) and the calibrated automated thrombogram in addition to the von Willebrand factor antigen, fibrinogen, D-dimer, prothrombin time/international normalized ratio (PT/INR), and activated partial thromboplastin time (APTT) to identify prognostic factors of adverse outcomes during the course of therapy. We plan to assess the hemostasis system at four different time points, i.e., before LVAD implantation, 3–4 months after LVAD implantation, 6–12 months after LVAD implantation, and at the end of the study (at 5 years or at the time of the adverse event). Adverse outcomes were defined as bleeding events (bleeding in general or in the following subtypes: severe bleeding, fatal bleeding, gastrointestinal bleeding, intracranial bleeding), thromboembolic events (stroke or transient ischemic attack, pump thrombosis, including thrombosis within the pump or its inflow or outflow conduits, arterial peripheral thromboembolism), and death.
Collapse
Affiliation(s)
- Kuczaj Agnieszka
- Department of Cardiac, Vascular and Endovascular Surgery and Transplantology, Faculty of Medical Sciences in Zabrze, Medical University of Silesia, 40-055 Katowice, Poland;
- Correspondence:
| | - Hudzik Bartosz
- Third Department of Cardiology, Faculty of Medical Sciences in Zabrze, Medical University of Silesia, 40-055 Katowice, Poland;
- Department of Cardiovascular Disease Prevention in Bytom, Faculty of Public Health in Bytom, Medical University of Silesia, 40-055 Katowice, Poland
| | - Kaczmarski Jacek
- Haemostasis Laboratory, Silesian Center for Heart Diseases, 41-800 Zabrze, Poland;
| | - Przybyłowski Piotr
- Department of Cardiac, Vascular and Endovascular Surgery and Transplantology, Faculty of Medical Sciences in Zabrze, Medical University of Silesia, 40-055 Katowice, Poland;
| |
Collapse
|
10
|
Morimont L, Leclercq C, Didembourg M, De Gottal É, Carlo A, Gaspard U, Dogné J, Douxfils J. Analytical performance of the endogenous thrombin potential-based activated protein C resistance assay on the automated ST Genesia system. Res Pract Thromb Haemost 2022; 6:e12684. [PMID: 35425874 PMCID: PMC8988860 DOI: 10.1002/rth2.12684] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2021] [Revised: 02/14/2022] [Accepted: 02/18/2022] [Indexed: 11/07/2022] Open
Abstract
Background The evaluation of activated protein C (APC) resistance based on the endogenous thrombin potential (ETP) is recommended during the development of steroid contraceptives in women. In 2019, this assay was validated on the calibrated automated thrombogram (CAT) device. However, in view of its screening potential, its automation is essential. Objectives To transfer the ETP-based APC resistance assay on the ST Genesia system using reagent STG-ThromboScreen with exogenous APC added. Method Dose-response curves were performed to define APC concentration leading to 90% ETP inhibition on healthy donors. Intra- and interrun reproducibility was assessed. The normal range was defined on the basis of 56 samples from healthy individuals. The sensitivity was assessed on 40 samples from women using combined oral contraceptives (COCs). A method comparison with the validated ETP-based APC resistance on the CAT system was performed. Results were expressed in normalized APC sensitivity ratio (nAPCsr). Results The APC concentration leading to 90% ETP inhibition was 652 mU/mL. Intra- and interrun reproducibility showed standard deviation <4%. The nAPCsr normal range stood between 0.00 and 2.20. Analyses of 40 samples from women using COCs confirmed the good sensitivity of the assay. Compared to the CAT system, nAPCsr values were slightly higher on the automated system. Conclusion This study is the first reporting the analytical performances of the ETP-based APC resistance assay on an automated platform. Results support the concept that this test, when incorporated into clinical routine, could become a promising regulatory and clinical tool to document on the thrombogenicity of female hormonal therapies.
Collapse
Affiliation(s)
- Laure Morimont
- Qualiblood saNamurBelgium
- Department of PharmacyFaculty of MedicineNamur Research Institute for Life Sciences (NARILIS)Namur Thrombosis and Hemostasis Center (NTHC)University of NamurNamurBelgium
| | - Charline Leclercq
- Department of GynecologyCentre Hospitalier Régional de HuyLiègeBelgium
| | - Marie Didembourg
- Department of PharmacyFaculty of MedicineNamur Research Institute for Life Sciences (NARILIS)Namur Thrombosis and Hemostasis Center (NTHC)University of NamurNamurBelgium
| | - Émilie De Gottal
- Department of GynecologyCentre Hospitalier Régional de HuyLiègeBelgium
| | | | - Ulysse Gaspard
- Department of Obstetrics and GynecologyUniversity of LiègeLiègeBelgium
| | - Jean‐Michel Dogné
- Department of PharmacyFaculty of MedicineNamur Research Institute for Life Sciences (NARILIS)Namur Thrombosis and Hemostasis Center (NTHC)University of NamurNamurBelgium
| | - Jonathan Douxfils
- Qualiblood saNamurBelgium
- Department of PharmacyFaculty of MedicineNamur Research Institute for Life Sciences (NARILIS)Namur Thrombosis and Hemostasis Center (NTHC)University of NamurNamurBelgium
| |
Collapse
|