1
|
Darmadi D, Saleh RO, Oghenemaro EF, Shakir MN, Hjazi A, Hassan ZF, Zwamel AH, Matlyuba S, Deorari M, Oudah SK. Role of SEL1L in the progression of solid tumors, with a special focus on its recent therapeutic potential. Cell Biol Int 2025; 49:16-32. [PMID: 39364680 DOI: 10.1002/cbin.12242] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2024] [Revised: 07/24/2024] [Accepted: 09/02/2024] [Indexed: 10/05/2024]
Abstract
Since suppressor/enhancer of Lin-12-like (SEL1L) was cloned in 1997, various pieces of evidence from lower species suggest it plays a significant role in protein degradation via the ubiquitin-proteasome system. The relevance of SEL1L in many aspects of malignant transformation and tumorigenic events has been the subject of research, which has shown compelling in vitro and in vivo findings relating its altered expression to changes in tumor aggressiveness. The Endoplasmic Reticulum (ER) in tumor cells is crucial for preserving cellular proteostasis by inducing the unfolded protein response (UPR), a stress response. A crucial component of the UPR is ER-associated degradation (ERAD), which guards against ER stress-induced apoptosis and the removal of unfolded or misfolded proteins by the ubiquitin-proteasome system. As a protein stabilizer of HMG-CoA reductase degradation protein 1 (HRD1), one of the main components of ERAD, SEL1L plays an important role in ER homeostasis. Notably, the expression levels of these two proteins fluctuate independently in various cancer types, yet changes in their expression affect the levels of other associated proteins during cancer pathogenesis. Recent studies have also outlined the function of SEL1L in cancer medication resistance. This review explores the value of targeting SEL1L as a novel treatment approach for cancer, focusing on the molecular processes of SEL1L and its involvement in cancer etiology.
Collapse
Affiliation(s)
- Darmadi Darmadi
- Department of Internal Medicine, Faculty of Medicine, Universitas Sumatera Utara, Medan, Indonesia
| | - Raed Obaid Saleh
- Department of Medical Laboratory Techniques, Al-Maarif University College, Al-Anbar, Iraq
| | - Enwa Felix Oghenemaro
- Department of Pharmaceutical Microbiology, Faculty of Pharmacy, Delta State University, Abraka, Nigeria
| | - Maha Noori Shakir
- Department of Medical Laboratories Technology, AL-Nisour University College, Baghdad, Iraq
| | - Ahmed Hjazi
- Department of Medical Laboratory, College of Applied Medical Sciences, Prince Sattam bin Abdulaziz University, Al-Kharj, Saudi Arabia
| | | | - Ahmed Hussein Zwamel
- Medical laboratory technique college, the Islamic University, Najaf, Iraq
- Medical laboratory technique college, the Islamic University of Al Diwaniyah, Al Diwaniyah, Iraq
- Medical laboratory technique college, the Islamic University of Babylon, Babylon, Iraq
| | - Sanoeva Matlyuba
- Department of Neurology, Vice rektor of Bukhara State Medical Institute, Bukhara, Uzbekistan
| | - Mahamedha Deorari
- Uttaranchal Institute of Pharmaceutical Sciences, Uttaranchal University, Dehradun, India
| | - Shamam Kareem Oudah
- College of Pharmacy/National University of Science and Technology, Dhi Qar, Iraq
| |
Collapse
|
2
|
Chen X, Su W, Chen J, Ouyang P, Gong J. RNF123 inhibits cell viability, cell cycle and colony formation of breast cancer by inhibiting glycolysis via ubiquitination of PFKP. NAUNYN-SCHMIEDEBERG'S ARCHIVES OF PHARMACOLOGY 2024:10.1007/s00210-024-03723-2. [PMID: 39725718 DOI: 10.1007/s00210-024-03723-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/02/2024] [Accepted: 12/09/2024] [Indexed: 12/28/2024]
Abstract
E3 ubiquitin ligases have the potential to modulate key oncogenic pathways. RING finger protein 123 (RNF123), as an E3 ubiquitin ligase, has been functioned as a tumor suppressor. This study was designed to explore the role of RNF123 in breast cancer. Immunohistochemistry was applied to examine protein expression in breast cancer tissues. Western blot and Quantitative Real-time PCR were performed to gauge protein and mRNA levels. Lentivirus transduction was used to overexpress or silence genes of interest. Cell Counting Kit-8, flow cytometry, and colony formation assays were used to assess cell viability, cell cycle, and colony formation. Extracellular acidification rate, lactic acid and adenosine triphosphate were used for glycolysis assay. Co-immunoprecipitation (Co-IP) and ubiquitination analysis were used to explore the interaction between RNF123 and 6-Phosphofructo-2-kinase (PFKP). In vivo experiments were performed with xenograft tumor models. RNF123 was downregulated in tumor tissues and cells, overexpression of which significantly decreased the viability and colony-forming ability of tumor cells, suppressed the progression of the cell cycle and glycolytic activity, and suppressed tumor growth in vivo. Co-IP and ubiquitination analysis revealed that there was an interaction between RNF123 and PFKP, and RNF123 could induce ubiquitination of PFKP. PFKP could reverse the effects of RNF123 on tumor cells. RNF123 inhibited cell viability, cell cycle and colony formation of breast cancer cells by inhibiting glycolysis via ubiquitination of PFKP.
Collapse
Affiliation(s)
- Xiaoqing Chen
- Department of Breast Medicine, The affiliated Foshan Women and Children Hospital, Guangdong Medical University, Foshan, 528000, China
- Department of Gastrointestinal Surgery, The First Affiliated Hospital of Jinan University, 613 West of Huangpu Avenue, Guangzhou, 510630, China
| | - Weijie Su
- Department of Plastic and Reconstructive Surgery, Shanghai Ninth People's Hospital, Shanghai JiaoTong University School of Medicine, Shanghai, 200011, China
| | - Jiewen Chen
- Department of Breast Medicine, The affiliated Foshan Women and Children Hospital, Guangdong Medical University, Foshan, 528000, China
| | - Peng Ouyang
- Department of Gastrointestinal Surgery, The First Affiliated Hospital of Jinan University, 613 West of Huangpu Avenue, Guangzhou, 510630, China
| | - Jin Gong
- Department of Gastrointestinal Surgery, The First Affiliated Hospital of Jinan University, 613 West of Huangpu Avenue, Guangzhou, 510630, China.
| |
Collapse
|
3
|
Mi J, Zhao L, Shen Y, Mo S, Kuang Y. PFKP Lactylation Promotes the Ovarian Cancer Progression Through Targeting PTEN. Biochem Genet 2024:10.1007/s10528-024-10990-4. [PMID: 39638933 DOI: 10.1007/s10528-024-10990-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2024] [Accepted: 11/26/2024] [Indexed: 12/07/2024]
Abstract
Ovarian cancer (OC) ranks among the most prevalent malignancies affecting females globally and is a leading cause of cancer-related mortality in women. This study sought to elucidate the influence of phosphofructokinase P (PFKP) on the progression of OC. A cohort of sixty OC patients was enrolled. OC cells were exposed to both normoxic and hypoxic conditions. Expression levels of PFKP and phosphatase and tensin homolog (PTEN) were quantified using real time quantitative polymerase chain reaction (RT-qPCR) and Western blot analyses. Immunofluorescence confirmed these protein expression patterns. Glycolysis-related parameters, encompassing glucose uptake, extracellular lactate levels, extracellular acidification rates, and oxygen consumption rates, were assessed using commercially available kits. Lactylation status of PFKP was evaluated via immunoprecipitation followed by Western blot analysis. An OC xenograft mouse model was also established. Findings indicated elevated PFKP expression in OC tissues and cells. Additionally, PFKP knockdown attenuated glycolysis and counteracted the hypoxia-induced enhancement of glycolytic activity in OC cells. Mutation of the lysine (K) residue at position 392 diminished PFKP lactylation. Further investigations revealed that PFKP depletion upregulated PTEN expression in hypoxia-treated OC cells. Besides, PTEN suppression increased the glycolysis in hypoxia-treated OC cells. Animal study results demonstrated that PFKP inhibition curtailed OC tumor growth by modulating PTEN expression. Collectively, these results suggested that lactylation of PFKP at the K392 residue promoted glycolysis in OC cells by regulating PTEN, thereby facilitating the disease's progression.
Collapse
Affiliation(s)
- Jianfeng Mi
- Department of Gynecology, The First Affiliated Hospital of Guangxi Medical University, Nanning, No.6 Shaungyong Road, Nanning, 532200, China
| | - Ling Zhao
- Department of Gynecology, The First Affiliated Hospital of Guangxi Medical University, Nanning, No.6 Shaungyong Road, Nanning, 532200, China
| | - Yonglong Shen
- Department of Gynecology, The First Affiliated Hospital of Guangxi Medical University, Nanning, No.6 Shaungyong Road, Nanning, 532200, China
| | - Shien Mo
- Department of Gynecology, The Sec People's Hospital of Qinzhou, Qinzhou, China
| | - Yan Kuang
- Department of Gynecology, The First Affiliated Hospital of Guangxi Medical University, Nanning, No.6 Shaungyong Road, Nanning, 532200, China.
| |
Collapse
|
4
|
Cordani M, Michetti F, Zarrabi A, Zarepour A, Rumio C, Strippoli R, Marcucci F. The role of glycolysis in tumorigenesis: From biological aspects to therapeutic opportunities. Neoplasia 2024; 58:101076. [PMID: 39476482 PMCID: PMC11555605 DOI: 10.1016/j.neo.2024.101076] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2024] [Revised: 10/13/2024] [Accepted: 10/17/2024] [Indexed: 11/11/2024]
Abstract
Glycolytic metabolism generates energy and intermediates for biomass production. Tumor-associated glycolysis is upregulated compared to normal tissues in response to tumor cell-autonomous or non-autonomous stimuli. The consequences of this upregulation are twofold. First, the metabolic effects of glycolysis become predominant over those mediated by oxidative metabolism. Second, overexpressed components of the glycolytic pathway (i.e. enzymes or metabolites) acquire new functions unrelated to their metabolic effects and which are referred to as "moonlighting" functions. These functions include induction of mutations and other tumor-initiating events, effects on cancer stem cells, induction of increased expression and/or activity of oncoproteins, epigenetic and transcriptional modifications, bypassing of senescence and induction of proliferation, promotion of DNA damage repair and prevention of DNA damage, antiapoptotic effects, inhibition of drug influx or increase of drug efflux. Upregulated metabolic functions and acquisition of new, non-metabolic functions lead to biological effects that support tumorigenesis: promotion of tumor initiation, stimulation of tumor cell proliferation and primary tumor growth, induction of epithelial-mesenchymal transition, autophagy and metastasis, immunosuppressive effects, induction of drug resistance and effects on tumor accessory cells. These effects have negative consequences on the prognosis of tumor patients. On these grounds, it does not come to surprise that tumor-associated glycolysis has become a target of interest in antitumor drug discovery. So far, however, clinical results with glycolysis inhibitors have fallen short of expectations. In this review we propose approaches that may allow to bypass some of the difficulties that have been encountered so far with the therapeutic use of glycolysis inhibitors.
Collapse
Affiliation(s)
- Marco Cordani
- Department of Biochemistry and Molecular Biology, Faculty of Biology, Complutense University of Madrid, Madrid 28040, Spain; Instituto de Investigación Sanitaria San Carlos (IdISSC), Madrid 28040, Spain
| | - Federica Michetti
- Department of Molecular Medicine, Sapienza University of Rome, Viale Regina Elena 324, Rome 00161, Italy; Department of Epidemiology, Preclinical Research and Advanced Diagnostics, National Institute for Infectious Diseases L., Spallanzani, IRCCS, Via Portuense, 292, Rome 00149, Italy
| | - Ali Zarrabi
- Department of Biomedical Engineering, Faculty of Engineering and Natural Sciences, Istinye University, Istanbul 34396, Türkiye; Graduate School of Biotechnology and Bioengineering, Yuan Ze University, Taoyuan 320315, Taiwan
| | - Atefeh Zarepour
- Department of Research Analytics, Saveetha Dental College and Hospitals, Saveetha Institute of Medical and Technical Sciences, Saveetha University, Chennai 600 077, India
| | - Cristiano Rumio
- Department of Pharmacological and Biomolecular Sciences, University of Milan, Via Trentacoste 2, Milan 20134, Italy
| | - Raffaele Strippoli
- Department of Molecular Medicine, Sapienza University of Rome, Viale Regina Elena 324, Rome 00161, Italy; Department of Epidemiology, Preclinical Research and Advanced Diagnostics, National Institute for Infectious Diseases L., Spallanzani, IRCCS, Via Portuense, 292, Rome 00149, Italy.
| | - Fabrizio Marcucci
- Department of Pharmacological and Biomolecular Sciences, University of Milan, Via Trentacoste 2, Milan 20134, Italy.
| |
Collapse
|
5
|
Oliveira RCD, Cavalcante GC, Soares-Souza GB. Exploring Aerobic Energy Metabolism in Breast Cancer: A Mutational Profile of Glycolysis and Oxidative Phosphorylation. Int J Mol Sci 2024; 25:12585. [PMID: 39684297 DOI: 10.3390/ijms252312585] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2024] [Revised: 11/12/2024] [Accepted: 11/21/2024] [Indexed: 12/18/2024] Open
Abstract
Energy metabolism is a fundamental aspect of the aggressiveness and invasiveness of breast cancer (BC), the neoplasm that most affects women worldwide. Nonetheless, the impact of genetic somatic mutations on glycolysis and oxidative phosphorylation (OXPHOS) genes in BC remains unclear. To fill these gaps, the mutational profiles of 205 screened genes related to glycolysis and OXPHOS in 968 individuals with BC from The Cancer Genome Atlas (TCGA) project were performed. We carried out analyses to characterize the mutational profile of BC, assess the clonality of tumors, identify somatic mutation co-occurrence, and predict the pathogenicity of these alterations. In total, 408 mutations in 132 genes related to the glycolysis and OXPHOS pathways were detected. The PGK1, PC, PCK1, HK1, DONSON, GPD1, NDUFS1, and FOXRED1 genes are also associated with the tumorigenesis process in other types of cancer, as are the genes BRCA1, BRCA2, and HMCN1, which had been previously described as oncogenes in BC, with whom the target genes of this work were associated. Seven mutations were identified and highlighted due to the high pathogenicity, which are present in more than one of our results and are documented in the literature as being correlated with other diseases. These mutations are rs267606829 (FOXRED1), COSV53860306 (HK1), rs201634181 (NDUFS1), rs774052186 (DONSON), rs119103242 (PC), rs1436643226 (PC), and rs104894677 (ETFB). They could be further investigated as potential biomarkers for diagnosis, prognosis, and treatment of BC patients.
Collapse
Affiliation(s)
- Ricardo Cunha de Oliveira
- Laboratório de Genética Humana e Médica, Pós-Graduação em Genética e Biologia Molecular, Universidade Federal do Pará, Belém 66075-110, Pará, Brazil
- Departamento de Bioquímica, Instituto de Química, Universidade de São Paulo, São Paulo 05508-900, São Paulo, Brazil
| | - Giovanna C Cavalcante
- Laboratório de Genética Humana e Médica, Pós-Graduação em Genética e Biologia Molecular, Universidade Federal do Pará, Belém 66075-110, Pará, Brazil
- Departamento de Bioquímica, Instituto de Química, Universidade de São Paulo, São Paulo 05508-900, São Paulo, Brazil
| | - Giordano B Soares-Souza
- Laboratório de Genética Humana e Médica, Pós-Graduação em Genética e Biologia Molecular, Universidade Federal do Pará, Belém 66075-110, Pará, Brazil
- Instituto Tecnológico Vale (ITV-DS), Belém 66055-090, Pará, Brazil
| |
Collapse
|
6
|
Wang X, Jiang C, Li Q. Serinc2 Drives the Progression of Cervical Cancer Through Regulating Myc Pathway. Cancer Med 2024; 13:e70296. [PMID: 39417376 PMCID: PMC11483714 DOI: 10.1002/cam4.70296] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2024] [Revised: 07/25/2024] [Accepted: 09/20/2024] [Indexed: 10/19/2024] Open
Abstract
BACKGROUND As one of the most common malignancies, cervical cancer (CC) seriously affects women's health. This study aimed to investigate the biological function of Serinc2 in CC. METHODS Serinc2 expression was surveyed utilizing immunohistochemistry, western blot, and qRT-PCR. CC cell viability, invasion, proliferation, migration, and apoptosis, were detected via CCK-8, Transwell assay, colony formation, wound healing assay, and flow cytometry. Glucose consumption, lactate production, and ATP levels were determined by the corresponding kit. The protein expression of c-Myc, PDK1, HK2, PFKP, LDHA, Snail, Vimentin, N-cadherin, and E-cadherin was detected via western blot. The interaction between the promoter of PFKP and Myc was confirmed through luciferase reporter assay and Chip assay. In vivo, to evaluate the function of Serinc2 on tumor growth, a xenograft mouse model was used. RESULTS In CC tissues and cells, Serinc2 was upregulated. In CC cells, knockdown of Serinc2 suppressed cell invasion, proliferation, migration, decreased the expression of Snail, Vimentin, N-cadherin, HK2, PFKP, LDHA, and PDK1, increased E-cadherin expression, reduced glucose consumption and the production of lactate and ATP, and induced cell apoptosis; Serinc2 overexpression led to the opposite results. Mechanically, Serinc2 promoted Myc expression, and Myc induced PFKP expression. Furthermore, overexpressed Myc abolished the inhibitive influences of Serinc2 knockdown on the malignant behaviors of CC cells. Additionally, knockdown of Serinc2 inhibited tumor growth and reduced the protein expression of c-Myc, PFKP, LDHA, and PDK1 in vivo. CONCLUSIONS Knockdown of Serinc2 inhibited the malignant progression of CC, which was achieved via Myc pathway. Our study provides novel insight into CC pathogenesis.
Collapse
Affiliation(s)
- Xiaoping Wang
- Department of Obstetrics and GynecologyJinan Maternity and Child Care HospitalJinanShandongPeople's Republic of China
| | - Chen Jiang
- Department of Obstetrics and GynecologyJinan Maternity and Child Care HospitalJinanShandongPeople's Republic of China
| | - Qing Li
- Department of Obstetrics and GynecologyJinan Maternity and Child Care HospitalJinanShandongPeople's Republic of China
| |
Collapse
|
7
|
Moghadam RK, Daraei A, Haddadi M, Mardi A, Karamali N, Rezaiemanesh A. Casting Light on the Janus-Faced HMG-CoA Reductase Degradation Protein 1: A Comprehensive Review of Its Dualistic Impact on Apoptosis in Various Diseases. Mol Neurobiol 2024; 61:6842-6863. [PMID: 38356096 DOI: 10.1007/s12035-024-03994-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2023] [Accepted: 01/29/2024] [Indexed: 02/16/2024]
Abstract
Nowadays, it is well recognized that apoptosis, as a highly regulated cellular process, plays a crucial role in various biological processes, such as cell differentiation. Dysregulation of apoptosis is strongly implicated in the pathophysiology of numerous disorders, making it essential to comprehend its underlying mechanisms. One key factor that has garnered significant attention in the regulation of apoptotic pathways is HMG-CoA reductase degradation protein 1, also known as HRD1. HRD1 is an E3 ubiquitin ligase located in the endoplasmic reticulum (ER) membrane. Its primary role involves maintaining the quality control of ER proteins by facilitating the ER-associated degradation (ERAD) pathway. During ER stress, HRD1 aids in the elimination of misfolded proteins that accumulate within the ER. Therefore, HRD1 plays a pivotal role in the regulation of apoptotic pathways and maintenance of ER protein quality control. By targeting specific protein substrates and affecting apoptosis-related pathways, HRD1 could be an exclusive therapeutic target in different disorders. Dysregulation of HRD1-mediated processes contributes significantly to the pathophysiology of various diseases. The purpose of this review is to assess the effect of HRD1 on the pathways related to apoptosis in various diseases from a therapeutic perspective.
Collapse
Affiliation(s)
- Reihaneh Khaleghi Moghadam
- Student Research Committee, School of Medicine, Kermanshah University of Medical Sciences, Kermanshah, Iran
- Department of Immunology, School of Medicine, Kermanshah University of Medical Sciences, Daneshgah Street, Shahid Shiroudi Boulevard, PO-Box: 6714869914, Kermanshah, Iran
| | - Arshia Daraei
- Student Research Committee, School of Medicine, Kermanshah University of Medical Sciences, Kermanshah, Iran
- Department of Immunology, School of Medicine, Kermanshah University of Medical Sciences, Daneshgah Street, Shahid Shiroudi Boulevard, PO-Box: 6714869914, Kermanshah, Iran
| | - Maryam Haddadi
- Student Research Committee, School of Medicine, Kermanshah University of Medical Sciences, Kermanshah, Iran
- Department of Immunology, School of Medicine, Kermanshah University of Medical Sciences, Daneshgah Street, Shahid Shiroudi Boulevard, PO-Box: 6714869914, Kermanshah, Iran
| | - Amirhossein Mardi
- Immunology Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
- Department of Immunology, School of Medicine, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Negin Karamali
- Immunology Research Center, Tabriz University of Medical Sciences, Tabriz, Iran.
- Department of Immunology, School of Medicine, Tabriz University of Medical Sciences, Tabriz, Iran.
| | - Alireza Rezaiemanesh
- Department of Immunology, School of Medicine, Kermanshah University of Medical Sciences, Daneshgah Street, Shahid Shiroudi Boulevard, PO-Box: 6714869914, Kermanshah, Iran.
| |
Collapse
|
8
|
Peng ZM, Han XJ, Wang T, Li JJ, Yang CX, Tou FF, Zhang Z. PFKP deubiquitination and stabilization by USP5 activate aerobic glycolysis to promote triple-negative breast cancer progression. Breast Cancer Res 2024; 26:10. [PMID: 38217030 PMCID: PMC10787506 DOI: 10.1186/s13058-024-01767-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2023] [Accepted: 12/20/2023] [Indexed: 01/14/2024] Open
Abstract
BACKGROUND Triple-negative breast cancer (TNBC) remains the most challenging subtype of breast cancer and lacks definite treatment targets. Aerobic glycolysis is a hallmark of metabolic reprogramming that contributes to cancer progression. PFKP is a rate-limiting enzyme involved in aerobic glycolysis, which is overexpressed in various types of cancers. However, the underlying mechanisms and roles of the posttranslational modification of PFKP in TNBC remain unknown. METHODS To explore whether PFKP protein has a potential role in the progression of TNBC, protein levels of PFKP in TNBC and normal breast tissues were examined by CPTAC database analysis, immunohistochemistry staining (IHC), and western blotting assay. Further CCK-8 assay, colony formation assay, EDU incorporation assay, and tumor xenograft experiments were used to detect the effect of PFKP on TNBC progression. To clarify the role of the USP5-PFKP pathway in TNBC progression, ubiquitin assay, co-immunoprecipitation (Co-IP), mass spectrometry-based protein identification, western blotting assay, immunofluorescence microscopy, in vitro binding assay, and glycolysis assay were conducted. RESULTS Herein, we showed that PFKP protein was highly expressed in TNBC, which was associated with TNBC progression and poor prognosis of patients. In addition, we demonstrated that PFKP depletion significantly inhibited the TNBC progression in vitro and in vivo. Importantly, we identified that PFKP was a bona fide target of deubiquitinase USP5, and the USP5-mediated deubiquitination and stabilization of PFKP were essential for cancer cell aerobic glycolysis and TNBC progression. Moreover, we found a strong positive correlation between the expression of USP5 and PFKP in TNBC samples. Notably, the high expression of USP5 and PFKP was significantly correlated with poor clinical outcomes. CONCLUSIONS Our study established the USP5-PFKP axis as an important regulatory mechanism of TNBC progression and provided a rationale for future therapeutic interventions in the treatment of TNBC.
Collapse
Affiliation(s)
- Zi-Mei Peng
- Institute of Clinical Medicine, Jiangxi Provincial People's Hospital, The First Affiliated Hospital of Nanchang Medical College, 152 Aiguo Road, Nanchang, 330006, Jiangxi, China
| | - Xiao-Jian Han
- Institute of Geriatrics, Jiangxi Provincial People's Hospital, The First Affiliated Hospital of Nanchang Medical College, Nanchang, Jiangxi, China
| | - Tao Wang
- Institute of Geriatrics, Jiangxi Provincial People's Hospital, The First Affiliated Hospital of Nanchang Medical College, Nanchang, Jiangxi, China
| | - Jian-Jun Li
- Department of Pulmonary and Critical Care Medicine, The First Affiliated Hospital of Soochow University, Suzhou, Jiangsu, China
| | - Chun-Xi Yang
- Institute of Clinical Medicine, Jiangxi Provincial People's Hospital, The First Affiliated Hospital of Nanchang Medical College, 152 Aiguo Road, Nanchang, 330006, Jiangxi, China
| | - Fang-Fang Tou
- Department of Oncology, Jiangxi Provincial People's Hospital, The First Affiliated Hospital of Nanchang Medical College, Nanchang, Jiangxi, China.
| | - Zhen Zhang
- Institute of Clinical Medicine, Jiangxi Provincial People's Hospital, The First Affiliated Hospital of Nanchang Medical College, 152 Aiguo Road, Nanchang, 330006, Jiangxi, China.
| |
Collapse
|
9
|
Huang Y, Xiong C, Wang C, Deng J, Zuo Z, Wu H, Xiong J, Wu X, Lu H, Hao Q, Zhou X. p53-responsive CMBL reprograms glucose metabolism and suppresses cancer development by destabilizing phosphofructokinase PFKP. Cell Rep 2023; 42:113426. [PMID: 37967006 DOI: 10.1016/j.celrep.2023.113426] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2023] [Revised: 09/25/2023] [Accepted: 10/27/2023] [Indexed: 11/17/2023] Open
Abstract
Aerobic glycolysis is critical for cancer progression and can be exploited in cancer therapy. Here, we report that the human carboxymethylenebutenolidase homolog (carboxymethylenebutenolidase-like [CMBL]) acts as a tumor suppressor by reprogramming glycolysis in colorectal cancer (CRC). The anti-cancer action of CMBL is mediated through its interactions with the E3 ubiquitin ligase TRIM25 and the glycolytic enzyme phosphofructokinase-1 platelet type (PFKP). Ectopic CMBL enhances TRIM25 binding to PFKP, leading to the ubiquitination and proteasomal degradation of PFKP. Interestingly, CMBL is transcriptionally activated by p53 in response to genotoxic stress, and p53 activation represses glycolysis by promoting PFKP degradation. Remarkably, CMBL deficiency, which impairs p53's ability to inhibit glycolysis, makes tumors more sensitive to a combination therapy involving the glycolysis inhibitor 2-deoxyglucose. Taken together, our study demonstrates that CMBL suppresses CRC growth by inhibiting glycolysis and suggests a potential combination strategy for the treatment of CMBL-deficient CRC.
Collapse
Affiliation(s)
- Yingdan Huang
- Fudan University Shanghai Cancer Center and Institutes of Biomedical Sciences, Fudan University, Shanghai 200032, China; Department of Oncology, Shanghai Medical College, Fudan University, Shanghai 200032, China; Department of Lymphoma Medicine (Breast Cancer & Soft Tissue Tumor Medicine), Hubei Cancer Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei 430079, China
| | - Chen Xiong
- Fudan University Shanghai Cancer Center and Institutes of Biomedical Sciences, Fudan University, Shanghai 200032, China; Department of Oncology, Shanghai Medical College, Fudan University, Shanghai 200032, China
| | - Chunmeng Wang
- Department of Oncology, Shanghai Medical College, Fudan University, Shanghai 200032, China; Department of Musculoskeletal Oncology, Fudan University Shanghai Cancer Center, Shanghai 200032, China
| | - Jun Deng
- Department of Oncology, The First Affiliated Hospital of Nanchang University, Nanchang, Jiangxi 330006, China
| | - Zhixiang Zuo
- State Key Laboratory of Oncology in South China, Cancer Center, Collaborative Innovation Center for Cancer Medicine, School of Life Sciences, Sun Yat-sen University, Guangzhou 510060, China
| | - Huijing Wu
- Department of Lymphoma Medicine (Breast Cancer & Soft Tissue Tumor Medicine), Hubei Cancer Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei 430079, China
| | - Jianping Xiong
- Department of Oncology, The First Affiliated Hospital of Nanchang University, Nanchang, Jiangxi 330006, China
| | - Xiaohua Wu
- Department of Oncology, Shanghai Medical College, Fudan University, Shanghai 200032, China; Department of Gynecologic Oncology, Fudan University Shanghai Cancer Center, Fudan University, Shanghai 200032, China
| | - Hua Lu
- Department of Biochemistry & Molecular Biology and Tulane Cancer Center, Tulane University School of Medicine, New Orleans, LA 70112, USA
| | - Qian Hao
- Fudan University Shanghai Cancer Center and Institutes of Biomedical Sciences, Fudan University, Shanghai 200032, China; Department of Oncology, Shanghai Medical College, Fudan University, Shanghai 200032, China.
| | - Xiang Zhou
- Fudan University Shanghai Cancer Center and Institutes of Biomedical Sciences, Fudan University, Shanghai 200032, China; Department of Oncology, Shanghai Medical College, Fudan University, Shanghai 200032, China; Key Laboratory of Breast Cancer in Shanghai, Fudan University Shanghai Cancer Center, Fudan University, Shanghai 200032, China; Shanghai Key Laboratory of Medical Epigenetics, International Co-laboratory of Medical Epigenetics and Metabolism (Ministry of Science and Technology), Institutes of Biomedical Sciences, Fudan University, Shanghai 200032, China.
| |
Collapse
|
10
|
Thankan RS, Thomas E, Purushottamachar P, Weber DJ, Ramamurthy VP, Huang W, Kane MA, Njar VCO. VNLG-152R and its deuterated analogs potently inhibit/repress triple/quadruple negative breast cancer of diverse racial origins in vitro and in vivo by upregulating E3 Ligase Synoviolin 1 (SYVN1) and inducing proteasomal degradation of MNK1/2. Front Oncol 2023; 13:1240996. [PMID: 37766871 PMCID: PMC10520556 DOI: 10.3389/fonc.2023.1240996] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2023] [Accepted: 08/17/2023] [Indexed: 09/29/2023] Open
Abstract
Triple-negative breast cancer (TNBC) and its recently identified subtype, quadruple negative breast cancer (QNBC), collectively account for approximately 13% of reported breast cancer cases in the United States. These aggressive forms of breast cancer are associated with poor prognoses, limited treatment options, and lower overall survival rates. In previous studies, our research demonstrated that VNLG-152R exhibits inhibitory effects on TNBC cells both in vitro and in vivo and the deuterated analogs were more potent inhibitors of TNBC cells in vitro. Building upon these findings, our current study delves into the molecular mechanisms underlying this inhibitory action. Through transcriptome and proteome analyses, we discovered that VNLG-152R upregulates the expression of E3 ligase Synoviolin 1 (SYVN1), also called 3-hydroxy-3-methylglutaryl reductase degradation (HRD1) in TNBC cells. Moreover, we provide genetic and pharmacological evidence to demonstrate that SYVN1 mediates the ubiquitination and subsequent proteasomal degradation of MNK1/2, the only known kinases responsible for phosphorylating eIF4E. Phosphorylation of eIF4E being a rate-limiting step in the formation of the eIF4F translation initiation complex, the degradation of MNK1/2 by VNLG-152R and its analogs impedes dysregulated translation in TNBC cells, resulting in the inhibition of tumor growth. Importantly, our findings were validated in vivo using TNBC xenograft models derived from MDA-MB-231, MDA-MB-468, and MDA-MB-453 cell lines, representing different racial origins and genetic backgrounds. These xenograft models, which encompass TNBCs with varying androgen receptor (AR) expression levels, were effectively inhibited by oral administration of VNLG-152R and its deuterated analogs in NRG mice. Importantly, in direct comparison, our compounds are more effective than enzalutamide and docetaxel in achieving tumor growth inhibition/repression in the AR+ MDA-MD-453 xenograft model in mice. Collectively, our study sheds light on the involvement of SYVN1 E3 ligase in the VNLG-152R-induced degradation of MNK1/2 and the therapeutic potential of VNLG-152R and its more potent deuterated analogs as promising agents for the treatment of TNBC across diverse patient populations.
Collapse
Affiliation(s)
- Retheesh S. Thankan
- Department of Pharmacology, University of Maryland School of Medicine, Baltimore, MD, United States
- The Center for Biomolecular Therapeutics, University of Maryland School of Medicine, Baltimore, MD, United States
- Isoprene Pharmaceuticals, Inc., Baltimore, MD, United States
| | - Elizabeth Thomas
- Department of Pharmacology, University of Maryland School of Medicine, Baltimore, MD, United States
- The Center for Biomolecular Therapeutics, University of Maryland School of Medicine, Baltimore, MD, United States
| | - Puranik Purushottamachar
- Department of Pharmacology, University of Maryland School of Medicine, Baltimore, MD, United States
- The Center for Biomolecular Therapeutics, University of Maryland School of Medicine, Baltimore, MD, United States
| | - David J. Weber
- The Center for Biomolecular Therapeutics, University of Maryland School of Medicine, Baltimore, MD, United States
- Marlene and Stewart Greenebaum Comprehensive Cancer Center, University of Maryland School of Medicine, Baltimore, MD, United States
- Department of Biochemistry and Molecular Biology, University of Maryland School of Medicine, Baltimore, MD, United States
| | | | - Weiliang Huang
- Department of Pharmaceutical Sciences, University of Maryland School of Pharmacy, Baltimore, MD, United States
| | - Maureen A. Kane
- Department of Pharmaceutical Sciences, University of Maryland School of Pharmacy, Baltimore, MD, United States
| | - Vincent C. O. Njar
- Department of Pharmacology, University of Maryland School of Medicine, Baltimore, MD, United States
- The Center for Biomolecular Therapeutics, University of Maryland School of Medicine, Baltimore, MD, United States
- Isoprene Pharmaceuticals, Inc., Baltimore, MD, United States
- Marlene and Stewart Greenebaum Comprehensive Cancer Center, University of Maryland School of Medicine, Baltimore, MD, United States
| |
Collapse
|
11
|
Wang Y, Wang S, Zhang W. HRD1 functions as a tumor suppressor in ovarian cancer by facilitating ubiquitination-dependent SLC7A11 degradation. Cell Cycle 2023; 22:1116-1126. [PMID: 36809917 PMCID: PMC10081055 DOI: 10.1080/15384101.2023.2178102] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2022] [Revised: 09/15/2022] [Accepted: 01/05/2023] [Indexed: 02/24/2023] Open
Abstract
The E3 ubiquitin ligase 3-hydroxy-3-methylglutaryl reductase degradation (HRD1) was found to be a tumor suppressor in diverse types of cancers; we aimed to explore its expression pattern and biological function in ovarian cancer (OC). HRD1 expression in OC tumor tissues was detected using quantitative real-time polymerase chain reaction (qRT-PCR) and immunohistochemistry (IHC). The overexpression plasmid of HRD1 was transfected into OC cells. Cell proliferation, colony formation, and apoptosis were analyzed using bromodeoxy uridineassay, colony formation assay, and flow cytometry, respectively. OC mice models were established to explore the effect of HRD1 on OC in vivo. Ferroptosis was evaluated by malondialdehyde, reactive oxygen species, and intracellular ferrous iron. Expressions offerroptosis-related factors were examined using qRT-PCR and western blot. Erastin and Fer-1 were, respectively, employed to promote or inhibit ferroptosis in OC cells. Online bioinformatics tool and co-immunoprecipitation assay were performed to predict and verify the interactive genes of HRD1 in OC cells, respectively. Gain-of-function studies were carried out to determine the roles of HRD1 in cell proliferation, apoptosis, and ferroptosis in vitro. HRD1 was under-expressed in OC tumor tissues. The overexpression of HRD1 inhibited OC cell proliferation and colony formation in vitro and suppressed OC tumor growth in vivo. The overexpression of HRD1 promoted cell apoptosis and ferroptosis in OC cell lines. HRD1 interacted with the solute carrier family 7 member 11 (SLC7A11) in OC cells, and HRD1 regulated the stability and ubiquitination in OC. SLC7A11 overexpression recovered the effect of HRD1 overexpression in OC cell lines. HRD1 inhibited tumor formation and promoted ferroptosis in OC through enhancing SLC7A11 degradation.
Collapse
Affiliation(s)
- Yanyan Wang
- Department of obstetrics and gynecology, The First Affiliated Hospital of Jinzhou Medical University, Jinzhou, China
| | - Shanfeng Wang
- Department of obstetrics and gynecology, The First Affiliated Hospital of Jinzhou Medical University, Jinzhou, China
| | - Wenjuan Zhang
- Department of obstetrics and gynecology, The First Affiliated Hospital of Jinzhou Medical University, Jinzhou, China
| |
Collapse
|
12
|
Wang H, Penaloza T, Manea AJ, Gao X. PFKP: More than phosphofructokinase. Adv Cancer Res 2023; 160:1-15. [PMID: 37704285 DOI: 10.1016/bs.acr.2023.03.001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/01/2023]
Abstract
Phosphofructokinase (PFK) is one of the key enzymes that functions in glycolysis. Studies show that PFKP regulates cell proliferation, apoptosis, autophagy, cell migration/metastasis, and stemness through glycolysis and glycolysis-independent functions. PFKP performs its function not only in the cytoplasm, but also at the cell membrane, on the mitochondria, at the lysosomal membrane, and in the nucleus. The functions of PFKP are extensively studied in cancer cells. PFKP is also highly expressed in certain immune cells; nevertheless, the study of the PFKP's role in immune cells is limited. In this review, we summarize how the expression and activity of PFKP are regulated in cancer cells. PFKP may be applied as a prognostic marker due to its overexpression and significant functions in cancer cells. As such, specifically targeting/inhibiting PFKP may be a critical and promising strategy for cancer therapy.
Collapse
Affiliation(s)
- Haizhen Wang
- Department of Cell and Molecular Pharmacology & Experimental Therapeutics, Medical University of South Carolina, Charleston, SC, United States; Hollings Cancer Center, Medical University of South Carolina, Charleston, SC, United States.
| | - Tiffany Penaloza
- Department of Cell and Molecular Pharmacology & Experimental Therapeutics, Medical University of South Carolina, Charleston, SC, United States
| | - Amanda J Manea
- Department of Cell and Molecular Pharmacology & Experimental Therapeutics, Medical University of South Carolina, Charleston, SC, United States
| | - Xueliang Gao
- Department of Cell and Molecular Pharmacology & Experimental Therapeutics, Medical University of South Carolina, Charleston, SC, United States; Hollings Cancer Center, Medical University of South Carolina, Charleston, SC, United States.
| |
Collapse
|
13
|
4-Octyl itaconate inhibits aerobic glycolysis by targeting GAPDH to promote cuproptosis in colorectal cancer. Biomed Pharmacother 2023; 159:114301. [PMID: 36706634 DOI: 10.1016/j.biopha.2023.114301] [Citation(s) in RCA: 45] [Impact Index Per Article: 22.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2022] [Revised: 01/19/2023] [Accepted: 01/20/2023] [Indexed: 01/26/2023] Open
Abstract
Cuproptosis, a novel copper-induced cell death pathway, is linked to mitochondrial respiration and mediated by protein lipoylation. The discovery of cuproptosis unfolds new areas of investigation, particularly in cancers. The present study aimed to explore the role of cuproptosis in colorectal cancer progression. The genetic alterations of cuproptosis in colon cancer were evaluated using a database. MTT assays, colony formation, and flow cytometry were used to examine the effect of elesclomol-Cu and 4-Octyl itaconate (4-OI) on colorectal cancer cell and oxaliplatin-resistant cell viability. The anti-tumor effect of elesclomol with 4-OI was verified in vivo assay. The results showed that FDX1, SDHB, DLAT, and DLST genes were more highly expressed in normal tissues than those in primary tumor tissues. Patients with high expressions of these genes in tumor tissues had a better prognosis. Using MTT assay and colony formation analysis, elesclomol-Cu pulse treatment showed significant inhibition of cell viability in HCT116, LoVo, and HCT116-R cells. In addition, flow cytometry revealed elesclomol-Cu significantly promoted apoptosis. Tetrathiomolybdate, a copper chelator, markedly inhibited cuproptosis. Subsequently, we found 2-deoxy-D-glucose, a glucose metabolism inhibitor, sensitized cuproptosis. Furthermore, galactose further promoted cuproptosis. Interestingly, 4-OI significantly enhanced cuproptosis which was irrelevant to ROS production, apoptosis, necroptosis, or pyroptosis pathways. Aerobic glycolysis was inhibited by 4-OI through GAPDH, one of the key enzymes of glycolysis, sensitizing cuproptosis. Meanwhile, FDX1 knockdown weakened the ability of 4-OI to promote cuproptosis. In vivo experiments, 4-OI with elesclomol-Cu showed better anti-tumor effects. These results indicated that elesclomol-Cu rapidly halted cell growth in colorectal cancer cells and oxaliplatin-resistant cell line. Importantly, we revealed that 4-OI inhibited aerobic glycolysis by targeting GAPDH to promote cuproptosis.
Collapse
|
14
|
A Comparison of the Immunometabolic Effect of Antibiotics and Plant Extracts in a Chicken Macrophage-like Cell Line during a Salmonella Enteritidis Challenge. Antibiotics (Basel) 2023; 12:antibiotics12020357. [PMID: 36830268 PMCID: PMC9952652 DOI: 10.3390/antibiotics12020357] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2022] [Revised: 02/01/2023] [Accepted: 02/06/2023] [Indexed: 02/11/2023] Open
Abstract
Immunometabolic modulation of macrophages can play an important role in the innate immune response of chickens triggered with a multiplicity of insults. In this study, the immunometabolic role of two antibiotics (oxytetracycline and gentamicin) and four plant extracts (thyme essential oil, grape seed extract, garlic oil, and capsicum oleoresin) were investigated on a chicken macrophage-like cell line (HD11) during a Salmonella Enteritidis infection. To study the effect of these substances, kinome peptide array analysis, Seahorse metabolic assay, and gene expression techniques were employed. Oxytetracycline, to which the bacterial strain was resistant, thyme essential oil, and capsicum oleoresin did not show any noteworthy immunometabolic effect. Garlic oil affected glycolysis, but this change was not detected by the kinome analysis. Gentamicin and grape seed extract showed the best immunometabolic profile among treatments, being able to both help the host with the activation of immune response pathways and with maintaining a less inflammatory status from a metabolic point of view.
Collapse
|
15
|
Lu TJ, Yang YF, Cheng CF, Tu YT, Chen YR, Lee MC, Tsai KW. Phosphofructokinase Platelet Overexpression Accelerated Colorectal Cancer Cell Growth and Motility. J Cancer 2023; 14:943-951. [PMID: 37151384 PMCID: PMC10158518 DOI: 10.7150/jca.82738] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2023] [Accepted: 03/25/2023] [Indexed: 05/09/2023] Open
Abstract
Background: Glycolysis is a glucose metabolism pathway that generates the high-energy compound adenosine triphosphate, which supports cancer cell growth. Phosphofructokinase platelet (PFKP) plays a crucial role in glycolysis regulation and is involved in human cancer progression. However, the biological function of PFKP remains unclear in colorectal cancer (CRC). Methods: We analyzed the expression levels of PFKF in colon cancer cells and clinical samples using real-time PCR and western blot techniques. To determine the clinical significance of PFKP expression in colorectal cancer (CRC), we analyzed public databases. In addition, we conducted in vitro assays to investigate the effects of PFKP on cell growth, cell cycle, and motility. Results: An analysis by the Cancer Genome Atlas database revealed that PFKP was significantly overexpressed in CRC. We examined the levels of PFKP mRNA and protein, revealing that PFKP expression was significantly increased in CRC. The results of the univariate Cox regression analysis showed that high PFKP expression was linked to worse disease-specific survival (DSS) and overall survival (OS) [DSS: crude hazard ratio (CHR) = 1.84, 95% confidence interval (CI): 1.01-3.36, p = 0.047; OS: CHR=1.91, 95% CI: 1.06-3.43, p = 0.031]. Multivariate Cox regression analysis revealed that high PFKP expression was an independent prognostic biomarker for the DSS and OS of patients with CRC (DSS: adjusted HR = 2.07, 95% CI: 1.13-3.79, p = 0.018; AHR = 2.34, 95% CI: 1.29-4.25, p = 0.005). PFKP knockdown reduced the proliferation, colony formation, and invasion of CRC cells. In addition, the knockdown induced cell cycle arrest at the G0/G1 phase by impairing cell cycle-related protein expression. Conclusion: Overexpression of PFKP contributes to the growth and invasion of CRC by regulating cell cycle progression. PFKP expression can serve as a valuable molecular biomarker for cancer prognosis and a potential therapeutic target for treating CRC.
Collapse
Affiliation(s)
- Tzung-Ju Lu
- Division of Colon and Rectal Surgery, Department of Surgery, Taipei Tzu Chi Hospital, Buddhist Tzu Chi Medical Foundation, New Taipei City, Taiwan
| | - Yi-Fen Yang
- Pulmonary function Laboratory, Division of Pulmonary Medicine, Kaohsiung Medical University Chung-Ho Memorial Hospital
| | - Ching-Feng Cheng
- Department of Pediatrics, Taipei Tzu Chi Hospital, Buddhist Tzu Chi Medical Foundation, Taipei, Taiwan
- Institute of Biomedical Sciences, Academia Sinica, Taipei, Taiwan
- Department of Pediatrics, Tzu Chi University, Hualien, Taiwan
| | - Ya-Ting Tu
- Department of Research, Taipei Tzu Chi Hospital, Buddhist Tzu Chi Medical Foundation, New Taipei, Taiwan
| | - Yi-Ru Chen
- Department of Research, Taipei Tzu Chi Hospital, Buddhist Tzu Chi Medical Foundation, New Taipei, Taiwan
| | - Ming-Cheng Lee
- Department of Research, Taipei Tzu Chi Hospital, Buddhist Tzu Chi Medical Foundation, New Taipei, Taiwan
| | - Kuo-Wang Tsai
- Department of Research, Taipei Tzu Chi Hospital, Buddhist Tzu Chi Medical Foundation, New Taipei, Taiwan
- Department of Nursing, Cardinal Tien Junior College of Healthcare and Management, Taiwan
- ✉ Corresponding author: Kuo-Wang Tsai, Department of Research, Taipei Tzu Chi Hospital, Buddhist Tzu Chi Medical Foundation, New Taipei, Taiwan, R. O. C. E-Mail:
| |
Collapse
|
16
|
Jiang M, Wu X, Bao S, Wang X, Qu F, Liu Q, Huang X, Li W, Tang J, Yin Y. Immunometabolism characteristics and a potential prognostic risk model associated with TP53 mutations in breast cancer. Front Immunol 2022; 13:946468. [PMID: 35935965 PMCID: PMC9353309 DOI: 10.3389/fimmu.2022.946468] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2022] [Accepted: 06/27/2022] [Indexed: 11/13/2022] Open
Abstract
TP53, a gene with high-frequency mutations, plays an important role in breast cancer (BC) development through metabolic regulation, but the relationship between TP53 mutation and metabolism in BC remains to be explored. Our study included 1,066 BC samples from The Cancer Genome Atlas (TCGA) database, 415 BC cases from the Gene Expression Omnibus (GEO) database, and two immunotherapy cohorts. We identified 92 metabolic genes associated with TP53 mutations by differential expression analysis between TP53 mutant and wild-type groups. Univariate Cox analysis was performed to evaluate the prognostic effects of 24 TP53 mutation-related metabolic genes. By unsupervised clustering and other bioinformatics methods, the survival differences and immunometabolism characteristics of the distinct clusters were illustrated. In a training set from TCGA cohort, we employed the least absolute shrinkage and selection operator (LASSO) regression method to construct a metabolic gene prognostic model associated with TP53 mutations, and the GEO cohort served as an external validation set. Based on bioinformatics, the connections between risk score and survival prognosis, tumor microenvironment (TME), immunotherapy response, metabolic activity, clinical characteristics, and gene characteristics were further analyzed. It is imperative to note that our model is a powerful and robust prognosis factor in comparison to other traditional clinical features and also has high accuracy and clinical usefulness validated by receiver operating characteristic (ROC) and decision curve analysis (DCA). Our findings deepen our understanding of the immune and metabolic characteristics underlying the TP53 mutant metabolic gene profile in BC, laying a foundation for the exploration of potential therapies targeting metabolic pathways. In addition, our model has promising predictive value in the prognosis of BC.
Collapse
Affiliation(s)
- Mengping Jiang
- Department of Oncology, The First Affiliated Hospital of Nanjing Medical University, Nanjing, China
- The First Clinical College of Nanjing Medical University, Nanjing, China
| | - Xiangyan Wu
- School of Electro-mechanical Engineering, Guangdong University of Technology, Guangzhou, China
| | - Shengnan Bao
- Department of Oncology, The First Affiliated Hospital of Nanjing Medical University, Nanjing, China
- The First Clinical College of Nanjing Medical University, Nanjing, China
| | - Xi Wang
- Department of Oncology, The First Affiliated Hospital of Nanjing Medical University, Nanjing, China
- The First Clinical College of Nanjing Medical University, Nanjing, China
| | - Fei Qu
- Department of Oncology, The First Affiliated Hospital of Nanjing Medical University, Nanjing, China
- The First Clinical College of Nanjing Medical University, Nanjing, China
| | - Qian Liu
- Department of Oncology, The First Affiliated Hospital of Nanjing Medical University, Nanjing, China
- The First Clinical College of Nanjing Medical University, Nanjing, China
| | - Xiang Huang
- Department of Oncology, The First Affiliated Hospital of Nanjing Medical University, Nanjing, China
- The First Clinical College of Nanjing Medical University, Nanjing, China
| | - Wei Li
- Department of Oncology, The First Affiliated Hospital of Nanjing Medical University, Nanjing, China
- The First Clinical College of Nanjing Medical University, Nanjing, China
| | - Jinhai Tang
- Department of General Surgery, The First Affiliated Hospital of Nanjing Medical University, Nanjing, China
- *Correspondence: Yongmei Yin, ; Jinhai Tang,
| | - Yongmei Yin
- Department of Oncology, The First Affiliated Hospital of Nanjing Medical University, Nanjing, China
- Jiangsu Key Lab of Cancer Biomarkers, Prevention and Treatment, Collaborative Innovation Center for Personalized Cancer Medicine, Nanjing Medical University, Nanjing, China
- *Correspondence: Yongmei Yin, ; Jinhai Tang,
| |
Collapse
|
17
|
Karamali N, Ebrahimnezhad S, Khaleghi Moghadam R, Daneshfar N, Rezaiemanesh A. HRD1 in human malignant neoplasms: Molecular mechanisms and novel therapeutic strategy for cancer. Life Sci 2022; 301:120620. [PMID: 35533759 DOI: 10.1016/j.lfs.2022.120620] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2022] [Revised: 05/01/2022] [Accepted: 05/04/2022] [Indexed: 10/18/2022]
Abstract
In tumor cells, the endoplasmic reticulum (ER) plays an essential role in maintaining cellular proteostasis by stimulating unfolded protein response (UPR) underlying stress conditions. ER-associated degradation (ERAD) is a critical pathway of the UPR to protect cells from ER stress-induced apoptosis and the elimination of unfolded or misfolded proteins by the ubiquitin-proteasome system (UPS). 3-Hydroxy-3-methylglutaryl reductase degradation (HRD1) as an E3 ubiquitin ligase plays an essential role in the ubiquitination and dislocation of misfolded protein in ERAD. In addition, HRD1 can target other normal folded proteins. In various types of cancer, the expression of HRD1 is dysregulated, and it targets different molecules to develop cancer hallmarks or suppress the progression of the disease. Recent investigations have defined the role of HRD1 in drug resistance in types of cancer. This review focuses on the molecular mechanisms of HRD1 and its roles in cancer pathogenesis and discusses the worthiness of targeting HRD1 as a novel therapeutic strategy in cancer.
Collapse
Affiliation(s)
- Negin Karamali
- Student Research Committee, School of Medicine, Kermanshah University of Medical Sciences, Kermanshah, Iran; Department of Immunology, School of Medicine, Kermanshah University of Medical Sciences, Kermanshah, Iran.
| | - Samaneh Ebrahimnezhad
- Student Research Committee, School of Medicine, Kermanshah University of Medical Sciences, Kermanshah, Iran; Department of Immunology, School of Medicine, Kermanshah University of Medical Sciences, Kermanshah, Iran.
| | - Reihaneh Khaleghi Moghadam
- Student Research Committee, School of Medicine, Kermanshah University of Medical Sciences, Kermanshah, Iran; Department of Immunology, School of Medicine, Kermanshah University of Medical Sciences, Kermanshah, Iran.
| | - Niloofar Daneshfar
- Student Research Committee, School of Medicine, Kermanshah University of Medical Sciences, Kermanshah, Iran; Department of Immunology, School of Medicine, Kermanshah University of Medical Sciences, Kermanshah, Iran.
| | - Alireza Rezaiemanesh
- Department of Immunology, School of Medicine, Kermanshah University of Medical Sciences, Kermanshah, Iran.
| |
Collapse
|
18
|
Tang Y, Jia Y, Fan L, Liu H, Zhou Y, Wang M, Liu Y, Zhu J, Pang W, Zhou J. MFN2 Prevents Neointimal Hyperplasia in Vein Grafts via Destabilizing PFK1. Circ Res 2022; 130:e26-e43. [PMID: 35450439 DOI: 10.1161/circresaha.122.320846] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
BACKGROUND Mechanical forces play crucial roles in neointimal hyperplasia after vein grafting; yet, our understanding of their influences on vascular smooth muscle cell (VSMC) activation remains rudimentary. METHODS A cuff mouse model was used to study vein graft hyperplasia. Fifteen percent to 1 Hz uniaxial cyclic stretch (arterial strain), 5% to 1 Hz uniaxial cyclic stretch or a static condition (venous strain) were applied to the cultured VSMCs. Metabolomics analysis, cell proliferation and migration assays, immunoblotting, co-immunoprecipitation, mutagenesis, pull-down and surface plasmon resonance assays were employed to elucidate the potential molecular mechanisms. RESULTS RNA-sequencing in vein grafts and the controls identified changes in metabolic pathways and downregulation of mitochondrial protein MFN2 (mitofusin 2) in the vein grafts. Exposure of VSMCs to 15% stretch resulted in MFN2 downregulation, mitochondrial fragmentation, metabolic shift from mitochondrial oxidative phosphorylation to glycolysis, and cell proliferation and migration, as compared with that to a static condition or 5% stretch. Metabolomics analysis indicated an increased generation of fructose 1,6-bisphosphate, an intermediate in the glycolytic pathway converted by PFK1 (phosphofructokinase 1) from fructose-6-phosphate, in cells exposed to 15% stretch. Mechanistic study revealed that MFN2 physically interacts through its C-terminus with PFK1. MFN2 knockdown or exposure of cells to 15% stretch promoted stabilization of PFK1, likely through interfering the association between PFK1 and the E3 ubiquitin ligase TRIM21 (E3 ubiquitin ligase tripartite motif [TRIM]-containing protein 21), thus, decreasing the ubiquitin-protease-dependent PFK1 degradation. In addition, study of mechanotransduction utilizing pharmaceutical inhibition indicated that the MFN2 downregulation by 15% stretch was dependent on inactivation of the SP1 (specificity protein 1) and activation of the JNK (c-Jun N-terminal kinase) and ROCK (Rho-associated protein kinase). Adenovirus-mediated MFN2 overexpression or pharmaceutical inhibition of PFK1 suppressed the 15% stretch-induced VSMC proliferation and migration and alleviated neointimal hyperplasia in vein grafts. CONCLUSIONS MFN2 is a mechanoresponsive protein that interacts with PFK1 to mediate PFK1 degradation and therefore suppresses glycolysis in VSMCs.
Collapse
Affiliation(s)
- Yuanjun Tang
- Department of Physiology and Pathophysiology, School of Basic Medical Sciences, Peking University, Beijing, China. (Y.T., Y.J., L.F., H.L., Y.L., J.Z., W.P., J.Z.).,(Hemorheology Center, School of Basic Medical Sciences, Peking University, Beijing, China. (Y.T., Y.J., L.F., H.L., Y.L., J.Z., W.P., J.Z.).,Key Laboratory of Molecular Cardiovascular Science, Ministry of Education, Beijing, China (Y.T., Y.J., L.F., H.L., Y.Z., Y.L., J. Zhu, J. Zhou).,National Health Commission Key Laboratory of Cardiovascular Molecular Biology and Regulatory Peptides (Y.T., L.F., H.L., Y.L., J. Zhu, J. Zhou).,Beijing Key Laboratory of Cardiovascular Receptors Research, Peking University, China (Y.T., L.F., H.L., Y.L., J. Zhu, J. Zhou)
| | - Yiting Jia
- Department of Physiology and Pathophysiology, School of Basic Medical Sciences, Peking University, Beijing, China. (Y.T., Y.J., L.F., H.L., Y.L., J.Z., W.P., J.Z.).,(Hemorheology Center, School of Basic Medical Sciences, Peking University, Beijing, China. (Y.T., Y.J., L.F., H.L., Y.L., J.Z., W.P., J.Z.).,Key Laboratory of Molecular Cardiovascular Science, Ministry of Education, Beijing, China (Y.T., Y.J., L.F., H.L., Y.Z., Y.L., J. Zhu, J. Zhou)
| | - Linwei Fan
- Department of Physiology and Pathophysiology, School of Basic Medical Sciences, Peking University, Beijing, China. (Y.T., Y.J., L.F., H.L., Y.L., J.Z., W.P., J.Z.).,(Hemorheology Center, School of Basic Medical Sciences, Peking University, Beijing, China. (Y.T., Y.J., L.F., H.L., Y.L., J.Z., W.P., J.Z.).,Key Laboratory of Molecular Cardiovascular Science, Ministry of Education, Beijing, China (Y.T., Y.J., L.F., H.L., Y.Z., Y.L., J. Zhu, J. Zhou).,National Health Commission Key Laboratory of Cardiovascular Molecular Biology and Regulatory Peptides (Y.T., L.F., H.L., Y.L., J. Zhu, J. Zhou).,Beijing Key Laboratory of Cardiovascular Receptors Research, Peking University, China (Y.T., L.F., H.L., Y.L., J. Zhu, J. Zhou)
| | - Han Liu
- Department of Physiology and Pathophysiology, School of Basic Medical Sciences, Peking University, Beijing, China. (Y.T., Y.J., L.F., H.L., Y.L., J.Z., W.P., J.Z.).,(Hemorheology Center, School of Basic Medical Sciences, Peking University, Beijing, China. (Y.T., Y.J., L.F., H.L., Y.L., J.Z., W.P., J.Z.).,Key Laboratory of Molecular Cardiovascular Science, Ministry of Education, Beijing, China (Y.T., Y.J., L.F., H.L., Y.Z., Y.L., J. Zhu, J. Zhou).,National Health Commission Key Laboratory of Cardiovascular Molecular Biology and Regulatory Peptides (Y.T., L.F., H.L., Y.L., J. Zhu, J. Zhou).,Beijing Key Laboratory of Cardiovascular Receptors Research, Peking University, China (Y.T., L.F., H.L., Y.L., J. Zhu, J. Zhou)
| | - Yuan Zhou
- Department of Physiology and Pathophysiology, School of Basic Medical Sciences, Peking University, Beijing, China. (Y.T., Y.J., L.F., H.L., Y.L., J.Z., W.P., J.Z.).,Key Laboratory of Molecular Cardiovascular Science, Ministry of Education, Beijing, China (Y.T., Y.J., L.F., H.L., Y.Z., Y.L., J. Zhu, J. Zhou).,Department of Biomedical Informatics, School of Basic Medical Sciences, Peking University, Beijing, China (Y.Z.)
| | - Miao Wang
- State Key Laboratory of Cardiovascular Disease, Fuwai Hospital, National Center for Cardiovascular Diseases, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China. (M.W.).,Clinical Pharmacology Center, Fuwai Hospital, National Center for Cardiovascular Diseases, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China. (M.W.)
| | - Yuefeng Liu
- (Hemorheology Center, School of Basic Medical Sciences, Peking University, Beijing, China. (Y.T., Y.J., L.F., H.L., Y.L., J.Z., W.P., J.Z.).,Key Laboratory of Molecular Cardiovascular Science, Ministry of Education, Beijing, China (Y.T., Y.J., L.F., H.L., Y.Z., Y.L., J. Zhu, J. Zhou).,National Health Commission Key Laboratory of Cardiovascular Molecular Biology and Regulatory Peptides (Y.T., L.F., H.L., Y.L., J. Zhu, J. Zhou).,Beijing Key Laboratory of Cardiovascular Receptors Research, Peking University, China (Y.T., L.F., H.L., Y.L., J. Zhu, J. Zhou)
| | - Juanjuan Zhu
- Department of Physiology and Pathophysiology, School of Basic Medical Sciences, Peking University, Beijing, China. (Y.T., Y.J., L.F., H.L., Y.L., J.Z., W.P., J.Z.).,(Hemorheology Center, School of Basic Medical Sciences, Peking University, Beijing, China. (Y.T., Y.J., L.F., H.L., Y.L., J.Z., W.P., J.Z.).,Key Laboratory of Molecular Cardiovascular Science, Ministry of Education, Beijing, China (Y.T., Y.J., L.F., H.L., Y.Z., Y.L., J. Zhu, J. Zhou).,National Health Commission Key Laboratory of Cardiovascular Molecular Biology and Regulatory Peptides (Y.T., L.F., H.L., Y.L., J. Zhu, J. Zhou).,Beijing Key Laboratory of Cardiovascular Receptors Research, Peking University, China (Y.T., L.F., H.L., Y.L., J. Zhu, J. Zhou)
| | - Wei Pang
- Department of Physiology and Pathophysiology, School of Basic Medical Sciences, Peking University, Beijing, China. (Y.T., Y.J., L.F., H.L., Y.L., J.Z., W.P., J.Z.).,(Hemorheology Center, School of Basic Medical Sciences, Peking University, Beijing, China. (Y.T., Y.J., L.F., H.L., Y.L., J.Z., W.P., J.Z.)
| | - Jing Zhou
- Department of Physiology and Pathophysiology, School of Basic Medical Sciences, Peking University, Beijing, China. (Y.T., Y.J., L.F., H.L., Y.L., J.Z., W.P., J.Z.).,(Hemorheology Center, School of Basic Medical Sciences, Peking University, Beijing, China. (Y.T., Y.J., L.F., H.L., Y.L., J.Z., W.P., J.Z.).,Key Laboratory of Molecular Cardiovascular Science, Ministry of Education, Beijing, China (Y.T., Y.J., L.F., H.L., Y.Z., Y.L., J. Zhu, J. Zhou).,National Health Commission Key Laboratory of Cardiovascular Molecular Biology and Regulatory Peptides (Y.T., L.F., H.L., Y.L., J. Zhu, J. Zhou).,Beijing Key Laboratory of Cardiovascular Receptors Research, Peking University, China (Y.T., L.F., H.L., Y.L., J. Zhu, J. Zhou)
| |
Collapse
|
19
|
Fan Y, Wang J, Xu Y, Wang Y, Song T, Liang X, Jin F, Su D. Correction to: Anti-Warburg effect by targeting HRD1-PFKP pathway may inhibit breast cancer progression. Cell Commun Signal 2021; 19:111. [PMID: 34781962 PMCID: PMC8591887 DOI: 10.1186/s12964-021-00803-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022] Open
Affiliation(s)
- Ya Fan
- Department of Pathology, Nanjing Medical University, Nanjing, Jiangsu, People's Republic of China
| | - Jia Wang
- Department of Breast Surgery, Institute of Breast Disease, The Second Hospital of Dalian Medical University, Dalian, Liaoning, People's Republic of China
| | - Yuemei Xu
- Department of Pathology, Nanjing Drum Tower Hospital, The Affiliated Hospital of Nanjing University Medical School, Nanjing, Jiangsu, People's Republic of China
| | - Yipin Wang
- Department of Pathology, Nanjing Medical University, Nanjing, Jiangsu, People's Republic of China.,Center of Pathology and Clinical Laboratory, Sir Run Run Hospital of Nanjing Medical University, Nanjing, Jiangsu, People's Republic of China
| | - Tao Song
- Center of Pathology and Clinical Laboratory, Sir Run Run Hospital of Nanjing Medical University, Nanjing, Jiangsu, People's Republic of China
| | - Xiubin Liang
- Department of Pathophysiology, Nanjing Medical University, Nanjing, Jiangsu, People's Republic of China
| | - Feng Jin
- Department of Breast Surgery, The First Affiliated Hospital of China Medical University, Shenyang, Liaoning Province, People's Republic of China.
| | - Dongming Su
- Department of Pathology, Nanjing Medical University, Nanjing, Jiangsu, People's Republic of China. .,Center of Pathology and Clinical Laboratory, Sir Run Run Hospital of Nanjing Medical University, Nanjing, Jiangsu, People's Republic of China.
| |
Collapse
|