1
|
Mohamed ME, Saqr A, Staley C, Onyeaghala G, Teigen L, Dorr CR, Remmel RP, Guan W, Oetting WS, Matas AJ, Israni AK, Jacobson PA. Pharmacomicrobiomics: Immunosuppressive Drugs and Microbiome Interactions in Transplantation. Transplantation 2024; 108:1895-1910. [PMID: 38361239 PMCID: PMC11327386 DOI: 10.1097/tp.0000000000004926] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/17/2024]
Abstract
The human microbiome is associated with human health and disease. Exogenous compounds, including pharmaceutical products, are also known to be affected by the microbiome, and this discovery has led to the field of pharmacomicobiomics. The microbiome can also alter drug pharmacokinetics and pharmacodynamics, possibly resulting in side effects, toxicities, and unanticipated disease response. Microbiome-mediated effects are referred to as drug-microbiome interactions (DMI). Rapid advances in the field of pharmacomicrobiomics have been driven by the availability of efficient bacterial genome sequencing methods and new computational and bioinformatics tools. The success of fecal microbiota transplantation for recurrent Clostridioides difficile has fueled enthusiasm and research in the field. This review focuses on the pharmacomicrobiome in transplantation. Alterations in the microbiome in transplant recipients are well documented, largely because of prophylactic antibiotic use, and the potential for DMI is high. There is evidence that the gut microbiome may alter the pharmacokinetic disposition of tacrolimus and result in microbiome-specific tacrolimus metabolites. The gut microbiome also impacts the enterohepatic recirculation of mycophenolate, resulting in substantial changes in pharmacokinetic disposition and systemic exposure. The mechanisms of these DMI and the specific bacteria or communities of bacteria are under investigation. There are little or no human DMI data for cyclosporine A, corticosteroids, and sirolimus. The available evidence in transplantation is limited and driven by small studies of heterogeneous designs. Larger clinical studies are needed, but the potential for future clinical application of the pharmacomicrobiome in avoiding poor outcomes is high.
Collapse
Affiliation(s)
- Moataz E Mohamed
- Department of Experimental and Clinical Pharmacology, College of Pharmacy, University of Minnesota, Minneapolis, MN
| | - Abdelrahman Saqr
- Department of Experimental and Clinical Pharmacology, College of Pharmacy, University of Minnesota, Minneapolis, MN
| | | | - Guillaume Onyeaghala
- Hennepin Healthcare Research Institute, Minneapolis, MN
- Department of Medicine, University of Minnesota, Minneapolis, MN
| | - Levi Teigen
- Department of Food Science and Nutrition, University of Minnesota, St Paul, MN
| | - Casey R Dorr
- Department of Experimental and Clinical Pharmacology, College of Pharmacy, University of Minnesota, Minneapolis, MN
- Hennepin Healthcare Research Institute, Minneapolis, MN
- Department of Medicine, University of Minnesota, Minneapolis, MN
- Department of Medicine, Hennepin Healthcare, Minneapolis, MN
| | - Rory P Remmel
- Department of Medicinal Chemistry, College of Pharmacy, University of Minnesota, Minneapolis, MN
| | - Weihua Guan
- Division of Biostatistics, School of Public Health, University of Minnesota, Minneapolis, MN
| | - William S Oetting
- Department of Experimental and Clinical Pharmacology, College of Pharmacy, University of Minnesota, Minneapolis, MN
| | - Arthur J Matas
- Department of Surgery, University of Minnesota, Minneapolis, MN
| | - Ajay K Israni
- Hennepin Healthcare Research Institute, Minneapolis, MN
- Department of Medicine, Hennepin Healthcare, Minneapolis, MN
- Department of Epidemiology and Community Health, University of Minnesota, Minneapolis, MN
| | - Pamala A Jacobson
- Department of Experimental and Clinical Pharmacology, College of Pharmacy, University of Minnesota, Minneapolis, MN
| |
Collapse
|
2
|
Zeng X, Liu MH, Xiong Y, Zheng LX, Guo KE, Zhao HM, Yin YT, Liu DY, Zhou BG. Pien Tze Huang alleviates Concanavalin A-induced autoimmune hepatitis by regulating intestinal microbiota and memory regulatory T cells. World J Gastroenterol 2023; 29:5988-6016. [PMID: 38130997 PMCID: PMC10731150 DOI: 10.3748/wjg.v29.i45.5988] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/06/2023] [Revised: 09/26/2023] [Accepted: 10/23/2023] [Indexed: 12/01/2023] Open
Abstract
BACKGROUND Traditional Chinese medicine has used the drug Pien Tze Huang (PTH), a classic prescription, to treat autoimmune hepatitis (AIH). However, the precise mode of action is still unknown. AIM To investigate the mechanism of PTH in an AIH mouse model by determining the changes in gut microbiota structure and memory regulatory T (mTreg) cells functional levels. METHODS Following induction of the AIH mouse model induced by Concanavalin A (Con A), prophylactic administration of PTH was given for 10 d. The levels of mTreg cells were measured by flow cytometry, and intestinal microbiota was analyzed by 16S rRNA analysis, while western blotting was used to identify activation of the toll-like receptor (TLR)2, TLR4/nuclear factor-κB (NF-κB), and CXCL16/CXCR6 signaling pathways. RESULTS In the liver of mice with AIH, PTH relieved the pathological damage and reduced the numbers of T helper type 17 cells and interferon-γ, tumor necrosis factor-alpha, interleukin (IL)-1β, IL-2, IL-6, and IL-21 expression. Simultaneously, PTH stimulated the abundance of helpful bacteria, promoted activation of the TLR2 signal, which may enhance Treg/mTreg cells quantity to produce IL-10, and suppressed activation of the TLR4/NF-κB and CXCL16/CXCR6 signaling pathways. CONCLUSION PTH regulates intestinal microbiota balance and restores mTreg cells to alleviate experimental AIH, which is closely related to the TLR/CXCL16/CXCR6/NF-κB signaling pathway.
Collapse
Affiliation(s)
- Xin Zeng
- Department of Postgraduate, Jiangxi University of Chinese Medicine, Nanchang 330004, Jiangxi Province, China
| | - Miao-Hua Liu
- Department of Postgraduate, Jiangxi University of Chinese Medicine, Nanchang 330004, Jiangxi Province, China
| | - Yi Xiong
- Department of Postgraduate, Jiangxi University of Chinese Medicine, Nanchang 330004, Jiangxi Province, China
| | - Lin-Xin Zheng
- Department of Postgraduate, Jiangxi University of Chinese Medicine, Nanchang 330004, Jiangxi Province, China
| | - Kai-En Guo
- Department of Postgraduate, Jiangxi University of Chinese Medicine, Nanchang 330004, Jiangxi Province, China
| | - Hai-Mei Zhao
- College of Traditional Chinese Medicine, Jiangxi University of Chinese Medicine, Nanchang 330004, Jiangxi Province, China
| | - Yu-Ting Yin
- College of Pharmacy, Jiangxi University of Chinese Medicine, Nanchang 330004, Jiangxi Province, China
| | - Duan-Yong Liu
- Formula-Pattern Research Center, Jiangxi University of Chinese Medicine, Nanchang 330004, Jiangxi Province, China
| | - Bu-Gao Zhou
- Office of Academic Research, Jiangxi University of Chinese Medicine, Nanchang 330004, Jiangxi Province, China
| |
Collapse
|
3
|
Li L, Kang Y. The Gut Microbiome and Autoimmune Hepatitis: Implications for Early Diagnostic Biomarkers and Novel Therapies. Mol Nutr Food Res 2023; 67:e2300043. [PMID: 37350378 DOI: 10.1002/mnfr.202300043] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2023] [Revised: 05/14/2023] [Indexed: 06/24/2023]
Abstract
Autoimmune hepatitis (AIH) is a serious chronic liver disease that may last for decades and eventually develop into cirrhosis and liver failure. In recent years, people have paid more attention to the microbiome-gut-liver axis, which provides guidance for all to explore the role of microbiome in the occurrence and development of liver diseases. In this review, the possible mechanism of intestinal microbes promoting the occurrence of AIH, mainly expounding the key ways such as bacterial ecological imbalance, intestinal leakage, and molecular simulation between microbes and autoantigens is summarized. In addition, this paper also discusses that intestinal microbiome has great potential as a biomarker for early diagnosis of AIH, and intestinal microbiome is also a candidate target for prevention and treatment of AIH. Finally, the study summarizes and prospects the targeted therapy of intestinal microorganisms to prevent the occurrence and development of AIH.
Collapse
Affiliation(s)
- Liping Li
- Department of Microbiology and Immunology, School of Basic Medical Sciences, Shanxi Medical University, Taiyuan, Shanxi, 030001, China
| | - Yongbo Kang
- Department of Microbiology and Immunology, School of Basic Medical Sciences, Shanxi Medical University, Taiyuan, Shanxi, 030001, China
| |
Collapse
|
4
|
Fu Y, Li J, Zhu Y, Chen C, Liu J, Gu S, Zheng Y, Li Y. Causal effects of gut microbiome on autoimmune liver disease: a two-sample Mendelian randomization study. BMC Med Genomics 2023; 16:232. [PMID: 37789337 PMCID: PMC10548566 DOI: 10.1186/s12920-023-01670-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2023] [Accepted: 09/21/2023] [Indexed: 10/05/2023] Open
Abstract
BACKGROUND Epidemiological studies have indicated a potential link between the gut microbiome and autoimmune liver disease (AILD) such as autoimmune hepatitis (AIH), primary biliary cholangitis (PBC), and primary sclerosing cholangitis (PSC). The relationship between the gut microbiome and autoimmune liver disease is still uncertain due to confounding variables. In our study, we aim to shed light on this relationship by employing a two-sample Mendelian randomization approach. METHODS We conducted a two-sample Mendelian randomization (MR) study using the R package "TwoSampleMR". The exposure data consisted of genetic variants associated with 194 bacterial traits obtained from the MiBioGen consortium. Summary statistics for AILD were obtained from the GWAS Catalog website. Furthermore, a series of sensitivity analyses were performed to validate the initial MR results. RESULTS There were two, four and three bacteria traits associated with an increased risk of AIH. PBC, and PSC respectively. In contrast, there were five, two and five bacteria traits associated with a decreased risk for AIH, PBC and PSC. Notably, the genus_Clostridium_innocuum_group showed a negative association with AIH (OR = 0.67, 95% CI: 0.49-0.93), and the genus_Actinomyces was found to be genetically associated with a decreased risk of PSC (OR = 0.62, 95% CI: 0.42-0.90). CONCLUSIONS Our study identified the causal impact of specific bacterial features on the risk of AILD subtypes. Particularly, the genus_Clostridium_innocuum_group and the genus_Actinomyces demonstrated significant protective effects against AIH and PSC respectively. These findings provide further support for the potential use of targeted probiotics in the management of AILD.
Collapse
Affiliation(s)
- Yugang Fu
- Department of Gastroenterology, Shanghai Municipal Hospital of Traditional Chinese Medicine, Shanghai University of Traditional Chinese Medicine, Zhijiang Middle Road 274#, Shanghai, Jing'an District, China
- Municipal Medical College of Traditional Chinese Medicine, Shanghai University of Traditional Chinese Medicine, Shanghai, 200071, China
| | - Jiacheng Li
- Department of Gastroenterology, Shanghai Municipal Hospital of Traditional Chinese Medicine, Shanghai University of Traditional Chinese Medicine, Zhijiang Middle Road 274#, Shanghai, Jing'an District, China
- Municipal Medical College of Traditional Chinese Medicine, Shanghai University of Traditional Chinese Medicine, Shanghai, 200071, China
| | - Yingying Zhu
- Department of Gastroenterology, Shanghai Municipal Hospital of Traditional Chinese Medicine, Shanghai University of Traditional Chinese Medicine, Zhijiang Middle Road 274#, Shanghai, Jing'an District, China
- Municipal Medical College of Traditional Chinese Medicine, Shanghai University of Traditional Chinese Medicine, Shanghai, 200071, China
| | - Chong Chen
- Department of Gastroenterology, Shanghai Municipal Hospital of Traditional Chinese Medicine, Shanghai University of Traditional Chinese Medicine, Zhijiang Middle Road 274#, Shanghai, Jing'an District, China
- Municipal Medical College of Traditional Chinese Medicine, Shanghai University of Traditional Chinese Medicine, Shanghai, 200071, China
| | - Jing Liu
- Department of Gastroenterology, Shanghai Municipal Hospital of Traditional Chinese Medicine, Shanghai University of Traditional Chinese Medicine, Zhijiang Middle Road 274#, Shanghai, Jing'an District, China
- Municipal Medical College of Traditional Chinese Medicine, Shanghai University of Traditional Chinese Medicine, Shanghai, 200071, China
| | - Simin Gu
- Department of Gastroenterology, Shanghai Municipal Hospital of Traditional Chinese Medicine, Shanghai University of Traditional Chinese Medicine, Zhijiang Middle Road 274#, Shanghai, Jing'an District, China
- Municipal Medical College of Traditional Chinese Medicine, Shanghai University of Traditional Chinese Medicine, Shanghai, 200071, China
| | - Yiyuan Zheng
- Department of Gastroenterology, Shanghai Municipal Hospital of Traditional Chinese Medicine, Shanghai University of Traditional Chinese Medicine, Zhijiang Middle Road 274#, Shanghai, Jing'an District, China
| | - Yong Li
- Department of Gastroenterology, Shanghai Municipal Hospital of Traditional Chinese Medicine, Shanghai University of Traditional Chinese Medicine, Zhijiang Middle Road 274#, Shanghai, Jing'an District, China.
| |
Collapse
|
5
|
Chen H, Han Z, Fan Y, Chen L, Peng F, Cheng X, Wang Y, Su J, Li D. CD4+ T-cell subsets in autoimmune hepatitis: A review. Hepatol Commun 2023; 7:e0269. [PMID: 37695088 PMCID: PMC10497257 DOI: 10.1097/hc9.0000000000000269] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/20/2023] [Accepted: 08/02/2023] [Indexed: 09/12/2023] Open
Abstract
Autoimmune hepatitis (AIH) is a chronic autoimmune liver disease that can lead to hepatocyte destruction, inflammation, liver fibrosis, cirrhosis, and liver failure. The diagnosis of AIH requires the identification of lymphoblast cell interface hepatitis and serum biochemical abnormalities, as well as the exclusion of related diseases. According to different specific autoantibodies, AIH can be divided into AIH-1 and AIH-2. The first-line treatment for AIH is a corticosteroid and azathioprine regimen, and patients with liver failure require liver transplantation. However, the long-term use of corticosteroids has obvious side effects, and patients are prone to relapse after drug withdrawal. Autoimmune diseases are characterized by an imbalance in immune tolerance of self-antigens, activation of autoreactive T cells, overactivity of B cells, and increased production of autoantibodies. CD4+ T cells are key players in adaptive immunity and can secrete cytokines, activate B cells to produce antibodies, and influence the cytotoxicity of CD8+ T cells. According to their characteristics, CD4+ T cells can be divided into different subsets. In this review, we discuss the changes in T helper (Th)1, Th2, Th17, Th9, Th22, regulatory T cell, T follicular helper, and T peripheral helper cells and their related factors in AIH and discuss the therapeutic potential of targeting CD4+ T-cell subsets in AIH.
Collapse
Affiliation(s)
| | - Zhongyu Han
- School of Medical and Life Sciences, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Yiyue Fan
- Affiliated Hospital of North Sichuan Medical College, Nanchong, China
| | - Liuyan Chen
- School of Medical and Life Sciences, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Fang Peng
- Chengdu Xinhua Hospital, Chengdu, China
| | | | - Yi Wang
- Chengdu Xinhua Hospital, Chengdu, China
| | - Junyan Su
- The First People’s Hospital of Longquanyi District, Chengdu, China
| | | |
Collapse
|
6
|
Li C, Peng K, Xiao S, Long Y, Yu Q. The role of Lactobacillus in inflammatory bowel disease: from actualities to prospects. Cell Death Discov 2023; 9:361. [PMID: 37773196 PMCID: PMC10541886 DOI: 10.1038/s41420-023-01666-w] [Citation(s) in RCA: 21] [Impact Index Per Article: 21.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2023] [Revised: 09/18/2023] [Accepted: 09/22/2023] [Indexed: 10/01/2023] Open
Abstract
Inflammatory Bowel Disease (IBD), a chronic nonspecific intestinal inflammatory disease, is comprised of Ulcerative Colitis (UC) and Crohn's Disease (CD). IBD is closely related to a systemic inflammatory reaction and affects the progression of many intestinal and extraintestinal diseases. As one of the representative bacteria for probiotic-assisted therapy in IBD, multiple strains of Lactobacillus have been proven to alleviate intestinal damage and strengthen the intestinal immunological barrier, epithelial cell barrier, and mucus barrier. Lactobacillus also spares no effort in the alleviation of IBD-related diseases such as Colitis-associated Colorectal cancer (CAC), Alzheimer's Disease (AD), Depression, Anxiety, Autoimmune Hepatitis (AIH), and so on via gut-brain axis and gut-liver axis. This article aims to discuss the role of Lactobacillus in IBD and IBD-related diseases, including its underlying mechanisms and related curative strategies from the present to the future.
Collapse
Affiliation(s)
- Congxin Li
- Department of Gastroenterology, Tongji Hospital of Tongji Medical College, Huazhong University of Science and Technology, Wuhan, P. R. China
- Institute of Liver and Gastrointestinal Diseases, Tongji Hospital of Tongji Medical College, Huazhong University of Science and Technology, Wuhan, P. R. China
| | - Kaixin Peng
- Department of Gastroenterology, Tongji Hospital of Tongji Medical College, Huazhong University of Science and Technology, Wuhan, P. R. China
- Institute of Liver and Gastrointestinal Diseases, Tongji Hospital of Tongji Medical College, Huazhong University of Science and Technology, Wuhan, P. R. China
| | - Siqi Xiao
- Department of Gastroenterology, Tongji Hospital of Tongji Medical College, Huazhong University of Science and Technology, Wuhan, P. R. China
- Institute of Liver and Gastrointestinal Diseases, Tongji Hospital of Tongji Medical College, Huazhong University of Science and Technology, Wuhan, P. R. China
| | - Yuanyuan Long
- Department of Gastroenterology, Tongji Hospital of Tongji Medical College, Huazhong University of Science and Technology, Wuhan, P. R. China
- Institute of Liver and Gastrointestinal Diseases, Tongji Hospital of Tongji Medical College, Huazhong University of Science and Technology, Wuhan, P. R. China
| | - Qin Yu
- Department of Gastroenterology, Tongji Hospital of Tongji Medical College, Huazhong University of Science and Technology, Wuhan, P. R. China.
- Institute of Liver and Gastrointestinal Diseases, Tongji Hospital of Tongji Medical College, Huazhong University of Science and Technology, Wuhan, P. R. China.
| |
Collapse
|
7
|
Manes A, Di Renzo T, Dodani L, Reale A, Gautiero C, Di Lauro M, Nasti G, Manco F, Muscariello E, Guida B, Tarantino G, Cataldi M. Pharmacomicrobiomics of Classical Immunosuppressant Drugs: A Systematic Review. Biomedicines 2023; 11:2562. [PMID: 37761003 PMCID: PMC10526314 DOI: 10.3390/biomedicines11092562] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2023] [Revised: 09/13/2023] [Accepted: 09/14/2023] [Indexed: 09/29/2023] Open
Abstract
The clinical response to classical immunosuppressant drugs (cIMDs) is highly variable among individuals. We performed a systematic review of published evidence supporting the hypothesis that gut microorganisms may contribute to this variability by affecting cIMD pharmacokinetics, efficacy or tolerability. The evidence that these drugs affect the composition of intestinal microbiota was also reviewed. The PubMed and Scopus databases were searched using specific keywords without limits of species (human or animal) or time from publication. One thousand and fifty five published papers were retrieved in the initial database search. After screening, 50 papers were selected to be reviewed. Potential effects on cIMD pharmacokinetics, efficacy or tolerability were observed in 17/20 papers evaluating this issue, in particular with tacrolimus, cyclosporine, mycophenolic acid and corticosteroids, whereas evidence was missing for everolimus and sirolimus. Only one of the papers investigating the effect of cIMDs on the gut microbiota reported negative results while all the others showed significant changes in the relative abundance of specific intestinal bacteria. However, no unique pattern of microbiota modification was observed across the different studies. In conclusion, the available evidence supports the hypothesis that intestinal microbiota could contribute to the variability in the response to some cIMDs, whereas data are still missing for others.
Collapse
Affiliation(s)
- Annalaura Manes
- Section of Pharmacology, Department of Neuroscience, Reproductive Sciences and Dentistry, Federico II University of Naples, 80131 Naples, Italy; (A.M.); (L.D.); (F.M.)
| | - Tiziana Di Renzo
- Institute of Food Sciences, National Research Council, 83100 Avellino, Italy; (T.D.R.); (A.R.)
| | - Loreta Dodani
- Section of Pharmacology, Department of Neuroscience, Reproductive Sciences and Dentistry, Federico II University of Naples, 80131 Naples, Italy; (A.M.); (L.D.); (F.M.)
| | - Anna Reale
- Institute of Food Sciences, National Research Council, 83100 Avellino, Italy; (T.D.R.); (A.R.)
| | - Claudia Gautiero
- Physiology Nutrition Unit, Department of Clinical Medicine and Surgery, Federico II University of Naples, 80131 Naples, Italy; (C.G.); (M.D.L.); (G.N.); (B.G.)
| | - Mariastella Di Lauro
- Physiology Nutrition Unit, Department of Clinical Medicine and Surgery, Federico II University of Naples, 80131 Naples, Italy; (C.G.); (M.D.L.); (G.N.); (B.G.)
| | - Gilda Nasti
- Physiology Nutrition Unit, Department of Clinical Medicine and Surgery, Federico II University of Naples, 80131 Naples, Italy; (C.G.); (M.D.L.); (G.N.); (B.G.)
| | - Federica Manco
- Section of Pharmacology, Department of Neuroscience, Reproductive Sciences and Dentistry, Federico II University of Naples, 80131 Naples, Italy; (A.M.); (L.D.); (F.M.)
| | - Espedita Muscariello
- Nutrition Unit, Department of Prevention, Local Health Authority Napoli 3 Sud, 80059 Naples, Italy;
| | - Bruna Guida
- Physiology Nutrition Unit, Department of Clinical Medicine and Surgery, Federico II University of Naples, 80131 Naples, Italy; (C.G.); (M.D.L.); (G.N.); (B.G.)
| | - Giovanni Tarantino
- Department of Clinical Medicine and Surgery, Federico II University of Naples, 80131 Naples, Italy;
| | - Mauro Cataldi
- Section of Pharmacology, Department of Neuroscience, Reproductive Sciences and Dentistry, Federico II University of Naples, 80131 Naples, Italy; (A.M.); (L.D.); (F.M.)
| |
Collapse
|
8
|
Wei X, Niu X. T follicular helper cells in autoimmune diseases. J Autoimmun 2023; 134:102976. [PMID: 36525939 DOI: 10.1016/j.jaut.2022.102976] [Citation(s) in RCA: 26] [Impact Index Per Article: 26.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2022] [Revised: 12/05/2022] [Accepted: 12/06/2022] [Indexed: 12/15/2022]
Abstract
T follicular helper (Tfh) cells with the phenotype of mainly expressing surface molecules C-X-C motif chemokine receptor type 5 (CXCR5), inducible co-stimulator (ICOS), secreting cytokine interleukin-21 (IL-21) and requiring the transcription factor B cell lymphoma 6 (BCL-6) have been recently defined as a new subset of CD4+ T cells. They exist in germinal centers (GCs) of lymphoid organs and in peripheral blood. With the ability to promote B cell development, GC formation and antibody production, Tfh cells play critical roles in the pathogenesis of many autoimmune diseases, such as systemic lupus erythematosus (SLE), rheumatoid arthritis (RA), primary Sjögren's syndrome (pSS), etc. The aberrant proliferation and function of Tfh cells will cause the pathological process like autoantibody production and tissue injury. In this paper, we review the recent advances in Tfh cell biology and their roles in autoimmune diseases, with a mention of their use as therapeutic targets, which will shed more light on the pathogenesis and treatment of certain autoimmune diseases.
Collapse
Affiliation(s)
- Xindi Wei
- Department of Immunology and Microbiology, Shanghai Jiao Tong University School of Medicine, Shanghai Institute of Immunology, Shanghai, 200025, China; Department of Oral and Maxillo-facial Implantology, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, College of Stomatology, Shanghai Jiao Tong University, National Center for Stomatology, National Clinical Research Center for Oral Diseases, Shanghai Key Laboratory of Stomatology, Shanghai Research Institute of Stomatology, Shanghai, 200011, China
| | - Xiaoyin Niu
- Department of Immunology and Microbiology, Shanghai Jiao Tong University School of Medicine, Shanghai Institute of Immunology, Shanghai, 200025, China.
| |
Collapse
|