1
|
Zhang S, Wu W, Gu M, Zhao Y, Wang L, Liu K, Yu Z. House dust mite induced mucosal barrier dysfunction and type 2 inflammatory responses via the MAPK/AP-1/IL-24 Signaling pathway in allergic rhinitis. Int Immunopharmacol 2025; 148:113972. [PMID: 39826453 DOI: 10.1016/j.intimp.2024.113972] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2024] [Revised: 12/26/2024] [Accepted: 12/27/2024] [Indexed: 01/22/2025]
Abstract
The epithelial barrier, previously regarded only as a physical defense, is now understood to play a vital role in immune responses and the regulation of inflammation. Allergic rhinitis (AR) is a prevalent chronic inflammatory condition of the nasal mucosa, with House Dust Mite (HDM) identified as a significant inhalant allergen that can impair this barrier. IL-24 has emerged as a key cytokine in allergic diseases, involved in maintaining epithelial cell homeostasis. Nevertheless, the underlying mechanisms of these effects remain inadequately understood. This study explores HDM-induced IL-24 secretion and mucosal barrier impairment using patient and animal tissue samples. Our results confirm that HDM sensitization triggers inflammatory changes in the nasal cavity, with IL-24 acting as a key mediator of type 2 inflammation and AR severity. HDM enhances IL-24 secretion via the P38 MAPK pathway and transcription factor AP-1, while IL-24 downregulates occludin and ZO-1 expression through the STAT1/STAT3 signaling pathway, compromising barrier function and increasing permeability. Furthermore, IL-24 promotes IL-33 secretion, further exacerbating the inflammatory response in AR. These findings clarify the mechanisms of epithelial barrier disruption in HDM-sensitized allergic rhinitis and suggest that modulating the IL-24 signaling pathway may serve as a promising therapeutic strategy to restore barrier integrity in AR.
Collapse
Affiliation(s)
- Siyao Zhang
- Department of Otolaryngology-Head and Neck Surgery, BenQ Medical Center, The Affiliated BenQ Hospital of Nanjing Medical University, 71 Hexi Street, Nanjing 210019, Jiangsu, China; Nanjing Medical Key Laboratory of Laryngopharynx & Head and Neck Oncology, 71 Hexi Street, Nanjing 210019, Jiangsu, China
| | - Wanjuan Wu
- Department of Otolaryngology-Head and Neck Surgery, BenQ Medical Center, The Affiliated BenQ Hospital of Nanjing Medical University, 71 Hexi Street, Nanjing 210019, Jiangsu, China; Nanjing Medical Key Laboratory of Laryngopharynx & Head and Neck Oncology, 71 Hexi Street, Nanjing 210019, Jiangsu, China
| | - Min Gu
- Department of Otolaryngology-Head and Neck Surgery, BenQ Medical Center, The Affiliated BenQ Hospital of Nanjing Medical University, 71 Hexi Street, Nanjing 210019, Jiangsu, China; Nanjing Medical Key Laboratory of Laryngopharynx & Head and Neck Oncology, 71 Hexi Street, Nanjing 210019, Jiangsu, China
| | - Yun Zhao
- Department of General Surgery, BenQ Medical Center, The Affiliated BenQ Hospital of Nanjing Medical University, Nanjing, China
| | - Lixin Wang
- Department of Microbiology and Immunology, School of Medicine, Jiangsu Provincial Key Laboratory of Critical Care Medicine, Southeast University, Nanjing 210009, China
| | - Kai Liu
- Department of Otolaryngology-Head and Neck Surgery, BenQ Medical Center, The Affiliated BenQ Hospital of Nanjing Medical University, 71 Hexi Street, Nanjing 210019, Jiangsu, China; Nanjing Medical Key Laboratory of Laryngopharynx & Head and Neck Oncology, 71 Hexi Street, Nanjing 210019, Jiangsu, China.
| | - Zhenkun Yu
- Department of Otolaryngology-Head and Neck Surgery, BenQ Medical Center, The Affiliated BenQ Hospital of Nanjing Medical University, 71 Hexi Street, Nanjing 210019, Jiangsu, China; Nanjing Medical Key Laboratory of Laryngopharynx & Head and Neck Oncology, 71 Hexi Street, Nanjing 210019, Jiangsu, China.
| |
Collapse
|
2
|
Dos Santos SJ, Copeland C, Macklaim JM, Reid G, Gloor GB. Vaginal metatranscriptome meta-analysis reveals functional BV subgroups and novel colonisation strategies. MICROBIOME 2024; 12:271. [PMID: 39709449 DOI: 10.1186/s40168-024-01992-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/24/2024] [Accepted: 11/27/2024] [Indexed: 12/23/2024]
Abstract
BACKGROUND The application of '-omics' technologies to study bacterial vaginosis (BV) has uncovered vast differences in composition and scale between the vaginal microbiomes of healthy and BV patients. Compared to amplicon sequencing and shotgun metagenomic approaches focusing on a single or few species, investigating the transcriptome of the vaginal microbiome at a system-wide level can provide insight into the functions which are actively expressed and differential between states of health and disease. RESULTS We conducted a meta-analysis of vaginal metatranscriptomes from three studies, split into exploratory (n = 42) and validation (n = 297) datasets, accounting for the compositional nature of sequencing data and differences in scale between healthy and BV microbiomes. Conducting differential expression analyses on the exploratory dataset, we identified a multitude of strategies employed by microbes associated with states of health and BV to evade host cationic antimicrobial peptides (CAMPs); putative mechanisms used by BV-associated species to resist and counteract the low vaginal pH; and potential approaches to disrupt vaginal epithelial integrity so as to establish sites for adherence and biofilm formation. Moreover, we identified several distinct functional subgroups within the BV population, distinguished by genes involved in motility, chemotaxis, biofilm formation and co-factor biosynthesis. After defining molecular states of health and BV in the validation dataset using KEGG orthology terms rather than community state types, differential expression analysis confirmed earlier observations regarding CAMP resistance and compromising epithelial barrier integrity in healthy and BV microbiomes and also supported the existence of motile vs. non-motile subgroups in the BV population. These findings were independent of the enzyme classification system used (KEGG or EggNOG). CONCLUSIONS Our findings highlight a need to focus on functional rather than taxonomic differences when considering the role of microbiomes in disease and identify pathways for further research as potential BV treatment targets. Video Abstract.
Collapse
Affiliation(s)
- Scott J Dos Santos
- Department of Biochemistry, Western University, Middlesex Drive, London, N6G 2V4, Ontario, Canada
| | - Clara Copeland
- Department of Biochemistry, Western University, Middlesex Drive, London, N6G 2V4, Ontario, Canada
| | - Jean M Macklaim
- Department of Biochemistry, Western University, Middlesex Drive, London, N6G 2V4, Ontario, Canada
| | - Gregor Reid
- Lawson Health Research Institute, 268 Grosvenor Street, London, N6A 4V2, Ontario, Canada
| | - Gregory B Gloor
- Department of Biochemistry, Western University, Middlesex Drive, London, N6G 2V4, Ontario, Canada.
| |
Collapse
|
3
|
Yang G, Zhang J, Liu Q, Chai E. A Case Report of Frontal Sinus Abscess Complicated by Epidural Abscess with a Literature Review. Infect Drug Resist 2024; 17:4359-4367. [PMID: 39411502 PMCID: PMC11473249 DOI: 10.2147/idr.s483905] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2024] [Accepted: 09/28/2024] [Indexed: 10/19/2024] Open
Abstract
Inflammation of the frontal sinus is a relatively common clinical condition among paranasal sinusitis and is curable through anti-infection treatments, with a rare progression to frontal sinus abscess. An even rarer complication is the development of intracranial epidural empyema secondary to frontal sinus abscess. In this report, we describe a case of a 14-year-old male with a frontal sinus abscess that led to intracranial infection and was complicated by an epidural abscess misdiagnosed as an epidural hematoma. The primary symptoms were headache, dizziness, and fever. Following combined antibiotic therapy and surgical intervention, including maxillary and frontal sinus window drainage, the patient was cured. A follow-up period of three months showed no recurrence, indicating a favorable outcome.
Collapse
Affiliation(s)
- Guangming Yang
- The First Clinical School of Medicine, Gansu University of Traditional Chinese Medicine, Lanzhou, Gansu Province, 730000, People’s Republic of China
| | - Jian Zhang
- Gansu Provincial Hospital, Lanzhou, Gansu Province, 730000, People’s Republic of China
| | - Qian Liu
- Gansu Provincial Hospital, Lanzhou, Gansu Province, 730000, People’s Republic of China
| | - Erqing Chai
- Gansu Provincial Hospital, Lanzhou, Gansu Province, 730000, People’s Republic of China
| |
Collapse
|
4
|
Zhang D, Lin L, Yang J, Lv Q, Wang M, Hua L, Zhang K, Chen H, Wu B, Peng Z. Pseudorabies virus infection increases the permeability of the mammalian respiratory barrier to facilitate Pasteurella multocida infection. mSphere 2024; 9:e0029724. [PMID: 39041808 PMCID: PMC11351098 DOI: 10.1128/msphere.00297-24] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2024] [Accepted: 06/18/2024] [Indexed: 07/24/2024] Open
Abstract
Interaction between viruses and bacteria during the development of infectious diseases is a complex question that requires continuous study. In this study, we explored the interactions between pseudorabies virus (PRV) and Pasteurella multocida (PM), which are recognized as the primary and secondary agents of porcine respiratory disease complex (PRDC), respectively. In vivo tests using mouse models demonstrated that intranasal inoculation with PRV at a sublethal dose induced disruption of murine respiratory barrier and promoted the invasion and damages caused by PM through respiratory infection. Inoculation with PRV also disrupted the barrier function of murine and porcine respiratory epithelial cells, and accelerated the adherence and invasion of PM to the cells. In mechanism, PRV infection resulted in decreased expression of tight junction proteins (ZO-1, occludin) and adherens junction proteins (β-catenin, E-cadherin) between neighboring respiratory epithelial cells. Additionally, PRV inoculation at an early stage downregulated multiple biological processes contributing to epithelial adhesion and barrier functions while upregulating signals beneficial for respiratory barrier disruption (e.g., the HIF-1α signaling). Furthermore, PRV infection also stimulated the upregulation of cellular receptors (CAM5, ICAM2, ACAN, and DSCAM) that promote bacterial adherence. The data presented in this study provide insights into the understanding of virus-bacteria interactions in PRDC and may also contribute to understanding the mechanisms of secondary infections caused by different respiratory viruses (e.g., influenza virus and SARS-CoV-2) in both medical and veterinary medicine. IMPORTANCE Co-infections caused by viral and bacterial agents are common in both medical and veterinary medicine, but the related mechanisms are not fully understood. This study investigated the interactions between the zoonotic pathogens PRV and PM during the development of respiratory infections in both cell and mouse models, and reported the possible mechanisms which included: (i) the primary infection of PRV may induce the disruption and/or damage of mammal respiratory barrier, thereby contributing to the invasion of PM; (ii) PRV infection at early stage accelerates the transcription and/or expression of several cellular receptors that are beneficial for bacterial adherence. This study may shed a light on understanding the mechanisms on the secondary infection of PM promoted by different respiratory viruses (e.g., influenza virus and SARS-CoV-2) in both medical and veterinary medicine.
Collapse
Affiliation(s)
- Dajun Zhang
- National Key Laboratory of Agricultural Microbiology, College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, China
- Hubei Hongshan Laboratory, Wuhan, China
- Frontiers Science Center for Animal Breeding and Sustainable Production, The Cooperative Innovation Center for Sustainable Pig Production, Wuhan, China
| | - Lin Lin
- National Key Laboratory of Agricultural Microbiology, College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, China
- Hubei Hongshan Laboratory, Wuhan, China
- Frontiers Science Center for Animal Breeding and Sustainable Production, The Cooperative Innovation Center for Sustainable Pig Production, Wuhan, China
| | - Jie Yang
- National Key Laboratory of Agricultural Microbiology, College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, China
- Hubei Hongshan Laboratory, Wuhan, China
- Frontiers Science Center for Animal Breeding and Sustainable Production, The Cooperative Innovation Center for Sustainable Pig Production, Wuhan, China
| | - Qingjie Lv
- National Key Laboratory of Agricultural Microbiology, College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, China
- Hubei Hongshan Laboratory, Wuhan, China
- Frontiers Science Center for Animal Breeding and Sustainable Production, The Cooperative Innovation Center for Sustainable Pig Production, Wuhan, China
| | - Mixue Wang
- National Key Laboratory of Agricultural Microbiology, College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, China
- Hubei Hongshan Laboratory, Wuhan, China
- Frontiers Science Center for Animal Breeding and Sustainable Production, The Cooperative Innovation Center for Sustainable Pig Production, Wuhan, China
| | - Lin Hua
- National Key Laboratory of Agricultural Microbiology, College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, China
- Hubei Hongshan Laboratory, Wuhan, China
- Frontiers Science Center for Animal Breeding and Sustainable Production, The Cooperative Innovation Center for Sustainable Pig Production, Wuhan, China
| | - Keshan Zhang
- Department of Veterinary Medicine, College of Life Science and Engineering, Foshan University, Foshan, China
| | - Huanchun Chen
- National Key Laboratory of Agricultural Microbiology, College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, China
- Hubei Hongshan Laboratory, Wuhan, China
- Frontiers Science Center for Animal Breeding and Sustainable Production, The Cooperative Innovation Center for Sustainable Pig Production, Wuhan, China
| | - Bin Wu
- National Key Laboratory of Agricultural Microbiology, College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, China
- Frontiers Science Center for Animal Breeding and Sustainable Production, The Cooperative Innovation Center for Sustainable Pig Production, Wuhan, China
| | - Zhong Peng
- National Key Laboratory of Agricultural Microbiology, College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, China
- Hubei Hongshan Laboratory, Wuhan, China
- Frontiers Science Center for Animal Breeding and Sustainable Production, The Cooperative Innovation Center for Sustainable Pig Production, Wuhan, China
| |
Collapse
|
5
|
Huang F, Liu F, Zhen X, Gong S, Chen W, Song Z. Pathogenesis, Diagnosis, and Treatment of Infectious Rhinosinusitis. Microorganisms 2024; 12:1690. [PMID: 39203531 PMCID: PMC11357447 DOI: 10.3390/microorganisms12081690] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2024] [Revised: 08/10/2024] [Accepted: 08/14/2024] [Indexed: 09/03/2024] Open
Abstract
Rhinosinusitis is a common inflammatory disease of the sinonasal mucosa and paranasal sinuses. The pathogenesis of rhinosinusitis involves a variety of factors, including genetics, nasal microbiota status, infection, and environmental influences. Pathogenic microorganisms, including viruses, bacteria, and fungi, have been proven to target the cilia and/or epithelial cells of ciliated airways, which results in the impairment of mucociliary clearance, leading to epithelial cell apoptosis and the loss of epithelial barrier integrity and immune dysregulation, thereby facilitating infection. However, the mechanisms employed by pathogenic microorganisms in rhinosinusitis remain unclear. Therefore, this review describes the types of common pathogenic microorganisms that cause rhinosinusitis, including human rhinovirus, respiratory syncytial virus, Staphylococcus aureus, Pseudomonas aeruginosa, Aspergillus species, etc. The damage of mucosal cilium clearance and epithelial barrier caused by surface proteins or secreted virulence factors are summarized in detail. In addition, the specific inflammatory response, mainly Type 1 immune responses (Th1) and Type 2 immune responses (Th2), induced by the entry of pathogens into the body is discussed. The conventional treatment of infectious sinusitis and emerging treatment methods including nanotechnology are also discussed in order to improve the current understanding of the types of microorganisms that cause rhinosinusitis and to help effectively select surgical and/or therapeutic interventions for precise and personalized treatment.
Collapse
Affiliation(s)
- Fujiao Huang
- School of Basic Medical Sciences, Southwest Medical University, Luzhou 646000, China
| | - Fangyan Liu
- School of Basic Medical Sciences, Southwest Medical University, Luzhou 646000, China
| | - Xiaofang Zhen
- School of Basic Medical Sciences, Southwest Medical University, Luzhou 646000, China
| | - Shu Gong
- The Public Platform of Cell Biotechnology, Public Center of Experimental Technology, Southwest Medical University, Luzhou 646000, China
| | - Wenbi Chen
- School of Basic Medical Sciences, Southwest Medical University, Luzhou 646000, China
| | - Zhangyong Song
- School of Basic Medical Sciences, Southwest Medical University, Luzhou 646000, China
- Molecular Biotechnology Platform, Public Center of Experimental Technology, Southwest Medical University, Luzhou 646000, China
- Hemodynamics and Medical Engineering Combination Key Laboratory of Luzhou, Luzhou 646000, China
| |
Collapse
|
6
|
Hua T, Li S, Han B. Nanomedicines for intranasal delivery: understanding the nano-bio interactions at the nasal mucus-mucosal barrier. Expert Opin Drug Deliv 2024; 21:553-572. [PMID: 38720439 DOI: 10.1080/17425247.2024.2339335] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2024] [Accepted: 04/02/2024] [Indexed: 05/18/2024]
Abstract
INTRODUCTION Intranasal administration is an effective drug delivery routes in modern pharmaceutics. However, unlike other in vivo biological barriers, the nasal mucosal barrier is characterized by high turnover and selective permeability, hindering the diffusion of both particulate drug delivery systems and drug molecules. The in vivo fate of administrated nanomedicines is often significantly affected by nano-biointeractions. AREAS COVERED The biological barriers that nanomedicines encounter when administered intranasally are introduced, with a discussion on the factors influencing the interaction between nanomedicines and the mucus layer/mucosal barriers. General design strategies for nanomedicines administered via the nasal route are further proposed. Furthermore, the most common methods to investigate the characteristics and the interactions of nanomedicines when in presence of the mucus layer/mucosal barrier are briefly summarized. EXPERT OPINION Detailed investigation of nanomedicine-mucus/mucosal interactions and exploration of their mechanisms provide solutions for designing better intranasal nanomedicines. Designing and applying nanomedicines with mucus interaction properties or non-mucosal interactions should be customized according to the therapeutic need, considering the target of the drug, i.e. brain, lung or nose. Then how to improve the precise targeting efficiency of nanomedicines becomes a difficult task for further research.
Collapse
Affiliation(s)
- Tangsiyuan Hua
- School of Pharmacy, Changzhou Univesity, Changzhou, PR China
| | - Shuling Li
- College of Traditional Chinese Medicine, Changchun University of Chinese Medicine, Changchun, PR China
| | - Bing Han
- Department of Biopharmacy, School of Pharmaceutical Sciences, Jilin University, Changchun, PR China
| |
Collapse
|
7
|
Sharafutdinov I, Tegtmeyer N, Rohde M, Olofsson A, Rehman ZU, Arnqvist A, Backert S. Campylobacter jejuni Surface-Bound Protease HtrA, but Not the Secreted Protease nor Protease in Shed Membrane Vesicles, Disrupts Epithelial Cell-to-Cell Junctions. Cells 2024; 13:224. [PMID: 38334616 PMCID: PMC10854787 DOI: 10.3390/cells13030224] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2023] [Revised: 12/01/2023] [Accepted: 01/22/2024] [Indexed: 02/10/2024] Open
Abstract
Fundamental functions of the intestinal epithelium include the digestion of food, absorption of nutrients, and its ability to act as the first barrier against intruding microbes. Campylobacter jejuni is a major zoonotic pathogen accounting for a substantial portion of bacterial foodborne illnesses. The germ colonizes the intestines of birds and is mainly transmitted to humans through the consumption of contaminated poultry meat. In the human gastrointestinal tract, the bacterium triggers campylobacteriosis that can progress to serious secondary disorders, including reactive arthritis, inflammatory bowel disease and Guillain-Barré syndrome. We recently discovered that C. jejuni serine protease HtrA disrupts intestinal epithelial barrier functions via cleavage of the tight and adherens junction components occludin, claudin-8 and E-cadherin. However, it is unknown whether epithelial damage is mediated by the secreted soluble enzyme, by HtrA contained in shed outer-membrane vesicles (OMVs) or by another mechanism that has yet to be identified. In the present study, we investigated whether soluble recombinant HtrA and/or purified OMVs induce junctional damage to polarized intestinal epithelial cells compared to live C. jejuni bacteria. By using electron and confocal immunofluorescence microscopy, we show that HtrA-expressing C. jejuni bacteria trigger efficient junctional cell damage, but not soluble purified HtrA or HtrA-containing OMVs, not even at high concentrations far exceeding physiological levels. Instead, we found that only bacteria with active protein biosynthesis effectively cleave junctional proteins, which is followed by paracellular transmigration of C. jejuni through the epithelial cell layer. These findings shed new light on the pathogenic activities of HtrA and virulence strategies of C. jejuni.
Collapse
Affiliation(s)
- Irshad Sharafutdinov
- Department of Biology, Division of Microbiology, Friedrich-Alexander-Universität Erlangen-Nürnberg, Staudtstr. 5, D-91058 Erlangen, Germany
| | - Nicole Tegtmeyer
- Department of Biology, Division of Microbiology, Friedrich-Alexander-Universität Erlangen-Nürnberg, Staudtstr. 5, D-91058 Erlangen, Germany
| | - Manfred Rohde
- Central Facility for Microscopy, Helmholtz Centre for Infection Research, Inhoffenstraße 7, D-38124 Braunschweig, Germany
| | - Annelie Olofsson
- Department of Medical Biochemistry and Biophysics, Umeå University, SE-901 87 Umeå, Sweden
| | - Zia ur Rehman
- Department of Medical Biochemistry and Biophysics, Umeå University, SE-901 87 Umeå, Sweden
| | - Anna Arnqvist
- Department of Medical Biochemistry and Biophysics, Umeå University, SE-901 87 Umeå, Sweden
| | - Steffen Backert
- Department of Biology, Division of Microbiology, Friedrich-Alexander-Universität Erlangen-Nürnberg, Staudtstr. 5, D-91058 Erlangen, Germany
| |
Collapse
|