1
|
Rawat C, Ben-Salem S, Singh N, Chauhan G, Rabljenovic A, Vaghela V, Venkadakrishnan VB, Macdonald JD, Dahiya UR, Ghanem Y, Bachour S, Su Y, DePriest AD, Lee S, Muldong M, Kim HT, Kumari S, Valenzuela MM, Zhang D, Hu Q, Cortes Gomez E, Dehm SM, Zoubeidi A, Jamieson CAM, Nicolas M, McKenney J, Willard B, Klein EA, Magi-Galluzzi C, Stauffer SR, Liu S, Heemers HV. Prostate Cancer Progression Relies on the Mitotic Kinase Citron Kinase. Cancer Res 2023; 83:4142-4160. [PMID: 37801613 PMCID: PMC10841833 DOI: 10.1158/0008-5472.can-23-0883] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2023] [Revised: 08/14/2023] [Accepted: 10/03/2023] [Indexed: 10/08/2023]
Abstract
Prostate cancer remains the second leading cause of cancer death in men in Western cultures. A deeper understanding of the mechanisms by which prostate cancer cells divide to support tumor growth could help devise strategies to overcome treatment resistance and improve survival. Here, we identified that the mitotic AGC family protein kinase citron kinase (CIT) is a pivotal regulator of prostate cancer growth that mediates prostate cancer cell interphase progression. Increased CIT expression correlated with prostate cancer growth induction and aggressive prostate cancer progression, and CIT was overexpressed in prostate cancer compared with benign prostate tissue. CIT overexpression was controlled by an E2F2-Skp2-p27 signaling axis and conferred resistance to androgen-targeted treatment strategies. The effects of CIT relied entirely on its kinase activity. Conversely, CIT silencing inhibited the growth of cell lines and xenografts representing different stages of prostate cancer progression and treatment resistance but did not affect benign epithelial prostate cells or nonprostatic normal cells, indicating a potential therapeutic window for CIT inhibition. CIT kinase activity was identified as druggable and was potently inhibited by the multikinase inhibitor OTS-167, which decreased the proliferation of treatment-resistant prostate cancer cells and patient-derived organoids. Isolation of the in vivo CIT substrates identified proteins involved in diverse cellular functions ranging from proliferation to alternative splicing events that are enriched in treatment-resistant prostate cancer. These findings provide insights into the regulation of aggressive prostate cancer cell behavior by CIT and identify CIT as a functionally diverse and druggable driver of prostate cancer progression. SIGNIFICANCE The poorly characterized protein kinase citron kinase is a therapeutic target in prostate cancer that drives tumor growth by regulating diverse substrates, which control several hallmarks of aggressive prostate cancer progression. See related commentary by Mishra et al., p. 4008.
Collapse
Affiliation(s)
- Chitra Rawat
- Department of Cancer Biology, Cleveland Clinic, Cleveland, Ohio
| | - Salma Ben-Salem
- Department of Cancer Biology, Cleveland Clinic, Cleveland, Ohio
| | - Nidhi Singh
- Department of Cancer Biology, Cleveland Clinic, Cleveland, Ohio
| | - Gaurav Chauhan
- Department of Cancer Biology, Cleveland Clinic, Cleveland, Ohio
| | | | - Vishwa Vaghela
- Department of Cancer Biology, Cleveland Clinic, Cleveland, Ohio
| | - Varadha Balaji Venkadakrishnan
- Department of Cancer Biology, Cleveland Clinic, Cleveland, Ohio
- Department of Biological, Geological and Environmental Sciences, Cleveland State University, Cleveland, Ohio
| | | | - Ujjwal R Dahiya
- Department of Cancer Biology, Cleveland Clinic, Cleveland, Ohio
| | - Yara Ghanem
- Department of Cancer Biology, Cleveland Clinic, Cleveland, Ohio
| | - Salam Bachour
- Cleveland Clinic Lerner College of Medicine, Cleveland Clinic, Cleveland, Ohio
| | - Yixue Su
- Department of Cancer Biology, Cleveland Clinic, Cleveland, Ohio
| | - Adam D DePriest
- Department of Cancer Genetics, Roswell Park Comprehensive Cancer Center, Buffalo, New York
| | - Sanghee Lee
- Department of Urology, UC San Diego, La Jolla, California
| | | | - Hyun-Tae Kim
- Department of Urology, UC San Diego, La Jolla, California
- Department of Urology, School of Medicine, Kyungpook National University, Daegu, Republic of Korea
| | - Sangeeta Kumari
- Department of Cancer Biology, Cleveland Clinic, Cleveland, Ohio
| | | | - Dingxiao Zhang
- Department of Biostatistics and Bioinformatics, Roswell Park Comprehensive Cancer Center, Buffalo, New York
- School of Biomedical Sciences, Hunan University, Changsa, China
| | - Qiang Hu
- Department of Biostatistics and Bioinformatics, Roswell Park Comprehensive Cancer Center, Buffalo, New York
| | - Eduardo Cortes Gomez
- Department of Biostatistics and Bioinformatics, Roswell Park Comprehensive Cancer Center, Buffalo, New York
| | - Scott M Dehm
- Masonic Cancer Center and Departments of Laboratory Medicine and Pathology and Urology, University of Minnesota, Minneapolis, Minnesota
| | - Amina Zoubeidi
- Vancouver Prostate Centre and Department of Urologic Sciences, University of British Columbia, Canada
| | | | - Marlo Nicolas
- Department of Anatomic Pathology, Cleveland Clinic, Cleveland, Ohio
| | - Jesse McKenney
- Department of Anatomic Pathology, Cleveland Clinic, Cleveland, Ohio
| | | | - Eric A Klein
- Department of Urology, Cleveland Clinic, Cleveland, Ohio
| | | | - Shaun R Stauffer
- Center for Therapeutics Discovery, Cleveland Clinic, Cleveland, Ohio
| | - Song Liu
- Department of Biostatistics and Bioinformatics, Roswell Park Comprehensive Cancer Center, Buffalo, New York
| | | |
Collapse
|
2
|
Tae JH, Chang IH. Animal models of bone metastatic prostate cancer. Investig Clin Urol 2023; 64:219-228. [PMID: 37341002 DOI: 10.4111/icu.20230026] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2023] [Revised: 02/23/2023] [Accepted: 03/07/2023] [Indexed: 06/22/2023] Open
Abstract
Metastatic disease is a main cause of mortality in prostate cancer and remains to be incurable despite emerging new treatment agents. Development of novel treatment agents are confined within the boundaries of our knowledge of bone metastatic prostate cancer. Exploration into the underlying mechanism of metastatic tumorigenesis and treatment resistance will further expose novel targets for novel treatment agents. Up to date, many of these researches have been conducted with animal models which have served as classical tools that play a pivotal role in understanding the fundamental nature of cancer. The ability to reproduce the natural course of prostate cancer would be of profound value. However, currently available models do not reproduce the entire process of tumorigenesis to bone metastasis and are limited to reproducing small portions of the entire process. Therefore, knowledge of available models and understanding the strengths and weaknesses for each model is key to achieve research objectives. In this article, we take an overview of cell line injection animal models and patient derived xenograft models that have been applied to the research of human prostate cancer bone metastasis.
Collapse
Affiliation(s)
- Jong Hyun Tae
- Department of Urology, Chung-Ang University College of Medicine, Seoul, Korea
- Biomedical Research Institute, Chung-Ang University Hospital, Seoul, Korea
| | - In Ho Chang
- Department of Urology, Chung-Ang University College of Medicine, Seoul, Korea.
| |
Collapse
|
3
|
Peehl DM, Badea CT, Chenevert TL, Daldrup-Link HE, Ding L, Dobrolecki LE, Houghton AM, Kinahan PE, Kurhanewicz J, Lewis MT, Li S, Luker GD, Ma CX, Manning HC, Mowery YM, O’Dwyer PJ, Pautler RG, Rosen MA, Roudi R, Ross BD, Shoghi KI, Sriram R, Talpaz M, Wahl RL, Zhou R. Animal Models and Their Role in Imaging-Assisted Co-Clinical Trials. Tomography 2023; 9:657-680. [PMID: 36961012 PMCID: PMC10037611 DOI: 10.3390/tomography9020053] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2023] [Revised: 03/08/2023] [Accepted: 03/08/2023] [Indexed: 03/19/2023] Open
Abstract
The availability of high-fidelity animal models for oncology research has grown enormously in recent years, enabling preclinical studies relevant to prevention, diagnosis, and treatment of cancer to be undertaken. This has led to increased opportunities to conduct co-clinical trials, which are studies on patients that are carried out parallel to or sequentially with animal models of cancer that mirror the biology of the patients' tumors. Patient-derived xenografts (PDX) and genetically engineered mouse models (GEMM) are considered to be the models that best represent human disease and have high translational value. Notably, one element of co-clinical trials that still needs significant optimization is quantitative imaging. The National Cancer Institute has organized a Co-Clinical Imaging Resource Program (CIRP) network to establish best practices for co-clinical imaging and to optimize translational quantitative imaging methodologies. This overview describes the ten co-clinical trials of investigators from eleven institutions who are currently supported by the CIRP initiative and are members of the Animal Models and Co-clinical Trials (AMCT) Working Group. Each team describes their corresponding clinical trial, type of cancer targeted, rationale for choice of animal models, therapy, and imaging modalities. The strengths and weaknesses of the co-clinical trial design and the challenges encountered are considered. The rich research resources generated by the members of the AMCT Working Group will benefit the broad research community and improve the quality and translational impact of imaging in co-clinical trials.
Collapse
Affiliation(s)
- Donna M. Peehl
- Department of Radiology and Biomedical Imaging, University of California San Francisco, San Francisco, CA 94158, USA; (J.K.); (R.S.)
| | - Cristian T. Badea
- Department of Radiology, Duke University Medical Center, Durham, NC 27710, USA;
| | - Thomas L. Chenevert
- Department of Radiology and the Center for Molecular Imaging, University of Michigan School of Medicine, Ann Arbor, MI 48109, USA; (T.L.C.); (G.D.L.); (B.D.R.)
| | - Heike E. Daldrup-Link
- Molecular Imaging Program at Stanford (MIPS), Department of Radiology, Stanford University, Stanford, CA 94305, USA; (H.E.D.-L.); (R.R.)
| | - Li Ding
- Department of Medicine, Washington University School of Medicine, St. Louis, MO 63110, USA; (L.D.); (S.L.); (C.X.M.)
| | - Lacey E. Dobrolecki
- Advanced Technology Cores, Baylor College of Medicine, Houston, TX 77030, USA;
| | | | - Paul E. Kinahan
- Department of Radiology, University of Washington, Seattle, WA 98105, USA;
| | - John Kurhanewicz
- Department of Radiology and Biomedical Imaging, University of California San Francisco, San Francisco, CA 94158, USA; (J.K.); (R.S.)
| | - Michael T. Lewis
- Departments of Molecular and Cellular Biology and Radiology, Baylor College of Medicine, Houston, TX 77030, USA;
| | - Shunqiang Li
- Department of Medicine, Washington University School of Medicine, St. Louis, MO 63110, USA; (L.D.); (S.L.); (C.X.M.)
| | - Gary D. Luker
- Department of Radiology and the Center for Molecular Imaging, University of Michigan School of Medicine, Ann Arbor, MI 48109, USA; (T.L.C.); (G.D.L.); (B.D.R.)
- Department of Microbiology and Immunology, University of Michigan School of Medicine, Ann Arbor, MI 48109, USA
| | - Cynthia X. Ma
- Department of Medicine, Washington University School of Medicine, St. Louis, MO 63110, USA; (L.D.); (S.L.); (C.X.M.)
| | - H. Charles Manning
- Department of Cancer Systems Imaging, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA;
| | - Yvonne M. Mowery
- Department of Radiation Oncology, Duke University School of Medicine, Durham, NC 27708, USA;
- Department of Head and Neck Surgery & Communication Sciences, Duke University School of Medicine, Durham, NC 27708, USA
| | - Peter J. O’Dwyer
- Abramson Cancer Center, University of Pennsylvania, Philadelphia, PA 19104, USA; (P.J.O.); (M.A.R.); (R.Z.)
| | - Robia G. Pautler
- Department of Integrative Physiology, Baylor College of Medicine, Houston, TX 77030, USA;
| | - Mark A. Rosen
- Abramson Cancer Center, University of Pennsylvania, Philadelphia, PA 19104, USA; (P.J.O.); (M.A.R.); (R.Z.)
- Department of Radiology, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Raheleh Roudi
- Molecular Imaging Program at Stanford (MIPS), Department of Radiology, Stanford University, Stanford, CA 94305, USA; (H.E.D.-L.); (R.R.)
| | - Brian D. Ross
- Department of Radiology and the Center for Molecular Imaging, University of Michigan School of Medicine, Ann Arbor, MI 48109, USA; (T.L.C.); (G.D.L.); (B.D.R.)
- Department of Biological Chemistry, University of Michigan School of Medicine, Ann Arbor, MI 48109, USA
| | - Kooresh I. Shoghi
- Mallinckrodt Institute of Radiology (MIR), Washington University School of Medicine, St. Louis, MO 63110, USA; (K.I.S.); (R.L.W.)
| | - Renuka Sriram
- Department of Radiology and Biomedical Imaging, University of California San Francisco, San Francisco, CA 94158, USA; (J.K.); (R.S.)
| | - Moshe Talpaz
- Division of Hematology/Oncology, University of Michigan School of Medicine, Ann Arbor, MI 48109, USA;
- Department of Internal Medicine, University of Michigan School of Medicine, Ann Arbor, MI 48109, USA
| | - Richard L. Wahl
- Mallinckrodt Institute of Radiology (MIR), Washington University School of Medicine, St. Louis, MO 63110, USA; (K.I.S.); (R.L.W.)
| | - Rong Zhou
- Abramson Cancer Center, University of Pennsylvania, Philadelphia, PA 19104, USA; (P.J.O.); (M.A.R.); (R.Z.)
- Department of Radiology, University of Pennsylvania, Philadelphia, PA 19104, USA
| |
Collapse
|
4
|
Mai CW, Chin KY, Foong LC, Pang KL, Yu B, Shu Y, Chen S, Cheong SK, Chua CW. Modeling prostate cancer: What does it take to build an ideal tumor model? Cancer Lett 2022; 543:215794. [PMID: 35718268 DOI: 10.1016/j.canlet.2022.215794] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2022] [Accepted: 06/10/2022] [Indexed: 11/17/2022]
Abstract
Prostate cancer is frequently characterized as a multifocal disease with great intratumoral heterogeneity as well as a high propensity to metastasize to bone. Consequently, modeling prostate tumor has remained a challenging task for researchers in this field. In the past decades, genomic advances have led to the identification of key molecular alterations in prostate cancer. Moreover, resistance towards second-generation androgen-deprivation therapy, namely abiraterone and enzalutamide has unveiled androgen receptor-independent diseases with distinctive histopathological and clinical features. In this review, we have critically evaluated the commonly used preclinical models of prostate cancer with respect to their capability of recapitulating the key genomic alterations, histopathological features and bone metastatic potential of human prostate tumors. In addition, we have also discussed the potential use of the emerging organoid models in prostate cancer research, which possess clear advantages over the commonly used preclinical tumor models. We anticipate that no single model can faithfully recapitulate the complexity of prostate cancer, and thus, propose the use of a cost- and time-efficient integrated tumor modeling approach for future prostate cancer investigations.
Collapse
Affiliation(s)
- Chun-Wai Mai
- State Key Laboratory of Oncogenes and Related Genes, Renji-Med X Clinical Stem Cell Research Center, Department of Urology, Ren Ji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, 200127, China; Centre for Stem Cell Research, Faculty of Medicine and Health Sciences, Universiti Tunku Abdul Rahman, Selangor, 43000, Malaysia
| | - Kok-Yong Chin
- State Key Laboratory of Oncogenes and Related Genes, Renji-Med X Clinical Stem Cell Research Center, Department of Urology, Ren Ji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, 200127, China; Department of Pharmacology, Faculty of Medicine, Universiti Kebangsaan Malaysia, Kuala Lumpur, 56000, Malaysia
| | - Lian-Chee Foong
- State Key Laboratory of Oncogenes and Related Genes, Renji-Med X Clinical Stem Cell Research Center, Department of Urology, Ren Ji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, 200127, China; Centre for Stem Cell Research, Faculty of Medicine and Health Sciences, Universiti Tunku Abdul Rahman, Selangor, 43000, Malaysia
| | - Kok-Lun Pang
- Newcastle University Medicine Malaysia, Iskandar Puteri, 79200, Malaysia
| | - Bin Yu
- State Key Laboratory of Oncogenes and Related Genes, Renji-Med X Clinical Stem Cell Research Center, Department of Urology, Ren Ji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, 200127, China
| | - Yu Shu
- State Key Laboratory of Oncogenes and Related Genes, Renji-Med X Clinical Stem Cell Research Center, Department of Urology, Ren Ji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, 200127, China
| | - Sisi Chen
- State Key Laboratory of Oncogenes and Related Genes, Renji-Med X Clinical Stem Cell Research Center, Department of Urology, Ren Ji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, 200127, China
| | - Soon-Keng Cheong
- Centre for Stem Cell Research, Faculty of Medicine and Health Sciences, Universiti Tunku Abdul Rahman, Selangor, 43000, Malaysia
| | - Chee Wai Chua
- State Key Laboratory of Oncogenes and Related Genes, Renji-Med X Clinical Stem Cell Research Center, Department of Urology, Ren Ji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, 200127, China.
| |
Collapse
|
5
|
Lee S, Mendoza TR, Burner DN, Muldong MT, Wu CCN, Arreola-Villanueva C, Zuniga A, Greenburg O, Zhu WY, Murtadha J, Koutouan E, Pineda N, Pham H, Kang SG, Kim HT, Pineda G, Lennon KM, Cacalano NA, Jamieson CHM, Kane CJ, Kulidjian AA, Gaasterland T, Jamieson CAM. Novel Dormancy Mechanism of Castration Resistance in Bone Metastatic Prostate Cancer Organoids. Int J Mol Sci 2022; 23:ijms23063203. [PMID: 35328625 PMCID: PMC8952299 DOI: 10.3390/ijms23063203] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2021] [Revised: 02/07/2022] [Accepted: 02/17/2022] [Indexed: 12/12/2022] Open
Abstract
Advanced prostate cancer (PCa) patients with bone metastases are treated with androgen pathway directed therapy (APDT). However, this treatment invariably fails and the cancer becomes castration resistant. To elucidate resistance mechanisms and to provide a more predictive pre-clinical research platform reflecting tumor heterogeneity, we established organoids from a patient-derived xenograft (PDX) model of bone metastatic prostate cancer, PCSD1. APDT-resistant PDX-derived organoids (PDOs) emerged when cultured without androgen or with the anti-androgen, enzalutamide. Transcriptomics revealed up-regulation of neurogenic and steroidogenic genes and down-regulation of DNA repair, cell cycle, circadian pathways and the severe acute respiratory syndrome (SARS)-CoV-2 host viral entry factors, ACE2 and TMPRSS2. Time course analysis of the cell cycle in live cells revealed that enzalutamide induced a gradual transition into a reversible dormant state as shown here for the first time at the single cell level in the context of multi-cellular, 3D living organoids using the Fucci2BL fluorescent live cell cycle tracker system. We show here a new mechanism of castration resistance in which enzalutamide induced dormancy and novel basal-luminal-like cells in bone metastatic prostate cancer organoids. These PDX organoids can be used to develop therapies targeting dormant APDT-resistant cells and host factors required for SARS-CoV-2 viral entry.
Collapse
MESH Headings
- Androgens/pharmacology
- Angiotensin-Converting Enzyme 2/genetics
- Angiotensin-Converting Enzyme 2/metabolism
- Animals
- Benzamides/pharmacology
- Bone Neoplasms/genetics
- Bone Neoplasms/metabolism
- Bone Neoplasms/secondary
- COVID-19/genetics
- COVID-19/metabolism
- COVID-19/virology
- Drug Resistance, Neoplasm/drug effects
- Drug Resistance, Neoplasm/genetics
- Gene Expression Profiling/methods
- Gene Expression Regulation, Neoplastic/drug effects
- Gene Expression Regulation, Neoplastic/genetics
- Humans
- Male
- Mice
- Nitriles/pharmacology
- Organoids/metabolism
- Phenylthiohydantoin/pharmacology
- Prostatic Neoplasms/genetics
- Prostatic Neoplasms/metabolism
- Prostatic Neoplasms/pathology
- Prostatic Neoplasms, Castration-Resistant/genetics
- Prostatic Neoplasms, Castration-Resistant/metabolism
- Prostatic Neoplasms, Castration-Resistant/pathology
- Receptors, Virus/genetics
- Receptors, Virus/metabolism
- SARS-CoV-2/metabolism
- SARS-CoV-2/physiology
- Serine Endopeptidases/genetics
- Serine Endopeptidases/metabolism
- Transplantation, Heterologous
- Virus Internalization
Collapse
Affiliation(s)
- Sanghee Lee
- Department of Urology, University of California San Diego, La Jolla, CA 92093, USA; (S.L.); (T.R.M.); (D.N.B.); (M.T.M.); (C.A.-V.); (A.Z.); (O.G.); (W.Y.Z.); (J.M.); (E.K.); (N.P.); (H.P.); (C.J.K.)
- Moores Cancer Center, University of California San Diego, La Jolla, CA 92093, USA; (C.C.N.W.); (C.H.M.J.)
- Rady Children’s Hospital, San Diego, CA 92123, USA
| | - Theresa R. Mendoza
- Department of Urology, University of California San Diego, La Jolla, CA 92093, USA; (S.L.); (T.R.M.); (D.N.B.); (M.T.M.); (C.A.-V.); (A.Z.); (O.G.); (W.Y.Z.); (J.M.); (E.K.); (N.P.); (H.P.); (C.J.K.)
- Moores Cancer Center, University of California San Diego, La Jolla, CA 92093, USA; (C.C.N.W.); (C.H.M.J.)
| | - Danielle N. Burner
- Department of Urology, University of California San Diego, La Jolla, CA 92093, USA; (S.L.); (T.R.M.); (D.N.B.); (M.T.M.); (C.A.-V.); (A.Z.); (O.G.); (W.Y.Z.); (J.M.); (E.K.); (N.P.); (H.P.); (C.J.K.)
- Moores Cancer Center, University of California San Diego, La Jolla, CA 92093, USA; (C.C.N.W.); (C.H.M.J.)
| | - Michelle T. Muldong
- Department of Urology, University of California San Diego, La Jolla, CA 92093, USA; (S.L.); (T.R.M.); (D.N.B.); (M.T.M.); (C.A.-V.); (A.Z.); (O.G.); (W.Y.Z.); (J.M.); (E.K.); (N.P.); (H.P.); (C.J.K.)
- Moores Cancer Center, University of California San Diego, La Jolla, CA 92093, USA; (C.C.N.W.); (C.H.M.J.)
| | - Christina C. N. Wu
- Moores Cancer Center, University of California San Diego, La Jolla, CA 92093, USA; (C.C.N.W.); (C.H.M.J.)
- Department of Medicine, University of California San Diego, La Jolla, CA 92093, USA; (G.P.); (K.M.L.)
| | - Catalina Arreola-Villanueva
- Department of Urology, University of California San Diego, La Jolla, CA 92093, USA; (S.L.); (T.R.M.); (D.N.B.); (M.T.M.); (C.A.-V.); (A.Z.); (O.G.); (W.Y.Z.); (J.M.); (E.K.); (N.P.); (H.P.); (C.J.K.)
- Moores Cancer Center, University of California San Diego, La Jolla, CA 92093, USA; (C.C.N.W.); (C.H.M.J.)
| | - Abril Zuniga
- Department of Urology, University of California San Diego, La Jolla, CA 92093, USA; (S.L.); (T.R.M.); (D.N.B.); (M.T.M.); (C.A.-V.); (A.Z.); (O.G.); (W.Y.Z.); (J.M.); (E.K.); (N.P.); (H.P.); (C.J.K.)
- Moores Cancer Center, University of California San Diego, La Jolla, CA 92093, USA; (C.C.N.W.); (C.H.M.J.)
| | - Olga Greenburg
- Department of Urology, University of California San Diego, La Jolla, CA 92093, USA; (S.L.); (T.R.M.); (D.N.B.); (M.T.M.); (C.A.-V.); (A.Z.); (O.G.); (W.Y.Z.); (J.M.); (E.K.); (N.P.); (H.P.); (C.J.K.)
- Moores Cancer Center, University of California San Diego, La Jolla, CA 92093, USA; (C.C.N.W.); (C.H.M.J.)
| | - William Y. Zhu
- Department of Urology, University of California San Diego, La Jolla, CA 92093, USA; (S.L.); (T.R.M.); (D.N.B.); (M.T.M.); (C.A.-V.); (A.Z.); (O.G.); (W.Y.Z.); (J.M.); (E.K.); (N.P.); (H.P.); (C.J.K.)
- Moores Cancer Center, University of California San Diego, La Jolla, CA 92093, USA; (C.C.N.W.); (C.H.M.J.)
| | - Jamillah Murtadha
- Department of Urology, University of California San Diego, La Jolla, CA 92093, USA; (S.L.); (T.R.M.); (D.N.B.); (M.T.M.); (C.A.-V.); (A.Z.); (O.G.); (W.Y.Z.); (J.M.); (E.K.); (N.P.); (H.P.); (C.J.K.)
- Moores Cancer Center, University of California San Diego, La Jolla, CA 92093, USA; (C.C.N.W.); (C.H.M.J.)
| | - Evodie Koutouan
- Department of Urology, University of California San Diego, La Jolla, CA 92093, USA; (S.L.); (T.R.M.); (D.N.B.); (M.T.M.); (C.A.-V.); (A.Z.); (O.G.); (W.Y.Z.); (J.M.); (E.K.); (N.P.); (H.P.); (C.J.K.)
- Moores Cancer Center, University of California San Diego, La Jolla, CA 92093, USA; (C.C.N.W.); (C.H.M.J.)
| | - Naomi Pineda
- Department of Urology, University of California San Diego, La Jolla, CA 92093, USA; (S.L.); (T.R.M.); (D.N.B.); (M.T.M.); (C.A.-V.); (A.Z.); (O.G.); (W.Y.Z.); (J.M.); (E.K.); (N.P.); (H.P.); (C.J.K.)
- Moores Cancer Center, University of California San Diego, La Jolla, CA 92093, USA; (C.C.N.W.); (C.H.M.J.)
| | - Hao Pham
- Department of Urology, University of California San Diego, La Jolla, CA 92093, USA; (S.L.); (T.R.M.); (D.N.B.); (M.T.M.); (C.A.-V.); (A.Z.); (O.G.); (W.Y.Z.); (J.M.); (E.K.); (N.P.); (H.P.); (C.J.K.)
- Moores Cancer Center, University of California San Diego, La Jolla, CA 92093, USA; (C.C.N.W.); (C.H.M.J.)
| | - Sung-Gu Kang
- Department of Urology, Korea University College of Medicine, Seongbuk-Gu, Seoul 02841, Korea;
| | - Hyun Tae Kim
- Department of Urology, School of Medicine, Kyungpook National University, Daegu 41944, Korea;
| | - Gabriel Pineda
- Department of Medicine, University of California San Diego, La Jolla, CA 92093, USA; (G.P.); (K.M.L.)
| | - Kathleen M. Lennon
- Department of Medicine, University of California San Diego, La Jolla, CA 92093, USA; (G.P.); (K.M.L.)
| | - Nicholas A. Cacalano
- Department of Radiation Oncology, University of California, Los Angeles, CA 90095, USA;
| | - Catriona H. M. Jamieson
- Moores Cancer Center, University of California San Diego, La Jolla, CA 92093, USA; (C.C.N.W.); (C.H.M.J.)
- Department of Urology, Korea University College of Medicine, Seongbuk-Gu, Seoul 02841, Korea;
| | - Christopher J. Kane
- Department of Urology, University of California San Diego, La Jolla, CA 92093, USA; (S.L.); (T.R.M.); (D.N.B.); (M.T.M.); (C.A.-V.); (A.Z.); (O.G.); (W.Y.Z.); (J.M.); (E.K.); (N.P.); (H.P.); (C.J.K.)
- Moores Cancer Center, University of California San Diego, La Jolla, CA 92093, USA; (C.C.N.W.); (C.H.M.J.)
| | | | - Terry Gaasterland
- Scripps Institution of Oceanography, University of California San Diego, La Jolla, CA 92093, USA;
- Institute for Genomic Medicine, University of California San Diego, La Jolla, CA 92093, USA
| | - Christina A. M. Jamieson
- Department of Urology, University of California San Diego, La Jolla, CA 92093, USA; (S.L.); (T.R.M.); (D.N.B.); (M.T.M.); (C.A.-V.); (A.Z.); (O.G.); (W.Y.Z.); (J.M.); (E.K.); (N.P.); (H.P.); (C.J.K.)
- Moores Cancer Center, University of California San Diego, La Jolla, CA 92093, USA; (C.C.N.W.); (C.H.M.J.)
- Correspondence: ; Tel.: +1-858-534-2921
| |
Collapse
|
6
|
Lee SC, Ma JSY, Kim MS, Laborda E, Choi SH, Hampton EN, Yun H, Nunez V, Muldong MT, Wu CN, Ma W, Kulidjian AA, Kane CJ, Klyushnichenko V, Woods AK, Joseph SB, Petrassi M, Wisler J, Li J, Jamieson CAM, Schultz PG, Kim CH, Young TS. A PSMA-targeted bispecific antibody for prostate cancer driven by a small-molecule targeting ligand. SCIENCE ADVANCES 2021; 7:7/33/eabi8193. [PMID: 34380625 PMCID: PMC8357232 DOI: 10.1126/sciadv.abi8193] [Citation(s) in RCA: 19] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/01/2021] [Accepted: 06/23/2021] [Indexed: 06/13/2023]
Abstract
Despite the development of next-generation antiandrogens, metastatic castration-resistant prostate cancer (mCRPC) remains incurable. Here, we describe a unique semisynthetic bispecific antibody that uses site-specific unnatural amino acid conjugation to combine the potency of a T cell-recruiting anti-CD3 antibody with the specificity of an imaging ligand (DUPA) for prostate-specific membrane antigen. This format enabled optimization of structure and function to produce a candidate (CCW702) with specific, potent in vitro cytotoxicity and improved stability compared with a bispecific single-chain variable fragment format. In vivo, CCW702 eliminated C4-2 xenografts with as few as three weekly subcutaneous doses and prevented growth of PCSD1 patient-derived xenograft tumors in mice. In cynomolgus monkeys, CCW702 was well tolerated up to 34.1 mg/kg per dose, with near-complete subcutaneous bioavailability and a PK profile supporting testing of a weekly dosing regimen in patients. CCW702 is being evaluated in a first in-human clinical trial for men with mCRPC who had progressed on prior therapies (NCT04077021).
Collapse
Affiliation(s)
- Sung Chang Lee
- Department of Biology, Calibr, The Scripps Research Institute, La Jolla, CA 92037, USA
| | - Jennifer S Y Ma
- Department of Biology, Calibr, The Scripps Research Institute, La Jolla, CA 92037, USA
| | - Min Soo Kim
- Department of Biology, Calibr, The Scripps Research Institute, La Jolla, CA 92037, USA
| | - Eduardo Laborda
- Department of Biology, Calibr, The Scripps Research Institute, La Jolla, CA 92037, USA
| | - Sei-Hyun Choi
- Department of Chemistry and Skaggs Institute for Chemical Biology, The Scripps Research Institute, La Jolla, CA 92037, USA
| | - Eric N Hampton
- Department of Biology, Calibr, The Scripps Research Institute, La Jolla, CA 92037, USA
| | - Hwayoung Yun
- Department of Chemistry and Skaggs Institute for Chemical Biology, The Scripps Research Institute, La Jolla, CA 92037, USA
| | - Vanessa Nunez
- Department of Biology, Calibr, The Scripps Research Institute, La Jolla, CA 92037, USA
| | - Michelle T Muldong
- Department of Urology, Moores Cancer Center, University of California, San Diego, La Jolla, CA 92093, USA
| | - Christina N Wu
- Department of Medicine, Moores Cancer Center, University of California, San Diego, La Jolla, CA 92093, USA
| | - Wenxue Ma
- Department of Medicine, Moores Cancer Center, University of California, San Diego, La Jolla, CA 92093, USA
| | - Anna A Kulidjian
- Department of Orthopedic Surgery, Scripps MD Anderson Cancer Center, La Jolla, CA 92093, USA
| | - Christopher J Kane
- Department of Medicine, Moores Cancer Center, University of California, San Diego, La Jolla, CA 92093, USA
| | - Vadim Klyushnichenko
- Department of Biology, Calibr, The Scripps Research Institute, La Jolla, CA 92037, USA
| | - Ashley K Woods
- Department of Biology, Calibr, The Scripps Research Institute, La Jolla, CA 92037, USA
| | - Sean B Joseph
- Department of Biology, Calibr, The Scripps Research Institute, La Jolla, CA 92037, USA
| | - Mike Petrassi
- Department of Biology, Calibr, The Scripps Research Institute, La Jolla, CA 92037, USA
| | - John Wisler
- Department of Biology, Calibr, The Scripps Research Institute, La Jolla, CA 92037, USA
| | - Jing Li
- Department of Biology, Calibr, The Scripps Research Institute, La Jolla, CA 92037, USA
| | - Christina A M Jamieson
- Department of Urology, Moores Cancer Center, University of California, San Diego, La Jolla, CA 92093, USA
| | - Peter G Schultz
- Department of Biology, Calibr, The Scripps Research Institute, La Jolla, CA 92037, USA.
- Department of Chemistry and Skaggs Institute for Chemical Biology, The Scripps Research Institute, La Jolla, CA 92037, USA
| | - Chan Hyuk Kim
- Department of Biology, Calibr, The Scripps Research Institute, La Jolla, CA 92037, USA.
| | - Travis S Young
- Department of Biology, Calibr, The Scripps Research Institute, La Jolla, CA 92037, USA.
- Department of Chemistry and Skaggs Institute for Chemical Biology, The Scripps Research Institute, La Jolla, CA 92037, USA
| |
Collapse
|
7
|
Bock N, Kryza T, Shokoohmand A, Röhl J, Ravichandran A, Wille ML, Nelson CC, Hutmacher DW, Clements JA. In vitro engineering of a bone metastases model allows for study of the effects of antiandrogen therapies in advanced prostate cancer. SCIENCE ADVANCES 2021; 7:eabg2564. [PMID: 34193425 PMCID: PMC8245033 DOI: 10.1126/sciadv.abg2564] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/22/2020] [Accepted: 05/17/2021] [Indexed: 05/05/2023]
Abstract
While androgen-targeted therapies are routinely used in advanced prostate cancer (PCa), their effect is poorly understood in treating bone metastatic lesions and ultimately results in the development of metastatic castrate resistant prostate cancer (mCRPC). Here, we used an all-human microtissue-engineered model of mineralized metastatic tissue combining human osteoprogenitor cells, 3D printing and prostate cancer cells, to assess the effects of the antiandrogens, bicalutamide, and enzalutamide in this microenvironment. We demonstrate that cancer/bone stroma interactions and antiandrogens drive cancer progression in a mineralized microenvironment. Probing the bone microenvironment with enzalutamide led to stronger cancer cell adaptive responses and osteomimicry than bicalutamide. Enzalutamide presented with better treatment response, in line with enzalutamide delaying time to bone-related events and enzalutamide extending survival in mCRPC. The all-human microtissue-engineered model of mineralized metastatic tissue presented here represents a substantial advance to dissect the role of the bone tumor microenvironment and responses to therapies for mCPRC.
Collapse
Affiliation(s)
- Nathalie Bock
- School of Biomedical Sciences, Faculty of Health and Australian Prostate Cancer Research Centre (APCRC-Q), Brisbane 4000, QLD, Australia
- Institute of Health and Biomedical Innovation (IHBI), Queensland University of Technology (QUT), Brisbane 4000, QLD, Australia
- Translational Research Institute (TRI), QUT, Woolloongabba, 4102 QLD, Australia
- Centre in Regenerative Medicine, IHBI, QUT, Kelvin Grove, 4059 QLD, Australia
- Australian Research Council (ARC) Training Centre for Multiscale 3D Imaging, Modelling and Manufacturing (M3D Innovation), QUT, Kelvin Grove, 4059 QLD, Australia
| | - Thomas Kryza
- School of Biomedical Sciences, Faculty of Health and Australian Prostate Cancer Research Centre (APCRC-Q), Brisbane 4000, QLD, Australia
- Institute of Health and Biomedical Innovation (IHBI), Queensland University of Technology (QUT), Brisbane 4000, QLD, Australia
- Translational Research Institute (TRI), QUT, Woolloongabba, 4102 QLD, Australia
| | - Ali Shokoohmand
- School of Biomedical Sciences, Faculty of Health and Australian Prostate Cancer Research Centre (APCRC-Q), Brisbane 4000, QLD, Australia
- Institute of Health and Biomedical Innovation (IHBI), Queensland University of Technology (QUT), Brisbane 4000, QLD, Australia
- Translational Research Institute (TRI), QUT, Woolloongabba, 4102 QLD, Australia
- Centre in Regenerative Medicine, IHBI, QUT, Kelvin Grove, 4059 QLD, Australia
| | - Joan Röhl
- School of Biomedical Sciences, Faculty of Health and Australian Prostate Cancer Research Centre (APCRC-Q), Brisbane 4000, QLD, Australia
- Institute of Health and Biomedical Innovation (IHBI), Queensland University of Technology (QUT), Brisbane 4000, QLD, Australia
- Translational Research Institute (TRI), QUT, Woolloongabba, 4102 QLD, Australia
| | - Akhilandeshwari Ravichandran
- Institute of Health and Biomedical Innovation (IHBI), Queensland University of Technology (QUT), Brisbane 4000, QLD, Australia
- Translational Research Institute (TRI), QUT, Woolloongabba, 4102 QLD, Australia
- Centre in Regenerative Medicine, IHBI, QUT, Kelvin Grove, 4059 QLD, Australia
| | - Marie-Luise Wille
- Institute of Health and Biomedical Innovation (IHBI), Queensland University of Technology (QUT), Brisbane 4000, QLD, Australia
- Australian Research Council (ARC) Training Centre for Multiscale 3D Imaging, Modelling and Manufacturing (M3D Innovation), QUT, Kelvin Grove, 4059 QLD, Australia
- Bone and Joint Disorders Program, School of Mechanical Medical, and Process Engineering, Science and Engineering Faculty (SEF), QUT, Brisbane, 4000 QLD, Australia
| | - Colleen C Nelson
- School of Biomedical Sciences, Faculty of Health and Australian Prostate Cancer Research Centre (APCRC-Q), Brisbane 4000, QLD, Australia
- Institute of Health and Biomedical Innovation (IHBI), Queensland University of Technology (QUT), Brisbane 4000, QLD, Australia
- Translational Research Institute (TRI), QUT, Woolloongabba, 4102 QLD, Australia
| | - Dietmar W Hutmacher
- School of Biomedical Sciences, Faculty of Health and Australian Prostate Cancer Research Centre (APCRC-Q), Brisbane 4000, QLD, Australia.
- Translational Research Institute (TRI), QUT, Woolloongabba, 4102 QLD, Australia
- Centre in Regenerative Medicine, IHBI, QUT, Kelvin Grove, 4059 QLD, Australia
- Australian Research Council (ARC) Training Centre for Multiscale 3D Imaging, Modelling and Manufacturing (M3D Innovation), QUT, Kelvin Grove, 4059 QLD, Australia
- Bone and Joint Disorders Program, School of Mechanical Medical, and Process Engineering, Science and Engineering Faculty (SEF), QUT, Brisbane, 4000 QLD, Australia
- ARC Training Centre in Additive Biomanufacturing, QUT, Kelvin Grove, 4059 QLD, Australia
| | - Judith A Clements
- School of Biomedical Sciences, Faculty of Health and Australian Prostate Cancer Research Centre (APCRC-Q), Brisbane 4000, QLD, Australia.
- Institute of Health and Biomedical Innovation (IHBI), Queensland University of Technology (QUT), Brisbane 4000, QLD, Australia
- Translational Research Institute (TRI), QUT, Woolloongabba, 4102 QLD, Australia
| |
Collapse
|
8
|
Liu Z, Murphy SF, Huang J, Zhao L, Hall CC, Schaeffer AJ, Schaeffer EM, Thumbikat P. A novel immunocompetent model of metastatic prostate cancer-induced bone pain. Prostate 2020; 80:782-794. [PMID: 32407603 PMCID: PMC7375026 DOI: 10.1002/pros.23993] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/25/2019] [Accepted: 03/18/2020] [Indexed: 12/14/2022]
Abstract
BACKGROUND Over 70% to 85% of men with advanced prostate cancer (PCa) develop bone metastases characterized by severe bone pain and increased likelihood of bone fracture. These clinical features result in decreased quality of life and act as a predictor of higher mortality. Mechanistically, the skeletal pathologies such as osteolytic lesions and abnormal osteoblastic activity drive these symptoms. The role of immune cells in bone cancer pain remains understudied, here we sought to recapitulate this symptomology in a murine model. METHODS The prostate cancer bone metastasis-induced pain model (CIBP) was established by transplanting a mouse prostate cancer cell line into the femur of immunocompetent mice. Pain development, gait dynamics, and the changes in emotional activities like depression and anxiety were evaluated. Animal tissues including femurs, dorsal root ganglion (DRG), and spinal cord were collected at killing and microcomputed tomography (μCT), histology/immunohistochemistry, and quantitative immunofluorescent analysis were performed. RESULTS Mice receiving prostate cancer cells showed a significantly lower threshold for paw withdrawal responses induced by mechanical stimulation compared with their control counterparts. Zero maze and DigiGait analyses indicated reduced and aberrant movement associated emotional activity compared with sham control at 8-weeks postinjection. The μCT analysis showed osteolytic and osteoblastic changes and a 50% reduction of the trabecular volumes within the prostate cancer group. Neurologically we demonstrated, increased calcitonin gene-related peptide (CGRP) and neuronal p75NTR immune-reactivities in both the projected terminals of the superficial dorsal horn and partial afferent neurons in DRG at L2 to L4 level in tumor-bearing mice. Furthermore, our data show elevated nerve growth factor (NGF) and TrkA immunoreactivities in the same segment of the superficial dorsal horn that were, however, not colocalized with CGRP and p75NTR . CONCLUSIONS This study describes a novel immunocompetent model of CIBP and demonstrates the contribution of NGF and p75NTR to chronic pain in bone metastasis.
Collapse
Affiliation(s)
- Zhiqiang Liu
- Dept. of Urology, Feinberg School of Medicine, Northwestern University, Chicago, IL 60611
| | - Stephen F. Murphy
- Dept. of Urology, Feinberg School of Medicine, Northwestern University, Chicago, IL 60611
| | - Jian Huang
- Department of Orthopedic Surgery, Rush University Medical Center, Chicago, USA
| | - Lan Zhao
- Department of Orthopedic Surgery, Rush University Medical Center, Chicago, USA
| | - Christel C. Hall
- Dept. of Urology, Feinberg School of Medicine, Northwestern University, Chicago, IL 60611
| | - Anthony J. Schaeffer
- Dept. of Urology, Feinberg School of Medicine, Northwestern University, Chicago, IL 60611
| | - Edward M. Schaeffer
- Dept. of Urology, Feinberg School of Medicine, Northwestern University, Chicago, IL 60611
| | - Praveen Thumbikat
- Dept. of Urology, Feinberg School of Medicine, Northwestern University, Chicago, IL 60611
| |
Collapse
|
9
|
Cheng J, Moore S, Gomez-Galeno J, Lee DH, Okolotowicz KJ, Cashman JR. A Novel Small Molecule Inhibits Tumor Growth and Synergizes Effects of Enzalutamide on Prostate Cancer. J Pharmacol Exp Ther 2019; 371:703-712. [PMID: 31582422 DOI: 10.1124/jpet.119.261040] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2019] [Accepted: 09/27/2019] [Indexed: 01/20/2023] Open
Abstract
Prostate cancer (PCa) is the second leading cause of cancer-related death for men in the United States. Approximately 35% of PCa recurs and is often transformed to castration-resistant prostate cancer (CRPCa), the most deadly and aggressive form of PCa. However, the CRPCa standard-of-care treatment (enzalutamide with abiraterone) usually has limited efficacy. Herein, we report a novel molecule (PAWI-2) that inhibits cellular proliferation of androgen-sensitive and androgen-insensitive cells (LNCaP and PC-3, respectively). In vivo studies in a PC-3 xenograft model showed that PAWI-2 (20 mg/kg per day i.p., 21 days) inhibited tumor growth by 49% compared with vehicle-treated mice. PAWI-2 synergized currently clinically used enzalutamide in in vitro inhibition of PCa cell viability and resensitized inhibition of in vivo PC-3 tumor growth. Compared with vehicle-treated mice, PC-3 xenograft studies also showed that PAWI-2 (20 mg/kg per day i.p., 21 days) and enzalutamide (5 mg/kg per day i.p., 21 days) inhibited tumor growth by 63%. Synergism was mainly controlled by the imbalance of prosurvival factors (e.g., Bcl-2, Bcl-xL, Mcl-1) and antisurvival factors (e.g., Bax, Bak) induced by affecting mitochondrial membrane potential/mitochondria dynamics. Thus, PAWI-2 utilizes a distinct mechanism of action to inhibit PCa growth independently of androgen receptor signaling and overcomes enzalutamide-resistant CRPCa. SIGNIFICANCE STATEMENT: Castration-resistant prostate cancer (CRPCa) is the most aggressive human prostate cancer (PCa) but standard chemotherapies for CRPCa are largely ineffective. PAWI-2 potently inhibits PCa proliferation in vitro and in vivo regardless of androgen receptor status and uses a distinct mechanism of action. PAWI-2 has greater utility in treating CRPCa than standard-of-care therapy. PAWI-2 possesses promising therapeutic potency in low-dose combination therapy with a clinically used drug (e.g., enzalutamide). This study describes a new approach to address the overarching challenge in clinical treatment of CRPCa.
Collapse
Affiliation(s)
- Jiongjia Cheng
- Human BioMolecular Research Institute and ChemRegen Inc., San Diego, California
| | - Stephanie Moore
- Human BioMolecular Research Institute and ChemRegen Inc., San Diego, California
| | - Jorge Gomez-Galeno
- Human BioMolecular Research Institute and ChemRegen Inc., San Diego, California
| | - Dong-Hoon Lee
- Human BioMolecular Research Institute and ChemRegen Inc., San Diego, California
| | - Karl J Okolotowicz
- Human BioMolecular Research Institute and ChemRegen Inc., San Diego, California
| | - John R Cashman
- Human BioMolecular Research Institute and ChemRegen Inc., San Diego, California
| |
Collapse
|
10
|
Toth RK, Tran JD, Muldong MT, Nollet EA, Schulz VV, Jensen CC, Hazlehurst LA, Corey E, Durden D, Jamieson C, Miranti CK, Warfel NA. Hypoxia-induced PIM kinase and laminin-activated integrin α6 mediate resistance to PI3K inhibitors in bone-metastatic CRPC. AMERICAN JOURNAL OF CLINICAL AND EXPERIMENTAL UROLOGY 2019; 7:297-312. [PMID: 31511835 PMCID: PMC6734039] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Subscribe] [Scholar Register] [Received: 06/27/2019] [Accepted: 07/02/2019] [Indexed: 06/10/2023]
Abstract
Bone-metastatic castration-resistant prostate cancer (CRPC) is lethal due to inherent resistance to androgen deprivation therapy, chemotherapy, and targeted therapies. Despite the fact that a majority of CRPC patients (approximately 70%) harbor a constitutively active PI3K survival pathway, targeting the PI3K/mTOR pathway has failed to increase overall survival in clinical trials. Here, we identified two separate and independent survival pathways induced by the bone tumor microenvironment that are hyperactivated in CRPC and confer resistance to PI3K inhibitors. The first pathway involves integrin α6β1-mediated adhesion to laminin and the second involves hypoxia-induced expression of PIM kinases. In vitro and in vivo models demonstrate that these pathways transduce parallel but independent signals that promote survival by reducing oxidative stress and preventing cell death. We further demonstrate that both pathways drive resistance to PI3K inhibitors in PTEN-negative tumors. These results provide preclinical evidence that combined inhibition of integrin α6β1 and PIM kinase in CRPC is required to overcome tumor microenvironment-mediated resistance to PI3K inhibitors in PTEN-negative tumors within the hypoxic and laminin-rich bone microenvironment.
Collapse
Affiliation(s)
- Rachel K Toth
- Department of Cellular and Molecular Medicine, Prostate Cancer Group, University of Arizona Cancer CenterTucson, AZ, USA
| | - Jack D Tran
- Department of Cellular and Molecular Medicine, Prostate Cancer Group, University of Arizona Cancer CenterTucson, AZ, USA
| | - Michelle T Muldong
- Department of Urology, Moores Cancer Center, University of California San DiegoLa Jolla, CA, USA
| | - Eric A Nollet
- Van Andel Research Institute, Cancer Biology ProgramGrand Rapids, MI, USA
| | - Veronique V Schulz
- Van Andel Research Institute, Cancer Biology ProgramGrand Rapids, MI, USA
| | - Corbin C Jensen
- Department of Cellular and Molecular Medicine, Prostate Cancer Group, University of Arizona Cancer CenterTucson, AZ, USA
| | - Lori A Hazlehurst
- Department of Pharmaceutical Sciences, West Virginia University Cancer InstituteMorgantown, WV, USA
| | - Eva Corey
- Department of Urology, University of WashingtonSeattle, WA, USA
| | - Donald Durden
- Department of Pediatrics, Moores Cancer Center, University of California San DiegoCA, USA
| | - Christina Jamieson
- Department of Urology, Moores Cancer Center, University of California San DiegoLa Jolla, CA, USA
| | - Cindy K Miranti
- Department of Cellular and Molecular Medicine, Prostate Cancer Group, University of Arizona Cancer CenterTucson, AZ, USA
- Van Andel Research Institute, Cancer Biology ProgramGrand Rapids, MI, USA
| | - Noel A Warfel
- Department of Cellular and Molecular Medicine, Prostate Cancer Group, University of Arizona Cancer CenterTucson, AZ, USA
| |
Collapse
|
11
|
Venkadakrishnan VB, DePriest AD, Kumari S, Senapati D, Ben-Salem S, Su Y, Mudduluru G, Hu Q, Cortes E, Pop E, Mohler JL, Azabdaftari G, Attwood K, Shah RB, Jamieson C, Dehm SM, Magi-Galluzzi C, Klein E, Sharifi N, Liu S, Heemers HV. Protein Kinase N1 control of androgen-responsive serum response factor action provides rationale for novel prostate cancer treatment strategy. Oncogene 2019; 38:4496-4511. [PMID: 30742064 PMCID: PMC6771259 DOI: 10.1038/s41388-019-0732-7] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2018] [Revised: 01/11/2019] [Accepted: 01/23/2019] [Indexed: 12/15/2022]
Abstract
Sustained reliance on androgen receptor (AR) after failure of AR-targeting androgen deprivation therapy (ADT) prevents effective treatment of castration-recurrent (CR) prostate cancer (CaP). Interfering with the molecular machinery by which AR drives CaP progression may be an alternative therapeutic strategy but its feasibility remains to be tested. Here, we explore targeting the mechanism by which AR, via RhoA, conveys androgen-responsiveness to serum response factor (SRF), which controls aggressive CaP behavior and is maintained in CR-CaP. Following a siRNA screen and candidate gene approach, RNA-Seq studies confirmed that the RhoA effector Protein Kinase N1 (PKN1) transduces androgen-responsiveness to SRF. Androgen treatment induced SRF-PKN1 interaction, and PKN1 knockdown or overexpression severely impaired or stimulated, respectively, androgen regulation of SRF target genes. PKN1 overexpression occurred during clinical CR-CaP progression, and hastened CaP growth and shortened CR-CaP survival in orthotopic CaP xenografts. PKN1's effects on SRF relied on its kinase domain. The multikinase inhibitor lestaurtinib inhibited PKN1 action and preferentially affected androgen regulation of SRF over direct AR target genes. In a CR-CaP patient-derived xenograft, expression of SRF target genes was maintained while AR target gene expression declined and proliferative gene expression increased. PKN1 inhibition decreased viability of CaP cells before and after ADT. In patient-derived CaP explants, lestaurtinib increased AR target gene expression but did not significantly alter SRF target gene or proliferative gene expression. These results provide proof-of-principle for selective forms of ADT that preferentially target different fractions of AR's transcriptional output to inhibit CaP growth.
Collapse
Affiliation(s)
- Varadha Balaji Venkadakrishnan
- Department of Cancer Biology, Cleveland Clinic, Cleveland, OH, USA
- Department of Biological, Geological and Environmental Sciences, Cleveland State University, Cleveland, OH, USA
| | - Adam D DePriest
- Department of Cancer Genetics, Roswell Park Comprehensive Cancer Center, Buffalo, NY, USA
| | - Sangeeta Kumari
- Department of Cancer Biology, Cleveland Clinic, Cleveland, OH, USA
| | | | - Salma Ben-Salem
- Department of Cancer Biology, Cleveland Clinic, Cleveland, OH, USA
| | - Yixue Su
- Department of Cancer Biology, Cleveland Clinic, Cleveland, OH, USA
| | | | - Qiang Hu
- Department of Biostatistics and Bioinformatics, Roswell Park Comprehensive Cancer Center, Buffalo, NY, USA
| | - Eduardo Cortes
- Department of Biostatistics and Bioinformatics, Roswell Park Comprehensive Cancer Center, Buffalo, NY, USA
| | - Elena Pop
- Department of Urology, Roswell Park Comprehensive Cancer Center, Buffalo, NY, USA
| | - James L Mohler
- Department of Urology, Roswell Park Comprehensive Cancer Center, Buffalo, NY, USA
| | - Gissou Azabdaftari
- Department of Urology, Roswell Park Comprehensive Cancer Center, Buffalo, NY, USA
- Department of Pathology and Laboratory Medicine, Roswell Park Comprehensive Cancer Center, Buffalo, NY, USA
| | - Kristopher Attwood
- Department of Biostatistics and Bioinformatics, Roswell Park Comprehensive Cancer Center, Buffalo, NY, USA
| | - Rajal B Shah
- Department of Anatomic Pathology, Cleveland Clinic, Cleveland, OH, USA
| | - Christina Jamieson
- Department of Urology, University of California, San Diego, LaJolla, CA, USA
| | - Scott M Dehm
- Masonic Cancer Center and Departments of Laboratory Medicine and Pathology and Urology, University of Minnesota, Minneapolis, MN, USA
| | | | - Eric Klein
- Department of Urology, Cleveland Clinic, Cleveland, OH, USA
| | - Nima Sharifi
- Department of Cancer Biology, Cleveland Clinic, Cleveland, OH, USA
- Department of Urology, Cleveland Clinic, Cleveland, OH, USA
- Department of Hematology/Medical Oncology, Cleveland Clinic, Cleveland, OH, USA
| | - Song Liu
- Department of Biostatistics and Bioinformatics, Roswell Park Comprehensive Cancer Center, Buffalo, NY, USA
| | - Hannelore V Heemers
- Department of Cancer Biology, Cleveland Clinic, Cleveland, OH, USA.
- Department of Urology, Cleveland Clinic, Cleveland, OH, USA.
- Department of Hematology/Medical Oncology, Cleveland Clinic, Cleveland, OH, USA.
| |
Collapse
|
12
|
Induction of oligoclonal CD8 T cell responses against pulmonary metastatic cancer by a phospholipid-conjugated TLR7 agonist. Proc Natl Acad Sci U S A 2018; 115:E6836-E6844. [PMID: 29967183 DOI: 10.1073/pnas.1803281115] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
Recent advances in cancer immunotherapy have improved patient survival. However, only a minority of patients with pulmonary metastatic disease respond to treatment with checkpoint inhibitors. As an alternate approach, we have tested the ability of systemically administered 1V270, a toll-like receptor 7 (TLR7) agonist conjugated to a phospholipid, to inhibit lung metastases in two variant murine 4T1 breast cancer models, as well as in B16 melanoma, and Lewis lung carcinoma models. In the 4T1 breast cancer models, 1V270 therapy inhibited lung metastases if given up to a week after primary tumor initiation. The treatment protocol was facilitated by the minimal toxic effects exerted by the phospholipid TLR7 agonist compared with the unconjugated agonist. 1V270 exhibited a wide therapeutic window and minimal off-target receptor binding. The 1V270 therapy inhibited colonization by tumor cells in the lungs in an NK cell dependent manner. Additional experiments revealed that single administration of 1V270 led to tumor-specific CD8+ cell-dependent adaptive immune responses that suppressed late-stage metastatic tumor growth in the lungs. T cell receptor (TCR) repertoire analyses showed that 1V270 therapy induced oligoclonal T cells in the lungs and mediastinal lymph nodes. Different animals displayed commonly shared TCR clones following 1V270 therapy. Intranasal administration of 1V270 also suppressed lung metastasis and induced tumor-specific adaptive immune responses. These results indicate that systemic 1V270 therapy can induce tumor-specific cytotoxic T cell responses to pulmonary metastatic cancers and that TCR repertoire analyses can be used to monitor, and to predict, the response to therapy.
Collapse
|
13
|
|
14
|
WNT5A induces castration-resistant prostate cancer via CCL2 and tumour-infiltrating macrophages. Br J Cancer 2018; 118:670-678. [PMID: 29381686 PMCID: PMC5846063 DOI: 10.1038/bjc.2017.451] [Citation(s) in RCA: 43] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2016] [Revised: 11/13/2017] [Accepted: 11/15/2017] [Indexed: 01/22/2023] Open
Abstract
BACKGROUND Although the standard treatment for the patients with recurrent and metastatic prostate cancer (CaP) is androgen deprivation therapy, castration-resistant prostate cancer (CRPC) eventually emerges. Our previous report indicated that bone morphogenetic protein 6 (BMP6) induced CRPC via tumour-infiltrating macrophages. In a separate line of study, we have observed that the WNT5A/BMP6 loop in CaP bone metastasis mediates resistance to androgen deprivation in tissue culture. Simultaneously, we have reported that BMP6 induced castration resistance in CaP cells via tumour-infiltrating macrophages. Therefore, our present study aims to investigate the mechanism of WNT5A and its interaction with macrophages on CRPC. METHODS Doxycycline inducible WNT5A overexpression prostate cancer cell line was used for detailed mechanical study. RESULTS WNT5A was associated with increased expression of chemokine ligand 2 (CCL2) in the human CaP cell line, LNCaP. Mechanistically, this induction of CCL2 by WNT5A is likely to be mediated via the mitogen-activated protein kinase (MAPK)/extracellular signal-regulated kinase (ERK) signalling pathway. Our in vivo experiments demonstrated that the overexpression of WNT5A in LNCaP cells promoted castration resistance. Conversely, this resistance was inhibited with the removal of macrophages via clodronate liposomes. When patient-derived CaP LuCaP xenografts were analysed, high levels of WNT5A were correlated with increased levels of CCL2 and BMP6. In addition, higher levels of CCL2 and BMP6 were more commonly observed in intra-femoral transplanted tumours as compared to subcutaneous-transplanted tumours in the patient-derived PCSD1 bone-niche model. CONCLUSIONS These findings collectively suggest that WNT5A may be a key gene that induces CRPC in the bone niche by recruiting and regulating macrophages through CCL2 and BMP6, respectively.
Collapse
|
15
|
Kyriakides PW, Inghirami G. Are we ready to take full advantage of patient-derived tumor xenograft models? Hematol Oncol 2017; 36:24-27. [PMID: 28543217 DOI: 10.1002/hon.2419] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2017] [Accepted: 03/17/2017] [Indexed: 11/10/2022]
Affiliation(s)
- Peter W Kyriakides
- Department of Pathology and Laboratory Medicine, Weill Cornell Medical College, New York, NY, USA
| | - Giorgio Inghirami
- Department of Pathology and Laboratory Medicine, Weill Cornell Medical College, New York, NY, USA.,Department of Molecular Biotechnology and Health Science and Center for Experimental Research and Medical Studies, University of Torino, Torino, Italy.,Department of Pathology, and New York University Cancer Center, New York University School of Medicine, New York, NY, USA
| |
Collapse
|
16
|
Waugh DJ. Expanding the Armamentarium for Castrate-resistant Prostate Cancer. Eur Urol 2017; 71:328-329. [DOI: 10.1016/j.eururo.2016.05.022] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2016] [Accepted: 05/12/2016] [Indexed: 01/12/2023]
|
17
|
Lu ZH, Kaliberov S, Sohn RE, Kaliberova L, Du Y, Prior JL, Leib DJ, Chauchereau A, Sehn JK, Curiel DT, Arbeit JM. A new model of multi-visceral and bone metastatic prostate cancer with perivascular niche targeting by a novel endothelial specific adenoviral vector. Oncotarget 2017; 8:12272-12289. [PMID: 28103576 PMCID: PMC5355343 DOI: 10.18632/oncotarget.14699] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2016] [Accepted: 12/26/2016] [Indexed: 12/21/2022] Open
Abstract
While modern therapies for metastatic prostate cancer (PCa) have improved survival they are associated with an increasingly prevalent entity, aggressive variant PCa (AVPCa), lacking androgen receptor (AR) expression, enriched for cancer stem cells (CSCs), and evidencing epithelial-mesenchymal plasticity with a varying extent of neuroendocrine transdifferentiation. Parallel work revealed that endothelial cells (ECs) create a perivascular CSC niche mediated by juxtacrine and membrane tethered signaling. There is increasing interest in pharmacological metastatic niche targeting, however, targeted access has been impossible. Here, we discovered that the Gleason 7 derived, androgen receptor negative, IGR-CaP1 cell line possessed some but not all of the molecular features of AVPCa. Intracardiac injection into NOD/SCID/IL2Rg -/- (NSG) mice produced a completely penetrant bone, liver, adrenal, and brain metastatic phenotype; noninvasively and histologically detectable at 2 weeks, and necessitating sacrifice 4-5 weeks post injection. Bone metastases were osteoblastic, and osteolytic. IGR-CaP1 cells expressed the neuroendocrine marker synaptophysin, near equivalent levels of vimentin and e-cadherin, all of the EMT transcription factors, and activation of NOTCH and WNT pathways. In parallel, we created a new triple-targeted adenoviral vector containing a fiber knob RGD peptide, a hexon mutation, and an EC specific ROBO4 promoter (Ad.RGD.H5/3.ROBO4). This vector was expressed in metastatic microvessels tightly juxtaposed to IGR-CaP1 cells in bone and visceral niches. Thus, the combination of IGR-CaP1 cells and NSG mice produces a completely penetrant metastatic PCa model emulating end-stage human disease. In addition, the metastatic niche access provided by our novel Ad vector could be therapeutically leveraged for future disease control or cure.
Collapse
Affiliation(s)
- Zhi Hong Lu
- Urology Division and Department of Surgery, Washington University in St. Louis School of Medicine, St. Louis, MO 63110, USA
- Siteman Cancer Center, Washington University in St. Louis School of Medicine, St. Louis, MO 63110, USA
| | - Sergey Kaliberov
- Siteman Cancer Center, Washington University in St. Louis School of Medicine, St. Louis, MO 63110, USA
- Biologic Therapeutics Center, Washington University in St. Louis School of Medicine, St. Louis, MO 63110, USA
- Department of Radiation Oncology, Washington University in St. Louis School of Medicine, St. Louis, MO 63110, USA
| | - Rebecca E. Sohn
- Urology Division and Department of Surgery, Washington University in St. Louis School of Medicine, St. Louis, MO 63110, USA
- Siteman Cancer Center, Washington University in St. Louis School of Medicine, St. Louis, MO 63110, USA
| | - Lyudmila Kaliberova
- Siteman Cancer Center, Washington University in St. Louis School of Medicine, St. Louis, MO 63110, USA
- Biologic Therapeutics Center, Washington University in St. Louis School of Medicine, St. Louis, MO 63110, USA
- Department of Radiation Oncology, Washington University in St. Louis School of Medicine, St. Louis, MO 63110, USA
| | - Yingqiu Du
- Urology Division and Department of Surgery, Washington University in St. Louis School of Medicine, St. Louis, MO 63110, USA
- Siteman Cancer Center, Washington University in St. Louis School of Medicine, St. Louis, MO 63110, USA
| | - Julie L. Prior
- Radiology, Washington University in St. Louis School of Medicine, St. Louis, MO 63110, USA
| | - Daniel J. Leib
- Department of Orthopedic Surgery, Washington University in St. Louis School of Medicine, St. Louis, MO 63110, USA
| | - Anne Chauchereau
- Prostate Cancer Group, INSERM U981, Gustave Roussy, Villejuif, F-94805, France
| | - Jennifer K. Sehn
- Siteman Cancer Center, Washington University in St. Louis School of Medicine, St. Louis, MO 63110, USA
- Department of Anatomic and Molecular Pathology, Washington University in St. Louis School of Medicine, St. Louis, MO 63110, USA
| | - David T. Curiel
- Siteman Cancer Center, Washington University in St. Louis School of Medicine, St. Louis, MO 63110, USA
- Biologic Therapeutics Center, Washington University in St. Louis School of Medicine, St. Louis, MO 63110, USA
- Department of Radiation Oncology, Washington University in St. Louis School of Medicine, St. Louis, MO 63110, USA
| | - Jeffrey M. Arbeit
- Urology Division and Department of Surgery, Washington University in St. Louis School of Medicine, St. Louis, MO 63110, USA
- Siteman Cancer Center, Washington University in St. Louis School of Medicine, St. Louis, MO 63110, USA
| |
Collapse
|
18
|
Hirata T, Park SC, Muldong MT, Wu CN, Yamaguchi T, Strasner A, Raheem O, Kumon H, Sah RL, Cacalano NA, Jamieson CHM, Kane CJ, Masuda K, Kulidjian AA, Jamieson CAM. Specific bone region localization of osteolytic versus osteoblastic lesions in a patient-derived xenograft model of bone metastatic prostate cancer. Asian J Urol 2016; 3:229-239. [PMID: 29264191 PMCID: PMC5730873 DOI: 10.1016/j.ajur.2016.09.001] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2016] [Revised: 08/26/2016] [Accepted: 08/26/2016] [Indexed: 01/30/2023] Open
Abstract
Objective Bone metastasis occurs in up to 90% of men with advanced prostate cancer and leads to fractures, severe pain and therapy-resistance. Bone metastases induce a spectrum of types of bone lesions which can respond differently to therapy even within individual prostate cancer patients. Thus, the special environment of the bone makes the disease more complicated and incurable. A model in which bone lesions are reproducibly induced that mirrors the complexity seen in patients would be invaluable for pre-clinical testing of novel treatments. The microstructural changes in the femurs of mice implanted with PCSD1, a new patient-derived xenograft from a surgical prostate cancer bone metastasis specimen, were determined. Methods Quantitative micro-computed tomography (micro-CT) and histological analyses were performed to evaluate the effects of direct injection of PCSD1 cells or media alone (Control) into the right femurs of Rag2−/−γc−/− male mice. Results Bone lesions formed only in femurs of mice injected with PCSD1 cells. Bone volume (BV) was significantly decreased at the proximal and distal ends of the femurs (p < 0.01) whereas BV (p < 0.05) and bone shaft diameter (p < 0.01) were significantly increased along the femur shaft. Conclusion PCSD1 cells reproducibly induced bone loss leading to osteolytic lesions at the ends of the femur, and, in contrast, induced aberrant bone formation leading to osteoblastic lesions along the femur shaft. Therefore, the interaction of PCSD1 cells with different bone region-specific microenvironments specified the type of bone lesion. Our approach can be used to determine if different bone regions support more therapy resistant tumor growth, thus, requiring novel treatments.
Collapse
Affiliation(s)
- Takeshi Hirata
- Department of Urology, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama, Japan
| | - Seung Chol Park
- Department of Urology, Wonkwang University School of Medicine and Hospital, Iksan, South Korea
| | - Michelle T Muldong
- Moores Cancer Center, University of California, San Diego, La Jolla, CA, USA.,Department of Urology, University of California, San Diego, La Jolla, CA, USA.,Department of Surgery, University of California, San Diego, La Jolla, CA, USA
| | - Christina N Wu
- Moores Cancer Center, University of California, San Diego, La Jolla, CA, USA.,Department of Medicine, University of California, San Diego, La Jolla, CA, USA
| | - Tomonori Yamaguchi
- Department of Orthopaedic Surgery, School of Medicine, University of California, San Diego, La Jolla, CA, USA
| | - Amy Strasner
- Moores Cancer Center, University of California, San Diego, La Jolla, CA, USA.,Department of Urology, University of California, San Diego, La Jolla, CA, USA.,Department of Surgery, University of California, San Diego, La Jolla, CA, USA
| | - Omer Raheem
- Department of Urology, University of California, San Diego, La Jolla, CA, USA.,Department of Surgery, University of California, San Diego, La Jolla, CA, USA
| | - Hiromi Kumon
- Department of Urology, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama, Japan
| | - Robert L Sah
- Department of Bioengineering, University of California, San Diego, La Jolla, CA, USA
| | - Nicholas A Cacalano
- Department of Radiation Oncology, University of California at Los Angeles, Los Angeles, CA, USA
| | - Catriona H M Jamieson
- Moores Cancer Center, University of California, San Diego, La Jolla, CA, USA.,Department of Medicine, University of California, San Diego, La Jolla, CA, USA
| | - Christopher J Kane
- Moores Cancer Center, University of California, San Diego, La Jolla, CA, USA.,Department of Urology, University of California, San Diego, La Jolla, CA, USA.,Department of Surgery, University of California, San Diego, La Jolla, CA, USA
| | - Koichi Masuda
- Department of Orthopaedic Surgery, School of Medicine, University of California, San Diego, La Jolla, CA, USA
| | - Anna A Kulidjian
- Moores Cancer Center, University of California, San Diego, La Jolla, CA, USA.,Department of Orthopaedic Surgery, School of Medicine, University of California, San Diego, La Jolla, CA, USA
| | - Christina A M Jamieson
- Moores Cancer Center, University of California, San Diego, La Jolla, CA, USA.,Department of Urology, University of California, San Diego, La Jolla, CA, USA.,Department of Surgery, University of California, San Diego, La Jolla, CA, USA
| |
Collapse
|
19
|
Abstract
During the past decade preclinical studies have defined many of the mechanisms used by tumours to hijack the skeleton and promote bone metastasis. This has led to the development and widespread clinical use of bone-targeted drugs to prevent skeletal-related events. This understanding has also identified a critical dependency between colonizing tumour cells and the cells of bone. This is particularly important when tumour cells first arrive in bone, adapt to their new microenvironment and enter a long-lived dormant state. In this Review, we discuss the role of different bone cell types in supporting disseminated tumour cell dormancy and reactivation, and highlight the new opportunities this provides for targeting the bone microenvironment to control dormancy and bone metastasis.
Collapse
Affiliation(s)
- Peter I Croucher
- Division of Bone Biology, Garvan Institute of Medical Research, 384 Victoria Street, Sydney, New South Wales 2010, Australia
- St Vincent's Clinical School, University of New South Wales Medicine, Sydney, New South Wales 2052, Australia
- School of Biotechnology and Biomolecular Sciences, University of New South Wales Australia, Sydney, New South Wales 2052, Australia
| | - Michelle M McDonald
- Division of Bone Biology, Garvan Institute of Medical Research, 384 Victoria Street, Sydney, New South Wales 2010, Australia
- St Vincent's Clinical School, University of New South Wales Medicine, Sydney, New South Wales 2052, Australia
| | - T John Martin
- St Vincent's Institute of Medical Research, 9 Princes Street, Fitzroy, Melbourne, Victoria 3065, Australia
- Department of Medicine, University of Melbourne, St Vincent's Hospital, Melbourne, Victoria 3065, Australia
| |
Collapse
|
20
|
Bergström SH, Rudolfsson SH, Bergh A. Rat Prostate Tumor Cells Progress in the Bone Microenvironment to a Highly Aggressive Phenotype. Neoplasia 2016; 18:152-61. [PMID: 26992916 PMCID: PMC4796808 DOI: 10.1016/j.neo.2016.01.007] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2015] [Revised: 01/21/2016] [Accepted: 01/25/2016] [Indexed: 12/01/2022]
Abstract
Prostate cancer generally metastasizes to bone, and most patients have tumor cells in their bone marrow already at diagnosis. Tumor cells at the metastatic site may therefore progress in parallel with those in the primary tumor. Androgen deprivation therapy is often the first-line treatment for clinically detectable prostate cancer bone metastases. Although the treatment is effective, most metastases progress to a castration-resistant and lethal state. To examine metastatic progression in the bone microenvironment, we implanted androgen-sensitive, androgen receptor-positive, and relatively slow-growing Dunning G (G) rat prostate tumor cells into the tibial bone marrow of fully immune-competent Copenhagen rats. We show that tumor establishment in the bone marrow was reduced compared with the prostate, and whereas androgen deprivation did not affect tumor establishment or growth in the bone, this was markedly reduced in the prostate. Moreover, we found that, with time, G tumor cells in the bone microenvironment progress to a more aggressive phenotype with increased growth rate, reduced androgen sensitivity, and increased metastatic capacity. Tumor cells in the bone marrow encounter lower androgen levels and a higher degree of hypoxia than at the primary site, which may cause high selective pressures and eventually contribute to the development of a new and highly aggressive tumor cell phenotype. It is therefore important to specifically study progression in bone metastases. This tumor model could be used to increase our understanding of how tumor cells adapt in the bone microenvironment and may subsequently improve therapy strategies for prostate metastases in bone.
Collapse
Affiliation(s)
| | - Stina H Rudolfsson
- Department of Medical Biosciences, Pathology, Umeå University, Umeå, Sweden
| | - Anders Bergh
- Department of Medical Biosciences, Pathology, Umeå University, Umeå, Sweden
| |
Collapse
|
21
|
Abstract
INTRODUCTION The mouse is an important, though imperfect, organism with which to model human disease and to discover and test novel drugs in a preclinical setting. Many experimental strategies have been used to discover new biological and molecular targets in the mouse, with the hopes of translating these discoveries into novel drugs to treat prostate cancer in humans. Modeling prostate cancer in the mouse, however, has been challenging, and often drugs that work in mice have failed in human trials. AREAS COVERED The authors discuss the similarities and differences between mice and men; the types of mouse models that exist to model prostate cancer; practical questions one must ask when using a mouse as a model; and potential reasons that drugs do not often translate to humans. They also discuss the current value in using mouse models for drug discovery to treat prostate cancer and what needs are still unmet in field. EXPERT OPINION With proper planning and following practical guidelines by the researcher, the mouse is a powerful experimental tool. The field lacks genetically engineered metastatic models, and xenograft models do not allow for the study of the immune system during the metastatic process. There remain several important limitations to discovering and testing novel drugs in mice for eventual human use, but these can often be overcome. Overall, mouse modeling is an essential part of prostate cancer research and drug discovery. Emerging technologies and better and ever-increasing forms of communication are moving the field in a hopeful direction.
Collapse
Affiliation(s)
- Kenneth C Valkenburg
- The Johns Hopkins University, The James Buchanan Brady Urological Institute, Department of Urology , 600 North Wolfe Street, Baltimore, MD 21287 , USA
| | | |
Collapse
|
22
|
Ganguly SS, Li X, Miranti CK. The host microenvironment influences prostate cancer invasion, systemic spread, bone colonization, and osteoblastic metastasis. Front Oncol 2014; 4:364. [PMID: 25566502 PMCID: PMC4266028 DOI: 10.3389/fonc.2014.00364] [Citation(s) in RCA: 43] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2014] [Accepted: 11/29/2014] [Indexed: 12/28/2022] Open
Abstract
Prostate cancer (PCa) is the second leading cause of cancer death in men worldwide. Most PCa deaths are due to osteoblastic bone metastases. What triggers PCa metastasis to the bone and what causes osteoblastic lesions remain unanswered. A major contributor to PCa metastasis is the host microenvironment. Here, we address how the primary tumor microenvironment influences PCa metastasis via integrins, extracellular proteases, and transient epithelia-mesenchymal transition (EMT) to promote PCa progression, invasion, and metastasis. We discuss how the bone-microenvironment influences metastasis; where chemotactic cytokines favor bone homing, adhesion molecules promote colonization, and bone-derived signals induce osteoblastic lesions. Animal models that fully recapitulate human PCa progression from primary tumor to bone metastasis are needed to understand the PCa pathophysiology that leads to bone metastasis. Better delineation of the specific processes involved in PCa bone metastasize is needed to prevent or treat metastatic PCa. Therapeutic regimens that focus on the tumor microenvironment could add to the PCa pharmacopeia.
Collapse
Affiliation(s)
- Sourik S Ganguly
- Program for Skeletal Disease and Tumor Metastasis, Laboratory of Tumor Microenvironment and Metastasis, Center for Cancer and Cell Biology, Van Andel Research Institute , Grand Rapids, MI , USA ; Program for Skeletal Disease and Tumor Metastasis, Laboratory of Integrin Signaling and Tumorigenesis, Center for Cancer and Cell Biology, Van Andel Research Institute , Grand Rapids, MI , USA
| | - Xiaohong Li
- Program for Skeletal Disease and Tumor Metastasis, Laboratory of Tumor Microenvironment and Metastasis, Center for Cancer and Cell Biology, Van Andel Research Institute , Grand Rapids, MI , USA
| | - Cindy K Miranti
- Program for Skeletal Disease and Tumor Metastasis, Laboratory of Integrin Signaling and Tumorigenesis, Center for Cancer and Cell Biology, Van Andel Research Institute , Grand Rapids, MI , USA
| |
Collapse
|