1
|
Jacob M, Reddy RP, Garcia RI, Reddy AP, Khemka S, Roghani AK, Pattoor V, Sehar U, Reddy PH. Harnessing Artificial Intelligence for the Detection and Management of Colorectal Cancer Treatment. Cancer Prev Res (Phila) 2024; 17:499-515. [PMID: 39077801 PMCID: PMC11534518 DOI: 10.1158/1940-6207.capr-24-0178] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2024] [Revised: 06/26/2024] [Accepted: 07/26/2024] [Indexed: 07/31/2024]
Abstract
Currently, eight million people in the United States suffer from cancer and it is a major global health concern. Early detection and interventions are urgently needed for all cancers, including colorectal cancer. Colorectal cancer is the third most common type of cancer worldwide. Based on the diagnostic efforts to general awareness and lifestyle choices, it is understandable why colorectal cancer is so prevalent today. There is a notable lack of awareness concerning the impact of this cancer and its connection to lifestyle elements, as well as people sometimes mistaking symptoms for a different gastrointestinal condition. Artificial intelligence (AI) may assist in the early detection of all cancers, including colorectal cancer. The usage of AI has exponentially grown in healthcare through extensive research, and since clinical implementation, it has succeeded in improving patient lifestyles, modernizing diagnostic processes, and innovating current treatment strategies. Numerous challenges arise for patients with colorectal cancer and oncologists alike during treatment. For initial screening phases, conventional methods often result in misdiagnosis. Moreover, after detection, determining the course of which colorectal cancer can sometimes contribute to treatment delays. This article touches on recent advancements in AI and its clinical application while shedding light on why this disease is so common today.
Collapse
Affiliation(s)
- Michael Jacob
- Department of Internal Medicine, Texas Tech University Health Sciences Center, Lubbock, Texas
- Department of Biological Sciences, Texas Tech University, Lubbock, Texas
| | - Ruhananhad P Reddy
- Department of Internal Medicine, Texas Tech University Health Sciences Center, Lubbock, Texas
- Lubbock High School, Lubbock, Texas
| | - Ricardo I Garcia
- Department of Internal Medicine, Texas Tech University Health Sciences Center, Lubbock, Texas
| | - Aananya P Reddy
- Department of Internal Medicine, Texas Tech University Health Sciences Center, Lubbock, Texas
- Lubbock High School, Lubbock, Texas
| | - Sachi Khemka
- Department of Internal Medicine, Texas Tech University Health Sciences Center, Lubbock, Texas
| | - Aryan Kia Roghani
- Department of Internal Medicine, Texas Tech University Health Sciences Center, Lubbock, Texas
- Frenship High School, Lubbock, Texas
| | - Vasanthkumar Pattoor
- Department of Internal Medicine, Texas Tech University Health Sciences Center, Lubbock, Texas
- University of South Florida, Tampa, Florida
| | - Ujala Sehar
- Department of Internal Medicine, Texas Tech University Health Sciences Center, Lubbock, Texas
| | - P Hemachandra Reddy
- Department of Internal Medicine, Texas Tech University Health Sciences Center, Lubbock, Texas
- Nutritional Sciences Department, College of Human Medicine, Texas Tech University Health Sciences Center, Lubbock, Texas
- Public Health Department of Graduate School of Biomedical Sciences, Texas Tech University Health Sciences Center, Lubbock, Texas
- Department of Speech, Language and Hearing Services, School Health Professions, Texas Tech University Health Sciences Center, Lubbock, Texas
- Department of Pharmacology and Neuroscience, Texas Tech University Health Sciences Center, Lubbock, Texas
| |
Collapse
|
2
|
Rathore SS, Leno Jenita JJ, Dotherabandi M. A systematic review on hyaluronic acid coated nanoparticles: recent strategy in breast cancer management. JOURNAL OF BIOMATERIALS SCIENCE. POLYMER EDITION 2024:1-42. [PMID: 39429014 DOI: 10.1080/09205063.2024.2416293] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/09/2024] [Accepted: 10/09/2024] [Indexed: 10/22/2024]
Abstract
Hyaluronic acid, a non-sulphated glycosaminoglycan has attracted its usage in the management of breast cancer. Drug-loaded nanoparticles with hyaluronic acid surface modifications show potential as a promising method for targeting and delivering drugs to the tumor site. The aim of this study was to conduct a systematic review of articles and assess the impact of hyaluronic acid coated nanoparticles on breast cancer. The various database were used for this comprehensive review. The inclusion and exclusion criteria were selected according to the PRISMA guidelines. Studies associated with characterization, in vitro, and in vivo studies were collected and subjected for further analysis. According to the inclusion criteria, 41 literature were selected for analysis. From all the studies, it was observed that the nanoparticles coated with hyaluronic acid produced better particle size, shape, zeta potential, increased in vitro cytotoxicity, cellular uptake, cell apoptosis, and anti-tumor effect in vivo. Research has shown that hyaluronic acid exhibits a higher affinity for CD44 receptors, resulting in enhanced targeted nanoparticle activity on cancer cells while sparing normal cells.
Collapse
Affiliation(s)
- Seema S Rathore
- Department of Pharmaceutics, College of Pharmaceutical Sciences, Dayananda Sagar University, Bangalore, India
| | - J Josephine Leno Jenita
- Department of Pharmaceutics, College of Pharmaceutical Sciences, Dayananda Sagar University, Bangalore, India
| | - Manjula Dotherabandi
- Department of Pharmaceutics, College of Pharmaceutical Sciences, Dayananda Sagar University, Bangalore, India
| |
Collapse
|
3
|
Wang D, Yan S, Sun J, Xia X, Pan Z, Liu Z, Wang Q, Li Y, Zhao W. Fluoropolymer-Gadolinium(III) Hybrids for Photoactivatable Dual-Mode T1-Weighted 1H MRI and 19F MRI Contrast Agents. ACS Macro Lett 2024; 13:1286-1292. [PMID: 39284023 DOI: 10.1021/acsmacrolett.4c00459] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/16/2024]
Abstract
Multimodal imaging probes play a crucial role in overcoming the limitations associated with single-mode imaging for clinical medical diagnosis. This study focuses on the development of a photoresponsive fluorine-containing water-soluble polymer (PF) through RAFT polymerization. Subsequently, a polymer-gadolinium(III) hybrid (PF-Gd) dual-modal probe capable of T1-weighted 1H MRI and 19F MRI was synthesized via postmodification of PF with a Gd-DOTA derivative. Under physiological conditions (pH = 7.4), the hybrids exhibit UV-activated 19F NMR/MRI and enhanced 1H MRI. The inclusion of Gd3+ facilitates the acceleration of water molecule T1 relaxation, leading to high-intensity 1H MRI contrast. Leveraging the paramagnetic relaxation enhancement (PRE) effect between fluorine atoms and Gd3+, the restoration of Gd3+-accelerated 19F T2 relaxation enables precise photoactivation of 19F MRI signals, transitioning from the "OFF" to the "ON" state. This study provides an important reference for the development of hybrid systems that function as real-time diagnostic tools and offers controlled activation for multimodal imaging probes.
Collapse
Affiliation(s)
- Deshuo Wang
- Key Laboratory of Rubber-plastics, Ministry of Education, School of Polymer Science and Engineering, Qingdao University of Science and Technology, Zhengzhou Rd. 53, CN-266042 Qingdao, China
| | - Susu Yan
- College of Medical Imaging, Shanxi Medical University, Taiyuan 030001, Shanxi China
| | - Jingjiang Sun
- Key Laboratory of Rubber-plastics, Ministry of Education, School of Polymer Science and Engineering, Qingdao University of Science and Technology, Zhengzhou Rd. 53, CN-266042 Qingdao, China
| | - Xin Xia
- Key Laboratory of Rubber-plastics, Ministry of Education, School of Polymer Science and Engineering, Qingdao University of Science and Technology, Zhengzhou Rd. 53, CN-266042 Qingdao, China
| | - Zhiye Pan
- Key Laboratory of Rubber-plastics, Ministry of Education, School of Polymer Science and Engineering, Qingdao University of Science and Technology, Zhengzhou Rd. 53, CN-266042 Qingdao, China
| | - Zhihan Liu
- Key Laboratory of Rubber-plastics, Ministry of Education, School of Polymer Science and Engineering, Qingdao University of Science and Technology, Zhengzhou Rd. 53, CN-266042 Qingdao, China
| | - Qingfu Wang
- Key Laboratory of Rubber-plastics, Ministry of Education, School of Polymer Science and Engineering, Qingdao University of Science and Technology, Zhengzhou Rd. 53, CN-266042 Qingdao, China
| | - Yanan Li
- College of Medical Imaging, Shanxi Medical University, Taiyuan 030001, Shanxi China
| | - Wei Zhao
- Key Laboratory of Rubber-plastics, Ministry of Education, School of Polymer Science and Engineering, Qingdao University of Science and Technology, Zhengzhou Rd. 53, CN-266042 Qingdao, China
| |
Collapse
|
4
|
Araujo-Abad S, Berna JM, Lloret-Lopez E, López-Cortés A, Saceda M, de Juan Romero C. Exosomes: from basic research to clinical diagnostic and therapeutic applications in cancer. Cell Oncol (Dordr) 2024:10.1007/s13402-024-00990-2. [PMID: 39298081 DOI: 10.1007/s13402-024-00990-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 08/30/2024] [Indexed: 09/21/2024] Open
Abstract
Cancer continues to pose a global threat despite potent anticancer drugs, often accompanied by undesired side effects. To enhance patient outcomes, sophisticated multifunctional approaches are imperative. Small extracellular vesicles (EVs), a diverse family of naturally occurring vesicles derived from cells, offer advantages over synthetic carriers. Among the EVs, the exosomes are facilitating intercellular communication with minimal toxicity, high biocompatibility, and low immunogenicity. Their tissue-specific targeting ability, mediated by surface molecules, enables precise transport of biomolecules to cancer cells. Here, we explore the potential of exosomes as innovative therapeutic agents, including cancer vaccines, and their clinical relevance as biomarkers for clinical diagnosis. We highlight the cargo possibilities, including nucleic acids and drugs, which make them a good delivery system for targeted cancer treatment and contrast agents for disease monitoring. Other general aspects, sources, and the methodology associated with therapeutic cancer applications are also reviewed. Additionally, the challenges associated with translating exosome-based therapies into clinical practice are discussed, together with the future prospects for this innovative approach.
Collapse
Affiliation(s)
- Salomé Araujo-Abad
- Cancer Research Group, Faculty of Engineering and Applied Sciences, Universidad de Las Américas, Quito, 170124, Ecuador
| | - José Marcos Berna
- Unidad de Investigación, Fundación para el Fomento de la Investigación Sanitaria y Biomédica de la Comunidad Valenciana (FISABIO), Hospital General Universitario de Elche, Camí de l'Almazara 11, Elche, Alicante, 03203, Spain
- Instituto de Investigación, Desarrollo e Innovación en Biotecnología Sanitaria de Elche (IDiBE), Universidad Miguel Hernández, Avda. Universidad s/n, Ed. Torregaitán, Elche, Alicante, 03202, Spain
| | - Elena Lloret-Lopez
- Unidad de Investigación, Fundación para el Fomento de la Investigación Sanitaria y Biomédica de la Comunidad Valenciana (FISABIO), Hospital General Universitario de Elche, Camí de l'Almazara 11, Elche, Alicante, 03203, Spain
- Instituto de Investigación, Desarrollo e Innovación en Biotecnología Sanitaria de Elche (IDiBE), Universidad Miguel Hernández, Avda. Universidad s/n, Ed. Torregaitán, Elche, Alicante, 03202, Spain
| | - Andrés López-Cortés
- Cancer Research Group (CRG), Faculty of Medicine, Universidad de Las Américas, Quito, 170124, Ecuador
| | - Miguel Saceda
- Unidad de Investigación, Fundación para el Fomento de la Investigación Sanitaria y Biomédica de la Comunidad Valenciana (FISABIO), Hospital General Universitario de Elche, Camí de l'Almazara 11, Elche, Alicante, 03203, Spain
- Instituto de Investigación, Desarrollo e Innovación en Biotecnología Sanitaria de Elche (IDiBE), Universidad Miguel Hernández, Avda. Universidad s/n, Ed. Torregaitán, Elche, Alicante, 03202, Spain
| | - Camino de Juan Romero
- Unidad de Investigación, Fundación para el Fomento de la Investigación Sanitaria y Biomédica de la Comunidad Valenciana (FISABIO), Hospital General Universitario de Elche, Camí de l'Almazara 11, Elche, Alicante, 03203, Spain.
- Instituto de Investigación, Desarrollo e Innovación en Biotecnología Sanitaria de Elche (IDiBE), Universidad Miguel Hernández, Avda. Universidad s/n, Ed. Torregaitán, Elche, Alicante, 03202, Spain.
| |
Collapse
|
5
|
Chinnappan R, Makhzoum T, Arai M, Hajja A, Abul Rub F, Alodhaibi I, Alfuwais M, Elahi MA, Alshehri EA, Ramachandran L, Mani NK, Abrahim S, Mir MS, Al-Kattan K, Mir TA, Yaqinuddin A. Recent Advances in Biosensor Technology for Early-Stage Detection of Hepatocellular Carcinoma-Specific Biomarkers: An Overview. Diagnostics (Basel) 2024; 14:1519. [PMID: 39061656 PMCID: PMC11276200 DOI: 10.3390/diagnostics14141519] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2024] [Revised: 07/06/2024] [Accepted: 07/12/2024] [Indexed: 07/28/2024] Open
Abstract
Hepatocellular carcinoma is currently the most common malignancy of the liver. It typically occurs due to a series of oncogenic mutations that lead to aberrant cell replication. Most commonly, hepatocellular carcinoma (HCC) occurs as a result of pre-occurring liver diseases, such as hepatitis and cirrhosis. Given its aggressive nature and poor prognosis, the early screening and diagnosis of HCC are crucial. However, due to its plethora of underlying risk factors and pathophysiologies, patient presentation often varies in the early stages, with many patients presenting with few, if any, specific symptoms in the early stages. Conventionally, screening and diagnosis are performed through radiological examination, with diagnosis confirmed by biopsy. Imaging modalities tend to be limited by their requirement of large, expensive equipment; time-consuming operation; and a lack of accurate diagnosis, whereas a biopsy's invasive nature makes it unappealing for repetitive use. Recently, biosensors have gained attention for their potential to detect numerous conditions rapidly, cheaply, accurately, and without complex equipment and training. Through their sensing platforms, they aim to detect various biomarkers, such as nucleic acids, proteins, and even whole cells extracted by a liquid biopsy. Numerous biosensors have been developed that may detect HCC in its early stages. We discuss the recent updates in biosensing technology, highlighting its competitive potential compared to conventional methodology and its prospects as a tool for screening and diagnosis.
Collapse
Affiliation(s)
- Raja Chinnappan
- College of Medicine, Alfaisal University, Riyadh 11533, Saudi Arabia; (T.M.); (M.A.); (A.H.); (F.A.R.); (I.A.); (M.A.); (M.A.E.); (K.A.-K.); (T.A.M.)
- Tissue/Organ Bioengineering & BioMEMS Laboratory, Organ Transplant Centre of Excellence (TR&I-Dpt), King Faisal Specialist Hospital and Research Centre, Riyadh 11211, Saudi Arabia;
| | - Tariq Makhzoum
- College of Medicine, Alfaisal University, Riyadh 11533, Saudi Arabia; (T.M.); (M.A.); (A.H.); (F.A.R.); (I.A.); (M.A.); (M.A.E.); (K.A.-K.); (T.A.M.)
| | - Momo Arai
- College of Medicine, Alfaisal University, Riyadh 11533, Saudi Arabia; (T.M.); (M.A.); (A.H.); (F.A.R.); (I.A.); (M.A.); (M.A.E.); (K.A.-K.); (T.A.M.)
| | - Amro Hajja
- College of Medicine, Alfaisal University, Riyadh 11533, Saudi Arabia; (T.M.); (M.A.); (A.H.); (F.A.R.); (I.A.); (M.A.); (M.A.E.); (K.A.-K.); (T.A.M.)
| | - Farah Abul Rub
- College of Medicine, Alfaisal University, Riyadh 11533, Saudi Arabia; (T.M.); (M.A.); (A.H.); (F.A.R.); (I.A.); (M.A.); (M.A.E.); (K.A.-K.); (T.A.M.)
| | - Ibrahim Alodhaibi
- College of Medicine, Alfaisal University, Riyadh 11533, Saudi Arabia; (T.M.); (M.A.); (A.H.); (F.A.R.); (I.A.); (M.A.); (M.A.E.); (K.A.-K.); (T.A.M.)
| | - Mohammed Alfuwais
- College of Medicine, Alfaisal University, Riyadh 11533, Saudi Arabia; (T.M.); (M.A.); (A.H.); (F.A.R.); (I.A.); (M.A.); (M.A.E.); (K.A.-K.); (T.A.M.)
| | - Muhammad Affan Elahi
- College of Medicine, Alfaisal University, Riyadh 11533, Saudi Arabia; (T.M.); (M.A.); (A.H.); (F.A.R.); (I.A.); (M.A.); (M.A.E.); (K.A.-K.); (T.A.M.)
| | - Eman Abdullah Alshehri
- Tissue/Organ Bioengineering & BioMEMS Laboratory, Organ Transplant Centre of Excellence (TR&I-Dpt), King Faisal Specialist Hospital and Research Centre, Riyadh 11211, Saudi Arabia;
| | - Lohit Ramachandran
- Microfluidics, Sensors & Diagnostics (μSenD) Laboratory, Centre for Microfluidics, Biomarkers, Photoceutics and Sensors (μBioPS), Department of Biotechnology, Manipal Institute of Technology, Manipal Academy of Higher Education, Manipal 576104, Karnataka, India; (L.R.); (N.K.M.)
| | - Naresh Kumar Mani
- Microfluidics, Sensors & Diagnostics (μSenD) Laboratory, Centre for Microfluidics, Biomarkers, Photoceutics and Sensors (μBioPS), Department of Biotechnology, Manipal Institute of Technology, Manipal Academy of Higher Education, Manipal 576104, Karnataka, India; (L.R.); (N.K.M.)
| | - Shugufta Abrahim
- Graduate School of Science and Engineering for Education, University of Toyama, 3190 Gofuku, Toyama 930-8555, Japan;
| | - Mohammad Shabab Mir
- School of Pharmacy, Desh Bhagat University, Mandi Gobindgarh 147301, Punjab, India;
| | - Khaled Al-Kattan
- College of Medicine, Alfaisal University, Riyadh 11533, Saudi Arabia; (T.M.); (M.A.); (A.H.); (F.A.R.); (I.A.); (M.A.); (M.A.E.); (K.A.-K.); (T.A.M.)
- Lung Health Centre Department, Organ Transplant Centre of Excellence, King Faisal Specialist Hospital and Research Centre, Riyadh 11211, Saudi Arabia
| | - Tanveer Ahmad Mir
- College of Medicine, Alfaisal University, Riyadh 11533, Saudi Arabia; (T.M.); (M.A.); (A.H.); (F.A.R.); (I.A.); (M.A.); (M.A.E.); (K.A.-K.); (T.A.M.)
- Tissue/Organ Bioengineering & BioMEMS Laboratory, Organ Transplant Centre of Excellence (TR&I-Dpt), King Faisal Specialist Hospital and Research Centre, Riyadh 11211, Saudi Arabia;
| | - Ahmed Yaqinuddin
- College of Medicine, Alfaisal University, Riyadh 11533, Saudi Arabia; (T.M.); (M.A.); (A.H.); (F.A.R.); (I.A.); (M.A.); (M.A.E.); (K.A.-K.); (T.A.M.)
| |
Collapse
|
6
|
Caro C, Guzzi C, Moral-Sánchez I, Urbano-Gámez JD, Beltrán AM, García-Martín ML. Smart Design of ZnFe and ZnFe@Fe Nanoparticles for MRI-Tracked Magnetic Hyperthermia Therapy: Challenging Classical Theories of Nanoparticles Growth and Nanomagnetism. Adv Healthc Mater 2024; 13:e2304044. [PMID: 38303644 DOI: 10.1002/adhm.202304044] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2023] [Revised: 01/18/2024] [Indexed: 02/03/2024]
Abstract
Iron Oxide Nanoparticles (IONPs) hold the potential to exert significant influence on fighting cancer through their theranostics capabilities as contrast agents (CAs) for magnetic resonance imaging (MRI) and as mediators for magnetic hyperthermia (MH). In addition, these capabilities can be improved by doping IONPs with other elements. In this work, the synthesis and characterization of single-core and alloy ZnFe novel magnetic nanoparticles (MNPs), with improved magnetic properties and more efficient magnetic-to-heat conversion, are reported. Remarkably, the results challenge classical nucleation and growth theories, which cannot fully predict the final size/shape of these nanoparticles and, consequently, their magnetic properties, implying the need for further studies to better understand the nanomagnetism phenomenon. On the other hand, leveraging the enhanced properties of these new NPs, successful tumor therapy by MH is achieved following their intravenous administration and tumor accumulation via the enhanced permeability and retention (EPR) effect. Notably, these results are obtained using a single low dose of MNPs and a single exposure to clinically suitable alternating magnetic fields (AMF). Therefore, as far as the authors are aware, for the first time, the successful application of intravenously administered MNPs for MRI-tracked MH tumor therapy in passively targeted tumor xenografts using clinically suitable conditions is demonstrated.
Collapse
Affiliation(s)
- Carlos Caro
- Biomedical Magnetic Resonance Laboratory-BMRL, Andalusian Public Foundation Progress and Health-FPS, Seville, 41092, Spain
- Instituto de Investigación Biomédica de Málaga y Plataforma en Nanomedicina (IBIMA Plataforma BIONAND), Universidad de Málaga, C/Severo Ochoa, 35, Malaga, 29590, Spain
| | - Cinzia Guzzi
- Biomedical Magnetic Resonance Laboratory-BMRL, Andalusian Public Foundation Progress and Health-FPS, Seville, 41092, Spain
- Instituto de Investigación Biomédica de Málaga y Plataforma en Nanomedicina (IBIMA Plataforma BIONAND), Universidad de Málaga, C/Severo Ochoa, 35, Malaga, 29590, Spain
| | - Irene Moral-Sánchez
- Biomedical Magnetic Resonance Laboratory-BMRL, Andalusian Public Foundation Progress and Health-FPS, Seville, 41092, Spain
- Instituto de Investigación Biomédica de Málaga y Plataforma en Nanomedicina (IBIMA Plataforma BIONAND), Universidad de Málaga, C/Severo Ochoa, 35, Malaga, 29590, Spain
| | - Jesús David Urbano-Gámez
- Biomedical Magnetic Resonance Laboratory-BMRL, Andalusian Public Foundation Progress and Health-FPS, Seville, 41092, Spain
- Instituto de Investigación Biomédica de Málaga y Plataforma en Nanomedicina (IBIMA Plataforma BIONAND), Universidad de Málaga, C/Severo Ochoa, 35, Malaga, 29590, Spain
| | - Ana M Beltrán
- Departamento de Ingeniería y Ciencia de los Materiales y del Transporte, Escuela Politécnica Superior, Universidad de Sevilla, Virgen de África 7, Sevilla, 41011, Spain
| | - Maria Luisa García-Martín
- Biomedical Magnetic Resonance Laboratory-BMRL, Andalusian Public Foundation Progress and Health-FPS, Seville, 41092, Spain
- Instituto de Investigación Biomédica de Málaga y Plataforma en Nanomedicina (IBIMA Plataforma BIONAND), Universidad de Málaga, C/Severo Ochoa, 35, Malaga, 29590, Spain
- Biomedical Research Networking Center in Bioengineering, Biomaterials & Nanomedicine (CIBER-BBN), Madrid, 28029, Spain
| |
Collapse
|
7
|
Fu Q, Yang X, Wang M, Zhu K, Wang Y, Song J. Activatable Probes for Ratiometric Imaging of Endogenous Biomarkers In Vivo. ACS NANO 2024; 18:3916-3968. [PMID: 38258800 DOI: 10.1021/acsnano.3c10659] [Citation(s) in RCA: 6] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/24/2024]
Abstract
Dynamic variations in the concentration and abnormal distribution of endogenous biomarkers are strongly associated with multiple physiological and pathological states. Therefore, it is crucial to design imaging systems capable of real-time detection of dynamic changes in biomarkers for the accurate diagnosis and effective treatment of diseases. Recently, ratiometric imaging has emerged as a widely used technique for sensing and imaging of biomarkers due to its advantage of circumventing the limitations inherent to conventional intensity-dependent signal readout methods while also providing built-in self-calibration for signal correction. Here, the recent progress of ratiometric probes and their applications in sensing and imaging of biomarkers are outlined. Ratiometric probes are classified according to their imaging mechanisms, and ratiometric photoacoustic imaging, ratiometric optical imaging including photoluminescence imaging and self-luminescence imaging, ratiometric magnetic resonance imaging, and dual-modal ratiometric imaging are discussed. The applications of ratiometric probes in the sensing and imaging of biomarkers such as pH, reactive oxygen species (ROS), reactive nitrogen species (RNS), glutathione (GSH), gas molecules, enzymes, metal ions, and hypoxia are discussed in detail. Additionally, this Review presents an overview of challenges faced in this field along with future research directions.
Collapse
Affiliation(s)
- Qinrui Fu
- Institute for Translational Medicine, The Affiliated Hospital of Qingdao University, College of Medicine, Qingdao University, Qingdao, Shandong 266021, China
| | - Xiao Yang
- Institute for Translational Medicine, The Affiliated Hospital of Qingdao University, College of Medicine, Qingdao University, Qingdao, Shandong 266021, China
| | - Mengzhen Wang
- Institute for Translational Medicine, The Affiliated Hospital of Qingdao University, College of Medicine, Qingdao University, Qingdao, Shandong 266021, China
| | - Kang Zhu
- State Key Laboratory of Chemical Resource Engineering, Beijing University of Chemical Technology, Beijing, 100029, China
| | - Yin Wang
- Institute for Translational Medicine, The Affiliated Hospital of Qingdao University, College of Medicine, Qingdao University, Qingdao, Shandong 266021, China
| | - Jibin Song
- State Key Laboratory of Chemical Resource Engineering, Beijing University of Chemical Technology, Beijing, 100029, China
| |
Collapse
|
8
|
Thangudu S, Tsai CY, Lin WC, Su CH. Modified gefitinib conjugated Fe 3O 4 NPs for improved delivery of chemo drugs following an image-guided mechanistic study of inner vs. outer tumor uptake for the treatment of non-small cell lung cancer. Front Bioeng Biotechnol 2023; 11:1272492. [PMID: 37877039 PMCID: PMC10591449 DOI: 10.3389/fbioe.2023.1272492] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2023] [Accepted: 09/27/2023] [Indexed: 10/26/2023] Open
Abstract
Gefitinib (GEF) is an FDA-approved anti-cancer drug for the first-line treatment of patients with metastatic non-small cell lung cancer (NSCLC). However, the efficacy of anticancer drugs is limited due to their non-specificity, lower accumulation at target sites, and systemic toxicity. Herein, we successfully synthesized a modified GEF (mGEF) drug and conjugated to Iron oxide nanoparticles (Fe3O4 NPs) for the treatment of NSCLC via magnetic resonance (MR) image-guided drug delivery. A traditional EDC coupling pathway uses mGEF to directly conjugate to Fe3O4 NPs to overcom the drug leakage issues. As a result, we found in vitro drug delivery on mGEF- Fe3O4 NPs exhibits excellent anticancer effects towards the PC9 cells selectively, with an estimated IC 50 value of 2.0 μM. Additionally, in vivo MRI and PET results demonstrate that the NPs could accumulate in tumor-specific regions with localized cell growth inhibition. Results also revealed that outer tumor region exhibiting a stronger contrast than the tinner tumor region which may due necrosis in inner tumor region. In vivo biodistribution further confirms Fe3O4 NPs are more biocompatible and are excreated after the treatment. Overall, we believe that this current strategy of drug modification combined with chemical conjugation on magnetic NPs will lead to improved cancer chemotherapy as well as understanding the tumor microenvironments for better therapeutic outcomes.
Collapse
Affiliation(s)
- Suresh Thangudu
- Center for General Education, Chang Gung University, Taoyuan, Taiwan
- Canary Center for Cancer Early Detection, Department of Radiology, Stanford University School of Medicine, Palo Alto, CA, United States
| | - Ching-Yi Tsai
- Institute for Translational Research in Biomedicine, Kaohsiung Chang Gung Memorial Hospital, Kaohsiung, Taiwan
| | - Wei-Che Lin
- Department of Diagnostic Radiology, Kaohsiung Chang Gung Memorial Hospital, Kaohsiung, Taiwan
| | - Chia-Hao Su
- Center for General Education, Chang Gung University, Taoyuan, Taiwan
- Department of Biomedical Imaging and Radiological Sciences, National Yang-Ming Chiao Tung University, Taipei, Taiwan
- Department of Radiation Oncology, Kaohsiung Chang Gung Memorial Hospital, Kaohsiung, Taiwan
| |
Collapse
|
9
|
Tavangari Z, Asadi M, Irajirad R, Sarikhani A, Alamzadeh Z, Ghaznavi H, Khoei S. 3D modeling of in vivo MRI-guided nano-photothermal therapy mediated by magneto-plasmonic nanohybrids. Biomed Eng Online 2023; 22:77. [PMID: 37528482 PMCID: PMC10394893 DOI: 10.1186/s12938-023-01131-w] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2023] [Accepted: 06/26/2023] [Indexed: 08/03/2023] Open
Abstract
BACKGROUND Nano-photothermal therapy (NPTT) has gained wide attention in cancer treatment due to its high efficiency and selective treatment strategy. The biggest challenges in the clinical application are the lack of (i) a reliable platform for mapping the thermal dose and (ii) efficient photothermal agents (PTAs). This study developed a 3D treatment planning for NPTT to reduce the uncertainty of treatment procedures, based on our synthesized nanohybrid. METHODS This study aimed to develop a three-dimensional finite element method (FEM) model for in vivo NPTT in mice using magneto-plasmonic nanohybrids, which are complex assemblies of superparamagnetic iron oxide nanoparticles and gold nanorods. The model was based on Pennes' bio-heat equation and utilized a geometrically correct mice whole-body. CT26 colon tumor-bearing BALB/c mice were injected with nanohybrids and imaged using MRI (3 Tesla) before and after injection. MR images were segmented, and STereoLithography (STL) files of mice bodies and nanohybrid distribution in the tumor were established to create a realistic geometry for the model. The accuracy of the temperature predictions was validated by using an infrared (IR) camera. RESULTS The photothermal conversion efficiency of the nanohybrids was experimentally determined to be approximately 30%. The intratumoral (IT) injection group showed the highest temperature increase, with a maximum of 17 °C observed at the hottest point on the surface of the tumor-bearing mice for 300 s of laser exposure at a power density of 1.4 W/cm2. Furthermore, the highest level of tissue damage, with a maximum value of Ω = 0.4, was observed in the IT injection group, as determined through a simulation study. CONCLUSIONS Our synthesized nanohybrid shows potential as an effective agent for MRI-guided NPTT. The developed model accurately predicted temperature distributions and tissue damage in the tumor. However, the current temperature validation method, which relies on limited 2D measurements, may be too lenient. Further refinement is necessary to improve validation. Nevertheless, the presented FEM model holds great promise for clinical NPTT treatment planning.
Collapse
Affiliation(s)
- Zahed Tavangari
- Finetech in Medicine Research Center, Iran University of Medical Sciences, Tehran, Iran
- Medical Physics Department, Iran University of Medical Sciences, Tehran, Iran
| | - Mohammadreza Asadi
- Finetech in Medicine Research Center, Iran University of Medical Sciences, Tehran, Iran
| | - Rasoul Irajirad
- Finetech in Medicine Research Center, Iran University of Medical Sciences, Tehran, Iran
| | - Abolfazl Sarikhani
- Finetech in Medicine Research Center, Iran University of Medical Sciences, Tehran, Iran
| | - Zahra Alamzadeh
- Finetech in Medicine Research Center, Iran University of Medical Sciences, Tehran, Iran
| | - Habib Ghaznavi
- Pharmacology Research Center, Zahedan University of Medical Sciences, Zahedan, Iran.
| | - Samideh Khoei
- Finetech in Medicine Research Center, Iran University of Medical Sciences, Tehran, Iran.
- Medical Physics Department, Iran University of Medical Sciences, Tehran, Iran.
| |
Collapse
|
10
|
Thangudu S, Lin WC, Lee CL, Liao MC, Yu CC, Wang YM, Su CH. Ligand free FeSn 2 alloy nanoparticles for safe T2-weighted MR imaging of in vivo lung tumors. Biomater Sci 2023; 11:2177-2185. [PMID: 36740962 DOI: 10.1039/d2bm01517j] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023]
Abstract
Biosafety is a critical issue for the successful translocation of nanomaterial-based therapeutic/diagnostic agents from bench to bedside. For instance, after the withdrawal of clinically approved magnetic resonance (MR) imaging contrast agents (CAs) due to their biosafety issues, there is a massive demand for alternative, efficient, and biocompatible MR contrast agents for future MRI clinical applications. To this end, here we successfully demonstrate the in vivo MR contrast abilities and biocompatibilities of ligand-free FeSn2 alloy NPs for tracking in vivo lung tumors. In vitro and in vivo results reveal the FeSn2 alloy NPs acting as appreciable T2 weighted MR contrast agents to locate tumors. The construction of iron (Fe) on biocompatible tin (Sn) greatly facilitates the reduction of the intrinsic toxicities of Fe in vivo resulting in no significant abnormalities in liver and kidney functions. Therefore, we envision that constructing ligand-free alloy NPs will be a promising candidate for tracking in vivo tumors in future clinical applications.
Collapse
Affiliation(s)
- Suresh Thangudu
- Center for General Education, Chang Gung University, Taoyuan, 333, Taiwan. .,Department of Diagnostic Radiology, Kaohsiung Chang Gung Memorial Hospital, Kaohsiung 833, Taiwan
| | - Wei-Che Lin
- Department of Diagnostic Radiology, Kaohsiung Chang Gung Memorial Hospital, Kaohsiung 833, Taiwan
| | - Chin-Lai Lee
- Department of Diagnostic Radiology, Kaohsiung Chang Gung Memorial Hospital, Kaohsiung 833, Taiwan
| | - Min-Chiao Liao
- Department of Radiation Oncology, Kaohsiung Chang Gung Memorial Hospital, Kaohsiung 833, Taiwan.
| | - Chun-Chieh Yu
- Institute for Translational Research in Biomedicine, Kaohsiung Chang Gung Memorial Hospital, Kaohsiung 833, Taiwan
| | - Yu-Ming Wang
- Department of Radiation Oncology, Kaohsiung Chang Gung Memorial Hospital, Kaohsiung 833, Taiwan.
| | - Chia-Hao Su
- Center for General Education, Chang Gung University, Taoyuan, 333, Taiwan. .,Department of Diagnostic Radiology, Kaohsiung Chang Gung Memorial Hospital, Kaohsiung 833, Taiwan.,Department of Radiation Oncology, Kaohsiung Chang Gung Memorial Hospital, Kaohsiung 833, Taiwan. .,Department of Biomedical Imaging and Radiological Sciences, National Yang Ming Chiao Tung University, Taipei 112, Taiwan
| |
Collapse
|
11
|
Pulumati A, Pulumati A, Dwarakanath BS, Verma A, Papineni RVL. Technological advancements in cancer diagnostics: Improvements and limitations. Cancer Rep (Hoboken) 2023; 6:e1764. [PMID: 36607830 PMCID: PMC9940009 DOI: 10.1002/cnr2.1764] [Citation(s) in RCA: 31] [Impact Index Per Article: 15.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2021] [Revised: 10/20/2022] [Accepted: 11/27/2022] [Indexed: 01/07/2023] Open
Abstract
BACKGROUND Cancer is characterized by the rampant proliferation, growth, and infiltration of malignantly transformed cancer cells past their normal boundaries into adjacent tissues. It is the leading cause of death worldwide, responsible for approximately 19.3 million new diagnoses and 10 million deaths globally in 2020. In the United States alone, the estimated number of new diagnoses and deaths is 1.9 million and 609 360, respectively. Implementation of currently existing cancer diagnostic techniques such as positron emission tomography (PET), X-ray computed tomography (CT), and magnetic resonance spectroscopy (MRS), and molecular diagnostic techniques, have enabled early detection rates and are instrumental not only for the therapeutic management of cancer patients, but also for early detection of the cancer itself. The effectiveness of these cancer screening programs are heavily dependent on the rate of accurate precursor lesion identification; an increased rate of identification allows for earlier onset treatment, thus decreasing the incidence of invasive cancer in the long-term, and improving the overall prognosis. Although these diagnostic techniques are advantageous due to lack of invasiveness and easier accessibility within the clinical setting, several limitations such as optimal target definition, high signal to background ratio and associated artifacts hinder the accurate diagnosis of specific types of deep-seated tumors, besides associated high cost. In this review we discuss various imaging, molecular, and low-cost diagnostic tools and related technological advancements, to provide a better understanding of cancer diagnostics, unraveling new opportunities for effective management of cancer, particularly in low- and middle-income countries (LMICs). RECENT FINDINGS Herein we discuss various technological advancements that are being utilized to construct an assortment of new diagnostic techniques that incorporate hardware, image reconstruction software, imaging devices, biomarkers, and even artificial intelligence algorithms, thereby providing a reliable diagnosis and analysis of the tumor. Also, we provide a brief account of alternative low cost-effective cancer therapy devices (CryoPop®, LumaGEM®, MarginProbe®) and picture archiving and communication systems (PACS), emphasizing the need for multi-disciplinary collaboration among radiologists, pathologists, and other involved specialties for improving cancer diagnostics. CONCLUSION Revolutionary technological advancements in cancer imaging and molecular biology techniques are indispensable for the accurate diagnosis and prognosis of cancer.
Collapse
Affiliation(s)
- Akhil Pulumati
- University of Missouri‐Kansas CityKansas CityMissouriUSA
| | - Anika Pulumati
- University of Missouri‐Kansas CityKansas CityMissouriUSA
| | - Bilikere S. Dwarakanath
- Central Research FacilitySri Ramachandra Institute of Higher Education and Research PorurChennaiIndia
- Department of BiotechnologyIndian Academy Degree CollegeBangaloreIndia
| | | | - Rao V. L. Papineni
- PACT & Health LLCBranfordConnecticutUSA
- Department of SurgeryUniversity of Kansas Medical CenterKansas CityKansasUSA
| |
Collapse
|
12
|
Nguyen A, Kumar S, Kulkarni AA. Nanotheranostic Strategies for Cancer Immunotherapy. SMALL METHODS 2022; 6:e2200718. [PMID: 36382571 PMCID: PMC11056828 DOI: 10.1002/smtd.202200718] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/02/2022] [Revised: 09/13/2022] [Indexed: 06/16/2023]
Abstract
Despite advancements in cancer immunotherapy, heterogeneity in tumor response impose barriers to successful treatments and accurate prognosis. Effective therapy and early outcome detection are critical as toxicity profiles following immunotherapies can severely affect patients' quality of life. Existing imaging techniques, including positron emission tomography, computed tomography, magnetic resonance imaging, or multiplexed imaging, are often used in clinics yet suffer from limitations in the early assessment of immune response. Conventional strategies to validate immune response mainly rely on the Response Evaluation Criteria in Solid Tumors (RECIST) and the modified iRECIST for immuno-oncology drug trials. However, accurate monitoring of immunotherapy efficacy is challenging since the response does not always follow conventional RECIST criteria due to delayed and variable kinetics in immunotherapy responses. Engineered nanomaterials for immunotherapy applications have significantly contributed to overcoming these challenges by improving drug delivery and dynamic imaging techniques. This review summarizes challenges in recent immune-modulation approaches and traditional imaging tools, followed by emerging developments in three-in-one nanoimmunotheranostic systems co-opting nanotechnology, immunotherapy, and imaging. In addition, a comprehensive overview of imaging modalities in recent cancer immunotherapy research and a brief outlook on how nanotheranostic platforms can potentially advance to clinical translations for the field of immuno-oncology is presented.
Collapse
Affiliation(s)
- Anh Nguyen
- Department of Chemical Engineering, University of Massachusetts, Amherst, MA, USA
| | - Sahana Kumar
- Department of Chemical Engineering, University of Massachusetts, Amherst, MA, USA
| | - Ashish A. Kulkarni
- Department of Chemical Engineering, University of Massachusetts, Amherst, MA, USA
- Center for Bioactive Delivery, Institute for Applied Life Sciences, University of Massachusetts, Amherst, MA, USA
| |
Collapse
|
13
|
Thangudu S, Huang EY, Su CH. Safe magnetic resonance imaging on biocompatible nanoformulations. Biomater Sci 2022; 10:5032-5053. [PMID: 35858468 DOI: 10.1039/d2bm00692h] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
Magnetic resonance imaging (MRI) holds promise for the early clinical diagnosis of various diseases, but most clinical MR techniques require the use of a contrast medium. Several nanomaterial (NM) mediated contrast agents (CAs) are widely used as T1- and T2-based MR contrast agents for clinical and non-clinical applications. Unfortunately, most NM-based CAs are toxic or non-biocompatible, restricting their practical/clinical applications. Therefore, the development of nontoxic and biocompatible CAs for clinical MRI diagnosis is highly desired. To this end, several biocompatible and biomimetic strategies have been developed to offer long blood circulation time, significant biocompatibility, in vivo biodistribution and high contrast ability for efficient imaging. However, detailed review reports on biocompatible NMs, specifically for MR imaging have not yet been summarized. Thus, in the present review we summarize various surface coating strategies (such as polymers, proteins, cell membranes, etc.) to achieve biocompatible NPs, providing a detailed discussion of advances and future prospects for safe MRI imaging.
Collapse
Affiliation(s)
- Suresh Thangudu
- Institute for Translational Research in Biomedicine, Kaohsiung Chang Gung Memorial Hospital, Kaohsiung 833, Taiwan.
| | - Eng-Yen Huang
- Department of Radiation Oncology, Chang Gung Memorial Hospital, Kaohsiung, Taiwan
| | - Chia-Hao Su
- Institute for Translational Research in Biomedicine, Kaohsiung Chang Gung Memorial Hospital, Kaohsiung 833, Taiwan. .,Center for General Education, Chang Gung University, Taoyuan, 333, Taiwan.,Department of Biomedical Imaging and Radiological Sciences, National Yang Ming Chiao Tung University, Taipei 112, Taiwan
| |
Collapse
|
14
|
A Dual-Mode Imaging Nanoparticle Probe Targeting PD-L1 for Triple-Negative Breast Cancer. CONTRAST MEDIA & MOLECULAR IMAGING 2022; 2022:2431026. [PMID: 35694705 PMCID: PMC9173980 DOI: 10.1155/2022/2431026] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/06/2022] [Revised: 04/18/2022] [Accepted: 05/13/2022] [Indexed: 11/19/2022]
Abstract
Chemotherapy has remained the mainstay of treatment of triple-negative breast cancer; however, it is significantly limited by the associated side effects. PD-1/PD-L1 immune checkpoint inhibition therapy (ICI) has been a breakthrough for this patient population in recent years. PD-L1 expression is crucial in immunotherapy since it is a major predictor of PD-1/PD-L1 antibody response, emphasizing the significance of monitoring PD-L1 expression. Nonetheless, it is hard to assess the expression of PD-L1 before surgery, which has highlighted the urgency for a precise and noninvasive approach. Herein, we prepared a dual-mode imaging nanoparticle probe to detect PD-L1. The particle size, zeta potential, biocompatibility, and imaging ability of NPs were characterized. The synthesized NPs showed slight cytotoxicity and good T2 relaxivity. The targeted NPs accumulated more in 4T1 cells than nontargeted NPs in vitro. The in vivo experiment further demonstrated the distribution of targeted NPs in tumor tissues, with changes in NIRF and MR signals observed. Our study indicated that SPIO-aPD-L1-Cy5.5 NPs can be used to monitor PD-L1 expression in breast cancer as NIRF/MR contrast agents.
Collapse
|
15
|
Mames A, Jopa S, Pietrzak M, Ratajczyk T. Deactivation of catalysts in simultaneous reversible and irreversible parahydrogen NMR signal enhancement, and the role of co-ligands in the stabilization of the reversible method. RSC Adv 2022; 12:15986-15991. [PMID: 35733673 PMCID: PMC9136854 DOI: 10.1039/d2ra02872g] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2022] [Accepted: 05/23/2022] [Indexed: 11/21/2022] Open
Abstract
Signal Amplification by Reversible Exchange (SABRE) and hydrogeneable Parahydrogen Induced Polarization (hPHIP) can enhance weak NMR signals, and thus increase the range of NMR applications. Here, using an N-heterocyclic carbene Ir-based catalyst, simultaneous SABRE and hPHIP was achieved for the compound with an N-donor site and an acetylene triple bond. It was demonstrated that the interplay between SABRE and hPHIP can be manipulated. Specifically, it was found that the hPHIP effect could be almost completely suppressed, while stable SABRE was observed in subsequent consecutive experiments. The presented results have the potential to increase the numbers of parahydrogen hyperpolarizable molecules.
Collapse
Affiliation(s)
- Adam Mames
- Institute of Physical Chemistry, Polish Academy of Sciences Kasprzaka 44/52 Warsaw 01-224 Poland
| | - Sylwia Jopa
- Faculty of Chemistry, University of Warsaw Pasteura 1 Warsaw 02-093 Poland
| | - Mariusz Pietrzak
- Institute of Physical Chemistry, Polish Academy of Sciences Kasprzaka 44/52 Warsaw 01-224 Poland
| | - Tomasz Ratajczyk
- Institute of Physical Chemistry, Polish Academy of Sciences Kasprzaka 44/52 Warsaw 01-224 Poland
| |
Collapse
|
16
|
Thangudu S, Yu CC, Lee CL, Liao MC, Su CH. Magnetic, biocompatible FeCO 3 nanoparticles for T2-weighted magnetic resonance imaging of in vivo lung tumors. J Nanobiotechnology 2022; 20:157. [PMID: 35337331 PMCID: PMC8952886 DOI: 10.1186/s12951-022-01355-3] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2021] [Accepted: 03/06/2022] [Indexed: 12/26/2022] Open
Abstract
Background Late diagnosis of lung cancer is one of the leading causes of higher mortality in lung cancer patients worldwide. Significant research attention has focused on the use of magnetic resonance imaging (MRI) based nano contrast agents to efficiently locate cancer tumors for surgical removal or disease diagnostics. Although contrast agents offer significant advantages, further clinical applications require improvements in biocompatibility, biosafety and efficacy. Results To address these challenges, we fabricated ultra-fine Iron Carbonate Nanoparticles (FeCO3 NPs) for the first time via modified literature method. Synthesized NPs exhibit ultra-fine size (~ 17 nm), good dispersibility and excellent stability in both aqueous and biological media. We evaluated the MR contrast abilities of FeCO3 NPs and observed remarkable T2 weighted MRI contrast in a concentration dependent manner, with a transverse relaxivity (r2) value of 730.9 ± 4.8 mM−1 S−1at 9.4 T. Moreover, the r2 values of present FeCO3 NPs are respectively 1.95 and 2.3 times higher than the clinically approved contrast agents Resovist® and Friedx at same 9.4 T MR scanner. FeCO3 NPs demonstrate an enhanced T2 weighted contrast for in vivo lung tumors within 5 h of post intravenous administration with no apparent systemic toxicity or induction of inflammation observed in in vivo mice models. Conclusion The excellent biocompatibility and T2 weighted contrast abilities of FeCO3 NPs suggest potential for future clinical use in early diagnosis of lung tumors. Graphical Abstract ![]()
Supplementary Information The online version contains supplementary material available at 10.1186/s12951-022-01355-3.
Collapse
Affiliation(s)
- Suresh Thangudu
- Institute for Translational Research in Biomedicine, Kaohsiung Chang Gung Memorial Hospital, Kaohsiung, 833, Taiwan
| | - Chun-Chieh Yu
- Institute for Translational Research in Biomedicine, Kaohsiung Chang Gung Memorial Hospital, Kaohsiung, 833, Taiwan
| | - Chin-Lai Lee
- Institute for Translational Research in Biomedicine, Kaohsiung Chang Gung Memorial Hospital, Kaohsiung, 833, Taiwan
| | - Min-Chiao Liao
- Institute for Translational Research in Biomedicine, Kaohsiung Chang Gung Memorial Hospital, Kaohsiung, 833, Taiwan
| | - Chia-Hao Su
- Institute for Translational Research in Biomedicine, Kaohsiung Chang Gung Memorial Hospital, Kaohsiung, 833, Taiwan. .,Department of Biomedical Imaging and Radiological Sciences, National Yang Ming Chiao Tung University, Taipei, 112, Taiwan. .,Center for General Education, Chang Gung University, Taoyuan, 333, Taiwan.
| |
Collapse
|
17
|
Advanced Magnetic Resonance Imaging (MRI) Techniques: Technical Principles and Applications in Nanomedicine. Cancers (Basel) 2022; 14:cancers14071626. [PMID: 35406399 PMCID: PMC8997011 DOI: 10.3390/cancers14071626] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2022] [Revised: 03/18/2022] [Accepted: 03/21/2022] [Indexed: 12/26/2022] Open
Abstract
Simple Summary Magnetic Resonance Imaging (MRI) is a consolidated imaging tool for the multiparametric assessment of tissues in various pathologies from degenerative and inflammatory diseases to cancer. In recent years, the continuous technological evolution of the equipment has led to the development of sequences that provide not only anatomical but also functional and metabolic information. In addition, there is a growing and emerging field of research in clinical applications using MRI to exploit the diagnostic and therapeutic capabilities of nanocompounds. This review illustrates the application of the most advanced magnetic resonance techniques in the field of nanomedicine. Abstract In the last decades, nanotechnology has been used in a wide range of biomedical applications, both diagnostic and therapeutic. In this scenario, imaging techniques represent a fundamental tool to obtain information about the properties of nanoconstructs and their interactions with the biological environment in preclinical and clinical settings. This paper reviews the state of the art of the application of magnetic resonance imaging in the field of nanomedicine, as well as the use of nanoparticles as diagnostic and therapeutic tools, especially in cancer, including the characteristics that hinder the use of nanoparticles in clinical practice.
Collapse
|
18
|
Kumar M, Nanga RPR, Verma G, Wilson N, Brisset JC, Nath K, Chawla S. Emerging MR Imaging and Spectroscopic Methods to Study Brain Tumor Metabolism. Front Neurol 2022; 13:789355. [PMID: 35370872 PMCID: PMC8967433 DOI: 10.3389/fneur.2022.789355] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2021] [Accepted: 01/31/2022] [Indexed: 11/13/2022] Open
Abstract
Proton magnetic resonance spectroscopy (1H-MRS) provides a non-invasive biochemical profile of brain tumors. The conventional 1H-MRS methods present a few challenges mainly related to limited spatial coverage and low spatial and spectral resolutions. In the recent past, the advent and development of more sophisticated metabolic imaging and spectroscopic sequences have revolutionized the field of neuro-oncologic metabolomics. In this review article, we will briefly describe the scientific premises of three-dimensional echoplanar spectroscopic imaging (3D-EPSI), two-dimensional correlation spectroscopy (2D-COSY), and chemical exchange saturation technique (CEST) MRI techniques. Several published studies have shown how these emerging techniques can significantly impact the management of patients with glioma by determining histologic grades, molecular profiles, planning treatment strategies, and assessing the therapeutic responses. The purpose of this review article is to summarize the potential clinical applications of these techniques in studying brain tumor metabolism.
Collapse
Affiliation(s)
- Manoj Kumar
- Department of Neuroimaging and Interventional Radiology, National Institute of Mental Health and Neurosciences, Bengaluru, India
| | - Ravi Prakash Reddy Nanga
- Department of Radiology, Perelman School of Medicine at the University of Pennsylvania, Philadelphia, PA, United States
| | - Gaurav Verma
- Department of Radiology, Icahn School of Medicine at Mount Sinai, New York, NY, United States
| | - Neil Wilson
- Department of Radiology, Perelman School of Medicine at the University of Pennsylvania, Philadelphia, PA, United States
| | | | - Kavindra Nath
- Department of Radiology, Perelman School of Medicine at the University of Pennsylvania, Philadelphia, PA, United States
| | - Sanjeev Chawla
- Department of Radiology, Perelman School of Medicine at the University of Pennsylvania, Philadelphia, PA, United States
- *Correspondence: Sanjeev Chawla
| |
Collapse
|
19
|
Muresanu C, Khalchitsky S. Updated Understanding of the Causes of Cancer, and a New Theoretical Perspective of Combinational Cancer Therapies, a Hypothesis. DNA Cell Biol 2022; 41:342-355. [PMID: 35262416 DOI: 10.1089/dna.2021.1118] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
We present an integrative understanding of cancer as a metabolic multifactorial, multistage disease. We focus on underlying genetics-environmental interactions, evidenced by telomere changes. A range of genetic and epigenetic factors, including physical agents and predisposing factors such as diet and lifestyle are included. We present a structured model of the causes of cancer, methods of investigations, approaches to cancer prevention, and polypharmaceutical multidisciplinary complex treatment within a framework of personalized medicine. We searched PubMed, National Cancer Institute online, and other databases for publications regarding causes of cancer, reports of novel mitochondrial reprogramming, epigenetic, and telomerase therapies and state-of-the-art investigations. We focused on multistep treatment protocols to enhance early detection of cancer, and elimination or neutralization of the causes and factors associated with cancer formation and progression.Our aim is to suggest a model therapeutic protocol that incorporates the patient's genome, metabolism, and immune system status; stage of tumor development; and comorbidity(ies), if any. Investigation and treatment of cancer is a challenge that requires further holistic studies that improve the quality of life and survival rates, but are most likely to aid prevention.
Collapse
Affiliation(s)
- Cristian Muresanu
- Research Center for Applied Biotechnology in Diagnosis and Molecular Therapies, Cluj-Napoca, Romania.,Department of Ecology, Taxonomy and Nature Conservation, Institute of Biology, Romanian Academy, Bucharest, Romania
| | - Sergei Khalchitsky
- H. Turner National Medical Research Center for Children's Orthopedics and Trauma Surgery of the Ministry of Health of the Russian Federation, Saint-Petersburg, Russia
| |
Collapse
|
20
|
Kouri MA, Spyratou E, Karnachoriti M, Kalatzis D, Danias N, Arkadopoulos N, Seimenis I, Raptis YS, Kontos AG, Efstathopoulos EP. Raman Spectroscopy: A Personalized Decision-Making Tool on Clinicians' Hands for In Situ Cancer Diagnosis and Surgery Guidance. Cancers (Basel) 2022; 14:1144. [PMID: 35267451 PMCID: PMC8909093 DOI: 10.3390/cancers14051144] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2021] [Revised: 02/04/2022] [Accepted: 02/07/2022] [Indexed: 12/23/2022] Open
Abstract
Accurate in situ diagnosis and optimal surgical removal of a malignancy constitute key elements in reducing cancer-related morbidity and mortality. In surgical oncology, the accurate discrimination between healthy and cancerous tissues is critical for the postoperative care of the patient. Conventional imaging techniques have attempted to serve as adjuvant tools for in situ biopsy and surgery guidance. However, no single imaging modality has been proven sufficient in terms of specificity, sensitivity, multiplexing capacity, spatial and temporal resolution. Moreover, most techniques are unable to provide information regarding the molecular tissue composition. In this review, we highlight the potential of Raman spectroscopy as a spectroscopic technique with high detection sensitivity and spatial resolution for distinguishing healthy from malignant margins in microscopic scale and in real time. A Raman spectrum constitutes an intrinsic "molecular finger-print" of the tissue and any biochemical alteration related to inflammatory or cancerous tissue state is reflected on its Raman spectral fingerprint. Nowadays, advanced Raman systems coupled with modern instrumentation devices and machine learning methods are entering the clinical arena as adjunct tools towards personalized and optimized efficacy in surgical oncology.
Collapse
Affiliation(s)
- Maria Anthi Kouri
- Department of Medicine, Democritus University of Thrace, 68100 Alexandroupolis, Greece; (M.A.K.); (E.S.); (M.K.)
- 2nd Department of Radiology, Medical School, National and Kapodistrian University of Athens, 11527 Athens, Greece;
- Medical Physics Program, Department of Physics and Applied Physics, Kennedy College of Sciences, University of Massachusetts Lowell, 265 Riverside Street, Lowell, MA 01854, USA
| | - Ellas Spyratou
- Department of Medicine, Democritus University of Thrace, 68100 Alexandroupolis, Greece; (M.A.K.); (E.S.); (M.K.)
- Physics Department, School of Applied Mathematical and Physical Sciences, National Technical University of Athens, Iroon Politechniou 9, 15780 Athens, Greece; (Y.S.R.); (A.G.K.)
| | - Maria Karnachoriti
- Department of Medicine, Democritus University of Thrace, 68100 Alexandroupolis, Greece; (M.A.K.); (E.S.); (M.K.)
- Physics Department, School of Applied Mathematical and Physical Sciences, National Technical University of Athens, Iroon Politechniou 9, 15780 Athens, Greece; (Y.S.R.); (A.G.K.)
| | - Dimitris Kalatzis
- 2nd Department of Radiology, Medical School, National and Kapodistrian University of Athens, 11527 Athens, Greece;
| | - Nikolaos Danias
- 4th Department of Surgery, School of Medicine, Attikon University Hospital, University of Athens, 1 Rimini Street, 12462 Athens, Greece; (N.D.); (N.A.)
| | - Nikolaos Arkadopoulos
- 4th Department of Surgery, School of Medicine, Attikon University Hospital, University of Athens, 1 Rimini Street, 12462 Athens, Greece; (N.D.); (N.A.)
| | - Ioannis Seimenis
- Medical School, National and Kapodistrian University of Athens, 75 Mikras Assias Street, 11527 Athens, Greece;
| | - Yannis S. Raptis
- Physics Department, School of Applied Mathematical and Physical Sciences, National Technical University of Athens, Iroon Politechniou 9, 15780 Athens, Greece; (Y.S.R.); (A.G.K.)
| | - Athanassios G. Kontos
- Physics Department, School of Applied Mathematical and Physical Sciences, National Technical University of Athens, Iroon Politechniou 9, 15780 Athens, Greece; (Y.S.R.); (A.G.K.)
| | - Efstathios P. Efstathopoulos
- 2nd Department of Radiology, Medical School, National and Kapodistrian University of Athens, 11527 Athens, Greece;
| |
Collapse
|
21
|
Liu S, Yue H, Ho SL, Kim S, Park JA, Tegafaw T, Ahmad MY, Kim S, Saidi AKAA, Zhao D, Liu Y, Nam SW, Chae KS, Chang Y, Lee GH. Enhanced Tumor Imaging Using Glucosamine-Conjugated Polyacrylic Acid-Coated Ultrasmall Gadolinium Oxide Nanoparticles in Magnetic Resonance Imaging. Int J Mol Sci 2022; 23:1792. [PMID: 35163714 PMCID: PMC8836488 DOI: 10.3390/ijms23031792] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/25/2021] [Revised: 02/01/2022] [Accepted: 02/03/2022] [Indexed: 12/12/2022] Open
Abstract
Owing to a higher demand for glucosamine (GlcN) in metabolic processes in tumor cells than in normal cells (i.e., GlcN effects), tumor imaging in magnetic resonance imaging (MRI) can be highly improved using GlcN-conjugated MRI contrast agents. Here, GlcN was conjugated with polyacrylic acid (PAA)-coated ultrasmall gadolinium oxide nanoparticles (UGONs) (davg = 1.76 nm). Higher positive (brighter or T1) contrast enhancements at various organs including tumor site were observed in human brain glioma (U87MG) tumor-bearing mice after the intravenous injection of GlcN-PAA-UGONs into their tail veins, compared with those obtained with PAA-UGONs as control, which were rapidly excreted through the bladder. Importantly, the contrast enhancements of the GlcN-PAA-UGONs with respect to those of the PAA-UGONs were the highest in the tumor site owing to GlcN effects. These results demonstrated that GlcN-PAA-UGONs can serve as excellent T1 MRI contrast agents in tumor imaging via GlcN effects.
Collapse
Affiliation(s)
- Shuwen Liu
- Department of Chemistry, College of Natural Sciences, Kyungpook National University, Taegu 41566, Korea; (S.L.); (H.Y.); (S.L.H.); (T.T.); (M.Y.A.); (A.K.A.A.S.); (D.Z.); (Y.L.)
| | - Huan Yue
- Department of Chemistry, College of Natural Sciences, Kyungpook National University, Taegu 41566, Korea; (S.L.); (H.Y.); (S.L.H.); (T.T.); (M.Y.A.); (A.K.A.A.S.); (D.Z.); (Y.L.)
| | - Son Long Ho
- Department of Chemistry, College of Natural Sciences, Kyungpook National University, Taegu 41566, Korea; (S.L.); (H.Y.); (S.L.H.); (T.T.); (M.Y.A.); (A.K.A.A.S.); (D.Z.); (Y.L.)
| | - Soyeon Kim
- Division of RI-Convergence Research, Korea Institute of Radiological and Medical Sciences (KIRAMS), Seoul 01817, Korea; (S.K.); (J.A.P.)
| | - Ji Ae Park
- Division of RI-Convergence Research, Korea Institute of Radiological and Medical Sciences (KIRAMS), Seoul 01817, Korea; (S.K.); (J.A.P.)
| | - Tirusew Tegafaw
- Department of Chemistry, College of Natural Sciences, Kyungpook National University, Taegu 41566, Korea; (S.L.); (H.Y.); (S.L.H.); (T.T.); (M.Y.A.); (A.K.A.A.S.); (D.Z.); (Y.L.)
| | - Mohammad Yaseen Ahmad
- Department of Chemistry, College of Natural Sciences, Kyungpook National University, Taegu 41566, Korea; (S.L.); (H.Y.); (S.L.H.); (T.T.); (M.Y.A.); (A.K.A.A.S.); (D.Z.); (Y.L.)
| | - Seungho Kim
- Department of Molecular Medicine, School of Medicine, Kyungpook National University, Taegu 41944, Korea; (S.K.); (S.-W.N.)
| | - Abdullah Khamis Ali Al Saidi
- Department of Chemistry, College of Natural Sciences, Kyungpook National University, Taegu 41566, Korea; (S.L.); (H.Y.); (S.L.H.); (T.T.); (M.Y.A.); (A.K.A.A.S.); (D.Z.); (Y.L.)
| | - Dejun Zhao
- Department of Chemistry, College of Natural Sciences, Kyungpook National University, Taegu 41566, Korea; (S.L.); (H.Y.); (S.L.H.); (T.T.); (M.Y.A.); (A.K.A.A.S.); (D.Z.); (Y.L.)
| | - Ying Liu
- Department of Chemistry, College of Natural Sciences, Kyungpook National University, Taegu 41566, Korea; (S.L.); (H.Y.); (S.L.H.); (T.T.); (M.Y.A.); (A.K.A.A.S.); (D.Z.); (Y.L.)
| | - Sung-Wook Nam
- Department of Molecular Medicine, School of Medicine, Kyungpook National University, Taegu 41944, Korea; (S.K.); (S.-W.N.)
| | - Kwon Seok Chae
- Department of Biology Education, Teachers’ College, Kyungpook National University, Taegu 41566, Korea;
| | - Yongmin Chang
- Department of Molecular Medicine, School of Medicine, Kyungpook National University, Taegu 41944, Korea; (S.K.); (S.-W.N.)
| | - Gang Ho Lee
- Department of Chemistry, College of Natural Sciences, Kyungpook National University, Taegu 41566, Korea; (S.L.); (H.Y.); (S.L.H.); (T.T.); (M.Y.A.); (A.K.A.A.S.); (D.Z.); (Y.L.)
| |
Collapse
|
22
|
The Fingerprints of Biomedical Science in Internal Medicine. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2022; 1401:173-189. [DOI: 10.1007/5584_2022_729] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/17/2022]
|
23
|
Li H, Kim Y, Jung H, Hyun JY, Shin I. Near-infrared (NIR) fluorescence-emitting small organic molecules for cancer imaging and therapy. Chem Soc Rev 2022; 51:8957-9008. [DOI: 10.1039/d2cs00722c] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
We discuss recent advances made in the development of NIR fluorescence-emitting small organic molecules for tumor imaging and therapy.
Collapse
Affiliation(s)
- Hui Li
- Department of Chemistry, Yonsei University, 03722 Seoul, Republic of Korea
| | - Yujun Kim
- Department of Chemistry, Yonsei University, 03722 Seoul, Republic of Korea
| | - Hyoje Jung
- Department of Chemistry, Yonsei University, 03722 Seoul, Republic of Korea
| | - Ji Young Hyun
- Department of Drug Discovery, Data Convergence Drug Research Center, Korea Research Institute of Chemical Technology (KRICT), Daejeon 34114, Republic of Korea
| | - Injae Shin
- Department of Chemistry, Yonsei University, 03722 Seoul, Republic of Korea
| |
Collapse
|
24
|
Genicio N, Bañobre-López M, Gröhn O, Gallo J. Ratiometric magnetic resonance imaging: Contrast agent design towards better specificity and quantification. Coord Chem Rev 2021. [DOI: 10.1016/j.ccr.2021.214150] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
|
25
|
Synthesis, Characterization and In Vitro Evaluation of Hybrid Monomeric Peptides Suited for Multimodal Imaging by PET/OI: Extending the Concept of Charge-Cell Binding Correlation. Pharmaceuticals (Basel) 2021; 14:ph14100989. [PMID: 34681213 PMCID: PMC8541144 DOI: 10.3390/ph14100989] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2021] [Revised: 09/22/2021] [Accepted: 09/24/2021] [Indexed: 12/15/2022] Open
Abstract
In the context of hybrid multimodal imaging agents for gastrin releasing peptide receptor (GRPR) targeting, a correlation between the net charge and the receptor affinity of the agents was recently found. In particular, a decrease in in vitro GRPR binding affinity was observed in case of an increasing number of negative charges for dually labeled GRPR-specific peptide dimers suited for positron emission tomography and optical imaging (PET/OI). This adverse influence of anionic charges could be in part compensated by a higher valency of peptide multimerization. However, it remains unknown whether this adverse effect of anionic charges is limited to peptide multimers or if it is also found or even more pronounced when GRPR-specific peptide monomers are dually labeled with fluorescent dye and chelating agent/radionuclide. Moreover, it would be important to know if this effect is limited to GRPR-specific agents only or if these observations also apply to other dually labeled peptides binding to other receptor types. To address these questions, we synthesized hybrid labels, comprising a chelator, different fluorescent dyes carrying different net charges and a functional group for bioconjugation and introduced them into different peptides, specifically targeting the GRPR, the melanocortin-1 receptor (MC1R) and integrin αvβ3. The synthesized conjugates were evaluated with regard to their chemical, radiochemical, photophysical and receptor affinity properties. It was found that neither the 68Ga-radiolabeling nor the fluorescence characteristics of the dyes were altered by the conjugation of the MIUs to the peptides. Further, it was confirmed that the net number of anionic charges has a negative effect on the GRPR-binding affinity of the GRPR-targeting MIU-peptide monomer conjugates and that this same effect was also found to the same extent for the other receptor systems studied.
Collapse
|
26
|
ADNEX Model-Based Diagnosis of Ovarian Cancer Using MRI Images. CONTRAST MEDIA & MOLECULAR IMAGING 2021; 2021:2146578. [PMID: 34497480 PMCID: PMC8387196 DOI: 10.1155/2021/2146578] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/30/2021] [Revised: 07/16/2021] [Accepted: 08/07/2021] [Indexed: 11/17/2022]
Abstract
This exploration aims to investigate the important role of magnetic resonance imaging (MRI) in the diagnosis of ovarian cancer under the ADNEX. From March 2017 to December 2019, 84 patients with ovarian cancer confirmed by pathological operation were selected as the research objects. The consistency of ADNEX, MRI, and ADNEX∗MRI in the diagnosis and staging of ovarian cancer was calculated separately. SPSS 26.0 statistical software was used to compare the accuracy, sensitivity, specificity, and diagnostic value of the two diagnostic methods. The results show that the accuracy and sensitivity of ADNEX are 78.6% and 93.2%, respectively. The accuracy and sensitivity of MRI are 81.2% and 89.4%, respectively. There is no significant difference between the two methods (p < 0.05). The overall consistency rates of ADNEX∗MRI, MRI diagnosis, and ADNEX for ovarian cancer staging are 94.2%, 74%, and 65.4%, respectively. There was a significant difference (p < 0.05). ADNEX∗MRI and MRI diagnosis were compared with each stage of ADNEX. There is a significant difference between the second and fourth stages (p < 0.05), and there is also a significant difference in the fourth stage (p < 0.017). It is concluded that MRI diagnosis of ovarian cancer based on ADNEX is superior to ADNEX and MRI examination alone, which provides a certain reference value for clinical staging of ovarian cancer.
Collapse
|
27
|
Ailuno G, Iacobazzi RM, Lopalco A, Baldassari S, Arduino I, Azzariti A, Pastorino S, Caviglioli G, Denora N. The Pharmaceutical Technology Approach on Imaging Innovations from Italian Research. Pharmaceutics 2021; 13:1214. [PMID: 34452175 PMCID: PMC8402236 DOI: 10.3390/pharmaceutics13081214] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2021] [Revised: 07/27/2021] [Accepted: 08/02/2021] [Indexed: 11/16/2022] Open
Abstract
Many modern therapeutic approaches are based on precise diagnostic evidence, where imaging procedures play an essential role. To date, in the diagnostic field, a plethora of agents have been investigated to increase the selectivity and sensitivity of diagnosis. However, the most common drawbacks of conventional imaging agents reside in their non-specificity, short imaging time, instability, and toxicity. Moreover, routinely used diagnostic agents have low molecular weights and consequently a rapid clearance and renal excretion, and this represents a limitation if long-lasting imaging analyses are to be conducted. Thus, the development of new agents for in vivo diagnostics requires not only a deep knowledge of the physical principles of the imaging techniques and of the physiopathological aspects of the disease but also of the relative pharmaceutical and biopharmaceutical requirements. In this scenario, skills in pharmaceutical technology have become highly indispensable in order to respond to these needs. This review specifically aims to collect examples of newly developed diagnostic agents connoting the importance of an appropriate formulation study for the realization of effective products. Within the context of pharmaceutical technology research in Italy, several groups have developed and patented promising agents for fluorescence and radioactive imaging, the most relevant of which are described hereafter.
Collapse
Affiliation(s)
- Giorgia Ailuno
- Department of Pharmacy, University of Genova, Viale Cembrano 4, 16148 Genova, Italy; (G.A.); (S.B.)
| | - Rosa Maria Iacobazzi
- Laboratory of Experimental Pharmacology, IRCCS Istituto Tumori “Giovanni Paolo II”, O. Flacco St., 70124 Bari, Italy; (R.M.I.); (A.A.)
| | - Antonio Lopalco
- Department of Pharmacy-Pharmaceutical Sciences, University of Bari “Aldo Moro”, Orabona St. 4, 70125 Bari, Italy; (A.L.); (I.A.)
| | - Sara Baldassari
- Department of Pharmacy, University of Genova, Viale Cembrano 4, 16148 Genova, Italy; (G.A.); (S.B.)
| | - Ilaria Arduino
- Department of Pharmacy-Pharmaceutical Sciences, University of Bari “Aldo Moro”, Orabona St. 4, 70125 Bari, Italy; (A.L.); (I.A.)
| | - Amalia Azzariti
- Laboratory of Experimental Pharmacology, IRCCS Istituto Tumori “Giovanni Paolo II”, O. Flacco St., 70124 Bari, Italy; (R.M.I.); (A.A.)
| | - Sara Pastorino
- Nuclear Medicine Unit, S. Andrea Hospital, via Vittorio Veneto 197, 19124 La Spezia, Italy;
| | - Gabriele Caviglioli
- Department of Pharmacy, University of Genova, Viale Cembrano 4, 16148 Genova, Italy; (G.A.); (S.B.)
| | - Nunzio Denora
- Department of Pharmacy-Pharmaceutical Sciences, University of Bari “Aldo Moro”, Orabona St. 4, 70125 Bari, Italy; (A.L.); (I.A.)
| |
Collapse
|
28
|
Gadolinium-labeled affibody-XTEN recombinant vector for detection of HER2+ lesions of ovarian cancer lung metastasis using quantitative MRI. J Control Release 2021; 337:132-143. [PMID: 34284047 PMCID: PMC8440463 DOI: 10.1016/j.jconrel.2021.07.022] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2021] [Revised: 06/01/2021] [Accepted: 07/14/2021] [Indexed: 11/21/2022]
Abstract
Ovarian cancer has the highest mortality rate among all gynecologic malignancies. HER2+ ovarian cancer is a subtype that is aggressive and associated with metastasis to distant sites such as the lungs. Therefore, accurate biological characterization of metastatic lesions is vital as it helps physicians select the most effective treatment strategy. Functional imaging of ovarian cancer with PET/CT is routinely used in the clinic to detect metastatic disease and evaluate treatment response. However, this imaging method does not provide information regarding the presence or absence of cancer-specific cell surface biomarkers such as HER2. As a result, this method does not help physicians decide whether to choose immunotherapy to treat metastasis. To differentiate the HER2+ from HER2¯ lesions in ovarian cancer lung metastasis, AbX50C4:Gd vector composed of a HER2 targeting affibody and XTEN peptide was genetically engineered. It was then labeled with gadolinium (Gd) via a stable linker. The vector was characterized physicochemically and biologically to determine its purity, molecular weight, hydrodynamic size and surface charge, stability in serum, endotoxin levels, relaxivity and ability to target the HER2 antigen. Then, SCID mice were implanted with SKOV-3 (HER2+) and OVASC-1 (HER2¯) tumors in the lungs and injected with the Gd-labeled HER2 targeted AbX50C4:Gd vector. The mice were imaged using dynamic contrast-enhanced magnetic resonance imaging (DCE-MRI), followed by R1-mapping and quantitative analysis of the images. Our data demonstrate that the developed HER2-targeted vector can differentiate HER2+ lung metastasis from HER2¯ lesions using DCE-MRI. The developed vector could potentially be used in conjunction with other imaging modalities to prescreen patients and identify candidates for immunotherapy while triaging those who may not be considered responsive.
Collapse
|
29
|
Gao S, Zhao L, Fan Z, Kodibagkar VD, Liu L, Wang H, Xu H, Tu M, Hu B, Cao C, Zhang Z, Yu JX. In Situ Generated Novel 1H MRI Reporter for β-Galactosidase Activity Detection and Visualization in Living Tumor Cells. Front Chem 2021; 9:709581. [PMID: 34336792 PMCID: PMC8321238 DOI: 10.3389/fchem.2021.709581] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2021] [Accepted: 06/16/2021] [Indexed: 12/24/2022] Open
Abstract
For wide applications of the lacZ gene in cellular/molecular biology, small animal investigations, and clinical assessments, the improvement of noninvasive imaging approaches to precisely assay gene expression has garnered much attention. In this study, we investigate a novel molecular platform in which alizarin 2-O-β-d-galactopyranoside AZ-1 acts as a lacZ gene/β-gal responsive 1H-MRI probe to induce significant 1H-MRI contrast changes in relaxation times T 1 and T 2 in situ as a concerted effect for the discovery of β-gal activity with the exposure of Fe3+. We also demonstrate the capability of this strategy for detecting β-gal activity with lacZ-transfected human MCF7 breast and PC3 prostate cancer cells by reaction-enhanced 1H-MRI T 1 and T 2 relaxation mapping.
Collapse
Affiliation(s)
- Shuo Gao
- Center of Translational Medicine, Fifth School of Medicine/Suizhou Central Hospital, Hubei University of Medicine, Suizhou, China
| | - Lei Zhao
- Center of Translational Medicine, Fifth School of Medicine/Suizhou Central Hospital, Hubei University of Medicine, Suizhou, China
| | - Zhiqiang Fan
- Center of Translational Medicine, Fifth School of Medicine/Suizhou Central Hospital, Hubei University of Medicine, Suizhou, China
| | - Vikram D. Kodibagkar
- School of Biological and Health Systems Engineering, Arizona State University, Tempe, AZ, United States
| | - Li Liu
- Department of Radiology, University of Texas Southwestern Medical Center at Dallas, Dallas, TX, United States
| | - Hanqin Wang
- Center of Translational Medicine, Fifth School of Medicine/Suizhou Central Hospital, Hubei University of Medicine, Suizhou, China
| | - Hong Xu
- Center of Translational Medicine, Fifth School of Medicine/Suizhou Central Hospital, Hubei University of Medicine, Suizhou, China
| | - Mingli Tu
- Center of Translational Medicine, Fifth School of Medicine/Suizhou Central Hospital, Hubei University of Medicine, Suizhou, China
| | - Bifu Hu
- Center of Translational Medicine, Fifth School of Medicine/Suizhou Central Hospital, Hubei University of Medicine, Suizhou, China
| | - Chuanbin Cao
- Center of Translational Medicine, Fifth School of Medicine/Suizhou Central Hospital, Hubei University of Medicine, Suizhou, China
| | - Zhenjian Zhang
- Center of Translational Medicine, Fifth School of Medicine/Suizhou Central Hospital, Hubei University of Medicine, Suizhou, China
| | - Jian-Xin Yu
- Center of Translational Medicine, Fifth School of Medicine/Suizhou Central Hospital, Hubei University of Medicine, Suizhou, China
- Biomedical Research Institute, Hubei University of Medicine, Shiyan, China
| |
Collapse
|
30
|
Capozzi A, Kilund J, Karlsson M, Patel S, Pinon AC, Vibert F, Ouari O, Lerche MH, Ardenkjær-Larsen JH. Metabolic contrast agents produced from transported solid 13C-glucose hyperpolarized via dynamic nuclear polarization. Commun Chem 2021; 4:95. [PMID: 36697707 PMCID: PMC9814755 DOI: 10.1038/s42004-021-00536-9] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2021] [Accepted: 06/08/2021] [Indexed: 01/28/2023] Open
Abstract
Magnetic Resonance Imaging combined with hyperpolarized 13C-labelled metabolic contrast agents produced via dissolution Dynamic Nuclear Polarization can, non-invasively and in real-time, report on tissue specific aberrant metabolism. However, hyperpolarization equipment is expensive, technically demanding and needs to be installed on-site for the end-user. In this work, we provide a robust methodology that allows remote production of the hyperpolarized 13C-labelled metabolic contrast agents. The methodology, built on photo-induced thermally labile radicals, allows solid sample extraction from the hyperpolarization equipment and several hours' lifetime of the 13C-labelled metabolic contrast agents at appropriate storage/transport conditions. Exemplified with [U-13C, d7]-D-glucose, we remotely produce hyperpolarized 13C-labelled metabolic contrast agents and generate above 10,000-fold liquid-state Magnetic Resonance signal enhancement at 9.4 T, keeping on-site only a simple dissolution device.
Collapse
Affiliation(s)
- Andrea Capozzi
- LIFMET, Department of Physics, EPFL, Station 6 (Batiment CH), Lausanne, Switzerland.
- HYPERMAG, Department of Health Technology, Technical University of Denmark, Lyngby, Denmark.
| | - Jan Kilund
- HYPERMAG, Department of Health Technology, Technical University of Denmark, Lyngby, Denmark
| | - Magnus Karlsson
- HYPERMAG, Department of Health Technology, Technical University of Denmark, Lyngby, Denmark
| | - Saket Patel
- HYPERMAG, Department of Health Technology, Technical University of Denmark, Lyngby, Denmark
| | - Arthur Cesar Pinon
- HYPERMAG, Department of Health Technology, Technical University of Denmark, Lyngby, Denmark
| | - François Vibert
- Institut de Chimie Radicalire Aix-Marseille Université, CNRS, ICR UMR 7273, Marseille, Cedex 20, France
| | - Olivier Ouari
- Institut de Chimie Radicalire Aix-Marseille Université, CNRS, ICR UMR 7273, Marseille, Cedex 20, France
| | - Mathilde H Lerche
- HYPERMAG, Department of Health Technology, Technical University of Denmark, Lyngby, Denmark
| | | |
Collapse
|
31
|
Kim H, Jin S, Choi H, Kang M, Park SG, Jun H, Cho H, Kang S. Target-switchable Gd(III)-DOTA/protein cage nanoparticle conjugates with multiple targeting affibody molecules as target selective T 1 contrast agents for high-field MRI. J Control Release 2021; 335:269-280. [PMID: 34044091 DOI: 10.1016/j.jconrel.2021.05.029] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2021] [Revised: 05/20/2021] [Accepted: 05/21/2021] [Indexed: 12/15/2022]
Abstract
Magnetic resonance imaging (MRI) is a non-invasive in vivo imaging tool, providing high enough spatial resolution to obtain both the anatomical and the physiological information of patients. However, MRI generally suffers from relatively low sensitivity often requiring the aid of contrast agents (CA) to enhance the contrast of vessels and/or the tissues of interest from the background. The targeted delivery of diagnostic probes to the specific lesion is a powerful approach for early diagnosis and signal enhancement leading to the effective treatment of various diseases. Here, we established targeting ligand switchable nanoplatforms using lumazine synthase protein cage nanoparticles derived from Aquifex aeolicus (AaLS) by genetically introducing the SpyTag peptide (ST) to the C-terminus of the AaLS subunits to form an ST-displaying AaLS (AaLS-ST). Conversely, multiple targeting ligands were constructed by genetically fusing SpyCatcher protein (SC) to either HER2 or EGFR targeting affibody molecules (SC-HER2Afb or SC-EGFRAfb). Gd(III)-DOTA complexes were chemically attached to the AaLS-ST and the external surface of the Gd(III)-DOTA conjugated AaLS-ST (Gd(III)-DOTA-AaLS-ST) were successfully decorated with either the HER2Afb or the EGFRAfb. The resulting Gd(III)-DOTA-AaLS/HER2Afb and Gd(III)-DOTA-AaLS/EGFR2Afb exhibited high r1 relaxivity values of 57 and 25 mM-1 s-1 at 1.4 and 7 T, respectively, which were 10-fold or higher than those of the clinically used Dotarem. Their target-selective contrast enhancements were confirmed with in vitro cell-based MRI scans and the in vivo MR imaging of tumor-bearing mouse models at 7 T. A target-switchable AaLS-based nanoplatform that was developed in this study might serve as a promising T1 CA developing platform at a high magnetic field to detect various tumor sites in a target-specific manner in future clinical applications.
Collapse
Affiliation(s)
- Hansol Kim
- Department of Biological Sciences, Ulsan National Institute of Science and Technology (UNIST), Ulsan 44919, Republic of Korea
| | - Seokha Jin
- Department of Biomedical Engineering, Ulsan National Institute of Science and Technology (UNIST), Ulsan 44919, Republic of Korea
| | - Hyukjun Choi
- Department of Biological Sciences, Ulsan National Institute of Science and Technology (UNIST), Ulsan 44919, Republic of Korea
| | - MungSoo Kang
- Department of Biomedical Engineering, Ulsan National Institute of Science and Technology (UNIST), Ulsan 44919, Republic of Korea
| | - Seong Guk Park
- Department of Biological Sciences, Ulsan National Institute of Science and Technology (UNIST), Ulsan 44919, Republic of Korea
| | - Heejin Jun
- Department of Biological Sciences, Ulsan National Institute of Science and Technology (UNIST), Ulsan 44919, Republic of Korea
| | - HyungJoon Cho
- Department of Biomedical Engineering, Ulsan National Institute of Science and Technology (UNIST), Ulsan 44919, Republic of Korea.
| | - Sebyung Kang
- Department of Biological Sciences, Ulsan National Institute of Science and Technology (UNIST), Ulsan 44919, Republic of Korea.
| |
Collapse
|
32
|
A novel computer aided diagnostic system for quantification of metabolites in brain cancer. Biomed Signal Process Control 2021. [DOI: 10.1016/j.bspc.2020.102401] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/22/2023]
|
33
|
Usuda K, Ishikawa M, Iwai S, Iijima Y, Motono N, Matoba M, Doai M, Hirata K, Uramoto H. Combination Assessment of Diffusion-Weighted Imaging and T2-Weighted Imaging Is Acceptable for the Differential Diagnosis of Lung Cancer from Benign Pulmonary Nodules and Masses. Cancers (Basel) 2021; 13:cancers13071551. [PMID: 33800560 PMCID: PMC8037373 DOI: 10.3390/cancers13071551] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2021] [Revised: 03/23/2021] [Accepted: 03/25/2021] [Indexed: 12/13/2022] Open
Abstract
Simple Summary The purpose of this study is to determine whether the combination assessment of DWI and T2WI improves the diagnostic ability for differential diagnosis of lung cancer from benign pulmonary nodules and masses (BPNMs). As using the OCV (1.470 × 10−3 mm2/s) for ADC, the sensitivity was 83.9% (220/262), the specificity 63.4% (33/52), and the accuracy 80.6% (253/314). As using the OCV (2.45) for T2 CR, the sensitivity was 89.7% (235/262), the specificity 61.5% (32/52), and the accuracy 85.0% (267/314). In 212 PNMs which were judged to be malignant by both DWI and T2WI, 203 PNMs (95.8%) were lung cancers. In 33 PNMs which were judged to be benign by both DWI and T2WI, 23 PNMs (69.7%) were BPNMs. The combined assessment of DWI and T2WI could judge PNMs more precisely and would be acceptable for differential diagnosis of PNMs. Abstract The purpose of this study is to determine whether the combination assessment of DWI and T2-weighted imaging (T2WI) improves the diagnostic ability for differential diagnosis of lung cancer from benign pulmonary nodules and masses (BPNMs). The optimal cut-off value (OCV) for differential diagnosis was set at 1.470 × 10−3 mm2/s for apparent diffusion coefficient (ADC), and at 2.45 for T2 contrast ratio (T2 CR). The ADC (1.24 ± 0.29 × 10−3 mm2/s) of lung cancer was significantly lower than that (1.69 ± 0.58 × 10−3 mm2/s) of BPNM. The T2 CR (2.01 ± 0.52) of lung cancer was significantly lower than that (2.74 ± 1.02) of BPNM. As using the OCV for ADC, the sensitivity was 83.9% (220/262), the specificity 63.4% (33/52), and the accuracy 80.6% (253/314). As using the OCV for T2 CR, the sensitivity was 89.7% (235/262), the specificity 61.5% (32/52), and the accuracy 85.0% (267/314). In 212 PNMs which were judged to be malignant by both DWI and T2WI, 203 PNMs (95.8%) were lung cancers. In 33 PNMs which were judged to be benign by both DWI and T2WI, 23 PNMs (69.7%) were BPNMs. The combined assessment of DWI and T2WI could judge PNMs more precisely and would be acceptable for differential diagnosis of PNMs.
Collapse
Affiliation(s)
- Katsuo Usuda
- Department of Thoracic Surgery, Kanazawa Medical University, Ishikawa 920-0293, Japan; (M.I.); (S.I.); (Y.I.); (N.M.); (H.U.)
- Correspondence: ; Tel.: +81-76-286-2211; Fax: +81-76-286-1207
| | - Masahito Ishikawa
- Department of Thoracic Surgery, Kanazawa Medical University, Ishikawa 920-0293, Japan; (M.I.); (S.I.); (Y.I.); (N.M.); (H.U.)
| | - Shun Iwai
- Department of Thoracic Surgery, Kanazawa Medical University, Ishikawa 920-0293, Japan; (M.I.); (S.I.); (Y.I.); (N.M.); (H.U.)
| | - Yoshihito Iijima
- Department of Thoracic Surgery, Kanazawa Medical University, Ishikawa 920-0293, Japan; (M.I.); (S.I.); (Y.I.); (N.M.); (H.U.)
| | - Nozomu Motono
- Department of Thoracic Surgery, Kanazawa Medical University, Ishikawa 920-0293, Japan; (M.I.); (S.I.); (Y.I.); (N.M.); (H.U.)
| | - Munetaka Matoba
- Department of Radiology, Kanazawa Medical University, Ishikawa 920-0293, Japan; (M.M.); (M.D.)
| | - Mariko Doai
- Department of Radiology, Kanazawa Medical University, Ishikawa 920-0293, Japan; (M.M.); (M.D.)
| | - Keiya Hirata
- MRI Center, Kanazawa Medical University Hospital, Ishikawa 920-0293, Japan;
| | - Hidetaka Uramoto
- Department of Thoracic Surgery, Kanazawa Medical University, Ishikawa 920-0293, Japan; (M.I.); (S.I.); (Y.I.); (N.M.); (H.U.)
| |
Collapse
|
34
|
In Vivo Positive Magnetic Resonance Imaging of Brain Cancer (U87MG) Using Folic Acid-Conjugated Polyacrylic Acid-Coated Ultrasmall Manganese Oxide Nanoparticles. APPLIED SCIENCES-BASEL 2021. [DOI: 10.3390/app11062596] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/04/2023]
Abstract
Ultrasmall nanoparticles are potential candidates for application as high-performance imaging agents. Herein, we present the synthesis and characterization of folic acid (FA)-conjugated polyacrylic acid (PAA)-coated MnO nanoparticles with an average particle diameter of 2.7 nm. FA conferred cancer-targeting ability, while PAA conferred good colloidal stability and low cellular cytotoxicity on the FA-PAA-coated MnO nanoparticles. Further, the nanoparticles exhibited a high relaxivity (r1) value of 9.3 s−1mM−1 (r2/r1 = 2.2). Their application potential as cancer-targeting T1 magnetic resonance imaging contrast agents was confirmed by their enhanced T1 contrast enhancements at the brain cancer (U87MG) site upon intravenous administration to mice tails.
Collapse
|
35
|
Kumar P, Kumar V. Role of NMR Metabolomics and MR Imaging in Colon Cancer. COLON CANCER DIAGNOSIS AND THERAPY 2021:43-66. [DOI: 10.1007/978-3-030-63369-1_4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/05/2025]
|
36
|
Dhas N, Kudarha R, Garkal A, Ghate V, Sharma S, Panzade P, Khot S, Chaudhari P, Singh A, Paryani M, Lewis S, Garg N, Singh N, Bangar P, Mehta T. Molybdenum-based hetero-nanocomposites for cancer therapy, diagnosis and biosensing application: Current advancement and future breakthroughs. J Control Release 2020; 330:257-283. [PMID: 33345832 DOI: 10.1016/j.jconrel.2020.12.015] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2020] [Accepted: 12/11/2020] [Indexed: 02/08/2023]
Abstract
In recent years, there have been significant advancements in the nanotechnology for cancer therapy. Even though molybdenum disulphide (MoS2)-based nanocomposites demonstrated extensive applications in biosensing, bioimaging, phototherapy, the review article focusing on MoS2 nanocomposite platform has not been accounted for yet. The review summarizes recent strategies on design and fabrication of MoS2-based nanocomposites and their modulated properties in cancer treatment. The review also discussed several therapeutic strategies (photothermal, photodynamic, immunotherapy, gene therapy and chemotherapy) and their combinations for efficient cancer therapy along with certain case studies. The review also inculcates various diagnostic techniques viz. magnetic resonance imaging, computed tomography, photoacoustic imaging and fluorescence imaging for diagnosis of cancer.
Collapse
Affiliation(s)
- Namdev Dhas
- Department of Pharmaceutics, Institute of Pharmacy, Nirma University, Ahmedabad, Gujarat 382481, India
| | - Ritu Kudarha
- Faculty of Pharmacy, The Maharaja Sayajirao University of Baroda, Vadodara, Gujarat 390002, India
| | - Atul Garkal
- Department of Pharmaceutics, Institute of Pharmacy, Nirma University, Ahmedabad, Gujarat 382481, India
| | - Vivek Ghate
- Department of Pharmaceutics, Manipal College of Pharmaceutical Sciences, Manipal Academy of Higher Education (MAHE), Manipal, Karnataka 576104, India
| | - Shilpa Sharma
- Department of Chemistry, Indian Institute of Technology, Ropar, Rupnagar, Punjab 140001, India
| | - Prabhakar Panzade
- Department of Pharmaceutics, Srinath College of Pharmacy, Dr. Babasaheb Ambedkar Technological University, Aurangabad, Maharashtra 431133, India
| | - Shubham Khot
- Sinhgad Institute of Pharmacy, Narhe, Pune, Maharashtra 411041, India
| | - Pinal Chaudhari
- Department of Pharmaceutics, Manipal College of Pharmaceutical Sciences, Manipal Academy of Higher Education (MAHE), Manipal, Karnataka 576104, India
| | - Ashutosh Singh
- School of Basic Sciences, Indian Institute of Technology, Mandi, Kamand, Himachal Pradesh 175005, India
| | - Mitali Paryani
- Department of Pharmaceutics, Institute of Pharmacy, Nirma University, Ahmedabad, Gujarat 382481, India
| | - Shaila Lewis
- Department of Pharmaceutics, Manipal College of Pharmaceutical Sciences, Manipal Academy of Higher Education (MAHE), Manipal, Karnataka 576104, India
| | - Neha Garg
- Department of Medicinal Chemistry, Faculty of Ayurveda, Institute of Medical Sciences, BHU, Varanasi, Uttar Pradesh 221005, India
| | - Narinder Singh
- Department of Chemistry, Indian Institute of Technology, Ropar, Rupnagar, Punjab 140001, India
| | - Priyanka Bangar
- Intas Pharmaceuticals Ltd., Ahmedabad, Gujarat 382213, India
| | - Tejal Mehta
- Department of Pharmaceutics, Institute of Pharmacy, Nirma University, Ahmedabad, Gujarat 382481, India.
| |
Collapse
|
37
|
Zhang S, Cheruku RR, Dukh M, Tabaczynski W, Patel NJ, White WH, Missert JR, Spernyak JA, Pandey RK. The Structures of Gd(III) Chelates Conjugated at the Periphery of 3-(1'-Hexyloxy)ethyl-3-devinylpyropheophorbide-a (HPPH) Have a Significant Impact on the Imaging and Therapy of Cancer. ChemMedChem 2020; 15:2058-2070. [PMID: 32916033 DOI: 10.1002/cmdc.202000449] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2020] [Revised: 08/31/2020] [Indexed: 01/03/2023]
Abstract
3-(1'-Hexyloxyethyl)-3-devinyl-pyropheophorbide-a (HPPH or Photochlor), a tumor-avid chlorophyll-a derivative currently undergoing human clinical trials, was conjugated at various peripheral positions (position-17 or 20) of HPPH with either Gd(III)-aminobenzyl-DTPA (Gd(III) DTPA) or Gd(III)-aminoethylamido-DOTA (Gd(III) DOTA). The corresponding conjugates were evaluated for in vitro PDT efficacy, T1 , T2 relaxivities, in vivo fluorescence, and MR imaging under similar treatment parameters. Among these analogs, the water-soluble Gd(III)-aminoethylamido-DOTA linked at position-17 of HPPH, i. e., HPPH-17-Gd(III) DOTA, demonstrated strong potential for tumor imaging by both MR and fluorescence, while maintaining the PDT efficacy in BALB/c mice bearing Colon-26 tumors (7/10 mice were tumor free on day 60). In contrast to Gd(III) DTPA (Magnevist) and Gd(III) DOTA (Dotarem), the HPPH-Gd(III) DOTA retains in the tumor for a long period of time (24 to 48 h) and provides an option of fluorescence-guided cancer therapy. Thus, a single agent can be used for cancer-imaging and therapy. However, further detailed pharmacokinetic, pharmacodynamic, and toxicological studies of the conjugate are required before initiating Phase I human clinical trials.
Collapse
Affiliation(s)
- Shunqing Zhang
- Photodynamic Therapy Center and Cell Stress Biology Roswell Park Comprehensive Cancer Center, Buffalo, NY 14263, USA
| | - Ravindra R Cheruku
- Photodynamic Therapy Center and Cell Stress Biology Roswell Park Comprehensive Cancer Center, Buffalo, NY 14263, USA
| | - Mykhaylo Dukh
- Photodynamic Therapy Center and Cell Stress Biology Roswell Park Comprehensive Cancer Center, Buffalo, NY 14263, USA
| | - Walter Tabaczynski
- Photodynamic Therapy Center and Cell Stress Biology Roswell Park Comprehensive Cancer Center, Buffalo, NY 14263, USA
| | - Nayan J Patel
- Photodynamic Therapy Center and Cell Stress Biology Roswell Park Comprehensive Cancer Center, Buffalo, NY 14263, USA
| | - William H White
- Photodynamic Therapy Center and Cell Stress Biology Roswell Park Comprehensive Cancer Center, Buffalo, NY 14263, USA
| | - Joseph R Missert
- Photodynamic Therapy Center and Cell Stress Biology Roswell Park Comprehensive Cancer Center, Buffalo, NY 14263, USA
| | - Joseph A Spernyak
- Translational Imaging Shared Resource, Cell Stress Biology, Roswell Park Comprehensive Cancer Center, Buffalo, NY 14263, USA
| | - Ravindra K Pandey
- Photodynamic Therapy Center and Cell Stress Biology Roswell Park Comprehensive Cancer Center, Buffalo, NY 14263, USA
| |
Collapse
|
38
|
Zhou J, Zhou Q, Shu G, Wang X, Lu Y, Chen H, Hu T, Cai J, Du Y, Yu R. Dual-Effect of Magnetic Resonance Imaging Reporter Gene in Diagnosis and Treatment of Hepatocellular Carcinoma. Int J Nanomedicine 2020; 15:7235-7249. [PMID: 33061378 PMCID: PMC7533905 DOI: 10.2147/ijn.s257628] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2020] [Accepted: 08/10/2020] [Indexed: 12/22/2022] Open
Abstract
Propose The early diagnosis of hepatocellular carcinoma (HCC) with ferritin heavy chain (Fth) modified by alpha-fetoprotein (AFP) promoter has been studied. However, no study has focused on the considerable upregulation and specific targeting effects of transferrin receptors (TfR) caused by the transfection of plasmids encoded with the AFP promoter. Thus, the objective of our study was to investigate whether the transfection of Fth gene modified with AFP promoter (AFP@Fth) could be used for early diagnosis and enhanced treatment of HCC. Methods The AFP@Fth plasmid was transfected into AFP positive cells. The expression of intracellular Ferritin was verified by Western blot, and the upregulation of TfR was confirmed by immunofluorescence and flow cytometry analysis. Cellular iron accumulation resulting in decreased imaging signals was examined by magnetic resonance imagining. Doxorubicin liposome modified with transferrin (Tf-LPD) was prepared to investigate the efficiency of the subsequent treatment after transfection. The enhanced drug distribution and effects were investigated both in vitro and in vivo. Results Both Ferritin and TfR were overexpressed after transfection. The transfected cells showed higher intracellular iron accumulation and resulted in a lower MR T2-weighted imaging (T2WI) intensity, suggesting that the transfection of AFP@Fth could be a potential strategy for early diagnosis of liver cancer. The following treatment efficacy was revealed by Tf-LPD. As compared with un-transfected cells, transfected cells exhibited higher uptake of transferrin-modified liposomes (Tf-LP), which was due to the specific interaction between Tf and TfR overexpressed on the transfected cells. This is also the reason why Tf-LPD showed better in vitro and in vivo anticancer ability than doxorubicin loaded liposome (LPD). These results suggested that transfection of AFP@Fth could result in enhanced therapy of liver cancer. Conclusion Transfection of AFP@Fth could be used for early diagnosis and for enhanced treatment of live cancers.
Collapse
Affiliation(s)
- Jiaping Zhou
- Department of Radiology, Second Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou 310009, People's Republic of China
| | - Qiaomei Zhou
- Department of Radiology, Second Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou 310009, People's Republic of China
| | - Gaofeng Shu
- Institute of Pharmaceutics, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou 310058, People's Republic of China
| | - Xiaojie Wang
- Department of Radiology, Second Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou 310009, People's Republic of China
| | - Yuanfei Lu
- Department of Radiology, Second Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou 310009, People's Republic of China
| | - Haiyan Chen
- Department of Radiology, Second Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou 310009, People's Republic of China
| | - Tingting Hu
- Department of Radiology, Second Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou 310009, People's Republic of China
| | - Jinsong Cai
- Department of Radiology, Second Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou 310009, People's Republic of China
| | - Yongzhong Du
- Institute of Pharmaceutics, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou 310058, People's Republic of China
| | - Risheng Yu
- Department of Radiology, Second Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou 310009, People's Republic of China
| |
Collapse
|
39
|
Reichardt W, von Elverfeldt D. Preclinical Applications of Magnetic Resonance Imaging in Oncology. Recent Results Cancer Res 2020; 216:405-437. [PMID: 32594394 DOI: 10.1007/978-3-030-42618-7_12] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
The evolving possibilities of molecular imaging (MI) are fundamentally changing the way we look at cancer, with imaging paradigms now shifting away from basic morphological measures toward the longitudinal assessment of functional, metabolic, cellular, and molecular information in vivo. Recent developments of imaging methodology and probe molecules utilizing the vast number of novel animal models of human cancers have enhanced our ability to non-invasively characterize neoplastic tissue and follow anticancer treatments. While preclinical molecular imaging offers a whole palette of excellent methodology to choose from, we will focus on magnetic resonance imaging (MRI) techniques, since they provide excellent molecular imaging capabilities and bear high potential for clinical translation. Prerequisites and consequences of using animal models as surrogates of human cancers in preclinical molecular imaging are outlined. We present physical principles, values, and limitations of MRI as molecular imaging modality and comment on its high potential to non-invasively assess information on metabolism, hypoxia, angiogenesis, and cell trafficking in preclinical cancer research.
Collapse
Affiliation(s)
- Wilfried Reichardt
- Medical Physics, Department of Radiology, Faculty of Medicine, University of Freiburg, Freiburg, Germany. .,German Consortium for Translational Cancer Research (DKTK), Heidelberg, Germany. .,German Cancer Research Center (DKFZ), Heidelberg, Germany.
| | - Dominik von Elverfeldt
- Medical Physics, Department of Radiology, Faculty of Medicine, University of Freiburg, Freiburg, Germany
| |
Collapse
|
40
|
Yang F, Xu J, Fu M, Ji J, Chi L, Zhai G. Development of stimuli-responsive intelligent polymer micelles for the delivery of doxorubicin. J Drug Target 2020; 28:993-1011. [PMID: 32378974 DOI: 10.1080/1061186x.2020.1766474] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/29/2023]
Abstract
Doxorubicin is still used as a first-line drug in current therapeutics for numerous types of malignant tumours (including lymphoma, transplantable leukaemia and solid tumour). Nevertheless, to overcome the serious side effects like cardiotoxicity and myelosuppression caused by effective doses of doxorubicin remains as a world-class puzzle. In recent years, the usage of biocompatible polymeric nanomaterials to form an intelligently sensitive carrier for the targeted release in tumour microenvironment has attracted wide attention. These different intelligent polymeric micelles (PMs) could change the pharmacokinetics process of drugs or respond in the special microenvironment of tumour site to maximise the efficacy and reduce the toxicity of doxorubicin in other tissues and organs. Several intelligent PMs have already been in the clinical research stage and planned for market. Therefore, related research remains active, and the latest nanotechnology approaches for doxorubicin delivery are always in the spotlight. Centring on the model drugs doxorubicin, this review summarised the mechanisms of PMs, classified the polymers used in the application of doxorubicin delivery and discussed some interesting and imaginative smart PMs in recent years.
Collapse
Affiliation(s)
- Fan Yang
- Department of Pharmaceutics, Key Laboratory of Chemical Biology (Ministry of Education), School of Pharmaceutical Sciences, Shandong University, Jinan, PR China
| | - Jiangkang Xu
- Department of Pharmaceutics, Key Laboratory of Chemical Biology (Ministry of Education), School of Pharmaceutical Sciences, Shandong University, Jinan, PR China
| | - Manfei Fu
- Department of Pharmaceutics, Key Laboratory of Chemical Biology (Ministry of Education), School of Pharmaceutical Sciences, Shandong University, Jinan, PR China
| | - Jianbo Ji
- Department of Pharmaceutics, Key Laboratory of Chemical Biology (Ministry of Education), School of Pharmaceutical Sciences, Shandong University, Jinan, PR China
| | - Liqun Chi
- Department of Pharmacy, Haidian Maternal and Child Health Hospital of Beijing, Beijing, PR China
| | - Guangxi Zhai
- Department of Pharmaceutics, Key Laboratory of Chemical Biology (Ministry of Education), School of Pharmaceutical Sciences, Shandong University, Jinan, PR China
| |
Collapse
|
41
|
Fusco L, Gazzi A, Peng G, Shin Y, Vranic S, Bedognetti D, Vitale F, Yilmazer A, Feng X, Fadeel B, Casiraghi C, Delogu LG. Graphene and other 2D materials: a multidisciplinary analysis to uncover the hidden potential as cancer theranostics. Theranostics 2020; 10:5435-5488. [PMID: 32373222 PMCID: PMC7196289 DOI: 10.7150/thno.40068] [Citation(s) in RCA: 58] [Impact Index Per Article: 11.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2019] [Accepted: 12/23/2019] [Indexed: 12/13/2022] Open
Abstract
Cancer represents one of the main causes of death in the world; hence the development of more specific approaches for its diagnosis and treatment is urgently needed in clinical practice. Here we aim at providing a comprehensive review on the use of 2-dimensional materials (2DMs) in cancer theranostics. In particular, we focus on graphene-related materials (GRMs), graphene hybrids, and graphdiyne (GDY), as well as other emerging 2DMs, such as MXene, tungsten disulfide (WS2), molybdenum disulfide (MoS2), hexagonal boron nitride (h-BN), black phosphorus (BP), silicene, antimonene (AM), germanene, biotite (black mica), metal organic frameworks (MOFs), and others. The results reported in the scientific literature in the last ten years (>200 papers) are dissected here with respect to the wide variety of combinations of imaging methodologies and therapeutic approaches, including drug/gene delivery, photothermal/photodynamic therapy, sonodynamic therapy, and immunotherapy. We provide a unique multidisciplinary approach in discussing the literature, which also includes a detailed section on the characterization methods used to analyze the material properties, highlighting the merits and limitations of the different approaches. The aim of this review is to show the strong potential of 2DMs for use as cancer theranostics, as well as to highlight issues that prevent the clinical translation of these materials. Overall, we hope to shed light on the hidden potential of the vast panorama of new and emerging 2DMs as clinical cancer theranostics.
Collapse
Affiliation(s)
- Laura Fusco
- Department of Chemical and Pharmaceutical Sciences, University of Trieste, Trieste, Italy
- Fondazione Istituto di Ricerca Pediatrica, Città della Speranza, Padua, Italy
- Cancer Program, Sidra Medicine, Doha, Qatar
| | - Arianna Gazzi
- Department of Chemical and Pharmaceutical Sciences, University of Trieste, Trieste, Italy
- Fondazione Istituto di Ricerca Pediatrica, Città della Speranza, Padua, Italy
| | - Guotao Peng
- Institute of Environmental Medicine, Karolinska Institutet, Stockholm, Sweden
| | - Yuyoung Shin
- Department of Chemistry, University of Manchester, Manchester, UK
| | - Sandra Vranic
- Nanomedicine Lab, Faculty of Biology, Medicine and Health, University of Manchester, Manchester, UK
| | | | - Flavia Vitale
- Department of Neurology, Bioengineering, Physical Medicine & Rehabilitation, Center for Neuroengineering and Therapeutics, University of Pennsylvania, Philadelphia, USA; Center for Neurotrauma, Neurodegeneration, and Restoration, Corporal Michael J. Crescenz Veterans Affairs Medical Center, Philadelphia, USA
| | - Acelya Yilmazer
- Department of Biomedical Engineering, Ankara University, Ankara, Turkey
- Stem Cell Institute, Ankara University, Ankara, Turkey
| | - Xinliang Feng
- Faculty of Chemistry and Food Chemistry, School of Science, Technische Universität Dresden, Dresden, Germany
| | - Bengt Fadeel
- Institute of Environmental Medicine, Karolinska Institutet, Stockholm, Sweden
| | - Cinzia Casiraghi
- Department of Chemistry, University of Manchester, Manchester, UK
| | - Lucia Gemma Delogu
- Fondazione Istituto di Ricerca Pediatrica, Città della Speranza, Padua, Italy
- Faculty of Chemistry and Food Chemistry, School of Science, Technische Universität Dresden, Dresden, Germany
- Department of Biomedical Sciences, University of Padua, Padua, Italy
| |
Collapse
|
42
|
Dominietto M, Pica A, Safai S, Lomax AJ, Weber DC, Capobianco E. Role of Complex Networks for Integrating Medical Images and Radiomic Features of Intracranial Ependymoma Patients in Response to Proton Radiotherapy. Front Med (Lausanne) 2020; 6:333. [PMID: 32010703 PMCID: PMC6978687 DOI: 10.3389/fmed.2019.00333] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2019] [Accepted: 12/23/2019] [Indexed: 12/21/2022] Open
Abstract
Human cancers exhibit phenotypic diversity that medical imaging can precisely and non-invasively detect. Multiple factors underlying innovations and progresses in the medical imaging field exert diagnostic and therapeutic impacts. The emerging field of radiomics has shown unprecedented ability to use imaging information in guiding clinical decisions. To achieve clinical assessment that exploits radiomic knowledge sources, integration between diverse data types is required. A current gap is the accuracy with which radiomics aligns with clinical endpoints. We propose a novel methodological approach that synergizes data volumes (images), tissue-contextualized information breadth, and network-driven resolution depth. Following the Precision Medicine paradigm, disease monitoring and prognostic assessment are tackled at the individual level by examining medical images acquired from two patients affected by intracranial ependymoma (with and without relapse). The challenge of spatially characterizing intratumor heterogeneity is tackled by a network approach that presents two main advantages: (a) Increased detection in the image domain power from high spatial resolution, (b) Superior accuracy in generating hypotheses underlying clinical decisions.
Collapse
Affiliation(s)
- Marco Dominietto
- Center for Proton Therapy, Paul Scherrer Institute, Villigen, Switzerland.,Radiation Oncology Department, University Hospital of Bern, Bern, Switzerland
| | - Alessia Pica
- Center for Proton Therapy, Paul Scherrer Institute, Villigen, Switzerland
| | - Sairos Safai
- Center for Proton Therapy, Paul Scherrer Institute, Villigen, Switzerland
| | - Antony J Lomax
- Center for Proton Therapy, Paul Scherrer Institute, Villigen, Switzerland
| | - Damien C Weber
- Center for Proton Therapy, Paul Scherrer Institute, Villigen, Switzerland.,Radiation Oncology Department, University Hospital of Bern, Bern, Switzerland
| | - Enrico Capobianco
- Center for Computational Science, University of Miami, Coral Gables, FL, United States
| |
Collapse
|
43
|
Gao Z, Mu W, Tian Y, Su Y, Sun H, Zhang G, Li A, Yu D, Zhang N, Hao J, Liu Y, Cui J. Self-assembly of paramagnetic amphiphilic copolymers for synergistic therapy. J Mater Chem B 2020; 8:6866-6876. [DOI: 10.1039/d0tb00405g] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Abstract
Theranostic nanoparticles composed of amphiphilic paramagnetic polymers are assembled for dual mode imaging and synergistic therapy.
Collapse
|
44
|
Alipour M, Baneshi M, Hosseinkhani S, Mahmoudi R, Jabari Arabzadeh A, Akrami M, Mehrzad J, Bardania H. Recent progress in biomedical applications of RGD-based ligand: From precise cancer theranostics to biomaterial engineering: A systematic review. J Biomed Mater Res A 2019; 108:839-850. [PMID: 31854488 DOI: 10.1002/jbm.a.36862] [Citation(s) in RCA: 88] [Impact Index Per Article: 14.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2019] [Revised: 12/03/2019] [Accepted: 12/06/2019] [Indexed: 12/17/2022]
Abstract
Arginine-glycine-aspartic acid (RGD) peptide family is known as the most prominent ligand for extracellular domain of integrin receptors. Specific expression of these receptors in various tissue of human body and tight association of their expression profile with various pathophysiological conditions made these receptors a suitable targeting candidate for several disease diagnosis and treatment as well as regeneration of various organs. For these reasons, various forms of RGD-based integrins ligands have been greatly used in biomedical studies. Here, we summarized the last decade application progress of RGD for cancer theranostics, control of inflammation, thrombosis inhibition and critically discussed the effect of RGD peptides structure and sequence on the efficacy of gene/drug delivery systems in preclinical studies. Furthermore, we will show recent advances in application of RGD functionalized biomaterials for various tissue regenerations including cornea repair, artificial neovascularization and bone tissue regeneration. Finally, we analyzed clinically translatability of RGD peptides, considering examples of integrin ligands in clinical trials. In conclusion, prospects on using RGD peptide for precise drug delivery and biomaterial engineering are well discussed.
Collapse
Affiliation(s)
- Mohsen Alipour
- Department of Advanced Medical Sciences and Technologies, School of Medicine, Jahrom University of Medical Sciences (JUMS), Jahrom, Iran
- Department of Nano Biotechnology, Faculty of Biological Sciences, Tarbiat Modares University, Tehran, Iran
| | - Marzieh Baneshi
- Department of Chemistry, Yazd University, Yazd, Iran
- Department of Chemistry, Cape Breton University, Sydney, Nova Scotia, Canada
| | - Saman Hosseinkhani
- Department of Nano Biotechnology, Faculty of Biological Sciences, Tarbiat Modares University, Tehran, Iran
- Department of Biochemistry, Faculty of Biological Sciences, Tarbiat Modares University, Tehran, Iran
| | - Reza Mahmoudi
- Cellular and Molecular Research Center, Yasuj University of Medical Sciences, Yasuj, Iran
| | - Ali Jabari Arabzadeh
- Department of Radiopharmaceutical Sciences, Faculty of Pharmacy, Tehran University of Medical Sciences, Tehran, Iran
| | - Mohammad Akrami
- Department of Pharmaceutical Biomaterials, and Medical Biomaterials Research Center, Faculty of Pharmacy, Tehran University of Medical Sciences, Tehran, Iran
| | - Jalil Mehrzad
- Department of Microbiology and Immunology, Faculty of Veterinary Medicine, University of Tehran, Tehran, Iran
| | - Hassan Bardania
- Cellular and Molecular Research Center, Yasuj University of Medical Sciences, Yasuj, Iran
| |
Collapse
|
45
|
Savic LJ, Schobert IT, Peters D, Walsh JJ, Laage-Gaupp FM, Hamm CA, Tritz N, Doemel LA, Lin M, Sinusas A, Schlachter T, Duncan JS, Hyder F, Coman D, Chapiro J. Molecular Imaging of Extracellular Tumor pH to Reveal Effects of Locoregional Therapy on Liver Cancer Microenvironment. Clin Cancer Res 2019; 26:428-438. [PMID: 31582517 DOI: 10.1158/1078-0432.ccr-19-1702] [Citation(s) in RCA: 33] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2019] [Revised: 07/24/2019] [Accepted: 09/30/2019] [Indexed: 02/06/2023]
Abstract
PURPOSE To establish magnetic resonance (MR)-based molecular imaging paradigms for the noninvasive monitoring of extracellular pH (pHe) as a functional surrogate biomarker for metabolic changes induced by locoregional therapy of liver cancer. EXPERIMENTAL DESIGN Thirty-two VX2 tumor-bearing New Zealand white rabbits underwent longitudinal imaging on clinical 3T-MRI and CT scanners before and up to 2 weeks after complete conventional transarterial chemoembolization (cTACE) using ethiodized oil (lipiodol) and doxorubicin. MR-spectroscopic imaging (MRSI) was employed for pHe mapping. Multiparametric MRI and CT were performed to quantify tumor enhancement, diffusion, and lipiodol coverage of the tumor posttherapy. In addition, incomplete cTACE with reduced chemoembolic doses was applied to mimic undertreatment and exploit pHe mapping to detect viable tumor residuals. Imaging findings were correlated with histopathologic markers indicative of metabolic state (HIF-1α, GLUT-1, and LAMP-2) and viability (proliferating cell nuclear antigen and terminal deoxynucleotidyl-transferase dUTP nick-end labeling). RESULTS Untreated VX2 tumors demonstrated a significantly lower pHe (6.80 ± 0.09) than liver parenchyma (7.19 ± 0.03, P < 0.001). Upregulation of HIF-1α, GLUT-1, and LAMP-2 confirmed a hyperglycolytic tumor phenotype and acidosis. A gradual tumor pHe increase toward normalization similar to parenchyma was revealed within 2 weeks after complete cTACE, which correlated with decreasing detectability of metabolic markers. In contrast, pHe mapping after incomplete cTACE indicated both acidic viable residuals and increased tumor pHe of treated regions. Multimodal imaging revealed durable tumor devascularization immediately after complete cTACE, gradually increasing necrosis, and sustained lipiodol coverage of the tumor. CONCLUSIONS MRSI-based pHe mapping can serve as a longitudinal monitoring tool for viable tumors. As most liver tumors are hyperglycolytic creating microenvironmental acidosis, therapy-induced normalization of tumor pHe may be used as a functional biomarker for positive therapeutic outcome.
Collapse
Affiliation(s)
- Lynn Jeanette Savic
- Department of Radiology and Biomedical Imaging, Yale School of Medicine, New Haven, Connecticut.,Institute of Radiology, Charité - Universitätsmedizin Berlin, corporate member of Freie Universität Berlin, Humboldt-Universität, and Berlin Institute of Health, Berlin, Germany
| | - Isabel Theresa Schobert
- Department of Radiology and Biomedical Imaging, Yale School of Medicine, New Haven, Connecticut.,Institute of Radiology, Charité - Universitätsmedizin Berlin, corporate member of Freie Universität Berlin, Humboldt-Universität, and Berlin Institute of Health, Berlin, Germany
| | - Dana Peters
- Department of Radiology and Biomedical Imaging, Yale School of Medicine, New Haven, Connecticut
| | - John J Walsh
- Department of Radiology and Biomedical Imaging, Yale School of Medicine, New Haven, Connecticut
| | - Fabian Max Laage-Gaupp
- Department of Radiology and Biomedical Imaging, Yale School of Medicine, New Haven, Connecticut
| | - Charlie Alexander Hamm
- Department of Radiology and Biomedical Imaging, Yale School of Medicine, New Haven, Connecticut.,Institute of Radiology, Charité - Universitätsmedizin Berlin, corporate member of Freie Universität Berlin, Humboldt-Universität, and Berlin Institute of Health, Berlin, Germany
| | - Nina Tritz
- Department of Radiology and Biomedical Imaging, Yale School of Medicine, New Haven, Connecticut
| | - Luzie A Doemel
- Department of Radiology and Biomedical Imaging, Yale School of Medicine, New Haven, Connecticut.,Institute of Radiology, Charité - Universitätsmedizin Berlin, corporate member of Freie Universität Berlin, Humboldt-Universität, and Berlin Institute of Health, Berlin, Germany
| | - MingDe Lin
- Department of Radiology and Biomedical Imaging, Yale School of Medicine, New Haven, Connecticut.,Visage Imaging, Inc., San Diego, California
| | - Albert Sinusas
- Department of Radiology and Biomedical Imaging, Yale School of Medicine, New Haven, Connecticut.,Department of Internal Medicine (Cardiology), Yale School of Medicine, New Haven, Connecticut
| | - Todd Schlachter
- Department of Radiology and Biomedical Imaging, Yale School of Medicine, New Haven, Connecticut
| | - James S Duncan
- Department of Radiology and Biomedical Imaging, Yale School of Medicine, New Haven, Connecticut.,Department of Biomedical Engineering, Yale School of Engineering and Applied Science, New Haven, Connecticut
| | - Fahmeed Hyder
- Department of Radiology and Biomedical Imaging, Yale School of Medicine, New Haven, Connecticut
| | - Daniel Coman
- Department of Radiology and Biomedical Imaging, Yale School of Medicine, New Haven, Connecticut
| | - Julius Chapiro
- Department of Radiology and Biomedical Imaging, Yale School of Medicine, New Haven, Connecticut.
| |
Collapse
|
46
|
Li Y, Hao L, Liu F, Yin L, Yan S, Zhao H, Ding X, Guo Y, Cao Y, Li P, Wang Z, Ran H, Sun Y. Cell penetrating peptide-modified nanoparticles for tumor targeted imaging and synergistic effect of sonodynamic/HIFU therapy. Int J Nanomedicine 2019; 14:5875-5894. [PMID: 31534329 PMCID: PMC6681566 DOI: 10.2147/ijn.s212184] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2019] [Accepted: 07/06/2019] [Indexed: 12/25/2022] Open
Abstract
Background Theranostics based on multifunctional nanoparticles (NPs) is a promising field that combines therapeutic and diagnostic functionalities into a single nanoparticle system. However, the major challenges that lie ahead are how to achieve accurate early diagnosis and how to develop efficient and noninvasive treatment. Sonodynamic therapy (SDT) utilizing ultrasound combined with a sonosensitizer represents a novel noninvasive modality for cancer therapy. Different ultrasound frequencies have been used for SDT, nevertheless, whether the effect of SDT can enhance synergistic HIFU ablation remains to be investigated. Materials and methods We prepared a nanosystem for codelivery of a sonosensitizer (methylene blue, MB) and a magnetic resonance contrast agent (gadodiamide, Gd-DTPA-BMA) based on hydrophilic biodegradable polymeric NPs composed of poly (lactic-co-glycolic acid) (PLGA). To enhance accumulation and penetration of the NPs at the tumor site, the surface of PLGA NPs was decorated with a tumor-homing and penetrating peptide-F3 and polyethylene glycol (PEG). The physicochemical, imaging and therapeutic properties of F3-PLGA@MB/Gd and drug safety were thoroughly evaluated both in vitro and in vivo. F3-PLGA@MB/Gd was evaluated by both photoacoustic and resonance imaging. Results F3-PLGA@MB/Gd NPs exhibited higher cellular association than non-targeted NPs and showed a more preferential enrichment at the tumor site. Furthermore, with good drug safety, the apoptosis triggered by ultrasound in the F3-PLGA@MB/Gd group was greater than that in the contrast group. Conclusion F3-PLGA@MB/Gd can work as a highly efficient theranostic agent, and the incorporation of targeted multimodal and combined therapy could be an encouraging strategy for cancer treatment.
Collapse
Affiliation(s)
- Yizhen Li
- Institute of Ultrasound Imaging & Department of Ultrasound, The Second Affiliated Hospital of Chongqing Medical University, 400010 Chongqing, People's Republic of China.,Chongqing Key Laboratory of Ultrasound Molecular Imaging , 400010 Chongqing, People's Republic of China.,Department of Cardiovascular Ultrasound and Non-invasive Cardiology, Sichuan Academy of Medical Science & Sichuan Provincial People's Hospital, Chengdu, Sichuan Province, 610072, People's Republic of China
| | - Lan Hao
- Institute of Ultrasound Imaging & Department of Ultrasound, The Second Affiliated Hospital of Chongqing Medical University, 400010 Chongqing, People's Republic of China.,Chongqing Key Laboratory of Ultrasound Molecular Imaging , 400010 Chongqing, People's Republic of China
| | - Fengqiu Liu
- Institute of Ultrasound Imaging & Department of Ultrasound, The Second Affiliated Hospital of Chongqing Medical University, 400010 Chongqing, People's Republic of China.,Chongqing Key Laboratory of Ultrasound Molecular Imaging , 400010 Chongqing, People's Republic of China
| | - Lixue Yin
- Department of Cardiovascular Ultrasound and Non-invasive Cardiology, Sichuan Academy of Medical Science & Sichuan Provincial People's Hospital, Chengdu, Sichuan Province, 610072, People's Republic of China
| | - Sijing Yan
- Chongqing Hospital of Traditional Chinese Medicine , Chongqing 400021, People's Republic of China
| | - Hongyun Zhao
- Institute of Ultrasound Imaging & Department of Ultrasound, The Second Affiliated Hospital of Chongqing Medical University, 400010 Chongqing, People's Republic of China.,Chongqing Key Laboratory of Ultrasound Molecular Imaging , 400010 Chongqing, People's Republic of China.,Department of Gastroenterology, The Second Hospital Affiliated to Chongqing Medical University, Chongqing, 400010, People's Republic of China
| | - Xiaoya Ding
- Department of Ultrasound, University-Town Hospital of Chongqing Medical University, Chongqing, 401331, People's Republic of China
| | - Yuan Guo
- Institute of Ultrasound Imaging & Department of Ultrasound, The Second Affiliated Hospital of Chongqing Medical University, 400010 Chongqing, People's Republic of China.,Chongqing Key Laboratory of Ultrasound Molecular Imaging , 400010 Chongqing, People's Republic of China
| | - Yang Cao
- Institute of Ultrasound Imaging & Department of Ultrasound, The Second Affiliated Hospital of Chongqing Medical University, 400010 Chongqing, People's Republic of China.,Chongqing Key Laboratory of Ultrasound Molecular Imaging , 400010 Chongqing, People's Republic of China
| | - Pan Li
- Institute of Ultrasound Imaging & Department of Ultrasound, The Second Affiliated Hospital of Chongqing Medical University, 400010 Chongqing, People's Republic of China.,Chongqing Key Laboratory of Ultrasound Molecular Imaging , 400010 Chongqing, People's Republic of China
| | - Zhigang Wang
- Institute of Ultrasound Imaging & Department of Ultrasound, The Second Affiliated Hospital of Chongqing Medical University, 400010 Chongqing, People's Republic of China.,Chongqing Key Laboratory of Ultrasound Molecular Imaging , 400010 Chongqing, People's Republic of China
| | - Haitao Ran
- Institute of Ultrasound Imaging & Department of Ultrasound, The Second Affiliated Hospital of Chongqing Medical University, 400010 Chongqing, People's Republic of China.,Chongqing Key Laboratory of Ultrasound Molecular Imaging , 400010 Chongqing, People's Republic of China
| | - Yang Sun
- Institute of Ultrasound Imaging & Department of Ultrasound, The Second Affiliated Hospital of Chongqing Medical University, 400010 Chongqing, People's Republic of China.,Chongqing Key Laboratory of Ultrasound Molecular Imaging , 400010 Chongqing, People's Republic of China
| |
Collapse
|
47
|
Blocker SJ, Mowery YM, Holbrook MD, Qi Y, Kirsch DG, Johnson GA, Badea CT. Bridging the translational gap: Implementation of multimodal small animal imaging strategies for tumor burden assessment in a co-clinical trial. PLoS One 2019; 14:e0207555. [PMID: 30958825 PMCID: PMC6453461 DOI: 10.1371/journal.pone.0207555] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2018] [Accepted: 03/13/2019] [Indexed: 12/17/2022] Open
Abstract
In designing co-clinical cancer studies, preclinical imaging brings unique challenges that emphasize the gap between man and mouse. Our group is developing quantitative imaging methods for the preclinical arm of a co-clinical trial studying immunotherapy and radiotherapy in a soft tissue sarcoma model. In line with treatment for patients enrolled in the clinical trial SU2C-SARC032, primary mouse sarcomas are imaged with multi-contrast micro-MRI (T1 weighted, T2 weighted, and T1 with contrast) before and after immune checkpoint inhibition and pre-operative radiation therapy. Similar to the patients, after surgery the mice will be screened for lung metastases with micro-CT using respiratory gating. A systems evaluation was undertaken to establish a quantitative baseline for both the MR and micro-CT systems against which others systems might be compared. We have constructed imaging protocols which provide clinically-relevant resolution and contrast in a genetically engineered mouse model of sarcoma. We have employed tools in 3D Slicer for semi-automated segmentation of both MR and micro-CT images to measure tumor volumes efficiently and reliably in a large number of animals. Assessment of tumor burden in the resulting images was precise, repeatable, and reproducible. Furthermore, we have implemented a publicly accessible platform for sharing imaging data collected during the study, as well as protocols, supporting information, and data analyses. In doing so, we aim to improve the clinical relevance of small animal imaging and begin establishing standards for preclinical imaging of tumors from the perspective of a co-clinical trial.
Collapse
Affiliation(s)
- S. J. Blocker
- Center for In Vivo Microscopy, Duke University Medical Center, Durham, NC, United States of America
| | - Y. M. Mowery
- Department of Radiation Oncology, Duke University Medical Center, Durham, NC, United States of America
| | - M. D. Holbrook
- Center for In Vivo Microscopy, Duke University Medical Center, Durham, NC, United States of America
| | - Y. Qi
- Center for In Vivo Microscopy, Duke University Medical Center, Durham, NC, United States of America
| | - D. G. Kirsch
- Department of Radiation Oncology, Duke University Medical Center, Durham, NC, United States of America
- Department of Pharmacology & Cancer Biology, Duke University Medical Center, Durham, NC, United States of America
| | - G. A. Johnson
- Center for In Vivo Microscopy, Duke University Medical Center, Durham, NC, United States of America
| | - C. T. Badea
- Center for In Vivo Microscopy, Duke University Medical Center, Durham, NC, United States of America
| |
Collapse
|
48
|
Teleanu DM, Chircov C, Grumezescu AM, Volceanov A, Teleanu RI. Contrast Agents Delivery: An Up-to-Date Review of Nanodiagnostics in Neuroimaging. NANOMATERIALS (BASEL, SWITZERLAND) 2019; 9:E542. [PMID: 30987211 PMCID: PMC6523665 DOI: 10.3390/nano9040542] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/01/2019] [Revised: 03/28/2019] [Accepted: 03/29/2019] [Indexed: 12/14/2022]
Abstract
Neuroimaging is a highly important field of neuroscience, with direct implications for the early diagnosis and progression monitoring of brain-associated diseases. Neuroimaging techniques are categorized into structural, functional and molecular neuroimaging, each possessing advantages and disadvantages in terms of resolution, invasiveness, toxicity of contrast agents and costs. Nanotechnology-based approaches for neuroimaging mostly involve the development of nanocarriers for incorporating contrast agents or the use of nanomaterials as imaging agents. Inorganic and organic nanoparticles, liposomes, micelles, nanobodies and quantum dots are some of the most studied candidates for the delivery of contrast agents for neuroimaging. This paper focuses on describing the conventional modalities used for imaging and the applications of nanotechnology for developing novel strategies for neuroimaging. The aim is to highlight the roles of nanocarriers for enhancing and/or overcome the limitations associated with the most commonly utilized neuroimaging modalities. For future directions, several techniques that could benefit from the increased contrast induced by using imaging probes are presented.
Collapse
Affiliation(s)
- Daniel Mihai Teleanu
- Emergency University Hospital, "Carol Davila" University of Medicine and Pharmacy, 050474 Bucharest, Romania.
| | - Cristina Chircov
- Faculty of Engineering in Foreign Languages, Politehnica University of Bucharest, 060042 Bucharest, Romania.
- Faculty of Applied Chemistry and Materials Science, Politehnica University of Bucharest, 011061 Bucharest, Romania.
| | - Alexandru Mihai Grumezescu
- Faculty of Applied Chemistry and Materials Science, Politehnica University of Bucharest, 011061 Bucharest, Romania.
- ICUB - Research Institute of University of Bucharest, University of Bucharest, 36-46 M. Kogalniceanu Blvd., Bucharest 050107, Romania.
| | - Adrian Volceanov
- Faculty of Applied Chemistry and Materials Science, Politehnica University of Bucharest, 011061 Bucharest, Romania.
| | - Raluca Ioana Teleanu
- "Victor Gomoiu" Clinical Children's Hospital, "Carol Davila" University of Medicine and Pharmacy, 050474 Bucharest, Romania.
| |
Collapse
|
49
|
Zhang Y, Ni Q, Xu C, Wan B, Geng Y, Zheng G, Yang Z, Tao J, Zhao Y, Wen J, Zhang J, Wang S, Tang Y, Li Y, Zhang Q, Liu L, Teng Z, Lu G. Smart Bacterial Magnetic Nanoparticles for Tumor-Targeting Magnetic Resonance Imaging of HER2-Positive Breast Cancers. ACS APPLIED MATERIALS & INTERFACES 2019; 11:3654-3665. [PMID: 30495920 DOI: 10.1021/acsami.8b15838] [Citation(s) in RCA: 26] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/09/2023]
Abstract
Supersensitive magnetic resonance (MR) imaging requires contrast with extremely high r2 values. However, synthesized magnetic nanoparticles generally have a relatively low r2 relaxivity. Magnetosomes with high saturation magnetization and good biocompatibility have shown potential values as MR imaging contrast agents. Magnetosomes that target human epidermal growth factor receptor-2 (HER2) were prepared using genetic technology and low-frequency sonication. Anti-HER2 affibody of the ability to target HER2 was displayed on the membrane surface of the magnetosomes through the anchor protein MamC, allowing the bacterial nanoparticles to target tumors overexpressing HER2. The prepared nanoparticles exhibited a very high relaxivity of 599.74 mM-1 s-1 and better dispersion, and their ability to target HER2 was demonstrated both in vitro and in vivo. Also, the HER2-targeting magnetosomes significantly enhanced the MR imaging of orthotopic breast cancer models with or without HER2 expression using a 7.0 T scanner. In particular, tumors overexpressing HER2 demonstrated better MR imaging than HER2-negative tumors after intravenous administration of HER2-targeting magnetosomes, and the MR signals of the augmented contrast could be detected from 3 to 24 h. The magnetosomes did not cause any notable pathogenic effect in the animals. Therefore, we expect that noninvasive imaging of tumors using HER2-targeting magnetosomes has potential for clinical applications in the near future.
Collapse
Affiliation(s)
- Yunlei Zhang
- Department of Medical Imaging, Jinling Hospital, School of Medicine , Nanjing University , Nanjing 210002 Jiangsu , P. R. China
| | - Qianqian Ni
- Department of Medical Imaging, Jinling Hospital, School of Medicine , Nanjing University , Nanjing 210002 Jiangsu , P. R. China
| | - Chaoli Xu
- Department of Ultrasound Diagnostics, Jinling Hospital , Nanjing University School of Medicine , Nanjing 210002 , Jiangsu , P. R. China
| | - Bing Wan
- Department of Respiratory and Critical Care Medicine , The Affiliated Jiangning Hospital of Nanjing Medical University , Nanjing 210002 , P. R. China
| | - Yuanyuan Geng
- State Key Laboratory of Agrobiotechnology, College of Biological Sciences , China Agricultural University , Yuanmingyuan West Road 2 , Beijing 100193 , P. R. China
| | - Gang Zheng
- Department of Medical Imaging, Jinling Hospital, School of Medicine , Nanjing University , Nanjing 210002 Jiangsu , P. R. China
| | - Zhenlu Yang
- Department of Medical Imaging, Jinling Hospital, School of Medicine , Nanjing University , Nanjing 210002 Jiangsu , P. R. China
| | - Jun Tao
- Key Laboratory for Organic Electronics and Information Displays & Institute of Advanced Materials (IAM), Jiangsu National Synergetic Innovation Centre for Advanced Materials (SICAM) , Nanjing University of Posts & Telecommunications , 9 Wenyuan Road , Nanjing 210023 , P. R. China
| | - Ying Zhao
- Department of Medical Imaging, Jinling Hospital, School of Medicine , Nanjing University , Nanjing 210002 Jiangsu , P. R. China
| | - Jun Wen
- Department of Medical Imaging, Jinling Hospital, School of Medicine , Nanjing University , Nanjing 210002 Jiangsu , P. R. China
| | - Junjie Zhang
- Key Laboratory for Organic Electronics and Information Displays & Institute of Advanced Materials (IAM), Jiangsu National Synergetic Innovation Centre for Advanced Materials (SICAM) , Nanjing University of Posts & Telecommunications , 9 Wenyuan Road , Nanjing 210023 , P. R. China
| | - Shouju Wang
- Department of Medical Imaging, Jinling Hospital, School of Medicine , Nanjing University , Nanjing 210002 Jiangsu , P. R. China
| | - Yuxia Tang
- Department of Medical Imaging, Jinling Hospital, School of Medicine , Nanjing University , Nanjing 210002 Jiangsu , P. R. China
| | - Yanjun Li
- Department of Medical Imaging, Jinling Hospital, School of Medicine , Nanjing University , Nanjing 210002 Jiangsu , P. R. China
| | - Qirui Zhang
- Department of Medical Imaging, Jinling Hospital, School of Medicine , Nanjing University , Nanjing 210002 Jiangsu , P. R. China
| | - Li Liu
- Department of Medical Imaging, Jinling Hospital, School of Medicine , Nanjing University , Nanjing 210002 Jiangsu , P. R. China
| | - Zhaogang Teng
- Department of Medical Imaging, Jinling Hospital, School of Medicine , Nanjing University , Nanjing 210002 Jiangsu , P. R. China
| | - Guangming Lu
- Department of Medical Imaging, Jinling Hospital, School of Medicine , Nanjing University , Nanjing 210002 Jiangsu , P. R. China
- State Key Laboratory of Analytical Chemistry for Life Science, School of Chemistry and Chemical Engineering , Nanjing University , Nanjing 210093 , P. R. China
| |
Collapse
|
50
|
Prieto P, Jaén RI, Calle D, Gómez-Serrano M, Núñez E, Fernández-Velasco M, Martín-Sanz P, Alonso S, Vázquez J, Cerdán S, Peinado MÁ, Boscá L. Interplay between post-translational cyclooxygenase-2 modifications and the metabolic and proteomic profile in a colorectal cancer cohort. World J Gastroenterol 2019; 25:433-446. [PMID: 30700940 PMCID: PMC6350170 DOI: 10.3748/wjg.v25.i4.433] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/16/2018] [Revised: 12/21/2018] [Accepted: 01/10/2019] [Indexed: 02/06/2023] Open
Abstract
BACKGROUND Colorectal cancer (CRC) is the second most common cause of cancer death worldwide. It is broadly described that cyclooxygenase-2 (COX-2) is mainly overexpressed in CRC but less is known regarding post-translational modifications of this enzyme that may regulate its activity, intracellular localization and stability. Since metabolic and proteomic profile analysis is essential for cancer prognosis and diagnosis, our hypothesis is that the analysis of correlations between these specific parameters and COX-2 state in tumors of a high number of CRC patients could be useful for the understanding of the basis of this cancer in humans.
AIM To analyze COX-2 regulation in colorectal cancer and to perform a detailed analysis of their metabolic and proteomic profile.
METHODS Biopsies from both healthy and pathological colorectal tissues were taken under informed consent from patients during standard colonoscopy procedure in the University Hospital of Bellvitge (Barcelona, Spain) and Germans Trias i Pujol University Hospital (Campus Can Ruti) (Barcelona, Spain). Western blot analysis was used to determine COX-2 levels. Deglycosylation assays were performed in both cells and tumor samples incubating each sample with peptide N-glycosidase F (PNGase F). Prostaglandin E2 (PGE2) levels were determined using a specific ELISA. 1H high resolution magic angle spinning (HRMAS) analysis was performed using a Bruker AVIII 500 MHz spectrometer and proteomic analysis was performed in a nano-liquid chromatography-tandem mass spectrometer (nano LC-MS/MS) using a QExactive HF orbitrap MS.
RESULTS Our data show that COX-2 has a differential expression profile in tumor tissue of CRC patients vs the adjacent non-tumor area, which correspond to a glycosylated and less active state of the protein. This fact was associated to a lesser PGE2 production in tumors. These results were corroborated in vitro performing deglycosylation assays in HT29 cell line where COX-2 protein profile was modified after PNGase F incubation, showing higher PGE2 levels. Moreover, HRMAS analysis indicated that tumor tissue has altered metabolic features vs non-tumor counterparts, presenting increased levels of certain metabolites such as taurine and phosphocholine and lower levels of lactate. In proteomic experiments, we detected an enlarged number of proteins in tumors that are mainly implicated in basic biological functions like mitochondrial activity, DNA/RNA processing, vesicular trafficking, metabolism, cytoskeleton and splicing.
CONCLUSION In our colorectal cancer cohort, tumor tissue presents a differential COX-2 expression pattern with lower enzymatic activity that can be related to an altered metabolic and proteomic profile.
Collapse
Affiliation(s)
- Patricia Prieto
- Department of Metabolism and Physiopathology of Inflammatory Diseases, Instituto de Investigaciones Biomédicas Alberto Sols (CSIC-UAM), Madrid 28029, Spain
- Centro de Investigación Biomédica en Red de Enfermedades Cardiovasculares (Ciber-CV), Instituto de Salud Carlos III (ISCIII), Madrid 28029, Spain
| | - Rafael I Jaén
- Department of Metabolism and Physiopathology of Inflammatory Diseases, Instituto de Investigaciones Biomédicas Alberto Sols (CSIC-UAM), Madrid 28029, Spain
- Centro de Investigación Biomédica en Red de Enfermedades Cardiovasculares (Ciber-CV), Instituto de Salud Carlos III (ISCIII), Madrid 28029, Spain
| | - Daniel Calle
- Laboratorio de Imagen Médica, Hospital Universitario Gregorio Marañón, Madrid 28007, Spain
| | - María Gómez-Serrano
- Laboratorio de Proteómica Cardiovascular, Centro Nacional de Investigaciones Cardiovasculares (CNIC), Madrid 28029, Spain
- Centro de Investigación Biomédica en Red de Enfermedades Cardiovasculares (Ciber-CV), Instituto de Salud Carlos III (ISCIII), Madrid 28029, Spain
| | - Estefanía Núñez
- Laboratorio de Proteómica Cardiovascular, Centro Nacional de Investigaciones Cardiovasculares (CNIC), Madrid 28029, Spain
- Centro de Investigación Biomédica en Red de Enfermedades Cardiovasculares (Ciber-CV), Instituto de Salud Carlos III (ISCIII), Madrid 28029, Spain
| | - María Fernández-Velasco
- Instituto de Investigación Sanitaria del Hospital Universitario la Paz (IdiPaz), Madrid 28046, Spain
- Centro de Investigación Biomédica en Red de Enfermedades Cardiovasculares (Ciber-CV), Instituto de Salud Carlos III (ISCIII), Madrid 28029, Spain
| | - Paloma Martín-Sanz
- Department of Metabolism and Physiopathology of Inflammatory Diseases, Instituto de Investigaciones Biomédicas Alberto Sols (CSIC-UAM), Madrid 28029, Spain
- Centro de Investigación Biomédica en Red de Enfermedades Cardiovasculares (Ciber-CV), Instituto de Salud Carlos III (ISCIII), Madrid 28029, Spain
| | - Sergio Alonso
- Programa de Medicina Predictiva y Personalizada del Cáncer (PMPPC), Fundación Instituto de investigación en ciencias de la salud Germans Trias i Pujol, Ctra Can Ruti, Badalona 08916, Spain
| | - Jesús Vázquez
- Laboratorio de Proteómica Cardiovascular, Centro Nacional de Investigaciones Cardiovasculares (CNIC), Madrid 28029, Spain
- Centro de Investigación Biomédica en Red de Enfermedades Cardiovasculares (Ciber-CV), Instituto de Salud Carlos III (ISCIII), Madrid 28029, Spain
| | - Sebastián Cerdán
- Department of Metabolism and Physiopathology of Inflammatory Diseases, Instituto de Investigaciones Biomédicas Alberto Sols (CSIC-UAM), Madrid 28029, Spain
| | - Miguel Ángel Peinado
- Programa de Medicina Predictiva y Personalizada del Cáncer (PMPPC), Fundación Instituto de investigación en ciencias de la salud Germans Trias i Pujol, Ctra Can Ruti, Badalona 08916, Spain
| | - Lisardo Boscá
- Department of Metabolism and Physiopathology of Inflammatory Diseases, Instituto de Investigaciones Biomédicas Alberto Sols (CSIC-UAM), Madrid 28029, Spain
- Centro de Investigación Biomédica en Red de Enfermedades Cardiovasculares (Ciber-CV), Instituto de Salud Carlos III (ISCIII), Madrid 28029, Spain
| |
Collapse
|