1
|
Liu J, Wei Z, Meng L, Wu L, Liu F, Sang M, Zhao L, Gu L, Shan B. CircJPH1 regulates the NF-κB/HERC5 axis to promote the malignant progression of esophageal squamous cell carcinoma through binding to XRCC6. Cell Signal 2024; 124:111403. [PMID: 39255925 DOI: 10.1016/j.cellsig.2024.111403] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2024] [Revised: 09/02/2024] [Accepted: 09/07/2024] [Indexed: 09/12/2024]
Abstract
Esophageal squamous cell carcinoma (ESCC) is a prevalent and malignant cancer with an unknown pathogenesis and a poor prognosis; therefore, the identification of effective biomarkers and targets is crucial for its diagnosis and treatment. Circular (circ)RNAs are prominent functional biomarkers and therapeutic targets in various diseases, particularly cancer, due to their widespread expression and regulatory mechanisms. Our study aimed to investigate the therapeutic potential of circRNA for ESCC. We identified Hsa_circ_0137111 for the first time as one of the most significantly up-regulated genes in ESCC sequencing and named it circJPH1. The results of the present study demonstrated an enhanced expression of circJPH1 in ESCC tissues. Moreover, circJPH1-knockdown could significantly inhibit the proliferation, migration, and invasion of ESCC cells, while its overexpression promoted these characteristics. In addition, circJPH1 promoted ESCC cell tumor growth in vivo. For the first time, mass spectrometry and RNA pull-down analysis revealed the interaction of X-ray repair cross-complementary 6 (XRCC6) protein with circJPH1, thereby promoting its nuclear translocation. Consequently, the nuclear factor kappa-B (NF-κB) signaling pathway was activated, leading to an up-regulation of HECT and RLD domain containing E3 ubiquitin protein ligase 5 (HERC5), thereby promoting ESCC progression. In summary, the present study elucidated the regulatory impact of circJPH1 on ESCC progression in vitro and in vivo, thereby indicating its potential role in ESCC treatment.
Collapse
Affiliation(s)
- Jingjing Liu
- Research Center, the Fourth Hospital of Hebei Medical University, Shijiazhuang, Hebei 050017, China; Key Laboratory of Tumor Gene Diagnosis, Prevention and Therapy, Clinical Oncology Research Center, The Fourth Hospital of Hebei Medical University, Shijiazhuang, Hebei Province 050001, China
| | - Zishuan Wei
- Research Center, the Fourth Hospital of Hebei Medical University, Shijiazhuang, Hebei 050017, China; Key Laboratory of Tumor Gene Diagnosis, Prevention and Therapy, Clinical Oncology Research Center, The Fourth Hospital of Hebei Medical University, Shijiazhuang, Hebei Province 050001, China
| | - Lingjiao Meng
- Research Center, the Fourth Hospital of Hebei Medical University, Shijiazhuang, Hebei 050017, China; Key Laboratory of Tumor Gene Diagnosis, Prevention and Therapy, Clinical Oncology Research Center, The Fourth Hospital of Hebei Medical University, Shijiazhuang, Hebei Province 050001, China
| | - Lixia Wu
- Research Center, the Fourth Hospital of Hebei Medical University, Shijiazhuang, Hebei 050017, China; Key Laboratory of Tumor Gene Diagnosis, Prevention and Therapy, Clinical Oncology Research Center, The Fourth Hospital of Hebei Medical University, Shijiazhuang, Hebei Province 050001, China
| | - Fei Liu
- Research Center, the Fourth Hospital of Hebei Medical University, Shijiazhuang, Hebei 050017, China; Key Laboratory of Tumor Gene Diagnosis, Prevention and Therapy, Clinical Oncology Research Center, The Fourth Hospital of Hebei Medical University, Shijiazhuang, Hebei Province 050001, China
| | - Meixiang Sang
- Research Center, the Fourth Hospital of Hebei Medical University, Shijiazhuang, Hebei 050017, China
| | - Lianmei Zhao
- Research Center, the Fourth Hospital of Hebei Medical University, Shijiazhuang, Hebei 050017, China; Key Laboratory of Tumor Gene Diagnosis, Prevention and Therapy, Clinical Oncology Research Center, The Fourth Hospital of Hebei Medical University, Shijiazhuang, Hebei Province 050001, China
| | - Lina Gu
- Research Center, the Fourth Hospital of Hebei Medical University, Shijiazhuang, Hebei 050017, China; Key Laboratory of Tumor Gene Diagnosis, Prevention and Therapy, Clinical Oncology Research Center, The Fourth Hospital of Hebei Medical University, Shijiazhuang, Hebei Province 050001, China.
| | - Baoen Shan
- Research Center, the Fourth Hospital of Hebei Medical University, Shijiazhuang, Hebei 050017, China; Key Laboratory of Tumor Gene Diagnosis, Prevention and Therapy, Clinical Oncology Research Center, The Fourth Hospital of Hebei Medical University, Shijiazhuang, Hebei Province 050001, China.
| |
Collapse
|
2
|
Sun X, Qiu P, He Z, Zhu Y, Zhang R, Li X, Wang X. HERC5: a comprehensive in silico analysis of its diagnostic, prognostic, and therapeutic potential in cancer. APMIS 2024; 132:760-774. [PMID: 39199018 DOI: 10.1111/apm.13462] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2024] [Accepted: 08/08/2024] [Indexed: 09/01/2024]
Abstract
HERC5, a vital protein in the HERC family, plays crucial roles in immune response, cancer progression, and antiviral defense. This bioinformatic study comprehensively assessed HERC5's significance across various malignancies by analyzing its gene expression, immune and molecular subtype expressions, target proteins, biological functions, and prognostic and diagnostic values in pan-cancer. We further examined its correlation with clinical features, co-expressed and differentially expressed genes, and prognosis in clinical subgroups, focusing on endometrial cancer (UCEC). Our findings showed that HERC5 RNA is expressed at low levels in most cancers and significantly differs across immune and molecular subtypes. HERC5 accurately predicts cancer and correlates with most cancer prognoses. In UCEC, HERC5 was significantly associated with age, hormonal status, clinical stage, treatment status, and metastasis. Elevated HERC5 expression was linked to worse progression-free interval, disease-specific survival, and overall survival in UCEC, particularly in diverse clinical subgroups. Significant differences in HERC5 expression were also observed in various human cancer cell line validations. In summary, HERC5 may be a critical biomarker for pan-cancer prognosis, progression, and diagnosis, as well as a promising new target for cancer therapy.
Collapse
Affiliation(s)
- Xianqing Sun
- Department of Traumatology and Orthopedics, The First People's Hospital of Qujing, Yunnan, China
| | - Peng Qiu
- Department of Traumatology and Orthopedics, The First People's Hospital of Qujing, Yunnan, China
| | - Zhennan He
- Department of Traumatology and Orthopedics, The First People's Hospital of Qujing, Yunnan, China
| | - Yuan Zhu
- Department of Traumatology and Orthopedics, The First People's Hospital of Qujing, Yunnan, China
| | - Rui Zhang
- Department of Traumatology and Orthopedics, The First People's Hospital of Qujing, Yunnan, China
| | - Xiang Li
- Department of Traumatology and Orthopedics, The First People's Hospital of Qujing, Yunnan, China
| | - Xiaoyan Wang
- Department of Traumatology and Orthopedics, The First People's Hospital of Qujing, Yunnan, China
| |
Collapse
|
3
|
Karaosmanoğlu O. Recurrent hepatocellular carcinoma is associated with the enrichment of MYC targets gene sets, elevated high confidence deleterious mutations and alternative splicing of DDB2 and BRCA1 transcripts. Adv Med Sci 2024; 70:17-26. [PMID: 39486583 DOI: 10.1016/j.advms.2024.10.004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2024] [Revised: 07/12/2024] [Accepted: 10/29/2024] [Indexed: 11/04/2024]
Abstract
PURPOSE Recurrence is the main cause of hepatocellular carcinoma (HCC) related deaths. Underlying recurrence biology can be better understood by comparative analysis of the complete set of transcripts between recurrent and non-recurrent HCC. In this study, transcriptomic data (GSE56545) from 21 male patients diagnosed with either recurrent or non-recurrent HCC were reanalyzed to identify deregulated pathways, somatic mutations, fusion transcripts, alternative splicing events, and the immune context in recurrent HCC. MATERIALS AND METHODS DESeq2 was used for differential expression analysis, Mutect2 for somatic mutation analysis, Arriba and STAR-Fusion for fusion transcript analysis, and rMATs for alternative splicing analysis. RESULTS The results revealed that MYC targets gene sets (Hallmark_MYC_targets_V1 and Hallmark_MYC_targets_V2) were significantly enriched in recurrent HCC. Among the MYC targets, CBX3, NOP56, CDK4, NPM1, MCM5, MCM4 and PA2G4 upregulation was significantly associated with poor survival. Somatic mutation analysis demonstrated that the numbers of high confidence deleterious mutations were significantly increased in recurrent HCC. Alternative splicing-mediated production of non-functional DDB2 and oncogenic BRCA1 D11q were discovered in recurrent HCC. Finally, CD8+ T-cells were significantly decreased in recurrent HCC. CONCLUSIONS These results indicated that the enrichment of MYC targets gene sets is one of the most critical factors that leads to the development of recurrent HCC. In addition, elevated deleterious mutation numbers and alternative spliced DDB2 and BRCA1 isoforms have been identified as prominent contributors to increasing genomic instability in male patients with recurrent HCC.
Collapse
Affiliation(s)
- Oğuzhan Karaosmanoğlu
- Department of Biology, Kamil Özdağ Faculty of Science, Karamanoğlu Mehmetbey University, İbrahim Öktem Avenue, No. 124, 70200, Karaman, Turkey.
| |
Collapse
|
4
|
Schneegans S, Löptien J, Mojzisch A, Loreth D, Kretz O, Raschdorf C, Hanssen A, Gocke A, Siebels B, Gunasekaran K, Ding Y, Oliveira-Ferrer L, Brylka L, Schinke T, Schlüter H, Paatero I, Voß H, Werner S, Pantel K, Wikman H. HERC5 downregulation in non-small cell lung cancer is associated with altered energy metabolism and metastasis. J Exp Clin Cancer Res 2024; 43:110. [PMID: 38605423 PMCID: PMC11008035 DOI: 10.1186/s13046-024-03020-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2023] [Accepted: 03/20/2024] [Indexed: 04/13/2024] Open
Abstract
BACKGROUND Metastasis is the leading cause of cancer-related death in non-small cell lung cancer (NSCLC) patients. We previously showed that low HERC5 expression predicts early tumor dissemination and a dismal prognosis in NSCLC patients. Here, we performed functional studies to unravel the mechanism underlying the "metastasis-suppressor" effect of HERC5, with a focus on mitochondrial metabolism pathways. METHODS We assessed cell proliferation, colony formation potential, anchorage-independent growth, migration, and wound healing in NSCLC cell line models with HERC5 overexpression (OE) or knockout (KO). To study early tumor cell dissemination, we used these cell line models in zebrafish experiments and performed intracardial injections in nude mice. Mass spectrometry (MS) was used to analyze protein changes in whole-cell extracts. Furthermore, electron microscopy (EM) imaging, cellular respiration, glycolytic activity, and lactate production were used to investigate the relationships with mitochondrial energy metabolism pathways. RESULTS Using different in vitro NSCLC cell line models, we showed that NSCLC cells with low HERC5 expression had increased malignant and invasive properties. Furthermore, two different in vivo models in zebrafish and a xenograft mouse model showed increased dissemination and metastasis formation (in particular in the brain). Functional enrichment clustering of MS data revealed an increase in mitochondrial proteins in vitro when HERC5 levels were high. Loss of HERC5 leads to an increased Warburg effect, leading to improved adaptation and survival under prolonged inhibition of oxidative phosphorylation. CONCLUSIONS Taken together, these results indicate that low HERC5 expression increases the metastatic potential of NSCLC in vitro and in vivo. Furthermore, HERC5-induced proteomic changes influence mitochondrial pathways, ultimately leading to alterations in energy metabolism and demonstrating its role as a new potential metastasis suppressor gene.
Collapse
Affiliation(s)
- Svenja Schneegans
- Department of Tumor Biology, University Medical Center Hamburg-Eppendorf, Martinistraße 52, 20246, Hamburg, Germany
| | - Jana Löptien
- Department of Tumor Biology, University Medical Center Hamburg-Eppendorf, Martinistraße 52, 20246, Hamburg, Germany
| | - Angelika Mojzisch
- Department of Tumor Biology, University Medical Center Hamburg-Eppendorf, Martinistraße 52, 20246, Hamburg, Germany
| | - Desirée Loreth
- Department of Tumor Biology, University Medical Center Hamburg-Eppendorf, Martinistraße 52, 20246, Hamburg, Germany
| | - Oliver Kretz
- III. Department of Medicine, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Christoph Raschdorf
- Department of Tumor Biology, University Medical Center Hamburg-Eppendorf, Martinistraße 52, 20246, Hamburg, Germany
| | - Annkathrin Hanssen
- Department of Tumor Biology, University Medical Center Hamburg-Eppendorf, Martinistraße 52, 20246, Hamburg, Germany
| | - Antonia Gocke
- Section Mass Spectrometry and Proteomics, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
- Center for Molecular Neurobiology (ZMNH), University Medical Center Hamburg- Eppendorf, Hamburg, Germany
| | - Bente Siebels
- Section Mass Spectrometry and Proteomics, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Karthikeyan Gunasekaran
- Department of Biochemistry and Molecular Cell Biology, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Yi Ding
- Department of Gynecology, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | | | - Laura Brylka
- Department of Osteology and Biomechanics, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Thorsten Schinke
- Department of Osteology and Biomechanics, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Hartmut Schlüter
- Section Mass Spectrometry and Proteomics, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Ilkka Paatero
- Turku Bioscience Centre, University of Turku and Åbo Akademi University, Turku, Finland
| | - Hannah Voß
- Section Mass Spectrometry and Proteomics, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Stefan Werner
- Department of Tumor Biology, University Medical Center Hamburg-Eppendorf, Martinistraße 52, 20246, Hamburg, Germany
| | - Klaus Pantel
- Department of Tumor Biology, University Medical Center Hamburg-Eppendorf, Martinistraße 52, 20246, Hamburg, Germany
| | - Harriet Wikman
- Department of Tumor Biology, University Medical Center Hamburg-Eppendorf, Martinistraße 52, 20246, Hamburg, Germany.
| |
Collapse
|
5
|
Da Z, Guo R, Sun J, Wang A. Identification of osteoarthritis-characteristic genes and immunological micro-environment features through bioinformatics and machine learning-based approaches. BMC Med Genomics 2023; 16:236. [PMID: 37805587 PMCID: PMC10559406 DOI: 10.1186/s12920-023-01672-y] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2023] [Accepted: 09/23/2023] [Indexed: 10/09/2023] Open
Abstract
BACKGROUND Osteoarthritis (OA) is a multifaceted chronic joint disease characterized by complex mechanisms. It has a detrimental impact on the quality of life for individuals in the middle-aged and elderly population while also imposing a significant socioeconomic burden. At present, there remains a lack of comprehensive understanding regarding the pathophysiology of OA. The objective of this study was to examine the genes, functional pathways, and immune infiltration characteristics associated with the development and advancement of OA. METHODS The Gene Expression Omnibus (GEO) database was utilized to acquire gene expression profiles. The R software was employed to conduct the screening of differentially expressed genes (DEGs) and perform enrichment analysis on these genes. The OA-characteristic genes were identified using the Weighted Gene Co-expression Network Analysis (WGCNA) and the Lasso algorithm. In addition, the infiltration levels of immune cells in cartilage were assessed using single-sample gene set enrichment analysis (ssGSEA). Subsequently, a correlation analysis was conducted to examine the relationship between immune cells and the OA-characteristic genes. RESULTS A total of 80 DEGs were identified. As determined by functional enrichment, these DEGs were associated with chondrocyte metabolism, apoptosis, and inflammation. Three OA-characteristic genes were identified using WGCNA and the lasso algorithm, and their expression levels were then validated using the verification set. Finally, the analysis of immune cell infiltration revealed that T cells and B cells were primarily associated with OA. In addition, Tspan2, HtrA1 demonstrated a correlation with some of the infiltrating immune cells. CONCLUSIONS The findings of an extensive bioinformatics analysis revealed that OA is correlated with a variety of distinct genes, functional pathways, and processes involving immune cell infiltration. The present study has successfully identified characteristic genes and functional pathways that hold potential as biomarkers for guiding drug treatment and facilitating molecular-level research on OA.
Collapse
Affiliation(s)
- Zheng Da
- Xingtai People's Hospital Affiliated to Hebei Medical University, Xingtai City, Hebei Province, China
| | - Rui Guo
- Xingtai People's Hospital Affiliated to Hebei Medical University, Xingtai City, Hebei Province, China.
| | - Jianjian Sun
- Ningbo Huamei Hospital, University of Chinese Academy of Sciences, Ningbo City, Zhejiang Province, China
| | - Ai Wang
- Zhongshan Hospital Affiliated to Fudan University, Shanghai City, China
| |
Collapse
|
6
|
Guo F, Yuan X, Cao J, Zhao X, Wang Y, Liu W, Liu B, Zeng Q. RNA-Seq and Immune Repertoire Analysis of Normal and Hepatocellular Carcinoma Relapse After Liver Transplantation. Int J Gen Med 2023; 16:4329-4341. [PMID: 37781272 PMCID: PMC10541230 DOI: 10.2147/ijgm.s421016] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2023] [Accepted: 09/08/2023] [Indexed: 10/03/2023] Open
Abstract
Background Hepatocellular carcinoma (HCC) relapse is the main reason for the poor prognosis of HCC after Liver transplantation (LT). This study aimed to explore the molecular mechanisms and immune repertoire profiles of HCC relapse. Material and Methods RNA-seq of blood samples from patients with normal (n=12) and HCC relapse (n=6) after LT was performed to identify differentially expressed genes (DEGs) and key signalling pathways. The DEGs and immune genes were further analyzed by bioinformatics. TRUST4 was used to analyze the differences in the immune repertoire between the two groups. Another 11 blood samples from patients with HCC who had received LT were collected for RT-qPCR verification of key genes. Results A total of 131 upregulated and 157 downregulated genes were identified using RNA-seq, and GO enrichment analysis revealed that the top 15 pathways were immune-related. The PPI network identified 10 key genes. Immune infiltration analysis revealed a significant difference in the five immune cell types between the two groups. A total of 83 intersecting genes were obtained by intersecting DEGs and immune genes. 6 key genes, including MX1, ISG15, OAS1, PRF1, SPP1, and THBS1 were obtained according to the intersection of DEGs, PPI network top 10 genes and immune intersecting genes. Immune repertoire analysis showed that the usage frequency of variable (V) and joining (J) genes in the normal group was higher than that in the relapse group. RT-qPCR validation showed that the expression levels of key genes were consistent with the RNA-seq results. Conclusion Our study identified key pathways and genes that could help determine whether transplant recipients are more prone to HCC relapse. Immune repertoire analysis revealed a difference in the usage frequency of VJ genes between the normal and relapse groups, providing a research direction for immunotherapy in patients with HCC relapse after liver transplantation.
Collapse
Affiliation(s)
- Fansheng Guo
- Department of Hepatobiliary Surgery, the Third Hospital of Hebei Medical University, Shijiazhuang, 050000, People’s Republic of China
| | - Xiaoye Yuan
- Department of Gerontology, Hebei General Hospital, Shijiazhuang, 050000, People’s Republic of China
| | - Jinglin Cao
- Department of Hepatobiliary Surgery, the Third Hospital of Hebei Medical University, Shijiazhuang, 050000, People’s Republic of China
| | - Xin Zhao
- Department of Hepatobiliary Surgery, the Third Hospital of Hebei Medical University, Shijiazhuang, 050000, People’s Republic of China
| | - Yang Wang
- Department of Hepatobiliary Surgery, the Third Hospital of Hebei Medical University, Shijiazhuang, 050000, People’s Republic of China
| | - Wenpeng Liu
- Department of Hepatobiliary Surgery, the Third Hospital of Hebei Medical University, Shijiazhuang, 050000, People’s Republic of China
| | - Baowang Liu
- Department of Hepatobiliary Surgery, the Third Hospital of Hebei Medical University, Shijiazhuang, 050000, People’s Republic of China
| | - Qiang Zeng
- Department of Hepatobiliary Surgery, the Third Hospital of Hebei Medical University, Shijiazhuang, 050000, People’s Republic of China
| |
Collapse
|
7
|
Nagy G, Gerlei Z, Haboub-Sandil A, Görög D, Szabó J, Kóbori L, Huszty G, Bihari L, Rózsa B, Pőcze B, Máthé Z, Piros L. Optimizing Survival for Hepatocellular Carcinoma After Liver Transplantation: A Single-Center Report and Current Perspectives. Transplant Proc 2022; 54:2593-2597. [DOI: 10.1016/j.transproceed.2022.10.048] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
|
8
|
Luo H, Zhou X. Bioinformatics analysis of potential common pathogenic mechanisms for COVID-19 infection and primary Sjogren’s syndrome. Front Immunol 2022; 13:938837. [PMID: 35958619 PMCID: PMC9360424 DOI: 10.3389/fimmu.2022.938837] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2022] [Accepted: 07/01/2022] [Indexed: 12/04/2022] Open
Abstract
BackgroundAccumulating evidence has revealed that the prevalence of Coronavirus 2019 (COVID-19) was significantly higher in patients with primary Sjogren’s syndrome (pSS) compared to the general population. However, the mechanism remains incompletely elucidated. This study aimed to further investigate the molecular mechanisms underlying the development of this complication.MethodsThe gene expression profiles of COVID-19 (GSE157103) and pSS (GSE40611) were downloaded from the Gene Expression Omnibus (GEO) database. After identifying the common differentially expressed genes (DEGs) for pSS and COVID-19, functional annotation, protein-protein interaction (PPI) network, module construction and hub gene identification were performed. Finally, we constructed transcription factor (TF)-gene regulatory network and TF-miRNA regulatory network for hub genes.ResultsA total of 40 common DEGs were selected for subsequent analyses. Functional analyses showed that cellular components and metabolic pathways collectively participated in the development and progression of pSS and COVID-19. Finally, 12 significant hub genes were identified using the cytoHubba plugin, including CMPK2, TYMS, RRM2, HERC5, IFI44L, IFI44, IFIT2, IFIT1, IFIT3, MX1, CDCA2 and TOP2A, which had preferable values as diagnostic markers for COVID-19 and pSS.ConclusionsOur study reveals common pathogenesis of pSS and COVID-19. These common pathways and pivotal genes may provide new ideas for further mechanistic studies.
Collapse
Affiliation(s)
- Hong Luo
- Department of Tuberculosis and Respiratory, Wuhan Jinyintan Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Xia Zhou
- Department of Tuberculosis and Respiratory, Wuhan Jinyintan Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
- Hubei Clinical Research Center for Infectious Diseases, Wuhan, China
- Wuhan Research Center for Communicable Disease Diagnosis and Treatment, Chinese Academy of Medical Sciences, Wuhan, China
- Joint Laboratory of Infectious Diseases and Health, Wuhan Institute of Virology and Wuhan Jinyintan Hospital, Chinese Academy of Sciences, Wuhan, China
- *Correspondence: Xia Zhou,
| |
Collapse
|
9
|
Liu C, Li L, Hou G, Lu Y, Gao M, Zhang L. HERC5/IFI16/p53 signaling mediates breast cancer cell proliferation and migration. Life Sci 2022; 303:120692. [PMID: 35671810 DOI: 10.1016/j.lfs.2022.120692] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2022] [Revised: 06/01/2022] [Accepted: 06/02/2022] [Indexed: 12/29/2022]
Abstract
AIMS This study aims to find differentially expressed ubiquitination-related gene(s) and elucidates their biological significance in breast cancer. MAIN METHODS Differentially expressed genes were profiled in MCF-7 and MDA-MB-231 cells by using PCR array method. Abnormal expression of HERC5 was studied in the cells and in breast cancer specimens via Quantitative Real-time PCR and western blot. Cell proliferation and cell migration abilities were evaluated by using cell counting kits, or through colony formation, wound healing and trans-well assays. HERC5 target proteins were investigated via proteomic, co-immunoprecipitation and western blot methods. Down-stream signaling pathways were investigated through gene expression/knockdown methods. KEY FINDINGS Huge increase of HERC5 expression was found in MCF-7 and MDA-MB-231 cells, knockdown of which repressed the cell proliferation and migration. HERC5 interacted with IFI16, mediated IFI16 ISGylation at K274 and facilitated IFI16 proteasomal degradation. IFI16 acted as a tumor suppressor and to some extent mediated the HERC5 function in the breast cancer (BC) cells. HERC5 was negatively correlated with IFI16 protein, while IFI16 was positively correlated to p53 expression at mRNA and protein levels, which indicates a novel signaling pathway - HERC5/IFI16/p53. HERC5 expression was increased in glucose-starved BC cells and in human breast cancer tissues, accompanied with the decrease of IFI16 and P53. SIGNIFICANCE Our work reveals the abnormal expression of HERC5 and its carcinogenic role in breast cancer cells, which is probably mediated by an HERC5/IFI16/p53 signaling pathway. This work also provides potential diagnostic/therapeutic biomarkers for breast cancer diagnosis and treatment.
Collapse
Affiliation(s)
- Congcong Liu
- College of Pharmacy and Tianjin Key Laboratory of Molecular Drug Research, Nankai University, Tianjin 300350, China
| | - Ling Li
- College of Pharmacy and Tianjin Key Laboratory of Molecular Drug Research, Nankai University, Tianjin 300350, China
| | - Gang Hou
- Department of Pathology, Tai'an City Central Hospital, 29 Longtan Road, Tai'an 271000, China
| | - Ying Lu
- College of Pharmacy and Tianjin Key Laboratory of Molecular Drug Research, Nankai University, Tianjin 300350, China
| | - Meng Gao
- College of Pharmacy and Tianjin Key Laboratory of Molecular Drug Research, Nankai University, Tianjin 300350, China
| | - Lianwen Zhang
- College of Pharmacy and Tianjin Key Laboratory of Molecular Drug Research, Nankai University, Tianjin 300350, China.
| |
Collapse
|
10
|
Azhie A, Grant RC, Herman M, Wang L, Knox JJ, Bhat M. Phase II clinical trial of cabozantinib for the treatment of recurrent hepatocellular carcinoma after liver transplantation. Future Oncol 2022; 18:2173-2191. [PMID: 35287469 DOI: 10.2217/fon-2021-1635] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022] Open
Abstract
Recurrent hepatocellular carcinoma (HCC) develops in 15-20% of liver transplant recipients, and it tends to be more aggressive due to underlying immunosuppression. The multikinase inhibitor cabozantinib has been shown to be effective for the treatment of advanced HCC. However, there is no study evaluating this medication in patients with recurrent HCC. Adult patients with measurable biopsy-proven recurrent HCC are eligible for enrollment provided they are not amenable to curative treatments and no prior treatment with cabozantinib. In this study, 60 mg once daily cabozantinib will be administered orally. Participants will receive study treatment as long as they continue to experience clinical benefit or until there is unacceptable toxicity. Tumor measurements will be repeated every 8 weeks to evaluate response. The primary end point of this study will be the disease control rate at 4 months after treatment. The secondary end points will be overall survival, progression-free survival and safety profile of cabozantinib. Furthermore, potential biomarkers will be evaluated to identify their role in tumor progression. The total duration of this trial is expected to be 3 years. We anticipate that this trial will show the effectiveness and safety of cabozantinib in the treatment of post-liver transplant recurrent HCC. Cabozantinib is expected to be an effective treatment due to its activity against many protein kinases, including MET and AXL which are not inhibited by sorafenib.
Collapse
Affiliation(s)
- Amirhossein Azhie
- Ajmera Transplant Program, University Health Network, Toronto, Ontario, M5G 2N2, Canada
| | - Robert C Grant
- Department of Medical Oncology, Princess Margaret Cancer Centre, University Health Network, University of Toronto, Toronto, Ontario, M5G 2M9, Canada
| | - Michael Herman
- Oakville Trafalgar Memorial Hospital, Oakville, Ontario, L6M 0L8, Canada
| | - Lisa Wang
- Biostatistics Division, Princess Margaret Cancer Centre, University Health Network, Toronto, M5G 2M9, Canada
| | - Jennifer J Knox
- Department of Medical Oncology, Princess Margaret Cancer Centre, University Health Network, University of Toronto, Toronto, Ontario, M5G 2M9, Canada
| | - Mamatha Bhat
- Ajmera Transplant Program, University Health Network, Toronto, Ontario, M5G 2N2, Canada
- Division of Gastroenterology & Hepatology, Department of Medicine, University of Toronto, Ontario, M5S 1A8, Canada
| |
Collapse
|
11
|
Bhat M, Clotet-Freixas S, Baciu C, Pasini E, Hammad A, Ivanics T, Reid S, Azhie A, Angeli M, Ghanekar A, Fischer S, Sapisochin G, Konvalinka A. Combined proteomic/transcriptomic signature of recurrence post-liver transplantation for hepatocellular carcinoma beyond Milan. Clin Proteomics 2021; 18:27. [PMID: 34794390 PMCID: PMC8600773 DOI: 10.1186/s12014-021-09333-x] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2021] [Accepted: 11/03/2021] [Indexed: 02/07/2023] Open
Abstract
Background and aims Liver transplantation (LT) can be offered to patients with Hepatocellular carcinoma (HCC) beyond Milan criteria. However, there are currently limited molecular markers on HCC explant histology to predict recurrence, which arises in up to 20% of LT recipients. The goal of our study was to derive a combined proteomic/transcriptomic signature on HCC explant predictive of recurrence post-transplant using unbiased, high-throughput approaches. Methods Patients who received a LT for HCC beyond Milan criteria in the context of hepatitis B cirrhosis were identified. Tumor explants from patients with post-transplant HCC recurrence (N = 7) versus those without recurrence (N = 4) were analyzed by mass spectrometry and gene expression array. Univariate analysis was used to generate a combined proteomic/transcriptomic signature linked to recurrence. Significantly predictive genes and proteins were verified and internally validated by immunoblotting and immunohistochemistry. Results Seventy-nine proteins and 636 genes were significantly differentially expressed in HCC tumors with subsequent recurrence (p < 0.05). Univariate survival analysis identified Aldehyde Dehydrogenase 1 Family Member A1 (ALDH1A1) gene (HR = 0.084, 95%CI 0.01–0.68, p = 0.0152), ALDH1A1 protein (HR = 0.039, 95%CI 0.16–0.91, p = 0.03), Galectin 3 Binding Protein (LGALS3BP) gene (HR = 7.14, 95%CI 1.20–432.96, p = 0.03), LGALS3BP protein (HR = 2.6, 95%CI 1.1–6.1, p = 0.036), Galectin 3 (LGALS3) gene (HR = 2.89, 95%CI 1.01–8.3, p = 0.049) and LGALS3 protein (HR = 2.6, 95%CI 1.2–5.5, p = 0.015) as key dysregulated analytes in recurrent HCC. In concordance with our proteome findings, HCC recurrence was linked to decreased ALDH1A1 and increased LGALS3 protein expression by Western Blot. LGALS3BP protein expression was validated in 29 independent HCC samples. Conclusions Significantly increased LGALS3 and LGALS3BP gene and protein expression on explant were associated with post-transplant recurrence, whereas increased ALDH1A1 was associated with absence of recurrence in patients transplanted for HCC beyond Milan criteria. This combined proteomic/transcriptomic signature could help in predicting HCC recurrence risk and guide post-transplant surveillance. Supplementary Information The online version contains supplementary material available at 10.1186/s12014-021-09333-x.
Collapse
Affiliation(s)
- Mamatha Bhat
- Ajmera Transplant Program, University Health Network, Toronto, Canada. .,Division of Gastroenterology and Hepatology, University of Toronto, Toronto, Canada. .,Toronto General Hospital Research Institute, Toronto, Canada. .,Institute of Medical Science, University of Toronto, Toronto, Canada.
| | - Sergi Clotet-Freixas
- Ajmera Transplant Program, University Health Network, Toronto, Canada.,Toronto General Hospital Research Institute, Toronto, Canada
| | - Cristina Baciu
- Ajmera Transplant Program, University Health Network, Toronto, Canada
| | - Elisa Pasini
- Ajmera Transplant Program, University Health Network, Toronto, Canada
| | - Ahmed Hammad
- Ajmera Transplant Program, University Health Network, Toronto, Canada.,Department of General Surgery, Mansoura University, Mansoura, Egypt
| | - Tommy Ivanics
- Department of Laboratory Medicine and Pathology, University of Toronto, Toronto, Canada
| | - Shelby Reid
- Institute of Medical Science, University of Toronto, Toronto, Canada
| | - Amirhossein Azhie
- Ajmera Transplant Program, University Health Network, Toronto, Canada
| | - Marc Angeli
- Ajmera Transplant Program, University Health Network, Toronto, Canada
| | - Anand Ghanekar
- Ajmera Transplant Program, University Health Network, Toronto, Canada.,Toronto General Hospital Research Institute, Toronto, Canada.,Department of Laboratory Medicine and Pathology, University of Toronto, Toronto, Canada
| | - Sandra Fischer
- Department of Laboratory Medicine and Pathology, University of Toronto, Toronto, Canada
| | - Gonzalo Sapisochin
- Ajmera Transplant Program, University Health Network, Toronto, Canada.,Division of Multi-Organ Transplant and HPB Surgical Oncology, Department of General Surgery, University Health Network, Toronto, Canada
| | - Ana Konvalinka
- Ajmera Transplant Program, University Health Network, Toronto, Canada. .,Toronto General Hospital Research Institute, Toronto, Canada. .,Department of Laboratory Medicine and Pathology, University of Toronto, Toronto, Canada. .,Institute of Medical Science, University of Toronto, Toronto, Canada. .,Division of Nephrology, Department of Medicine, University Health Network, Toronto, Canada. .,University Health Network, 585 University Avenue, Room 11-PMB-189, Toronto, ON, M5G 2N2, Canada.
| |
Collapse
|
12
|
Zhu L, Wu J, Liu H. Downregulation of HERC5 E3 ligase attenuates the ubiquitination of CtBP1 to inhibit apoptosis in colorectal cancer cells. Carcinogenesis 2021; 42:1119-1130. [PMID: 34147029 DOI: 10.1093/carcin/bgab053] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2021] [Revised: 05/29/2021] [Accepted: 06/17/2021] [Indexed: 02/05/2023] Open
Abstract
The Homologous to E6AP C-terminus (HECT) domain and RCC1-like domain-containing (HERC) proteins can function as tumour suppressors and as oncogenes, depending on the cancer type. However, the expression patterns of HERCs in colorectal cancer (CRC) cells are unclear. Here, we show that only HERC1 and HERC5 are downregulated in CRC tumours, and we focus our study on revealing HERC5-mediating signalling because the change in downregulation is much more obvious for HERC5 than for HERC1. We demonstrate that HERC5 recruits an adaptor protein, CREB binding protein (CRB), to ubiquitinate C-terminal binding protein 1 (CtBP1) in noncancerous colon cells. The downregulation of HERC5 in CRC cells attenuates the ubiquitination of CtBP1, which then accumulates and assembles into a transcriptional complex with histone deacetylase 1 (HDAC1) and a transcription factor c-MYC. This transcriptional complex binds to the promoters of three proapoptotic genes, Bcl2 associated X (BAX), Bcl2 interacting killer (BIK) and p53upregulated modulator of apoptosis (PUMA), and inhibits their expression, thereby suppressing apoptotic signalling and promoting tumourigenesis. Overexpression of HERC5, downregulation of CtBP1 or blocking of the CtBP1 function with its inhibitors (NSC95397 and 4-methylthio-2-oxobutyric acid [MTOB]) significantly prevents CRC cell proliferation in vitro and tumour growth in vivo. Combining NSC95397 (or MTOB) with chemotherapeutic drugs (oxaliplatin or capecitabine) gives a much stronger inhibition of cell proliferation and tumour growth compared to their single treatments. Collectively, our results reveal that downregulation of HERC5 E3 ligase attenuates the ubiquitination of CtBP1 to inhibit apoptosis. Therefore, CtBP1 may be a promising target in CRC chemotherapy.
Collapse
Affiliation(s)
- Lin Zhu
- Department of Integrated Traditional and Western Medicine, West China Hospital of Sichuan University, Chengdu 610041, Sichuan, China
| | - Jing Wu
- Department of Integrated Traditional and Western Medicine, West China Hospital of Sichuan University, Chengdu 610041, Sichuan, China
| | - Hong Liu
- Department of Integrated Traditional and Western Medicine, West China Hospital of Sichuan University, Chengdu 610041, Sichuan, China
| |
Collapse
|
13
|
Suceveanu AI, Micu IS, Baltatescu GI, Petcu LC, Dobrin N, Brinzan C, Nitipir C, Mazilu L, Botea F, Herlea V, Voinea F, Suceveanu AP. Overexpression of Survivin-1, TAG-72 and HERC5 in patients diagnosed with hepatocellular carcinoma in the Black Sea coast geographical area. Exp Ther Med 2021; 21:284. [PMID: 33603891 PMCID: PMC7851649 DOI: 10.3892/etm.2021.9715] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2020] [Accepted: 11/26/2020] [Indexed: 11/06/2022] Open
Abstract
Epidemiological data regarding hepatocellular carcinoma (HCC) report unsatisfactory morbimortality rates despite the global efforts to decrease the incidence and prolong patient survival. Current guidelines lack diagnostic biomarkers to better characterize patients with HCC. We aimed to validate the overexpression of Survivin-1, tumor-associated glyocoprotein 72 (Tag-72), and HECT and RLD domain containing E3 ubiquitin protein ligase 5 (HERC5) as tissue biomarkers for HCC characterization in patients from our geographical area and to standardize a local biomarker panel to be introduced in the current management guideline. Thirty samples of histologically confirmed HCC were compared to an equal number of samples of benign tumors in terms of Survivin-1, TAG-72, and HERC5 overexpression. Student's t-test, Mann-Whitney U test and Chi-square test were used to find differences between the two studied groups and to compare the categorical variables. The discriminative power of Survivin-1, Tag-72, and HERC5 overexpression was assessed using ROC curves. The multivariate linear regression analysis revealed that Survivin, Tag-72, and HERC5 were significantly overexpressed in older male patients, with α-fetoprotein (AFP) >200 ng/dl, low serum albumin, as well as in patients with imaging features of portal thrombosis and ascites. The diagnostic performance of Survivin-1, Tag-72 and HERC5 tissue biomarkers for HCC characterization was superior to that of the gold-standard AFP. Our study results validate the overexpression of Survivin-1, Tag-72, and HERC5 as tissue biomarkers for HCC characterization in patients from our geographical region and could be standardized in the current HCC management guideline.
Collapse
Affiliation(s)
| | - Ioan Sergiu Micu
- Department of Gastroenterology, ‘Ovidius’ University, 900527 Constanta, Romania
| | - Gabriela-Izabela Baltatescu
- Research and Development Centre for The Morphologic and Genetic Study of Malignant Pathology, ‘Ovidius’ University, 900527 Constanta, Romania
| | - Lucian Cristian Petcu
- Dentistry Faculty, Biophysics and Biostatistics Disciplines, ‘Ovidius’ University, 900527 Constanta, Romania
| | - Nicolae Dobrin
- Research and Development Centre for The Morphologic and Genetic Study of Malignant Pathology, ‘Ovidius’ University, 900527 Constanta, Romania
| | - Costel Brinzan
- Doctoral School of Medicine, ‘Ovidius’ University, 900527 Constanta, Romania
| | - Cornelia Nitipir
- Department of Oncology, ‘Carol Davila’ University of Medicine and Pharmacy, 050474 Bucharest, Romania
| | - Laura Mazilu
- Department of Oncology, ‘Ovidius’ University, 900527 Constanta, Romania
| | - Florin Botea
- Liver Transplant and General Surgery Centre, ‘Fundeni’ Institute, 022328 Bucharest, Romania
| | - Vlad Herlea
- Department of Pathology, ‘Fundeni’ Institute, 022328 Bucharest, Romania
| | - Felix Voinea
- Department of Urology, ‘Ovidius’ University, 900527 Constanta, Romania
| | | |
Collapse
|
14
|
Jacquet S, Pontier D, Etienne L. Rapid Evolution of HERC6 and Duplication of a Chimeric HERC5/6 Gene in Rodents and Bats Suggest an Overlooked Role of HERCs in Mammalian Immunity. Front Immunol 2021; 11:605270. [PMID: 33391270 PMCID: PMC7775381 DOI: 10.3389/fimmu.2020.605270] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2020] [Accepted: 11/10/2020] [Indexed: 12/13/2022] Open
Abstract
Studying the evolutionary diversification of mammalian antiviral defenses is of main importance to better understand our innate immune repertoire. The small HERC proteins are part of a multigene family, including HERC5 and HERC6, which have probably diversified through complex evolutionary history in mammals. Here, we performed mammalian-wide phylogenetic and genomic analyses of HERC5 and HERC6, using 83 orthologous sequences from bats, rodents, primates, artiodactyls, and carnivores—the top five representative groups of mammalian evolution. We found that HERC5 has been under weak and differential positive selection in mammals, with only primate HERC5 showing evidences of pathogen-driven selection. In contrast, HERC6 has been under strong and recurrent adaptive evolution in mammals, suggesting past and widespread genetic arms-races with viral pathogens. Importantly, the rapid evolution of mammalian HERC6 spacer domain suggests that it might be a host-pathogen interface, targeting viral proteins and/or being the target of virus antagonists. Finally, we identified a HERC5/6 chimeric gene that arose from independent duplication in rodent and bat lineages and encodes for a conserved HERC5 N-terminal domain and divergent HERC6 spacer and HECT domains. This duplicated chimeric gene highlights adaptations that potentially contribute to rodent and bat immunity. Our findings open new research avenues on the functions of HERC6 and HERC5/6 in mammals, and on their implication in antiviral innate immunity.
Collapse
Affiliation(s)
- Stéphanie Jacquet
- Université de Lyon, Université Lyon 1, CNRS, Laboratoire de Biométrie et Biologie Évolutive UMR 5558, Villeurbanne, France.,CIRI-Centre International de Recherche en Infectiologie, Univ Lyon, Inserm U1111, Université Claude Bernard Lyon 1, CNRS UMR5308, ENS de Lyon, Lyon, France.,LabEx Ecofect, Université de Lyon, Lyon, France
| | - Dominique Pontier
- Université de Lyon, Université Lyon 1, CNRS, Laboratoire de Biométrie et Biologie Évolutive UMR 5558, Villeurbanne, France.,LabEx Ecofect, Université de Lyon, Lyon, France
| | - Lucie Etienne
- CIRI-Centre International de Recherche en Infectiologie, Univ Lyon, Inserm U1111, Université Claude Bernard Lyon 1, CNRS UMR5308, ENS de Lyon, Lyon, France.,LabEx Ecofect, Université de Lyon, Lyon, France
| |
Collapse
|
15
|
Cai Y, Tian Y, Wang J, Wei W, Tang Q, Lu L, Luo Z, Li W, Lu Y, Pu J, Yang Z. Identification of Driver Genes Regulating the T-Cell-Infiltrating Levels in Hepatocellular Carcinoma. Front Genet 2020; 11:560546. [PMID: 33381145 PMCID: PMC7767976 DOI: 10.3389/fgene.2020.560546] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2020] [Accepted: 11/09/2020] [Indexed: 12/12/2022] Open
Abstract
The driver genes regulating T-cell infiltration are important for understanding immune-escape mechanisms and developing more effective immunotherapy. However, researches in this field have rarely been reported in hepatocellular carcinoma (HCC). In the present study, we identified cancer driver genes triggered by copy number alterations such as CDKN2B, MYC, TSC1, TP53, and GSK3B. The T-cell infiltration levels were significantly decreased in both HCC and recurrent HCC tissues compared with the adjacent normal liver tissues. Remarkably, we identified that copy number losses of MAX and TP53 were candidate driver genes that significantly suppress T-cell infiltration in HCC. Accordingly, their downstream oncogenic pathway, cell cycle, was significantly activated in the low T-cell infiltration HCC. Moreover, the chemokine-related target genes by TP53, which played key roles in T-cell recruitment, were also downregulated in HCC with TP53/MAX deletions, suggesting that copy number losses in MAX and TP53 might result in T-cell depletion in HCC via downregulating chemokines. Clinically, the T-cell infiltration levels and chemokines activity could accurately predict the response of sorafenib, and the prognostic outcomes in HCC. In conclusion, the systematic analysis not only facilitates identification of driver genes and signaling pathways involved in T-cell infiltration and immune escape, but also gains more insights into the functional roles of T cells in HCC.
Collapse
Affiliation(s)
- Yi Cai
- Department of Oncology, Hospital of Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Ying Tian
- Department of Urology Surgery, Hospital of Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Jianchu Wang
- Department of Hepatobiliary Surgery, Affiliated Hospital of Youjiang Medical University for Nationalities, Baise, China
| | - Wang Wei
- Department of Hepatobiliary Surgery, Affiliated Hospital of Youjiang Medical University for Nationalities, Baise, China
| | - Qianli Tang
- Department of Hepatobiliary Surgery, Affiliated Hospital of Youjiang Medical University for Nationalities, Baise, China
| | - Libai Lu
- Department of Hepatobiliary Surgery, Affiliated Hospital of Youjiang Medical University for Nationalities, Baise, China
| | - Zongjiang Luo
- Department of Hepatobiliary Surgery, Affiliated Hospital of Youjiang Medical University for Nationalities, Baise, China
| | - Wenchuan Li
- Department of Hepatobiliary Surgery, Affiliated Hospital of Youjiang Medical University for Nationalities, Baise, China
| | - Yuan Lu
- Department of Hepatobiliary Surgery, Affiliated Hospital of Youjiang Medical University for Nationalities, Baise, China
| | - Jian Pu
- Department of Hepatobiliary Surgery, Affiliated Hospital of Youjiang Medical University for Nationalities, Baise, China
| | - Zhengxia Yang
- Department of Gastroenterology, Huai'an Second People's Hospital, The Affiliated Huai'an Hospital of Xuzhou Medical University, Huai'an, China
| |
Collapse
|
16
|
Sala-Gaston J, Martinez-Martinez A, Pedrazza L, Lorenzo-Martín LF, Caloto R, Bustelo XR, Ventura F, Rosa JL. HERC Ubiquitin Ligases in Cancer. Cancers (Basel) 2020; 12:cancers12061653. [PMID: 32580485 PMCID: PMC7352365 DOI: 10.3390/cancers12061653] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2020] [Revised: 06/12/2020] [Accepted: 06/19/2020] [Indexed: 12/12/2022] Open
Abstract
HERC proteins are ubiquitin E3 ligases of the HECT family. The HERC subfamily is composed of six members classified by size into large (HERC1 and HERC2) and small (HERC3-HERC6). HERC family ubiquitin ligases regulate important cellular processes, such as neurodevelopment, DNA damage response, cell proliferation, cell migration, and immune responses. Accumulating evidence also shows that this family plays critical roles in cancer. In this review, we provide an integrated view of the role of these ligases in cancer, highlighting their bivalent functions as either oncogenes or tumor suppressors, depending on the tumor type. We include a discussion of both the molecular mechanisms involved and the potential therapeutic strategies.
Collapse
Affiliation(s)
- Joan Sala-Gaston
- Departament de Ciències Fisiològiques, Institut d’Investigació de Bellvitge (IDIBELL), Universitat de Barcelona, L’Hospitalet de Llobregat, 08907 Barcelona, Spain; (J.S.-G.); (A.M.-M.); (L.P.); (F.V.)
| | - Arturo Martinez-Martinez
- Departament de Ciències Fisiològiques, Institut d’Investigació de Bellvitge (IDIBELL), Universitat de Barcelona, L’Hospitalet de Llobregat, 08907 Barcelona, Spain; (J.S.-G.); (A.M.-M.); (L.P.); (F.V.)
| | - Leonardo Pedrazza
- Departament de Ciències Fisiològiques, Institut d’Investigació de Bellvitge (IDIBELL), Universitat de Barcelona, L’Hospitalet de Llobregat, 08907 Barcelona, Spain; (J.S.-G.); (A.M.-M.); (L.P.); (F.V.)
| | - L. Francisco Lorenzo-Martín
- Centro de Investigación del Cáncer, Instituto de Biología Molecular y Celular del Cáncer and CIBERONC, Consejo Superior de Investigaciones Científicas (CSIC)-University of Salamanca, 37007 Salamanca, Spain; (L.F.L.-M.); (R.C.); (X.R.B.)
| | - Rubén Caloto
- Centro de Investigación del Cáncer, Instituto de Biología Molecular y Celular del Cáncer and CIBERONC, Consejo Superior de Investigaciones Científicas (CSIC)-University of Salamanca, 37007 Salamanca, Spain; (L.F.L.-M.); (R.C.); (X.R.B.)
| | - Xosé R. Bustelo
- Centro de Investigación del Cáncer, Instituto de Biología Molecular y Celular del Cáncer and CIBERONC, Consejo Superior de Investigaciones Científicas (CSIC)-University of Salamanca, 37007 Salamanca, Spain; (L.F.L.-M.); (R.C.); (X.R.B.)
| | - Francesc Ventura
- Departament de Ciències Fisiològiques, Institut d’Investigació de Bellvitge (IDIBELL), Universitat de Barcelona, L’Hospitalet de Llobregat, 08907 Barcelona, Spain; (J.S.-G.); (A.M.-M.); (L.P.); (F.V.)
| | - Jose Luis Rosa
- Departament de Ciències Fisiològiques, Institut d’Investigació de Bellvitge (IDIBELL), Universitat de Barcelona, L’Hospitalet de Llobregat, 08907 Barcelona, Spain; (J.S.-G.); (A.M.-M.); (L.P.); (F.V.)
- Correspondence:
| |
Collapse
|
17
|
Tong HV, Hoan NX, Binh MT, Quyen DT, Meyer CG, Hang DTT, Hang DTD, Son HA, Van Luong H, Thuan ND, Giang NT, Quyet D, Bang MH, Song LH, Velavan TP, Toan NL. Upregulation of Enzymes involved in ISGylation and Ubiquitination in patients with hepatocellular carcinoma. Int J Med Sci 2020; 17:347-353. [PMID: 32132870 PMCID: PMC7053354 DOI: 10.7150/ijms.39823] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/31/2019] [Accepted: 12/12/2019] [Indexed: 12/31/2022] Open
Abstract
Background: ISGylation is the conjugation of ISG15 with target proteins. ISGylation occurs through an enzymatic cascade, which is similar to that of ubiquitination. Through ISGylation, ISG15 can bind to proteins involved in cell proliferation and differentiation, thus promoting genesis and progression of malignancies. The present study aims to investigate expression of genes involved in ISGylation and ubiquitination in patients with hepatocellular carcinoma and to correlate gene expression with clinical laboratory parameters of these patients. Methods: mRNA expression of genes encoding enzymes involved in the ISGylation process (EFP, HERC5, UBA1, UBC and USP18) was evaluated by quantitative real-time PCR in 38 pairs of tumour and adjacent non-tumour tissues from patients with hepatocellular carcinoma and correlated with distinct clinical laboratory parameters. Results: Relative mRNA expression of EFP, HERC5, UBA1 and USP18 was significantly higher in tumour tissues compared to adjacent non-tumour tissues (P=0.006; 0.012; 0.02 and 0.039, respectively). The correlation pattern of mRNA expression between genes in the tumours differed from the pattern in adjacent non-tumour tissues. Relative expression of EFP, HERC5 and UBA1 in adjacent non-tumour tissues was positively associated with direct bilirubin levels (Spearman's rho=0.31, 0.33 and 0.45; P=0.06, 0.05 and 0.01, respectively) and relative expression of USP18 in adjacent non-tumour tissues correlated negatively with ALT levels (Spearman's rho= -0.33, P=0.03). Conclusions: EFP, HERC5, UBA1, and USP18 genes are upregulated in tumour tissues of patients with HCC and, thus, may be associated with the pathogenesis of hepatocellular carcinoma.
Collapse
Affiliation(s)
- Hoang Van Tong
- Institute of Biomedicine and Pharmacy, Vietnam Military Medical University, Hanoi, Vietnam.,Department of Pathophysiology, Vietnam Military Medical University, Hanoi, Vietnam
| | - Nghiem Xuan Hoan
- 108 Military Central Hospital, Hanoi, Vietnam.,Vietnamese-German Center of Excellence in Medical Research, Hanoi, Vietnam
| | - Mai Thanh Binh
- 108 Military Central Hospital, Hanoi, Vietnam.,Vietnamese-German Center of Excellence in Medical Research, Hanoi, Vietnam.,Institute of Tropical Medicine, University of Tübingen, Tübingen, Germany
| | - Dao Thanh Quyen
- 108 Military Central Hospital, Hanoi, Vietnam.,Vietnamese-German Center of Excellence in Medical Research, Hanoi, Vietnam
| | - Christian G Meyer
- Vietnamese-German Center of Excellence in Medical Research, Hanoi, Vietnam.,Institute of Tropical Medicine, University of Tübingen, Tübingen, Germany.,Duy Tan University, Da Nang, Vietnam
| | - Dinh Thi Thu Hang
- Institute of Biomedicine and Pharmacy, Vietnam Military Medical University, Hanoi, Vietnam
| | | | - Ho Anh Son
- Institute of Biomedicine and Pharmacy, Vietnam Military Medical University, Hanoi, Vietnam.,Department of Pathophysiology, Vietnam Military Medical University, Hanoi, Vietnam
| | - Hoang Van Luong
- Institute of Biomedicine and Pharmacy, Vietnam Military Medical University, Hanoi, Vietnam
| | - Nghiem Duc Thuan
- Institute of Biomedicine and Pharmacy, Vietnam Military Medical University, Hanoi, Vietnam
| | - Nguyen Truong Giang
- Institute of Biomedicine and Pharmacy, Vietnam Military Medical University, Hanoi, Vietnam
| | - Do Quyet
- Institute of Biomedicine and Pharmacy, Vietnam Military Medical University, Hanoi, Vietnam
| | | | - Le Huu Song
- 108 Military Central Hospital, Hanoi, Vietnam.,Vietnamese-German Center of Excellence in Medical Research, Hanoi, Vietnam
| | - Thirumalaisamy P Velavan
- Vietnamese-German Center of Excellence in Medical Research, Hanoi, Vietnam.,Institute of Tropical Medicine, University of Tübingen, Tübingen, Germany.,Duy Tan University, Da Nang, Vietnam
| | - Nguyen Linh Toan
- Department of Pathophysiology, Vietnam Military Medical University, Hanoi, Vietnam
| |
Collapse
|
18
|
Hong W, Hu Y, Fan Z, Gao R, Yang R, Bi J, Hou J. In silico identification of EP400 and TIA1 as critical transcription factors involved in human hepatocellular carcinoma relapse. Oncol Lett 2019; 19:952-964. [PMID: 31897208 PMCID: PMC6924164 DOI: 10.3892/ol.2019.11171] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2019] [Accepted: 10/22/2019] [Indexed: 12/14/2022] Open
Abstract
Hepatocellular carcinoma (HCC) is the second leading cause of cancer-associated mortality worldwide. Transcription factors (TFs) are crucial proteins that regulate gene expression during cancer progression; however, the roles of TFs in HCC relapse remain unclear. To identify the TFs that drive HCC relapse, the present study constructed co-expression network and identified the Tan module the most relevant to HCC relapse. Numerous hub TFs (highly connected) were subsequently obtained from the Tan module according to the intra-module connectivity and the protein-protein interaction network connectivity. Next, E1A-binding protein p400 (EP400) and TIA1 cytotoxic granule associated RNA binding protein (TIA1) were identified as hub TFs differentially connected between the relapsed and non-relapsed subnetworks. In addition, zinc finger protein 143 (ZNF143) and Yin Yang 1 (YY1) were also identified by using the plugin iRegulon in Cytoscape as master upstream regulatory elements, which could potentially regulate expression of the genes and TFs of the Tan module, respectively. The Kaplan-Meier (KM) curves obtained from KMplot and Gene Expression Profiling Interactive Analysis tools confirmed that the high expression of EP400 and TIA1 were significantly associated with shorter relapse-free survival and disease-free survival of patients with HCC. Furthermore, the KM curves from the UALCAN database demonstrated that high EP400 expression significantly reduced the overall survival of patients with HCC. EP400 and TIA1 may therefore serve as potential prognostic and therapeutic biomarkers.
Collapse
Affiliation(s)
- Weiguo Hong
- Clinical Research and Management Center, Fifth Medical Center, Chinese PLA General Hospital, Beijing 100039, P.R. China
| | - Yan Hu
- Clinical Research and Management Center, Fifth Medical Center, Chinese PLA General Hospital, Beijing 100039, P.R. China
| | - Zhenping Fan
- Liver Disease Center for Cadre Medical Care, Fifth Medical Center, Chinese PLA General Hospital, Beijing 100039, P.R. China
| | - Rong Gao
- Clinical Research and Management Center, Fifth Medical Center, Chinese PLA General Hospital, Beijing 100039, P.R. China
| | - Ruichuang Yang
- Clinical Research and Management Center, Fifth Medical Center, Chinese PLA General Hospital, Beijing 100039, P.R. China
| | - Jingfeng Bi
- Clinical Research and Management Center, Fifth Medical Center, Chinese PLA General Hospital, Beijing 100039, P.R. China
| | - Jun Hou
- Clinical Research and Management Center, Fifth Medical Center, Chinese PLA General Hospital, Beijing 100039, P.R. China
| |
Collapse
|
19
|
Tang J, Yang Q, Cui Q, Zhang D, Kong D, Liao X, Ren J, Gong Y, Wu G. Weighted gene correlation network analysis identifies RSAD2, HERC5, and CCL8 as prognostic candidates for breast cancer. J Cell Physiol 2019; 235:394-407. [PMID: 31225658 DOI: 10.1002/jcp.28980] [Citation(s) in RCA: 34] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2019] [Accepted: 05/29/2019] [Indexed: 01/24/2023]
Abstract
As the most commonly diagnosed malignant tumor in female population, the prognosis of breast cancer is affected by complex gene interaction networks. In this research weighted gene co-expression network analysis (WGCNA) would be utilized to build a gene co-expression network to identify potential biomarkers for prediction the prognosis of patients with breast cancer. We downloaded GSE25065 from Gene Expression Omnibus database as the test set. GSE25055 and GSE42568 were utilized to validate findings in the research. Seven modules were established in the GSE25065 by utilizing average link hierarchical clustering. Three hub genes, RSAD2, HERC5, and CCL8 were screened out from the significant module (R 2 = 0.44), which were considerably interrelated to worse prognosis. Within test dataset GSE25065, RSAD2, and CCL8 were correlated with tumor stage, grade, and lymph node metastases, whereas HERC5 was correlated with lymph node metastases and tumor grade. In the validation dataset GSE25055 and RSAD2 expression was correlated with tumor grade, stage, and size, whereas HERC5 was related to tumor stage and tumor grade, and CCL8 was associated with tumor size and tumor grade. Multivariable survival analysis demonstrated that RSAD2, HERC5, and CCL8 were independent risk factors. In conclusion, the WGCNA analysis conducted in this study screened out novel prognostic biomarkers of breast cancer. Meanwhile, further in vivo and in vitro studies are required to make the clear molecular mechanisms.
Collapse
Affiliation(s)
- Jianing Tang
- Department of Thyroid and Breast Surgery, Zhongnan Hospital of Wuhan University, Wuhan, Hubei, China
| | - Qian Yang
- Department of Thyroid and Breast Surgery, Zhongnan Hospital of Wuhan University, Wuhan, Hubei, China
| | - Qiuxia Cui
- Department of Thyroid and Breast Surgery, Zhongnan Hospital of Wuhan University, Wuhan, Hubei, China
| | - Dan Zhang
- Department of Thyroid and Breast Surgery, Tongji Hospital, Huazhong University of Science and Technology, Wuhan, Hubei, China
| | - Deguang Kong
- Department of General Surgery, Zhongnan Hospital of Wuhan University, Wuhan, Hubei, China
| | - Xing Liao
- Department of Thyroid and Breast Surgery, Zhongnan Hospital of Wuhan University, Wuhan, Hubei, China
| | - Jiangbo Ren
- Department of Biological Repositories, Zhongnan Hospital of Wuhan University, Wuhan, Hubei, China
| | - Yan Gong
- Department of Biological Repositories, Zhongnan Hospital of Wuhan University, Wuhan, Hubei, China
| | - Gaosong Wu
- Department of Thyroid and Breast Surgery, Zhongnan Hospital of Wuhan University, Wuhan, Hubei, China
| |
Collapse
|
20
|
Wang S, Gribskov M. Transcriptome analysis identifies metallothionein as biomarkers to predict recurrence in hepatocellular cacinoma. Mol Genet Genomic Med 2019; 7:e693. [PMID: 31056863 PMCID: PMC6565558 DOI: 10.1002/mgg3.693] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2018] [Revised: 02/17/2019] [Accepted: 03/14/2019] [Indexed: 12/20/2022] Open
Abstract
BACKGROUND Liver cancer is the fifth most common cancer, and hepatocellular carcinoma (HCC) is the major liver tumor type seen in adults. HCC is usually caused by chronic liver disease such as hepatitis B virus or hepatitis C virus infection. One of the promising treatments for HCC is liver transplantation, in which a diseased liver is replaced with a healthy liver from another person. However, recurrence of HCC after surgery is a significant problem. Therefore, it is important to discover reliable cellular biomarkers that can predict recurrence in HCC. METHODS We analyzed previously published HCC RNA-Seq data that includes 21 paired tumor and normal samples, in which nine tumors were recurrent after orthotopic liver transplantation and 12 were nonrecurrent tumors with their paired normal samples. We used both the reference genome and de novo transcriptome assembly based analyses to identify differentially expressed genes (DEG) and used RandomForest to discover biomarkers. RESULTS We obtained 398 DEG using the Reference approach and 412 DEG using de novo assembly approach. Among these DEG, 258 genes were identified by both approaches. We further identified 30 biomarkers that could predict the recurrence. We used another independent HCC study that includes 50 patients normal and tumor samples. By using these 30 biomarkers, the prediction accuracy was 100% for normal condition and 98% for tumor condition. A group of Metallothionein was specifically discovered as biomarkers in both reference and de novo assembly approaches. CONCLUSION We identified a group of Metallothionein genes as biomarkers to predict recurrence. The metallothionein genes were all down-regulated in tumor samples, suggesting that low metallothionein expression may be a promoter of tumor growth. In addition, using de novo assembly identified some unique biomarkers, further confirmed the necessity of conducting a de novo assembly in human cancer study.
Collapse
Affiliation(s)
- Sufang Wang
- School of Life SciencesNorthwestern Polytechnical UniversityXi'anShaanxiChina
- Center of Special Environmental Biomechanics & Biomedical EngineeringNorthwestern Polytechnical UniversityXi'anShaanxiChina
| | - Michael Gribskov
- Department of Biological SciencesPurdue UniversityWest LafayetteIndianaUSA
- Department of Computer SciencesPurdue UniversityWest LafayetteIndianaUSA
| |
Collapse
|
21
|
Rogers W, Robertson MP, Ballantyne A, Blakely B, Catsanos R, Clay-Williams R, Fiatarone Singh M. Compliance with ethical standards in the reporting of donor sources and ethics review in peer-reviewed publications involving organ transplantation in China: a scoping review. BMJ Open 2019; 9:e024473. [PMID: 30723071 PMCID: PMC6377532 DOI: 10.1136/bmjopen-2018-024473] [Citation(s) in RCA: 51] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/30/2018] [Revised: 09/28/2018] [Accepted: 11/13/2018] [Indexed: 12/20/2022] Open
Abstract
OBJECTIVES The objective of this study is to investigate whether papers reporting research on Chinese transplant recipients comply with international professional standards aimed at excluding publication of research that: (1) involves any biological material from executed prisoners; (2) lacks Institutional Review Board (IRB) approval and (3) lacks consent of donors. DESIGN Scoping review based on Arksey and O'Mallee's methodological framework. DATA SOURCES Medline, Scopus and Embase were searched from January 2000 to April 2017. ELIGIBILITY CRITERIA We included research papers published in peer-reviewed English-language journals reporting on outcomes of research involving recipients of transplanted hearts, livers or lungs in mainland China. DATA EXTRACTION AND SYNTHESIS Data were extracted by individual authors working independently following training and benchmarking. Descriptive statistics were compiled using Excel. RESULTS 445 included studies reported on outcomes of 85 477 transplants. 412 (92.5%) failed to report whether or not organs were sourced from executed prisoners; and 439 (99%) failed to report that organ sources gave consent for transplantation. In contrast, 324 (73%) reported approval from an IRB. Of the papers claiming that no prisoners' organs were involved in the transplants, 19 of them involved 2688 transplants that took place prior to 2010, when there was no volunteer donor programme in China. DISCUSSION The transplant research community has failed to implement ethical standards banning publication of research using material from executed prisoners. As a result, a large body of unethical research now exists, raising issues of complicity and moral hazard to the extent that the transplant community uses and benefits from the results of this research. We call for retraction of this literature pending investigation of individual papers.
Collapse
Affiliation(s)
- Wendy Rogers
- Department of Clinical Medicine and Department of Philosophy, Macquarie University, Sydney, New South Wales, Australia
- Department of Philosophy, Macquarie University, Sydney, New South Wales, Australia
| | | | - Angela Ballantyne
- Department of Primary Health Care and General Practice, University of Otago, Wellington, New Zealand
| | - Brette Blakely
- Australian Institute of Health Innovation, Macquarie University, Sydney, New South Wales, Australia
| | | | - Robyn Clay-Williams
- Australian Institute of Health Innovation, Macquarie University, Sydney, New South Wales, Australia
| | - Maria Fiatarone Singh
- Faculty of Health Sciences, University of Sydney, Sydney, New South Wales, Australia
| |
Collapse
|
22
|
Chapman WC, Korenblat KM, Fowler KJ, Saad N, Khan AS, Subramanian V, Doyle MBM, Dageforde LA, Tan B, Grierson P, Lin Y, Xu M, Brunt EM. Hepatocellular carcinoma: Where are we in 2018? Curr Probl Surg 2018; 55:450-503. [PMID: 30526875 DOI: 10.1067/j.cpsurg.2018.10.002] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Affiliation(s)
- William C Chapman
- Barnes-Jewish Hospital, Washington University School of Medicine, St. Louis, MO.
| | - Kevin M Korenblat
- Barnes-Jewish Hospital, Washington University School of Medicine, St. Louis, MO
| | | | - Nael Saad
- University of Rochester, Rochester, NY
| | - Adeel S Khan
- Division of Abdominal Transplant Surgery, Barnes-Jewish Hospital, Washington University School of Medicine, St. Louis, MO
| | - Vijay Subramanian
- Barnes-Jewish Hospital, Washington University School of Medicine, St. Louis, MO
| | - Maria B Majella Doyle
- Barnes-Jewish Hospital, St. Louis Children's Hospital, Washington University School of Medicine, St. Louis, MO
| | - Leigh Anne Dageforde
- Harvard Medical School, Division of Transplant Surgery, Massachusetts General Hospital, Boston, MA
| | - Benjamin Tan
- Barnes-Jewish Hospital, Washington University School of Medicine, St. Louis, MO
| | - Patrick Grierson
- Barnes-Jewish Hospital, Washington University School of Medicine, St. Louis, MO
| | - Yiing Lin
- Barnes-Jewish Hospital, Washington University School of Medicine, St. Louis, MO
| | - Min Xu
- Department of Surgery, Washington University School of Medicine, St. Louis, MO
| | | |
Collapse
|
23
|
Mang Y, Li L, Ran J, Zhang S, Liu J, Li L, Chen Y, Liu J, Gao Y, Ren G. Long noncoding RNA NEAT1 promotes cell proliferation and invasion by regulating hnRNP A2 expression in hepatocellular carcinoma cells. Onco Targets Ther 2017; 10:1003-1016. [PMID: 28260918 PMCID: PMC5325106 DOI: 10.2147/ott.s116319] [Citation(s) in RCA: 55] [Impact Index Per Article: 6.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022] Open
Abstract
Growing evidence demonstrates that long noncoding RNAs (lncRNAs) are involved in the progression of various cancers, including hepatocellular carcinoma (HCC). The role of nuclear-enriched abundant transcript 1 (NEAT1), an essential lncRNA for the formation of nuclear body paraspeckles, has not been fully explored in HCC. We aimed to determine the expression, roles and functional mechanisms of NEAT1 in the proliferation and invasion of HCC. Based on real-time polymerase chain reaction data, we suggest that NEAT1 is upregulated in HCC tissues compared with noncancerous liver tissues. The knockdown of NEAT1 altered global gene expression patterns and reduced HCC cell proliferation, invasion and migration. RNA immunoprecipitation and RNA pull-down assays confirmed that U2AF65 binds to NEAT1. Furthermore, the study indicated that NEAT1 regulated hnRNP A2 expression and that this regulation may be associated with the NEAT1–U2AF65 protein complex. Thus, the NEAT1-hnRNP A2 regulation mechanism promotes HCC pathogenesis and may provide a potential target for the prognosis and treatment of HCC.
Collapse
Affiliation(s)
- Yuanyi Mang
- Department of Hepato-Biliary-Pancreatic Surgery, The Calmette Affiliated Hospital of Kunming Medical University, The First Hospital of Kunming, Kunming, Yunnan, People's Republic of China
| | - Li Li
- Department of Hepato-Biliary-Pancreatic Surgery, The Calmette Affiliated Hospital of Kunming Medical University, The First Hospital of Kunming, Kunming, Yunnan, People's Republic of China
| | - Jianghua Ran
- Department of Hepato-Biliary-Pancreatic Surgery, The Calmette Affiliated Hospital of Kunming Medical University, The First Hospital of Kunming, Kunming, Yunnan, People's Republic of China
| | - Shengning Zhang
- Department of Hepato-Biliary-Pancreatic Surgery, The Calmette Affiliated Hospital of Kunming Medical University, The First Hospital of Kunming, Kunming, Yunnan, People's Republic of China
| | - Jing Liu
- Department of Hepato-Biliary-Pancreatic Surgery, The Calmette Affiliated Hospital of Kunming Medical University, The First Hospital of Kunming, Kunming, Yunnan, People's Republic of China
| | - Laibang Li
- Department of Hepato-Biliary-Pancreatic Surgery, The Calmette Affiliated Hospital of Kunming Medical University, The First Hospital of Kunming, Kunming, Yunnan, People's Republic of China
| | - Yiming Chen
- Department of Hepato-Biliary-Pancreatic Surgery, The Calmette Affiliated Hospital of Kunming Medical University, The First Hospital of Kunming, Kunming, Yunnan, People's Republic of China
| | - Jian Liu
- Department of Hepato-Biliary-Pancreatic Surgery, The Calmette Affiliated Hospital of Kunming Medical University, The First Hospital of Kunming, Kunming, Yunnan, People's Republic of China
| | - Yang Gao
- Department of Hepato-Biliary-Pancreatic Surgery, The Calmette Affiliated Hospital of Kunming Medical University, The First Hospital of Kunming, Kunming, Yunnan, People's Republic of China
| | - Gang Ren
- Department of Hepato-Biliary-Pancreatic Surgery, The Calmette Affiliated Hospital of Kunming Medical University, The First Hospital of Kunming, Kunming, Yunnan, People's Republic of China
| |
Collapse
|
24
|
Kim N, Yoon YI, Yoo HJ, Tak E, Ahn CS, Song GW, Lee SG, Hwang S. Combined Detection of Serum IL-10, IL-17, and CXCL10 Predicts Acute Rejection Following Adult Liver Transplantation. Mol Cells 2016; 39:639-44. [PMID: 27498551 PMCID: PMC4990757 DOI: 10.14348/molcells.2016.0130] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2016] [Revised: 07/18/2016] [Accepted: 07/20/2016] [Indexed: 01/30/2023] Open
Abstract
Discovery of non-invasive diagnostic and predictive biomarkers for acute rejection in liver transplant patients would help to ensure the preservation of liver function in the graft, eventually contributing to improved graft and patient survival. We evaluated selected cytokines and chemokines in the sera from liver transplant patients as potential biomarkers for acute rejection, and found that the combined detection of IL-10, IL-17, and CXCL10 at 1-2 weeks post-operation could predict acute rejection following adult liver transplantation with 97% specificity and 94% sensitivity.
Collapse
Affiliation(s)
- Nayoung Kim
- Department of Convergence Medicine & Asan Institute for Life Sciences, Department of Surgery, Asan Medical Center, University of Ulsan College of Medicine, Seoul 05505,
Korea
| | - Young-In Yoon
- Division of Liver Transplantation and Hepatobiliary Surgery, Department of Surgery, Asan Medical Center, University of Ulsan College of Medicine, Seoul 05505,
Korea
- Department of Hepatobiliary Pancreas Surgery, Korea University Anam Hospital, Seoul 02841,
Korea
| | - Hyun Ju Yoo
- Department of Convergence Medicine & Asan Institute for Life Sciences, Department of Surgery, Asan Medical Center, University of Ulsan College of Medicine, Seoul 05505,
Korea
| | - Eunyoung Tak
- Department of Convergence Medicine & Asan Institute for Life Sciences, Department of Surgery, Asan Medical Center, University of Ulsan College of Medicine, Seoul 05505,
Korea
| | - Chul-Soo Ahn
- Division of Liver Transplantation and Hepatobiliary Surgery, Department of Surgery, Asan Medical Center, University of Ulsan College of Medicine, Seoul 05505,
Korea
| | - Gi-Won Song
- Division of Liver Transplantation and Hepatobiliary Surgery, Department of Surgery, Asan Medical Center, University of Ulsan College of Medicine, Seoul 05505,
Korea
| | - Sung-Gyu Lee
- Division of Liver Transplantation and Hepatobiliary Surgery, Department of Surgery, Asan Medical Center, University of Ulsan College of Medicine, Seoul 05505,
Korea
| | - Shin Hwang
- Division of Liver Transplantation and Hepatobiliary Surgery, Department of Surgery, Asan Medical Center, University of Ulsan College of Medicine, Seoul 05505,
Korea
| |
Collapse
|
25
|
Chauhan R, Lahiri N. Tissue- and Serum-Associated Biomarkers of Hepatocellular Carcinoma. BIOMARKERS IN CANCER 2016; 8:37-55. [PMID: 27398029 PMCID: PMC4933537 DOI: 10.4137/bic.s34413] [Citation(s) in RCA: 65] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/17/2016] [Revised: 03/15/2016] [Accepted: 03/27/2016] [Indexed: 12/13/2022]
Abstract
Hepatocellular carcinoma (HCC), one of the leading causes of cancer deaths in the world, is offering a challenge to human beings, with the current modes of treatment being a palliative approach. Lack of proper curative or preventive treatment methods encouraged extensive research around the world with an aim to detect a vaccine or therapeutic target biomolecule that could lead to development of a drug or vaccine against HCC. Biomarkers or biological disease markers have emerged as a potential tool as drug/vaccine targets, as they can accurately diagnose, predict, and even prevent the diseases. Biomarker expression in tissue, serum, plasma, or urine can detect tumor in very early stages of its development and monitor the cancer progression and also the effect of therapeutic interventions. Biomarker discoveries are driven by advanced techniques, such as proteomics, transcriptomics, whole genome sequencing, micro- and micro-RNA arrays, and translational clinics. In this review, an overview of the potential of tissue- and serum-associated HCC biomarkers as diagnostic, prognostic, and therapeutic targets for drug development is presented. In addition, we highlight recently developed micro-RNA, long noncoding RNA biomarkers, and single-nucleotide changes, which may be used independently or as complementary biomarkers. These active investigations going on around the world aimed at conquering HCC might show a bright light in the near future.
Collapse
Affiliation(s)
- Ranjit Chauhan
- Molecular Virology and Hepatology Research Group, Division of BioMedical Sciences, Memorial University of Newfoundland, St. John's, Newfoundland, Canada.; Department of Biology, University of Winnipeg, Winnipeg, Manitoba, Canada
| | | |
Collapse
|
26
|
Sánchez-Tena S, Cubillos-Rojas M, Schneider T, Rosa JL. Functional and pathological relevance of HERC family proteins: a decade later. Cell Mol Life Sci 2016; 73:1955-68. [PMID: 26801221 PMCID: PMC11108380 DOI: 10.1007/s00018-016-2139-8] [Citation(s) in RCA: 74] [Impact Index Per Article: 8.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2015] [Revised: 01/08/2016] [Accepted: 01/12/2016] [Indexed: 12/22/2022]
Abstract
The HERC gene family encodes proteins with two characteristic domains in their sequence: the HECT domain and the RCC1-like domain (RLD). In humans, the HERC family comprises six members that can be divided into two groups based on their molecular mass and domain structure. Whereas large HERCs (HERC1 and HERC2) contain one HECT and more than one RLD, small HERCs (HERC3-6) possess single HECT and RLD domains. Accumulating evidence shows the HERC family proteins to be key components of a wide range of cellular functions, including neurodevelopment, DNA damage repair, cell growth and immune response. Considering the significant recent advances made regarding HERC functionality, an updated review summarizing the progress is greatly needed at 10 years since the last HERC review. We provide an integrated view of HERC function and go into detail about its implications for several human diseases such as cancer and neurological disorders.
Collapse
Affiliation(s)
- Susana Sánchez-Tena
- Departament de Ciències Fisiològiques II, Campus de Bellvitge, Institut d'Investigació Biomèdica de Bellvitge (IDIBELL), Universitat de Barcelona, L'Hospitalet de Llobregat, 08907, Barcelona, Spain
| | - Monica Cubillos-Rojas
- Departament de Ciències Fisiològiques II, Campus de Bellvitge, Institut d'Investigació Biomèdica de Bellvitge (IDIBELL), Universitat de Barcelona, L'Hospitalet de Llobregat, 08907, Barcelona, Spain
| | - Taiane Schneider
- Departament de Ciències Fisiològiques II, Campus de Bellvitge, Institut d'Investigació Biomèdica de Bellvitge (IDIBELL), Universitat de Barcelona, L'Hospitalet de Llobregat, 08907, Barcelona, Spain
| | - Jose Luis Rosa
- Departament de Ciències Fisiològiques II, Campus de Bellvitge, Institut d'Investigació Biomèdica de Bellvitge (IDIBELL), Universitat de Barcelona, L'Hospitalet de Llobregat, 08907, Barcelona, Spain.
| |
Collapse
|