1
|
Sun Y, Xu H, Gao W, Deng J, Song X, Li J, Liu X. S100a8/A9 proteins: critical regulators of inflammation in cardiovascular diseases. Front Cardiovasc Med 2024; 11:1394137. [PMID: 39175627 PMCID: PMC11338807 DOI: 10.3389/fcvm.2024.1394137] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2024] [Accepted: 07/24/2024] [Indexed: 08/24/2024] Open
Abstract
Neutrophil hyperexpression is recognized as a key prognostic factor for inflammation and is closely related to the emergence of a wide range of cardiovascular disorders. In recent years, S100 calcium binding protein A8/A9 (S100A8/A9) derived from neutrophils has attracted increasing attention as an important warning protein for cardiovascular disease. This article evaluates the utility of S100A8/A9 protein as a biomarker and therapeutic target for diagnosing cardiovascular diseases, considering its structural features, fundamental biological properties, and its multifaceted influence on cardiovascular conditions including atherosclerosis, myocardial infarction, myocardial ischemia/reperfusion injury, and heart failure.
Collapse
Affiliation(s)
- Yu Sun
- College of Traditional Chinese Medicine, Shandong University of Traditional Chinese Medicine, Jinan, China
| | - Han Xu
- Innovation Research Institute of Traditional Chinese Medicine, Shandong University of Traditional Chinese Medicine, Jinan, China
| | - Weihan Gao
- Innovation Research Institute of Traditional Chinese Medicine, Shandong University of Traditional Chinese Medicine, Jinan, China
| | - Jinlan Deng
- Innovation Research Institute of Traditional Chinese Medicine, Shandong University of Traditional Chinese Medicine, Jinan, China
| | - Xiayinan Song
- Innovation Research Institute of Traditional Chinese Medicine, Shandong University of Traditional Chinese Medicine, Jinan, China
| | - Jie Li
- Innovation Research Institute of Traditional Chinese Medicine, Shandong University of Traditional Chinese Medicine, Jinan, China
| | - Xijian Liu
- College of Traditional Chinese Medicine, Shandong University of Traditional Chinese Medicine, Jinan, China
| |
Collapse
|
2
|
Karaban K, Słupik D, Reda A, Gajewska M, Rolek B, Borovac JA, Papakonstantinou PE, Bongiovanni D, Ehrlinder H, Parker WAE, Siniarski A, Gąsecka A. Coagulation Disorders and Thrombotic Complications in Heart Failure With Preserved Ejection Fraction. Curr Probl Cardiol 2024; 49:102127. [PMID: 37802171 DOI: 10.1016/j.cpcardiol.2023.102127] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2023] [Accepted: 09/30/2023] [Indexed: 10/08/2023]
Abstract
Heart failure with preserved ejection fraction (HFpEF) is associated with multiple cardiovascular and noncardiovascular comorbidities and risk factors which increase the risk of thrombotic complications, such as atrial fibrillation, chronic kidney disease, arterial hypertension and type 2 diabetes mellitus. Subsequently, thromboembolic risk stratification in this population poses a great challenge. Since date from the large randomized clinical trials mostly include both patients with truly preserved EF, and those with heart failure with mildly reduced ejection fraction, there is an unmet need to characterize the patients with truly preserved EF. Considering the significant evidence gap in this area, we sought to describe the coagulation disorders and thrombotic complications in patients with HFpEF and discuss the specific thromboembolic risk factors in patients with HFpEF, with the goal to tailor risk stratification to an individual patient.
Collapse
Affiliation(s)
- Kacper Karaban
- Chair and Department of Cardiology, Medical University of Warsaw, Warsaw, Poland
| | - Dorota Słupik
- Chair and Department of Cardiology, Medical University of Warsaw, Warsaw, Poland
| | - Aleksandra Reda
- Chair and Department of Cardiology, Medical University of Warsaw, Warsaw, Poland
| | - Magdalena Gajewska
- Chair and Department of Cardiology, Medical University of Warsaw, Warsaw, Poland
| | - Bartosz Rolek
- Chair and Department of Cardiology, Medical University of Warsaw, Warsaw, Poland
| | - Josip A Borovac
- Division of Interventional Cardiology, Cardiovascular Diseases Department, University Hospital of Split, Split, Croatia
| | - Panteleimon E Papakonstantinou
- Second Cardiology Department, Evangelismos Hospital, Athens, Greece; First Cardiology Clinic, Medical School, National and Kapodistrian University of Athens, Hippokration Hospital, Athens, Greece
| | - Dario Bongiovanni
- Department of Internal Medicine I, Cardiology, University Hospital Augsburg, University of Augsburg, Augsburg, Germany; Department of Cardiovascular Medicine, Humanitas Clinical and Research Center IRCCS and Humanitas University, Rozzano, Milan, Italy; Department of Biomedical Sciences, Humanitas University, Pieve Emanuele, Milan, Italy; Department of Cardiovascular Medicine, IRCCS Humanitas Research Hospital, Rozzano, Milan, Italy
| | - Hanne Ehrlinder
- Department of Clinical Sciences, Division of Cardiovascular Medicine, Danderyd Hospital, Karolinska Institutet, Stockholm, Sweden
| | - William A E Parker
- Cardiovascular Research Unit, Division of Clinical Medicine, University of Sheffield, Sheffield, UK
| | - Aleksander Siniarski
- Department of Coronary Artery Disease and Heart Failure, Institute of Cardiology, Faculty of Medicine, Jagiellonian University Medical College, Cracow, Poland; John Paul II Hospital, Cracow, Poland
| | - Aleksandra Gąsecka
- Chair and Department of Cardiology, Medical University of Warsaw, Warsaw, Poland.
| |
Collapse
|
3
|
Jiang H, Zhao Y, Su M, Sun L, Chen M, Zhang Z, Ilyas I, Wang Z, Little PJ, Wang L, Weng J, Ge J, Xu S. A proteome-wide screen identifies the calcium binding proteins, S100A8/S100A9, as clinically relevant therapeutic targets in aortic dissection. Pharmacol Res 2024; 199:107029. [PMID: 38056513 DOI: 10.1016/j.phrs.2023.107029] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/09/2023] [Revised: 12/01/2023] [Accepted: 12/03/2023] [Indexed: 12/08/2023]
Abstract
Aortic dissection (AD) is a fatal cardiovascular disease with limited pharmacotherapies. To discover novel therapeutic targets for AD, the present study was conducted on ascending aorta samples from AD patients versus those from control subjects using proteomic analysis. Integrated proteomic data analysis identified S100 calcium-binding proteins A8 and A9 (S100A8/A9) as new therapeutic targets for AD. As assessed by ELISA, the circulating levels of S100A8/A9 were elevated in AD patients. In addition, we validated the upregulation of S100A8/A9 in a mouse model of AD. In vitro and in vivo studies substantiated that S100A8/A9, as danger-associated molecular pattern molecules, promotes the smooth muscle cells phenotypic switch by inhibiting serum response factor (SRF) activity but elevating NF-κB dependent inflammatory response. Depletion of S100A8/A9 attenuates the occurrence and development of AD. As a proof of concept, we tested the safety and efficacy of pharmacological inhibition of S100A8/A9 by ABR-25757 (paquinimod) in a mouse model of AD. We observed that ABR-25757 ameliorated the incidence of rupture and improved elastin morphology associated with AD. Further single-cell RNA sequencing disclosed that the phenotypic switch of vascular smooth muscle cells (VSMCs) and inflammatory response pathways were responsible for ABR-25757-mediated protection against AD. Thus, this study reveals the regulatory mechanism of S100A8/A9 in AD and offers a potential therapeutic avenue to treat AD by targeting S100A8/A9.
Collapse
Affiliation(s)
- Hui Jiang
- Department of Cardiothoracic Surgery, The First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, China
| | - Yaping Zhao
- Department of Endocrinology, Institute of Endocrine and Metabolic Diseases, The First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, Clinical Research Hospital of Chinese Academy of Sciences (Hefei), University of Science and Technology of China, Hefei, China
| | - Meiming Su
- Department of Endocrinology, Institute of Endocrine and Metabolic Diseases, The First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, Clinical Research Hospital of Chinese Academy of Sciences (Hefei), University of Science and Technology of China, Hefei, China
| | - Lu Sun
- Department of Endocrinology, Institute of Endocrine and Metabolic Diseases, The First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, Clinical Research Hospital of Chinese Academy of Sciences (Hefei), University of Science and Technology of China, Hefei, China
| | - Meijie Chen
- Department of Endocrinology, Institute of Endocrine and Metabolic Diseases, The First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, Clinical Research Hospital of Chinese Academy of Sciences (Hefei), University of Science and Technology of China, Hefei, China
| | - Zhidan Zhang
- Department of Endocrinology, Institute of Endocrine and Metabolic Diseases, The First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, Clinical Research Hospital of Chinese Academy of Sciences (Hefei), University of Science and Technology of China, Hefei, China
| | - Iqra Ilyas
- Department of Endocrinology, Institute of Endocrine and Metabolic Diseases, The First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, Clinical Research Hospital of Chinese Academy of Sciences (Hefei), University of Science and Technology of China, Hefei, China
| | - Zhihua Wang
- Department of Endocrinology, Institute of Endocrine and Metabolic Diseases, The First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, Clinical Research Hospital of Chinese Academy of Sciences (Hefei), University of Science and Technology of China, Hefei, China
| | - Peter J Little
- School of Pharmacy, Pharmacy Australia Centre of Excellence, The University of Queensland, Woolloongabba, QLD 4102, Australia
| | - Li Wang
- Department of Biomedical Sciences, City University of Hong Kong, China
| | - Jianping Weng
- Department of Endocrinology, Institute of Endocrine and Metabolic Diseases, The First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, Clinical Research Hospital of Chinese Academy of Sciences (Hefei), University of Science and Technology of China, Hefei, China
| | - Jianjun Ge
- Department of Cardiothoracic Surgery, The First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, China.
| | - Suowen Xu
- Department of Endocrinology, Institute of Endocrine and Metabolic Diseases, The First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, Clinical Research Hospital of Chinese Academy of Sciences (Hefei), University of Science and Technology of China, Hefei, China.
| |
Collapse
|
4
|
Abstract
Proteomics tools provide a powerful means to identify, detect, and quantify protein-related details in studies of platelet phenotype and function. Here, we consider how historical and recent advances in proteomics approaches have informed our understanding of platelet biology, and, how proteomics tools can be used going forward to advance studies of platelets. It is now apparent that the platelet proteome is comprised of thousands of different proteins, where specific changes in platelet protein systems can accompany alterations in platelet function in health and disease. Going forward, many challenges remain in how to best carry out, validate and interpret platelet proteomics experiments. Future studies of platelet protein post-translational modifications such as glycosylation, or studies that take advantage of single cell proteomics and top-down proteomics methods all represent areas of interest to profiling and more richly understanding platelets in human wellness and disease.
Collapse
Affiliation(s)
- Joseph E. Aslan
- Knight Cardiovascular Institute, Oregon Health & Science University, Portland, Oregon, USA
- Department of Chemical Physiology and Biochemistry, Oregon Health & Science University, Portland, Oregon, USA
- Department of Biomedical Engineering, School of Medicine, Oregon Health & Science University, Portland, Oregon, USA
| |
Collapse
|
5
|
Bai B, Xu Y, Chen H. Pathogenic roles of neutrophil-derived alarmins (S100A8/A9) in heart failure: From molecular mechanisms to therapeutic insights. Br J Pharmacol 2023; 180:573-588. [PMID: 36464854 DOI: 10.1111/bph.15998] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2022] [Revised: 11/12/2022] [Accepted: 11/28/2022] [Indexed: 12/12/2022] Open
Abstract
An excessive neutrophil count is recognized as a valuable predictor of inflammation and is associated with a higher risk of adverse cardiac events in patients with heart failure. Our understanding of the effectors used by neutrophils to inflict proinflammatory actions needs to be advanced. Recently, emerging evidence has demonstrated a causative role of neutrophil-derived alarmins (i.e. S100A8/A9) in aggravating cardiac injuries by induction of inflammation. In parallel with the neutrophil count, high circulating levels of S100A8/A9 proteins powerfully predict mortality in patients with heart failure. As such, a deeper understanding of the biological functions of neutrophil-derived S100A8/A9 proteins would offer novel therapeutic insights. Here, the basic biology of S100A8/A9 proteins and their pleiotropic roles in cardiovascular diseases are discussed, focusing on heart failure. We also consider the evidence that therapeutic targeting of S100A8/A9 proteins by the humanized vaccine, antibodies or inhibitors is able to town down inflammatory injuries.
Collapse
Affiliation(s)
- Bo Bai
- Shenzhen Key Laboratory of Cardiovascular Health and Precision Medicine, Southern University of Science and Technology, Shenzhen, 518055, China.,Department of Cardiology, The First Affiliated Hospital of Shenzhen University, Shenzhen Second People's Hospital, Shenzhen, 518035, China
| | - Yun Xu
- Department of Cardiology, The First Affiliated Hospital of Shenzhen University, Shenzhen Second People's Hospital, Shenzhen, 518035, China
| | - Haibo Chen
- Department of Cardiology, The First Affiliated Hospital of Shenzhen University, Shenzhen Second People's Hospital, Shenzhen, 518035, China
| |
Collapse
|
6
|
Systemic Biomarkers and Unique Pathways in Different Phenotypes of Heart Failure with Preserved Ejection Fraction. Biomolecules 2022; 12:biom12101419. [PMID: 36291628 PMCID: PMC9599828 DOI: 10.3390/biom12101419] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2022] [Revised: 09/28/2022] [Accepted: 09/29/2022] [Indexed: 11/16/2022] Open
Abstract
Heart failure with preserved ejection fraction (HFpEF) accounts for around 50% of all heart failure cases. It is a heterogeneous condition with poorly understood pathogenesis. Here, we aimed to identify unique pathogenic mechanisms in acute and chronic HFpEF and hypertrophic cardiomyopathy (HCM). We performed unbiased, comprehensive proteomic analyses of plasma samples from gender- and BMI-matched patients with acute HFpEF (n = 8), chronic HFpEF (n = 9) and HCM (n = 14) using liquid chromatography–mass spectrometry. Distinct molecular signatures were observed in different HFpEF forms. Clusters of biomarkers differentially abundant between HFpEF forms were predominantly associated with microvascular inflammation. New candidate protein markers were also identified, including leucine-rich alpha-2-glycoprotein 1 (LRG1), serum amyloid A1 (SAA1) and inter-alpha-trypsin inhibitor heavy chain 3 (ITIH3). Our study is the first to apply systematic, quantitative proteomic screening of plasma samples from patients with different subtypes of HFpEF and identify candidate biomarkers for improved management of acute and chronic HFpEF and HCM.
Collapse
|
7
|
Haupt LP, Rebs S, Maurer W, Hübscher D, Tiburcy M, Pabel S, Maus A, Köhne S, Tappu R, Haas J, Li Y, Sasse A, Santos CCX, Dressel R, Wojnowski L, Bunt G, Möbius W, Shah AM, Meder B, Wollnik B, Sossalla S, Hasenfuss G, Streckfuss-Bömeke K. Doxorubicin induces cardiotoxicity in a pluripotent stem cell model of aggressive B cell lymphoma cancer patients. Basic Res Cardiol 2022; 117:13. [PMID: 35260914 PMCID: PMC8904375 DOI: 10.1007/s00395-022-00918-7] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/13/2020] [Revised: 01/22/2022] [Accepted: 02/07/2022] [Indexed: 01/31/2023]
Abstract
Cancer therapies with anthracyclines have been shown to induce cardiovascular complications. The aims of this study were to establish an in vitro induced pluripotent stem cell model (iPSC) of anthracycline-induced cardiotoxicity (ACT) from patients with an aggressive form of B-cell lymphoma and to examine whether doxorubicin (DOX)-treated ACT-iPSC cardiomyocytes (CM) can recapitulate the clinical features exhibited by patients, and thus help uncover a DOX-dependent pathomechanism. ACT-iPSC CM generated from individuals with CD20+ B-cell lymphoma who had received high doses of DOX and suffered cardiac dysfunction were studied and compared to control-iPSC CM from cancer survivors without cardiac symptoms. In cellular studies, ACT-iPSC CM were persistently more susceptible to DOX toxicity including augmented disorganized myofilament structure, changed mitochondrial shape, and increased apoptotic events. Consistently, ACT-iPSC CM and cardiac fibroblasts isolated from fibrotic human ACT myocardium exhibited higher DOX-dependent reactive oxygen species. In functional studies, Ca2+ transient amplitude of ACT-iPSC CM was reduced compared to control cells, and diastolic sarcoplasmic reticulum Ca2+ leak was DOX-dependently increased. This could be explained by overactive CaMKIIδ in ACT CM. Together with DOX-dependent augmented proarrhythmic cellular triggers and prolonged action potentials in ACT CM, this suggests a cellular link to arrhythmogenic events and contractile dysfunction especially found in ACT engineered human myocardium. CamKIIδ inhibition prevented proarrhythmic triggers in ACT. In contrast, control CM upregulated SERCA2a expression in a DOX-dependent manner, possibly to avoid heart failure conditions. In conclusion, we developed the first human patient-specific stem cell model of DOX-induced cardiac dysfunction from patients with B-cell lymphoma. Our results suggest that DOX-induced stress resulted in arrhythmogenic events associated with contractile dysfunction and finally in heart failure after persistent stress activation in ACT patients.
Collapse
Affiliation(s)
- Luis Peter Haupt
- Clinic for Cardiology and Pneumology, University Medical Centre Göttingen, Göttingen, Germany.,DZHK (German Centre for Cardiovascular Research), partner site Göttingen, Göttingen, Germany
| | - Sabine Rebs
- Clinic for Cardiology and Pneumology, University Medical Centre Göttingen, Göttingen, Germany.,DZHK (German Centre for Cardiovascular Research), partner site Göttingen, Göttingen, Germany.,Institute of Pharmacology and Toxicology, Würzburg University, Würzburg, Germany
| | - Wiebke Maurer
- Clinic for Cardiology and Pneumology, University Medical Centre Göttingen, Göttingen, Germany.,DZHK (German Centre for Cardiovascular Research), partner site Göttingen, Göttingen, Germany
| | - Daniela Hübscher
- Clinic for Cardiology and Pneumology, University Medical Centre Göttingen, Göttingen, Germany.,DZHK (German Centre for Cardiovascular Research), partner site Göttingen, Göttingen, Germany
| | - Malte Tiburcy
- DZHK (German Centre for Cardiovascular Research), partner site Göttingen, Göttingen, Germany.,Institute of Pharmacology and Toxicology, University Medical Centre Göttingen, Göttingen, Germany
| | - Steffen Pabel
- Department of Internal Medicine 2, Cardiology, University Medical Centre Regensburg, Regensburg, Germany
| | - Andreas Maus
- Clinic for Cardiology and Pneumology, University Medical Centre Göttingen, Göttingen, Germany.,DZHK (German Centre for Cardiovascular Research), partner site Göttingen, Göttingen, Germany.,King's College London, British Heart Foundation Centre of Excellence, London, UK
| | - Steffen Köhne
- Clinic for Cardiology and Pneumology, University Medical Centre Göttingen, Göttingen, Germany.,DZHK (German Centre for Cardiovascular Research), partner site Göttingen, Göttingen, Germany
| | - Rewati Tappu
- Department of Cardiology, University of Heidelberg, Heidelberg, Germany.,DZHK (German Centrefor Cardiovascular Research), partner site Heidelberg, Heidelberg, Germany
| | - Jan Haas
- Department of Cardiology, University of Heidelberg, Heidelberg, Germany.,DZHK (German Centrefor Cardiovascular Research), partner site Heidelberg, Heidelberg, Germany
| | - Yun Li
- Institute of Human Genetics, University Hospital Centre Göttingen, Göttingen, Germany
| | - Andre Sasse
- Institute of Cellular and Molecular Immunology, University Medical Centre Göttingen, Göttingen, Germany
| | - Celio C X Santos
- King's College London, British Heart Foundation Centre of Excellence, London, UK
| | - Ralf Dressel
- Clinic for Cardiology and Pneumology, University Medical Centre Göttingen, Göttingen, Germany.,DZHK (German Centre for Cardiovascular Research), partner site Göttingen, Göttingen, Germany.,Institute of Cellular and Molecular Immunology, University Medical Centre Göttingen, Göttingen, Germany
| | - Leszek Wojnowski
- Department of Pharmacology, University Medical Centre Mainz, Mainz, Germany
| | - Gertrude Bunt
- Clinical Optical Microscopy, University Medical Centre Göttingen, Göttingen, Germany
| | - Wiebke Möbius
- Department of Neurogenetics, Electron Microscopy Core Unit, Max Planck Institute for Multidisciplinary Sciences, Göttingen, Germany.,Cluster of Excellence "Multiscale Bioimaging: From Molecular Machines to Networks of Excitable Cells" (MBExC), University of Göttingen, Göttingen, Germany
| | - Ajay M Shah
- King's College London, British Heart Foundation Centre of Excellence, London, UK
| | - Benjamin Meder
- Department of Cardiology, University of Heidelberg, Heidelberg, Germany.,DZHK (German Centrefor Cardiovascular Research), partner site Heidelberg, Heidelberg, Germany
| | - Bernd Wollnik
- DZHK (German Centre for Cardiovascular Research), partner site Göttingen, Göttingen, Germany.,Institute of Human Genetics, University Hospital Centre Göttingen, Göttingen, Germany
| | - Samuel Sossalla
- Clinic for Cardiology and Pneumology, University Medical Centre Göttingen, Göttingen, Germany.,DZHK (German Centre for Cardiovascular Research), partner site Göttingen, Göttingen, Germany.,Department of Internal Medicine 2, Cardiology, University Medical Centre Regensburg, Regensburg, Germany
| | - Gerd Hasenfuss
- Clinic for Cardiology and Pneumology, University Medical Centre Göttingen, Göttingen, Germany.,DZHK (German Centre for Cardiovascular Research), partner site Göttingen, Göttingen, Germany
| | - Katrin Streckfuss-Bömeke
- Clinic for Cardiology and Pneumology, University Medical Centre Göttingen, Göttingen, Germany. .,DZHK (German Centre for Cardiovascular Research), partner site Göttingen, Göttingen, Germany. .,Institute of Pharmacology and Toxicology, Würzburg University, Würzburg, Germany.
| |
Collapse
|
8
|
Protective Role of Platelets in Myocardial Infarction and Ischemia/Reperfusion Injury. Cardiol Res Pract 2021; 2021:5545416. [PMID: 34123416 PMCID: PMC8169247 DOI: 10.1155/2021/5545416] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/22/2021] [Accepted: 05/05/2021] [Indexed: 12/26/2022] Open
Abstract
Thrombotic occlusion of the coronary artery is a key component in the pathogenesis of myocardial ischemia and myocardial infarction (MI). The standard therapy for ischemia is revascularization and restoration of blood flow to previously ischemic myocardium. Paradoxically, reperfusion may result in further tissue damage called ischemia/reperfusion injury (IRI). Platelets play a major role in the pathogenesis of MI and IRI, since they contribute to the thrombus and microthrombi formation, inflammation, release of immunomodulatory mediators, and vasoconstrictive molecules. Antiplatelet therapies have proven efficacy in the prevention of thrombosis and play a protective role in cardiac IRI. Beyond the deterioration effect of platelets in MI and IRI, in the 90s the first reports on a protective effect of molecules released from platelets during MI appeared. However, the role of platelets in cardioprotection is still poorly understood. This review describes the involvement of platelets in MI, IRI, and inflammation. It mainly focuses on the protective role of platelets in MI and IRI. Platelets are involved in cardioprotection based on platelet-releasing molecules and antiplatelet therapy, apart from antiaggregatory effects. Additionally, the use of platelet-derived microparticles as possible markers of MI, with and without comorbidities, and their role in cardioprotection are discussed. This review is aimed at illustrating the present knowledge on the role of platelets in MI and IRI, especially in a context of cardioprotection.
Collapse
|
9
|
Avolio E, Mangialardi G, Slater SC, Alvino VV, Gu Y, Cathery W, Beltrami AP, Katare R, Heesom K, Caputo M, Madeddu P. Secreted Protein Acidic and Cysteine Rich Matricellular Protein is Enriched in the Bioactive Fraction of the Human Vascular Pericyte Secretome. Antioxid Redox Signal 2021; 34:1151-1164. [PMID: 33226850 DOI: 10.1089/ars.2019.7969] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
Aims: To ascertain if human pericytes produce SPARC (acronym for Secreted Protein Acidic and Cysteine Rich), a matricellular protein implicated in the regulation of cell proliferation, migration, and cell-matrix interactions; clarify if SPARC expression in cardiac pericytes is modulated by hypoxia; and determine the functional consequences of SPARC silencing. Results: Starting from the recognition that the conditioned media (CM) of human pericytes promote proliferation and migration of cardiac stromal cells, we screened candidate mediators by mass-spectrometry analysis. Of the 14 high-confidence proteins (<1% FDR) identified in the bioactive fractions of the pericyte CM, SPARC emerged as the top-scored matricellular protein. SPARC expression was validated using ELISA and found to be upregulated by hypoxia/starvation in pericytes that express platelet-derived growth factor receptor α (PDGFRα). This subfraction is acknowledged to play a key role in extracellular matrix remodeling. Studies in patients with acute myocardial infarction showed that peripheral blood SPARC correlates with the levels of creatine kinase Mb, a marker of cardiac damage. Immunohistochemistry analyses of infarcted hearts revealed that SPARC is expressed in vascular and interstitial cells. Silencing of SPARC reduced the pericyte ability to secrete collagen1a1, without inhibiting the effects of CM on cardiac and endothelial cells. These data indicate that SPARC is enriched in the bioactive fraction of the pericyte CM, is induced by hypoxia and ischemia, and is essential for pericyte ability to produce collagen. Innovation: This study newly indicates that pericytes are a source of the matricellular protein SPARC. Conclusion: Modulation of SPARC production by pericytes may have potential implications for postinfarct healing.
Collapse
Affiliation(s)
- Elisa Avolio
- Bristol Medical School, Translational Health Sciences, University of Bristol, Bristol, United Kingdom
| | - Giuseppe Mangialardi
- Bristol Medical School, Translational Health Sciences, University of Bristol, Bristol, United Kingdom
| | - Sadie C Slater
- Bristol Medical School, Translational Health Sciences, University of Bristol, Bristol, United Kingdom
| | - Valeria V Alvino
- Bristol Medical School, Translational Health Sciences, University of Bristol, Bristol, United Kingdom
| | - Yue Gu
- Bristol Medical School, Translational Health Sciences, University of Bristol, Bristol, United Kingdom
| | - William Cathery
- Bristol Medical School, Translational Health Sciences, University of Bristol, Bristol, United Kingdom
| | - Antonio P Beltrami
- Dipartimento Area Medica, Istituto di Anatomia Patologica Universitaria, Università degli Studi di Udine, Udine, Italy
| | - Rajesh Katare
- Department of Physiology, School of Biomedical Sciences, University of Otago, Dunedin, New Zealand
| | - Kate Heesom
- Bristol Medical School, Translational Health Sciences, University of Bristol, Bristol, United Kingdom
| | - Massimo Caputo
- Bristol Medical School, Translational Health Sciences, University of Bristol, Bristol, United Kingdom
| | - Paolo Madeddu
- Bristol Medical School, Translational Health Sciences, University of Bristol, Bristol, United Kingdom
| |
Collapse
|
10
|
Bayes-Genis A, Liu PP, Lanfear DE, de Boer RA, González A, Thum T, Emdin M, Januzzi JL. Omics phenotyping in heart failure: the next frontier. Eur Heart J 2021; 41:3477-3484. [PMID: 32337540 DOI: 10.1093/eurheartj/ehaa270] [Citation(s) in RCA: 39] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/15/2019] [Revised: 02/23/2020] [Accepted: 03/30/2020] [Indexed: 12/16/2022] Open
Abstract
This state-of-the-art review aims to provide an up-to-date look at breakthrough omic technologies that are helping to unravel heart failure (HF) disease mechanisms and heterogeneity. Genomics, transcriptomics, proteomics, and metabolomics in HF are reviewed in depth. In addition, there is a thorough, expert discussion regarding the value of omics in identifying novel disease pathways, advancing understanding of disease mechanisms, differentiating HF phenotypes, yielding biomarkers for diagnosis or prognosis, or identifying new therapeutic targets in HF. The combination of multiple omics technologies may create a more comprehensive picture of the factors and physiology involved in HF than achieved by either one alone and provides a rich resource for predictive phenotype modelling. However, the successful translation of omics tools as solutions to clinical HF requires that the observations are robust and reproducible and can be validated across multiple independent populations to ensure confidence in clinical decision-making.
Collapse
Affiliation(s)
- Antoni Bayes-Genis
- Heart Institute (iCor), University Hospital Germans Trias i Pujol, Badalona, Spain.,CIBERCV, Instituto de Salud Carlos III, Madrid, Spain.,Department of Medicine, Universitat Autònoma Barcelona
| | - Peter P Liu
- University of Ottawa Heart Institute, University of Ottawa, Ottawa, Ontario, Canada
| | - David E Lanfear
- Henry Ford Heart and Vascular Institute, Center for Individualized and Genomic Medicine Research, Henry Ford Hospital, Detroit, MI, USA
| | - Rudolf A de Boer
- Department of Cardiology, University of Groningen, University Medical Center, Groningen, The Netherlands
| | - Arantxa González
- CIBERCV, Instituto de Salud Carlos III, Madrid, Spain.,Program of Cardiovascular Diseases, CIMA Universidad de Navarra and IdiSNA, Pamplona, Spain
| | - Thomas Thum
- Institute of Molecular and Translational Therapeutic Strategies (IMTTS), Hannover Medical School, Hannover, Germany
| | - Michele Emdin
- Institute of Life Sciences, Scuola Superiore Sant'Anna, Pisa, Italy.,Fondazione Toscana G. Monasterio, Pisa, Italy
| | - James L Januzzi
- Cardiology Division, Department of Medicine, Massachusetts General Hospital, Harvard Medical School, Boston, MA, USA
| |
Collapse
|
11
|
Levent P, Kocaturk M, Akgun E, Saril A, Cevik O, Baykal AT, Tanaka R, Ceron JJ, Yilmaz Z. Platelet proteome changes in dogs with congestive heart failure. BMC Vet Res 2020; 16:466. [PMID: 33256720 PMCID: PMC7708215 DOI: 10.1186/s12917-020-02692-x] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2020] [Accepted: 11/23/2020] [Indexed: 02/07/2023] Open
Abstract
BACKGROUND Platelets play a central role in the development of cardiovascular diseases and changes in their proteins are involved in the pathophysiology of heart diseases in humans. There is lack of knowledge about the possible role of platelets in congestive heart failure (CHF) in dogs. Thus, this study aimed to investigate the changes in global platelet proteomes in dogs with CHF, to clarify the possible role of platelets in the physiopathology of this disease. Healthy-dogs (n = 10) and dogs with acute CHF due to myxomatous mitral valve disease (MMVD, n = 10) were used. Acute CHF was defined based on the clinical (increased respiratory rate or difficulty breathing) and radiographic findings of pulmonary edema. Dogs Blood samples were collected into tubes with acid-citrate-dextrose, and platelet-pellets were obtained by centrifuge and washing steps. Platelet-proteomes were identified using LC-MS based label-free differential proteome expression analysis method and matched according to protein database for Canis lupus familiaris. RESULTS Totally 104 different proteins were identified in the platelets of the dogs being 4 out of them were significantly up-regulated and 6 down-regulated in acute CHF dogs. Guanine-nucleotide-binding protein, apolipoproteins (A-II and C-III) and clusterin levels increased, but CXC-motif-chemokine-10, cytochrome-C-oxidase-subunit-2, cathepsin-D, serine/threonine-protein-phosphatase-PP1-gamma-catalytic-subunit, creatine-kinase-B-type and myotrophin levels decreased in acute CHF dogs. These proteins are associated with several molecular functions, biological processes, signaling systems and immune-inflammatory responses. CONCLUSION This study describes by first time the changes in the protein composition in platelets of dogs with acute CHF due to MMVD. Our findings provide a resource for increase the knowledge about the proteome of canine platelets and their roles in CHF caused by MMVD and could be a tool for further investigations about the prevention and treatment of this disease.
Collapse
Affiliation(s)
- Pinar Levent
- Department of Internal Medicine, Faculty of Veterinary Medicine, Bursa Uludag University, 16059, Bursa, Turkey
| | - Meriç Kocaturk
- Department of Internal Medicine, Faculty of Veterinary Medicine, Bursa Uludag University, 16059, Bursa, Turkey
| | - Emel Akgun
- Department of Medical Biochemistry, Acibadem University School of Medicine, Istanbul, Turkey
| | - Ahmet Saril
- Department of Internal Medicine, Faculty of Veterinary Medicine, Bursa Uludag University, 16059, Bursa, Turkey
| | - Ozge Cevik
- Department of Basic Science, Medical Biochemistry, Adnan Menderes University School of Medicine, Aydin, Turkey
| | - Ahmet Tarik Baykal
- Department of Medical Biochemistry, Acibadem University School of Medicine, Istanbul, Turkey
| | - Ryou Tanaka
- Department of Veterinary Surgery, Faculty of Veterinary Medicine, Tokyo University of Agriculture and Technology, Tokyo, 183-8509, Japan
| | - Jose Joaquin Ceron
- Interdisciplinary Laboratory of Clinical Pathology, Interlab-UMU, University of Murcia, 30100, Murcia, Spain
| | - Zeki Yilmaz
- Department of Internal Medicine, Faculty of Veterinary Medicine, Bursa Uludag University, 16059, Bursa, Turkey.
| |
Collapse
|
12
|
Hage C, Michaëlsson E, Kull B, Miliotis T, Svedlund S, Linde C, Donal E, Daubert JC, Gan LM, Lund LH. Myeloperoxidase and related biomarkers are suggestive footprints of endothelial microvascular inflammation in HFpEF patients. ESC Heart Fail 2020; 7:1534-1546. [PMID: 32424988 PMCID: PMC7373930 DOI: 10.1002/ehf2.12700] [Citation(s) in RCA: 29] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2019] [Revised: 03/16/2020] [Accepted: 03/18/2020] [Indexed: 12/17/2022] Open
Abstract
Aims In heart failure (HF) with preserved ejection fraction (HFpEF), microvascular inflammation is proposed as an underlying mechanism. Myeloperoxidase (MPO) is associated with vascular dysfunction and prognosis in congestive HF. Methods and results MPO, MPO‐related biomarkers, and echocardiography were assessed in 86 patients, 4–8 weeks after presentation with acute HF (EF ≥ 45%), and in 46 healthy controls. Patients were followed up for median 579 days (Q1;Q3 276;1178) regarding the composite endpoint all‐cause mortality or HF hospitalization. Patients were 73 years old, 51% were female, EF was 64% (Q1;Q3 58;68), E/e′ was ratio 10.8 (8.3;14.0), and left atrial volume index (LAVI) was 43 mL/m2 (38;52). Controls were 60 (57;62) years old (vs. patients; P < 0.001), 24% were female (P = 0.005), and left ventricular EF was 63% (59;66; P = 0.790). MPO was increased in HFpEF compared with controls, 101 (81;132) vs. 86 (74;101 ng/mL, P = 0.015), as was uric acid 369 (314;439) vs. 289 (252;328 μmol/L, P < 0.001), calprotectin, asymmetric dimethyl arginine (ADMA), and symmetric dimethyl arginine (SDMA), while arginine was decreased. MPO correlated with uric acid (r = 0.26; P = 0.016). In patients with E/e′ > 14, uric acid and SDMA were elevated (421 vs. 344 μM, P = 0.012; 0.54 vs. 0.47 μM, P = 0.039, respectively), and MPO was 121 vs. 98 ng/mL (P = 0.090). The ratios of arginine/ADMA (112 vs. 162; P < 0.001) and ADMA/SDMA (1.36 vs. 1.17; P = 0.002) were decreased in HFpEF patients, suggesting reduced NO availability and increased enzymatic clearance of ADMA, respectively. Uric acid independently predicted the endpoint [hazard ratio (HR) 3.76 (95% CI 1.19–11.85; P = 0.024)] but not MPO [HR 1.48 (95% CI 0.70–3.14; P = 0.304)] or the other biomarkers. Conclusions In HFpEF, MPO‐dependent oxidative stress reflected by uric acid and calprotectin is increased, and SDMA is associated with diastolic dysfunction and uric acid with outcome. This suggests microvascular neutrophil involvement mirroring endothelial dysfunction, a central component of the HFpEF syndrome and a potential treatment target.
Collapse
Affiliation(s)
- Camilla Hage
- Heart and Vascular Theme, Heart Failure Section, Karolinska University Hospital, SE-171 76, Stockholm, Sweden.,Department of Medicine, Cardiology Unit, Karolinska Institutet, Stockholm, Sweden
| | - Erik Michaëlsson
- Research and Early Development Cardiovascular Renal and Metabolism, BioPharmaceuticals R&D, AstraZeneca, Gothenburg, Sweden
| | - Bengt Kull
- Research and Early Development Cardiovascular Renal and Metabolism, BioPharmaceuticals R&D, AstraZeneca, Gothenburg, Sweden
| | - Tasso Miliotis
- Research and Early Development Cardiovascular Renal and Metabolism, BioPharmaceuticals R&D, AstraZeneca, Gothenburg, Sweden
| | - Sara Svedlund
- Department of Clinical Physiology, Sahlgrenska University Hospital, Gothenburg, Sweden
| | - Cecilia Linde
- Department of Medicine, Cardiology Unit, Karolinska Institutet, Stockholm, Sweden
| | - Erwan Donal
- Département de Cardiologie and CIC-IT U 804, Centre Hospitalier Universitaire de Rennes, Rennes, France
| | - Jean-Claude Daubert
- Département de Cardiologie and CIC-IT U 804, Centre Hospitalier Universitaire de Rennes, Rennes, France
| | - Li-Ming Gan
- Research and Early Development Cardiovascular Renal and Metabolism, BioPharmaceuticals R&D, AstraZeneca, Gothenburg, Sweden.,Department of Molecular and Clinical Medicine, Sahlgrenska Academy, University of Gothenburg, Gothenburg, Sweden.,Department of Cardiology, Sahlgrenska University Hospital, Gothenburg, Sweden
| | - Lars H Lund
- Heart and Vascular Theme, Heart Failure Section, Karolinska University Hospital, SE-171 76, Stockholm, Sweden.,Department of Medicine, Cardiology Unit, Karolinska Institutet, Stockholm, Sweden
| |
Collapse
|
13
|
Sarhene M, Wang Y, Wei J, Huang Y, Li M, Li L, Acheampong E, Zhengcan Z, Xiaoyan Q, Yunsheng X, Jingyuan M, Xiumei G, Guanwei F. Biomarkers in heart failure: the past, current and future. Heart Fail Rev 2020; 24:867-903. [PMID: 31183637 DOI: 10.1007/s10741-019-09807-z] [Citation(s) in RCA: 77] [Impact Index Per Article: 19.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
Despite the enhanced knowledge of the pathophysiology of heart failure (HF), it still remains a serious syndrome with substantial morbidity, mortality, and frequent hospitalizations. These are due to the current improvements in other cardiovascular diseases (like myocardial infarction), the aging population, and growing prevalence of comorbidities. Biomarker-guided management has brought a new dimension in prognostication, diagnosis, and therapy options. Following the recommendation of natriuretic peptides (B-type natriuretic peptide and N-terminal-proBNP), many other biomarkers have been thoroughly studied to reflect different pathophysiological processes (such as fibrosis, inflammation, myocardial injury, and remodeling) in HF and some of them (like cardiac troponins, soluble suppression of tumorigenesis-2, and galectin 3) have subsequently been recommended to aid in the diagnosis and prognostication in HF. Consequently, multi-marker approach has also been approved owing to the varied nature of HF syndrome. In this review, we discussed the guidelines available for HF biomarkers, procedures for evaluating novel markers, and the utilities of both emerging and established biomarkers for risk stratification, diagnosis, and management of HF in the clinics. We later looked at how the rapidly emerging field-OMICs, can help transform HF biomarkers discoveries and establishment.
Collapse
Affiliation(s)
- Michael Sarhene
- First teaching hospital of Tianjin University of Traditional Chinese Medicine, Number 314 Anshanxi Road, Nankai District, Tianjin, China.,State Key Laboratory of Modern Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin, China.,Tianjin Laboratory of Translational Research of TCM Prescription and Syndrome, Tianjin, 300193, China
| | - Yili Wang
- First teaching hospital of Tianjin University of Traditional Chinese Medicine, Number 314 Anshanxi Road, Nankai District, Tianjin, China.,State Key Laboratory of Modern Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin, China.,Tianjin Laboratory of Translational Research of TCM Prescription and Syndrome, Tianjin, 300193, China
| | - Jing Wei
- First teaching hospital of Tianjin University of Traditional Chinese Medicine, Number 314 Anshanxi Road, Nankai District, Tianjin, China.,State Key Laboratory of Modern Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin, China.,Tianjin Laboratory of Translational Research of TCM Prescription and Syndrome, Tianjin, 300193, China
| | - Yuting Huang
- First teaching hospital of Tianjin University of Traditional Chinese Medicine, Number 314 Anshanxi Road, Nankai District, Tianjin, China.,State Key Laboratory of Modern Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin, China.,Tianjin Laboratory of Translational Research of TCM Prescription and Syndrome, Tianjin, 300193, China
| | - Min Li
- First teaching hospital of Tianjin University of Traditional Chinese Medicine, Number 314 Anshanxi Road, Nankai District, Tianjin, China.,State Key Laboratory of Modern Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin, China.,Tianjin Laboratory of Translational Research of TCM Prescription and Syndrome, Tianjin, 300193, China
| | - Lan Li
- First teaching hospital of Tianjin University of Traditional Chinese Medicine, Number 314 Anshanxi Road, Nankai District, Tianjin, China.,State Key Laboratory of Modern Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin, China.,Tianjin Laboratory of Translational Research of TCM Prescription and Syndrome, Tianjin, 300193, China
| | - Enoch Acheampong
- State Key Laboratory of Modern Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin, China
| | - Zhou Zhengcan
- First teaching hospital of Tianjin University of Traditional Chinese Medicine, Number 314 Anshanxi Road, Nankai District, Tianjin, China.,State Key Laboratory of Modern Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin, China
| | - Qin Xiaoyan
- First teaching hospital of Tianjin University of Traditional Chinese Medicine, Number 314 Anshanxi Road, Nankai District, Tianjin, China.,State Key Laboratory of Modern Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin, China
| | - Xu Yunsheng
- First teaching hospital of Tianjin University of Traditional Chinese Medicine, Number 314 Anshanxi Road, Nankai District, Tianjin, China.,State Key Laboratory of Modern Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin, China
| | - Mao Jingyuan
- First teaching hospital of Tianjin University of Traditional Chinese Medicine, Number 314 Anshanxi Road, Nankai District, Tianjin, China
| | - Gao Xiumei
- State Key Laboratory of Modern Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin, China
| | - Fan Guanwei
- First teaching hospital of Tianjin University of Traditional Chinese Medicine, Number 314 Anshanxi Road, Nankai District, Tianjin, China. .,State Key Laboratory of Modern Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin, China.
| |
Collapse
|
14
|
|
15
|
Farmakis D, Papingiotis G, Parissis J, Filippatos G. Ups and downs in heart failure: the case of proteomics. Eur J Heart Fail 2017; 20:63-66. [DOI: 10.1002/ejhf.1065] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/29/2017] [Accepted: 10/02/2017] [Indexed: 12/28/2022] Open
Affiliation(s)
- Dimitrios Farmakis
- Heart Failure Unit, Department of Cardiology, Athens University Hospital Attikon; National and Kapodistrian University of Athens; Athens Greece
| | - Georgios Papingiotis
- Heart Failure Unit, Department of Cardiology, Athens University Hospital Attikon; National and Kapodistrian University of Athens; Athens Greece
| | - John Parissis
- Heart Failure Unit, Department of Cardiology, Athens University Hospital Attikon; National and Kapodistrian University of Athens; Athens Greece
| | - Gerasimos Filippatos
- Heart Failure Unit, Department of Cardiology, Athens University Hospital Attikon; National and Kapodistrian University of Athens; Athens Greece
| |
Collapse
|
16
|
Sala L, Bellin M, Mummery CL. Integrating cardiomyocytes from human pluripotent stem cells in safety pharmacology: has the time come? Br J Pharmacol 2017; 174:3749-3765. [PMID: 27641943 PMCID: PMC5647193 DOI: 10.1111/bph.13577] [Citation(s) in RCA: 91] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2016] [Revised: 07/27/2016] [Accepted: 08/11/2016] [Indexed: 12/20/2022] Open
Abstract
Cardiotoxicity is a severe side effect of drugs that induce structural or electrophysiological changes in heart muscle cells. As a result, the heart undergoes failure and potentially lethal arrhythmias. It is still a major reason for drug failure in preclinical and clinical phases of drug discovery. Current methods for predicting cardiotoxicity are based on guidelines that combine electrophysiological analysis of cell lines expressing ion channels ectopically in vitro with animal models and clinical trials. Although no new cases of drugs linked to lethal arrhythmias have been reported since the introduction of these guidelines in 2005, their limited predictive power likely means that potentially valuable drugs may not reach clinical practice. Human pluripotent stem cell-derived cardiomyocytes (hPSC-CMs) are now emerging as potentially more predictive alternatives, particularly for the early phases of preclinical research. However, these cells are phenotypically immature and culture and assay methods not standardized, which could be a hurdle to the development of predictive computational models and their implementation into the drug discovery pipeline, in contrast to the ambitions of the comprehensive pro-arrhythmia in vitro assay (CiPA) initiative. Here, we review present and future preclinical cardiotoxicity screening and suggest possible hPSC-CM-based strategies that may help to move the field forward. Coordinated efforts by basic scientists, companies and hPSC banks to standardize experimental conditions for generating reliable and reproducible safety indices will be helpful not only for cardiotoxicity prediction but also for precision medicine. LINKED ARTICLES This article is part of a themed section on New Insights into Cardiotoxicity Caused by Chemotherapeutic Agents. To view the other articles in this section visit http://onlinelibrary.wiley.com/doi/10.1111/bph.v174.21/issuetoc.
Collapse
Affiliation(s)
- Luca Sala
- Department of Anatomy and EmbryologyLeiden University Medical CenterLeidenZAThe Netherlands
| | - Milena Bellin
- Department of Anatomy and EmbryologyLeiden University Medical CenterLeidenZAThe Netherlands
| | - Christine L Mummery
- Department of Anatomy and EmbryologyLeiden University Medical CenterLeidenZAThe Netherlands
- Department of Applied Stem Cell TechnologiesUniversity of TwenteEnschedeThe Netherlands
| |
Collapse
|
17
|
Mokou M, Lygirou V, Vlahou A, Mischak H. Proteomics in cardiovascular disease: recent progress and clinical implication and implementation. Expert Rev Proteomics 2017; 14:117-136. [DOI: 10.1080/14789450.2017.1274653] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Affiliation(s)
- Marika Mokou
- Biotechnology Division, Biomedical Research Foundation Academy of Athens, Athens, Greece
| | - Vasiliki Lygirou
- Biotechnology Division, Biomedical Research Foundation Academy of Athens, Athens, Greece
| | - Antonia Vlahou
- Biotechnology Division, Biomedical Research Foundation Academy of Athens, Athens, Greece
| | - Harald Mischak
- Institute of Cardiovascular and Medical Sciences, University of Glasgow, Glasgow, UK
- Mosaiques Diagnostics, Hannover, Germany
| |
Collapse
|
18
|
Bhardwaj G, Dörr M, Sappa PK, Ameling S, Dhople V, Steil L, Klingel K, Empen K, Beug D, Völker U, Felix SB, Hammer E. Endomyocardial proteomic signature corresponding to the response of patients with dilated cardiomyopathy to immunoadsorption therapy. J Proteomics 2017; 150:121-129. [DOI: 10.1016/j.jprot.2016.09.001] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2016] [Revised: 08/28/2016] [Accepted: 09/07/2016] [Indexed: 02/07/2023]
|
19
|
Kriegel AJ, Gartz M, Afzal MZ, de Lange WJ, Ralphe JC, Strande JL. Molecular Approaches in HFpEF: MicroRNAs and iPSC-Derived Cardiomyocytes. J Cardiovasc Transl Res 2016; 10:295-304. [PMID: 28032312 DOI: 10.1007/s12265-016-9723-z] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/26/2016] [Accepted: 12/15/2016] [Indexed: 01/04/2023]
Abstract
Heart failure with preserved left ventricular ejection fraction (HFpEF) has emerged as one of the largest unmet needs in cardiovascular medicine. HFpEF is increasing in prevalence and causes significant morbidity, mortality, and health care resource utilization. Patients have multiple co-morbidities which contribute to the disease complexity. To date, no effective treatment for HFpEF has been identified. The paucity of cardiac biopsies from this patient population and the absence of well-accepted animal models limit our understanding of the underlying molecular mechanisms of HFpEF. In this review, we discuss combining state-of-the-art technologies of microRNA profiling and human induced pluripotent cell-derived cardiomyocytes (iPSC-CMs) in order to uncover novel molecular pathways that may contribute to the development of HFpEF. Here, we focus the advantages and limitations of microRNA profiling and iPSC-CMs as a disease model system to discover molecular mechanisms in HFpEF.
Collapse
Affiliation(s)
- Alison J Kriegel
- Department of Physiology, Medical College of Wisconsin, Milwaukee, WI, USA
| | - Melanie Gartz
- Department of Medicine, Medical College of Wisconsin, Milwaukee, WI, USA
| | - Muhammad Z Afzal
- Department of Medicine, Medical College of Wisconsin, Milwaukee, WI, USA
| | - Willem J de Lange
- Department of Pediatrics, University of Wisconsin School of Medicine and Public Health, Madison, WI, USA
| | - J Carter Ralphe
- Department of Pediatrics, University of Wisconsin School of Medicine and Public Health, Madison, WI, USA
| | - Jennifer L Strande
- Department of Medicine, Medical College of Wisconsin, Milwaukee, WI, USA.
| |
Collapse
|
20
|
Izquierdo I, García Á. Platelet proteomics applied to the search for novel antiplatelet therapeutic targets. Expert Rev Proteomics 2016; 13:993-1006. [DOI: 10.1080/14789450.2016.1246188] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
|