1
|
Singh A, Bhatt KS, Nguyen HC, Frisbee JC, Singh KK. Endothelial-to-Mesenchymal Transition in Cardiovascular Pathophysiology. Int J Mol Sci 2024; 25:6180. [PMID: 38892367 PMCID: PMC11173124 DOI: 10.3390/ijms25116180] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2024] [Revised: 05/23/2024] [Accepted: 05/28/2024] [Indexed: 06/21/2024] Open
Abstract
Under different pathophysiological conditions, endothelial cells lose endothelial phenotype and gain mesenchymal cell-like phenotype via a process known as endothelial-to-mesenchymal transition (EndMT). At the molecular level, endothelial cells lose the expression of endothelial cell-specific markers such as CD31/platelet-endothelial cell adhesion molecule, von Willebrand factor, and vascular-endothelial cadherin and gain the expression of mesenchymal cell markers such as α-smooth muscle actin, N-cadherin, vimentin, fibroblast specific protein-1, and collagens. EndMT is induced by numerous different pathways triggered and modulated by multiple different and often redundant mechanisms in a context-dependent manner depending on the pathophysiological status of the cell. EndMT plays an essential role in embryonic development, particularly in atrioventricular valve development; however, EndMT is also implicated in the pathogenesis of several genetically determined and acquired diseases, including malignant, cardiovascular, inflammatory, and fibrotic disorders. Among cardiovascular diseases, aberrant EndMT is reported in atherosclerosis, pulmonary hypertension, valvular disease, fibroelastosis, and cardiac fibrosis. Accordingly, understanding the mechanisms behind the cause and/or effect of EndMT to eventually target EndMT appears to be a promising strategy for treating aberrant EndMT-associated diseases. However, this approach is limited by a lack of precise functional and molecular pathways, causes and/or effects, and a lack of robust animal models and human data about EndMT in different diseases. Here, we review different mechanisms in EndMT and the role of EndMT in various cardiovascular diseases.
Collapse
Affiliation(s)
- Aman Singh
- Department of Medical Biophysics, Schulich School of Medicine and Dentistry, University of Western Ontario, London, ON N6A 5C1, Canada; (A.S.); (K.S.B.); (H.C.N.); (J.C.F.)
| | - Kriti S. Bhatt
- Department of Medical Biophysics, Schulich School of Medicine and Dentistry, University of Western Ontario, London, ON N6A 5C1, Canada; (A.S.); (K.S.B.); (H.C.N.); (J.C.F.)
| | - Hien C. Nguyen
- Department of Medical Biophysics, Schulich School of Medicine and Dentistry, University of Western Ontario, London, ON N6A 5C1, Canada; (A.S.); (K.S.B.); (H.C.N.); (J.C.F.)
- Department of Anatomy and Cell Biology, Schulich School of Medicine and Dentistry, University of Western Ontario, London, ON N6A 5C1, Canada
| | - Jefferson C. Frisbee
- Department of Medical Biophysics, Schulich School of Medicine and Dentistry, University of Western Ontario, London, ON N6A 5C1, Canada; (A.S.); (K.S.B.); (H.C.N.); (J.C.F.)
| | - Krishna K. Singh
- Department of Medical Biophysics, Schulich School of Medicine and Dentistry, University of Western Ontario, London, ON N6A 5C1, Canada; (A.S.); (K.S.B.); (H.C.N.); (J.C.F.)
- Department of Anatomy and Cell Biology, Schulich School of Medicine and Dentistry, University of Western Ontario, London, ON N6A 5C1, Canada
| |
Collapse
|
2
|
Koutakis P, Hernandez H, Miserlis D, Thompson JR, Papoutsi E, Mietus CJ, Haynatzki G, Kim JK, Casale GP, Pipinos II. Oxidative damage in the gastrocnemius predicts long-term survival in patients with peripheral artery disease. NPJ AGING 2024; 10:21. [PMID: 38580664 PMCID: PMC10997596 DOI: 10.1038/s41514-024-00147-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/24/2023] [Accepted: 03/20/2024] [Indexed: 04/07/2024]
Abstract
Patients with peripheral artery disease (PAD) have increased mortality rates and a myopathy in their affected legs which is characterized by increased oxidative damage, reduced antioxidant enzymatic activity and defective mitochondrial bioenergetics. This study evaluated the hypothesis that increased levels of oxidative damage in gastrocnemius biopsies from patients with PAD predict long-term mortality rates. Oxidative damage was quantified as carbonyl adducts in myofibers of the gastrocnemius of PAD patients. The oxidative stress data were grouped into tertiles and the 5-year, all-cause mortality for each tertile was determined by Kaplan-Meier curves and compared by the Modified Peto test. A Cox-regression model was used to control the effects of clinical characteristics. Results were adjusted for age, sex, race, body mass index, ankle-brachial index, smoking, physical activity, and comorbidities. Of the 240 study participants, 99 died during a mean follow up of 37.8 months. Patients in the highest tertile of oxidative damage demonstrated the highest 5-year mortality rate. The mortality hazard ratios (HR) from the Cox analysis were statistically significant for oxidative damage (lowest vs middle tertile; HR = 6.33; p = 0.0001 and lowest vs highest; HR = 8.37; p < 0.0001). Survival analysis of a contemporaneous population of PAD patients identifies abundance of carbonyl adducts in myofibers of their gastrocnemius as a predictor of mortality rate independently of ankle-brachial index, disease stage and other clinical and myopathy-related covariates.
Collapse
Affiliation(s)
- Panagiotis Koutakis
- Department of Biology, Baylor University, Waco, TX, USA.
- Department of Surgery, University of Nebraska Medical Center, Omaha, NE, USA.
| | - Hernan Hernandez
- Department of Surgery, University of Nebraska Medical Center, Omaha, NE, USA
| | - Dimitrios Miserlis
- Department of Surgery, University of Nebraska Medical Center, Omaha, NE, USA
- Department of Surgery and Perioperative Care, University of Texas at Austin, Austin, TX, USA
| | - Jonathan R Thompson
- Department of Surgery, University of Nebraska Medical Center, Omaha, NE, USA
| | - Evlampia Papoutsi
- Department of Biology, Baylor University, Waco, TX, USA
- Department of Surgery, University of Nebraska Medical Center, Omaha, NE, USA
| | - Constance J Mietus
- Department of Surgery, University of Nebraska Medical Center, Omaha, NE, USA
- Department of Neurological Surgery, University of Massachusetts Medical School, Worcester, MA, USA
| | - Gleb Haynatzki
- Department of Biostatistics, University of Nebraska Medical Center, Omaha, NE, USA
| | - Julian K Kim
- Department of Biology, Baylor University, Waco, TX, USA
| | - George P Casale
- Department of Surgery, University of Nebraska Medical Center, Omaha, NE, USA
| | - Iraklis I Pipinos
- Department of Surgery, University of Nebraska Medical Center, Omaha, NE, USA.
- Department of Surgery and VA Research Service, VA Nebraska-Western Iowa Health Care System, Omaha, NE, USA.
| |
Collapse
|
3
|
Träger AP, Günther JS, Raming R, Paulus LP, Lang W, Meyer A, Kempf J, Caranovic M, Li Y, Wagner AL, Tan L, Danko V, Trollmann R, Woelfle J, Klett D, Neurath MF, Regensburger AP, Eckstein M, Uter W, Uder M, Herrmann Y, Waldner MJ, Knieling F, Rother U. Hybrid ultrasound and single wavelength optoacoustic imaging reveals muscle degeneration in peripheral artery disease. PHOTOACOUSTICS 2024; 35:100579. [PMID: 38312805 PMCID: PMC10835356 DOI: 10.1016/j.pacs.2023.100579] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 07/18/2023] [Revised: 10/18/2023] [Accepted: 11/29/2023] [Indexed: 02/06/2024]
Abstract
Peripheral arterial disease (PAD) leads to chronic vascular occlusion and results in end organ damage in critically perfused limbs. There are currently no clinical methods available to determine the muscular damage induced by chronic mal-perfusion. This monocentric prospective cross-sectional study investigated n = 193 adults, healthy to severe PAD, in order to quantify the degree of calf muscle degeneration caused by PAD using a non-invasive hybrid ultrasound and single wavelength optoacoustic imaging (US/SWL-OAI) approach. While US provides morphologic information, SWL-OAI visualizes the absorption of pulsed laser light and the resulting sound waves from molecules undergoing thermoelastic expansion. US/SWL-OAI was compared to multispectral data, clinical disease severity, angiographic findings, phantom experiments, and histological examinations from calf muscle biopsies. We were able to show that synergistic use of US/SWL-OAI is most likely to map clinical degeneration of the muscle and progressive PAD.
Collapse
Affiliation(s)
- Anna P. Träger
- Department of Vascular Surgery, University Hospital Erlangen, Friedrich-Alexander-Universität Erlangen-Nürnberg (FAU), Krankenhausstraße 12, D-91054 Erlangen, Germany
- Faculty of Medicine, Friedrich-Alexander-Universität Erlangen-Nürnberg (FAU), Krankenhausstraße 12, D-91054 Erlangen, Germany
| | - Josefine S. Günther
- Department of Vascular Surgery, University Hospital Erlangen, Friedrich-Alexander-Universität Erlangen-Nürnberg (FAU), Krankenhausstraße 12, D-91054 Erlangen, Germany
- Faculty of Medicine, Friedrich-Alexander-Universität Erlangen-Nürnberg (FAU), Krankenhausstraße 12, D-91054 Erlangen, Germany
| | - Roman Raming
- Department of Pediatrics and Adolescent Medicine, University Hospital Erlangen, Friedrich-Alexander-Universität Erlangen-Nuremberg (FAU), Loschgestraße 15, D-91054 Erlangen, Germany
| | - Lars-Philip Paulus
- Department of Pediatrics and Adolescent Medicine, University Hospital Erlangen, Friedrich-Alexander-Universität Erlangen-Nuremberg (FAU), Loschgestraße 15, D-91054 Erlangen, Germany
| | - Werner Lang
- Department of Vascular Surgery, University Hospital Erlangen, Friedrich-Alexander-Universität Erlangen-Nürnberg (FAU), Krankenhausstraße 12, D-91054 Erlangen, Germany
| | - Alexander Meyer
- Department of Vascular Surgery, University Hospital Erlangen, Friedrich-Alexander-Universität Erlangen-Nürnberg (FAU), Krankenhausstraße 12, D-91054 Erlangen, Germany
| | - Julius Kempf
- Department of Vascular Surgery, University Hospital Erlangen, Friedrich-Alexander-Universität Erlangen-Nürnberg (FAU), Krankenhausstraße 12, D-91054 Erlangen, Germany
- Faculty of Medicine, Friedrich-Alexander-Universität Erlangen-Nürnberg (FAU), Krankenhausstraße 12, D-91054 Erlangen, Germany
| | - Milenko Caranovic
- Department of Vascular Surgery, University Hospital Erlangen, Friedrich-Alexander-Universität Erlangen-Nürnberg (FAU), Krankenhausstraße 12, D-91054 Erlangen, Germany
- Faculty of Medicine, Friedrich-Alexander-Universität Erlangen-Nürnberg (FAU), Krankenhausstraße 12, D-91054 Erlangen, Germany
| | - Yi Li
- Department of Vascular Surgery, University Hospital Erlangen, Friedrich-Alexander-Universität Erlangen-Nürnberg (FAU), Krankenhausstraße 12, D-91054 Erlangen, Germany
- Faculty of Medicine, Friedrich-Alexander-Universität Erlangen-Nürnberg (FAU), Krankenhausstraße 12, D-91054 Erlangen, Germany
| | - Alexandra L. Wagner
- Department of Pediatrics and Adolescent Medicine, University Hospital Erlangen, Friedrich-Alexander-Universität Erlangen-Nuremberg (FAU), Loschgestraße 15, D-91054 Erlangen, Germany
| | - Lina Tan
- Department of Pediatrics and Adolescent Medicine, University Hospital Erlangen, Friedrich-Alexander-Universität Erlangen-Nuremberg (FAU), Loschgestraße 15, D-91054 Erlangen, Germany
| | - Vera Danko
- Department of Pediatrics and Adolescent Medicine, University Hospital Erlangen, Friedrich-Alexander-Universität Erlangen-Nuremberg (FAU), Loschgestraße 15, D-91054 Erlangen, Germany
| | - Regina Trollmann
- Department of Pediatrics and Adolescent Medicine, University Hospital Erlangen, Friedrich-Alexander-Universität Erlangen-Nuremberg (FAU), Loschgestraße 15, D-91054 Erlangen, Germany
| | - Joachim Woelfle
- Department of Pediatrics and Adolescent Medicine, University Hospital Erlangen, Friedrich-Alexander-Universität Erlangen-Nuremberg (FAU), Loschgestraße 15, D-91054 Erlangen, Germany
| | - Daniel Klett
- Department of Medicine 1, University Hospital Erlangen, Friedrich-Alexander-Universität Erlangen-Nürnberg (FAU), Ulmenweg 18, D-91054 Erlangen, Germany
| | - Markus F. Neurath
- Department of Medicine 1, University Hospital Erlangen, Friedrich-Alexander-Universität Erlangen-Nürnberg (FAU), Ulmenweg 18, D-91054 Erlangen, Germany
- Deutsches Zentrum für Immuntherapie (DZI), University Hospital Erlangen, Ulmenweg 18, D-91054 Erlangen, Germany
- Erlangen Graduate School in Advanced Optical Technologies (SAOT), Friedrich-Alexander-Universität Erlangen-Nürnberg, Paul-Gordan-Straße 6, D-91052 Erlangen, Germany
| | - Adrian P. Regensburger
- Department of Pediatrics and Adolescent Medicine, University Hospital Erlangen, Friedrich-Alexander-Universität Erlangen-Nuremberg (FAU), Loschgestraße 15, D-91054 Erlangen, Germany
| | - Markus Eckstein
- Department of Pathology, University Hospital Erlangen, Friedrich-Alexander-Universität Erlangen-Nürnberg (FAU), Krankenhausstrasse 8-10, D-91054 Erlangen, Germany
| | - Wolfgang Uter
- Department of Medical Informatics, Biometry and Epidemiology, Friedrich-Alexander-Universität Erlangen-Nürrnberg (FAU), Waldstraße 6, D-91054 Erlangen, Germany
| | - Michael Uder
- Institute of Radiology, University Hospital Erlangen, Friedrich-Alexander, Universität Erlangen-Nürnberg (FAU), Maximiliansplatz 1, D-91054 Erlangen, Germany
| | - Yvonne Herrmann
- Department of Pediatric Cardiology, University Hospital Erlangen, Friedrich-Alexander-Universität Erlangen-Nürnberg (FAU), Loschgestraße 15, D-91054 Erlangen, Germany
| | - Maximilian J. Waldner
- Department of Medicine 1, University Hospital Erlangen, Friedrich-Alexander-Universität Erlangen-Nürnberg (FAU), Ulmenweg 18, D-91054 Erlangen, Germany
- Deutsches Zentrum für Immuntherapie (DZI), University Hospital Erlangen, Ulmenweg 18, D-91054 Erlangen, Germany
- Erlangen Graduate School in Advanced Optical Technologies (SAOT), Friedrich-Alexander-Universität Erlangen-Nürnberg, Paul-Gordan-Straße 6, D-91052 Erlangen, Germany
| | - Ferdinand Knieling
- Department of Pediatrics and Adolescent Medicine, University Hospital Erlangen, Friedrich-Alexander-Universität Erlangen-Nuremberg (FAU), Loschgestraße 15, D-91054 Erlangen, Germany
| | - Ulrich Rother
- Department of Vascular Surgery, University Hospital Erlangen, Friedrich-Alexander-Universität Erlangen-Nürnberg (FAU), Krankenhausstraße 12, D-91054 Erlangen, Germany
| |
Collapse
|
4
|
Pass CG, Palzkill V, Tan J, Kim K, Thome T, Yang Q, Fazzone B, Robinson ST, O’Malley KA, Yue F, Scali ST, Berceli SA, Ryan TE. Single-Nuclei RNA-Sequencing of the Gastrocnemius Muscle in Peripheral Artery Disease. Circ Res 2023; 133:791-809. [PMID: 37823262 PMCID: PMC10599805 DOI: 10.1161/circresaha.123.323161] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/05/2023] [Revised: 09/22/2023] [Accepted: 09/26/2023] [Indexed: 10/13/2023]
Abstract
BACKGROUND Lower extremity peripheral artery disease (PAD) is a growing epidemic with limited effective treatment options. Here, we provide a single-nuclei atlas of PAD limb muscle to facilitate a better understanding of the composition of cells and transcriptional differences that comprise the diseased limb muscle. METHODS We obtained gastrocnemius muscle specimens from 20 patients with PAD and 12 non-PAD controls. Nuclei were isolated and single-nuclei RNA-sequencing was performed. The composition of nuclei was characterized by iterative clustering via principal component analysis, differential expression analysis, and the use of known marker genes. Bioinformatics analysis was performed to determine differences in gene expression between PAD and non-PAD nuclei, as well as subsequent analysis of intercellular signaling networks. Additional histological analyses of muscle specimens accompany the single-nuclei RNA-sequencing atlas. RESULTS Single-nuclei RNA-sequencing analysis indicated a fiber type shift with patients with PAD having fewer type I (slow/oxidative) and more type II (fast/glycolytic) myonuclei compared with non-PAD, which was confirmed using immunostaining of muscle specimens. Myonuclei from PAD displayed global upregulation of genes involved in stress response, autophagy, hypoxia, and atrophy. Subclustering of myonuclei also identified populations that were unique to PAD muscle characterized by metabolic dysregulation. PAD muscles also displayed unique transcriptional profiles and increased diversity of transcriptomes in muscle stem cells, regenerating myonuclei, and fibro-adipogenic progenitor cells. Analysis of intercellular communication networks revealed fibro-adipogenic progenitors as a major signaling hub in PAD muscle, as well as deficiencies in angiogenic and bone morphogenetic protein signaling which may contribute to poor limb function in PAD. CONCLUSIONS This reference single-nuclei RNA-sequencing atlas provides a comprehensive analysis of the cell composition, transcriptional signature, and intercellular communication pathways that are altered in the PAD condition.
Collapse
Affiliation(s)
- Caroline G. Pass
- Department of Applied Physiology and Kinesiology (C.G.P., V.P., J.T., K.K., T.T., Q.Y., T.E.R.), The University of Florida, Gainesville
| | - Victoria Palzkill
- Department of Applied Physiology and Kinesiology (C.G.P., V.P., J.T., K.K., T.T., Q.Y., T.E.R.), The University of Florida, Gainesville
| | - Jianna Tan
- Department of Applied Physiology and Kinesiology (C.G.P., V.P., J.T., K.K., T.T., Q.Y., T.E.R.), The University of Florida, Gainesville
| | - Kyoungrae Kim
- Department of Applied Physiology and Kinesiology (C.G.P., V.P., J.T., K.K., T.T., Q.Y., T.E.R.), The University of Florida, Gainesville
| | - Trace Thome
- Department of Applied Physiology and Kinesiology (C.G.P., V.P., J.T., K.K., T.T., Q.Y., T.E.R.), The University of Florida, Gainesville
| | - Qingping Yang
- Department of Applied Physiology and Kinesiology (C.G.P., V.P., J.T., K.K., T.T., Q.Y., T.E.R.), The University of Florida, Gainesville
| | - Brian Fazzone
- Department of Surgery, Division of Vascular Surgery and Endovascular Therapy (B.F., S.T.R., K.A.O., S.T.S., S.A.B.), The University of Florida, Gainesville
- Malcom Randall VA Medical Center, Gainesville, FL (B.F., S.T.R., K.A.O., S.T.S., S.A.B.)
| | - Scott T. Robinson
- Department of Surgery, Division of Vascular Surgery and Endovascular Therapy (B.F., S.T.R., K.A.O., S.T.S., S.A.B.), The University of Florida, Gainesville
- Malcom Randall VA Medical Center, Gainesville, FL (B.F., S.T.R., K.A.O., S.T.S., S.A.B.)
| | - Kerri A. O’Malley
- Department of Surgery, Division of Vascular Surgery and Endovascular Therapy (B.F., S.T.R., K.A.O., S.T.S., S.A.B.), The University of Florida, Gainesville
- Malcom Randall VA Medical Center, Gainesville, FL (B.F., S.T.R., K.A.O., S.T.S., S.A.B.)
| | - Feng Yue
- Department of Animal Sciences (F.Y.), The University of Florida, Gainesville
- Myology Institute (F.Y., T.E.R.), The University of Florida, Gainesville
| | - Salvatore T. Scali
- Department of Surgery, Division of Vascular Surgery and Endovascular Therapy (B.F., S.T.R., K.A.O., S.T.S., S.A.B.), The University of Florida, Gainesville
- Malcom Randall VA Medical Center, Gainesville, FL (B.F., S.T.R., K.A.O., S.T.S., S.A.B.)
| | - Scott A. Berceli
- Department of Surgery, Division of Vascular Surgery and Endovascular Therapy (B.F., S.T.R., K.A.O., S.T.S., S.A.B.), The University of Florida, Gainesville
- Malcom Randall VA Medical Center, Gainesville, FL (B.F., S.T.R., K.A.O., S.T.S., S.A.B.)
| | - Terence E. Ryan
- Department of Applied Physiology and Kinesiology (C.G.P., V.P., J.T., K.K., T.T., Q.Y., T.E.R.), The University of Florida, Gainesville
- Center for Exercise Science (T.E.R.), The University of Florida, Gainesville
- Myology Institute (F.Y., T.E.R.), The University of Florida, Gainesville
| |
Collapse
|
5
|
Ferrucci L, Candia J, Ubaida-Mohien C, Lyaskov A, Banskota N, Leeuwenburgh C, Wohlgemuth S, Guralnik JM, Kaileh M, Zhang D, Sufit R, De S, Gorospe M, Munk R, Peterson CA, McDermott MM. Transcriptomic and Proteomic of Gastrocnemius Muscle in Peripheral Artery Disease. Circ Res 2023; 132:1428-1443. [PMID: 37154037 PMCID: PMC10213145 DOI: 10.1161/circresaha.122.322325] [Citation(s) in RCA: 11] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/23/2022] [Accepted: 04/17/2023] [Indexed: 05/10/2023]
Abstract
BACKGROUND Few effective therapies exist to improve lower extremity muscle pathology and mobility loss due to peripheral artery disease (PAD), in part because mechanisms associated with functional impairment remain unclear. METHODS To better understand mechanisms of muscle impairment in PAD, we performed in-depth transcriptomic and proteomic analyses on gastrocnemius muscle biopsies from 31 PAD participants (mean age, 69.9 years) and 29 age- and sex-matched non-PAD controls (mean age, 70.0 years) free of diabetes or limb-threatening ischemia. RESULTS Transcriptomic and proteomic analyses suggested activation of hypoxia-compensatory mechanisms in PAD muscle, including inflammation, fibrosis, apoptosis, angiogenesis, unfolded protein response, and nerve and muscle repair. Stoichiometric proportions of mitochondrial respiratory proteins were aberrant in PAD compared to non-PAD, suggesting that respiratory proteins not in complete functional units are not removed by mitophagy, likely contributing to abnormal mitochondrial activity. Supporting this hypothesis, greater mitochondrial respiratory protein abundance was significantly associated with greater complex II and complex IV respiratory activity in non-PAD but not in PAD. Rate-limiting glycolytic enzymes, such as hexokinase and pyruvate kinase, were less abundant in muscle of people with PAD compared with non-PAD participants, suggesting diminished glucose metabolism. CONCLUSIONS In PAD muscle, hypoxia induces accumulation of mitochondria respiratory proteins, reduced activity of rate-limiting glycolytic enzymes, and an enhanced integrated stress response that modulates protein translation. These mechanisms may serve as targets for disease modification.
Collapse
Affiliation(s)
- Luigi Ferrucci
- National Institute on Aging, Intramural Research Program, Baltimore, MD, USA
| | - Julián Candia
- National Institute on Aging, Intramural Research Program, Baltimore, MD, USA
| | | | - Alexey Lyaskov
- National Institute on Aging, Intramural Research Program, Baltimore, MD, USA
| | - Nirad Banskota
- National Institute on Aging, Intramural Research Program, Baltimore, MD, USA
| | - Christiaan Leeuwenburgh
- University of Florida, Institute on Aging, Department of Physiology and Aging, Gainesville, FL, USA
| | - Stephanie Wohlgemuth
- University of Florida, Institute on Aging, Department of Physiology and Aging, Gainesville, FL, USA
| | - Jack M. Guralnik
- University of Maryland School of Medicine, Department of Epidemiology and Public Health, Baltimore, MD, USA
| | - Mary Kaileh
- National Institute on Aging, Intramural Research Program, Baltimore, MD, USA
| | - Dongxue Zhang
- Northwestern University Feinberg School of Medicine, Department of Neurology, Chicago, IL, USA
| | - Robert Sufit
- Northwestern University Feinberg School of Medicine, Department of Neurology, Chicago, IL, USA
| | - Supriyo De
- National Institute on Aging, Intramural Research Program, Baltimore, MD, USA
| | - Myriam Gorospe
- National Institute on Aging, Intramural Research Program, Baltimore, MD, USA
| | - Rachel Munk
- National Institute on Aging, Intramural Research Program, Baltimore, MD, USA
| | - Charlotte A. Peterson
- Center for Muscle Biology. College of Health Sciences, University of Kentucky, Lexington, KY, USA
| | - Mary M. McDermott
- Northwestern University Feinberg School of Medicine, Department of Medicine, Chicago, IL, USA
| |
Collapse
|
6
|
Using T1 mapping indices to evaluate muscle function and predict conservative treatment outcomes in diabetic patients with peripheral arterial disease. Eur Radiol 2023:10.1007/s00330-023-09392-8. [PMID: 36651955 DOI: 10.1007/s00330-023-09392-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2022] [Revised: 12/10/2022] [Accepted: 12/23/2022] [Indexed: 01/19/2023]
Abstract
OBJECTIVES To investigate interstitial muscle fibrosis via T1 mapping indices and its relationships with muscle function and conservative treatment outcomes. METHODS A total of 49 DM patients with PAD were prospectively recruited from 2016 to 2017. All PAD patients underwent pre-treatment MRI with conservative treatment via a rehabilitation program and antiplatelet therapy. The need to require percutaneous transluminal angioplasty intervention was recorded as intolerance to conservative treatment outcomes. We quantified calf interstitial muscle fibrosis using T1 mapping indices (native T1, post-contrast T1, and the extracellular volume fraction [ECV]). Muscle function was evaluated using a 6-min walking test (6MWT) and a 3-min stepping test (3MST). PAD patients were divided into two groups according to their tolerance or intolerance of the conservative treatment. Pearson's correlation, reproducibility, and multivariable Cox hazard analyses were performed with p < 0.05 indicating statistical significance. RESULTS Among the T1 mapping indices in the posterior compartment of the calf in PAD patients, the native T1 value was significantly correlated with 6MWT (r = -0.422, p = 0.010) and 3MST (r = -0.427, p = 0.009). All T1 mapping indices showed excellent intra-observer and inter-observer correlations. ECV was an independent predictor of conservative treatment intolerance (average ECV, hazard ratio: 1.045, 95% confidence interval: 1.011-1.079, p = 0.009). CONCLUSIONS T1 mapping measurements are reproducible with excellent intra-observer and inter-observer correlations. T1 mapping indices may be predictive of treatment and functional outcomes and carry promise in patient evaluation. TRIAL REGISTRATION Clinical Trials Identifier: NCT02850432 . KEY POINTS • T1 mapping measurements of the calf muscles are reproducible with excellent intra-observer and inter-observer correlations (0.98 and 0.95 for anterior and posterior compartment muscle extracellular volume matrix [ECV] measurements, respectively). • ECV is shown to independently predict conservative treatment intolerance. • T1 mapping indices may be predictive of treatment and functional outcomes and carry promise in patient evaluation.
Collapse
|
7
|
Singh MV, Dokun AO. Diabetes mellitus in peripheral artery disease: Beyond a risk factor. Front Cardiovasc Med 2023; 10:1148040. [PMID: 37139134 PMCID: PMC10149861 DOI: 10.3389/fcvm.2023.1148040] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2023] [Accepted: 03/22/2023] [Indexed: 05/05/2023] Open
Abstract
Peripheral artery disease (PAD) is one of the major cardiovascular diseases that afflicts a large population worldwide. PAD results from occlusion of the peripheral arteries of the lower extremities. Although diabetes is a major risk factor for developing PAD, coexistence of PAD and diabetes poses significantly greater risk of developing critical limb threatening ischemia (CLTI) with poor prognosis for limb amputation and high mortality. Despite the prevalence of PAD, there are no effective therapeutic interventions as the molecular mechanism of how diabetes worsens PAD is not understood. With increasing cases of diabetes worldwide, the risk of complications in PAD have greatly increased. PAD and diabetes affect a complex web of multiple cellular, biochemical and molecular pathways. Therefore, it is important to understand the molecular components that can be targeted for therapeutic purposes. In this review, we describe some major developments in enhancing the understanding of the interactions of PAD and diabetes. We also provide results from our laboratory in this context.
Collapse
Affiliation(s)
- Madhu V. Singh
- Division of Endocrinology and Metabolism, Department of Internal Medicine, Carver College of Medicine, University of Iowa, Iowa City, IA, United States
| | - Ayotunde O. Dokun
- Division of Endocrinology and Metabolism, Department of Internal Medicine, Carver College of Medicine, University of Iowa, Iowa City, IA, United States
- Fraternal Order of Eagles Diabetes Research Centre, Carver College of Medicine, University of Iowa, Iowa City, IA, United States
- Correspondence: Ayotunde O. Dokun
| |
Collapse
|
8
|
Leutzinger TJ, Koutakis P, Fuglestad MA, Rahman H, Despiegelaere H, Hassan M, Schieber M, Johanning JM, Stergiou N, Longo GM, Casale GP, Myers SA, Pipinos II. Peripheral artery disease affects the function of the legs of claudicating patients in a diffuse manner irrespective of the segment of the arterial tree primarily involved. PLoS One 2022; 17:e0264598. [PMID: 35830421 PMCID: PMC9278728 DOI: 10.1371/journal.pone.0264598] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2022] [Accepted: 06/27/2022] [Indexed: 11/18/2022] Open
Abstract
Different levels of arterial occlusive disease (aortoiliac, femoropopliteal, multi-level disease) can produce claudication symptoms in different leg muscle groups (buttocks, thighs, calves) in patients with peripheral artery disease (PAD). We tested the hypothesis that different locations of occlusive disease uniquely affect the muscles of PAD legs and produce distinctive patterns in the way claudicating patients walk. Ninety-seven PAD patients and 35 healthy controls were recruited. PAD patients were categorized to aortoiliac, femoropopliteal and multi-level disease groups using computerized tomographic angiography. Subjects performed walking trials both pain-free and during claudication pain and joint kinematics, kinetics, and spatiotemporal parameters were calculated to evaluate the net contribution of the calf, thigh and buttock muscles. PAD patients with occlusive disease affecting different segments of the arterial tree (aortoiliac, femoropopliteal, multi-level disease) presented with symptoms affecting different muscle groups of the lower extremity (calves, thighs and buttocks alone or in combination). However, no significant biomechanical differences were found between PAD groups during the pain-free conditions with minimal differences between PAD groups in the claudicating state. All statistical differences in the pain-free condition occurred between healthy controls and one or more PAD groups. A discriminant analysis function was able to adequately predict if a subject was a control with over 70% accuracy, but the function was unable to differentiate between PAD groups. In-depth gait analyses of claudicating PAD patients indicate that different locations of arterial disease produce claudication symptoms that affect different muscle groups across the lower extremity but impact the function of the leg muscles in a diffuse manner generating similar walking impairments.
Collapse
Affiliation(s)
- Todd J. Leutzinger
- Department of Biomechanics and Center for Research in Human Movement Variability, University of Nebraska at Omaha, Omaha, Nebraska, United States of America
| | - Panagiotis Koutakis
- Department of Biology, Baylor University, Wako, Texas, United States of America
| | - Matthew A. Fuglestad
- Department of Surgery, University of Nebraska Medical Center, Omaha, Nebraska, United States of America
| | - Hafizur Rahman
- Department of Biomechanics and Center for Research in Human Movement Variability, University of Nebraska at Omaha, Omaha, Nebraska, United States of America
- Department of Surgery and Research Service, Nebraska and Western Iowa Veterans Affairs Medical Center, Omaha, Nebraska, United States of America
| | - Holly Despiegelaere
- Department of Surgery and Research Service, Nebraska and Western Iowa Veterans Affairs Medical Center, Omaha, Nebraska, United States of America
| | - Mahdi Hassan
- Department of Biomechanics and Center for Research in Human Movement Variability, University of Nebraska at Omaha, Omaha, Nebraska, United States of America
- Department of Surgery and Research Service, Nebraska and Western Iowa Veterans Affairs Medical Center, Omaha, Nebraska, United States of America
| | - Molly Schieber
- Department of Surgery, University of Nebraska Medical Center, Omaha, Nebraska, United States of America
| | - Jason M. Johanning
- Department of Surgery, University of Nebraska Medical Center, Omaha, Nebraska, United States of America
- Department of Surgery and Research Service, Nebraska and Western Iowa Veterans Affairs Medical Center, Omaha, Nebraska, United States of America
| | - Nick Stergiou
- Department of Biomechanics and Center for Research in Human Movement Variability, University of Nebraska at Omaha, Omaha, Nebraska, United States of America
- Department of Environmental Agricultural and Occupational Health, University of Nebraska Medical Center, Omaha, Nebraska, United States of America
| | - G. Matthew Longo
- Department of Surgery, University of Nebraska Medical Center, Omaha, Nebraska, United States of America
| | - George P. Casale
- Department of Surgery, University of Nebraska Medical Center, Omaha, Nebraska, United States of America
| | - Sara A. Myers
- Department of Biomechanics and Center for Research in Human Movement Variability, University of Nebraska at Omaha, Omaha, Nebraska, United States of America
- Department of Surgery and Research Service, Nebraska and Western Iowa Veterans Affairs Medical Center, Omaha, Nebraska, United States of America
- * E-mail: (SAM); (IIP)
| | - Iraklis I. Pipinos
- Department of Surgery, University of Nebraska Medical Center, Omaha, Nebraska, United States of America
- Department of Surgery and Research Service, Nebraska and Western Iowa Veterans Affairs Medical Center, Omaha, Nebraska, United States of America
- * E-mail: (SAM); (IIP)
| |
Collapse
|
9
|
Park SY, Pekas EJ, Anderson CP, Kambis TN, Mishra PK, Schieber MN, Wooden TK, Thompson JR, Kim KS, Pipinos II. Impaired microcirculatory function, mitochondrial respiration, and oxygen utilization in skeletal muscle of claudicating patients with peripheral artery disease. Am J Physiol Heart Circ Physiol 2022; 322:H867-H879. [PMID: 35333113 PMCID: PMC9018007 DOI: 10.1152/ajpheart.00690.2021] [Citation(s) in RCA: 24] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/22/2021] [Revised: 03/08/2022] [Accepted: 03/22/2022] [Indexed: 11/22/2022]
Abstract
Peripheral artery disease (PAD) is an atherosclerotic disease that impairs blood flow and muscle function in the lower limbs. A skeletal muscle myopathy characterized by mitochondrial dysfunction and oxidative damage is present in PAD; however, the underlying mechanisms are not well established. We investigated the impact of chronic ischemia on skeletal muscle microcirculatory function and its association with leg skeletal muscle mitochondrial function and oxygen delivery and utilization capacity in PAD. Gastrocnemius samples and arterioles were harvested from patients with PAD (n = 10) and age-matched controls (Con, n = 11). Endothelium-dependent and independent vasodilation was assessed in response to flow (30 μL·min-1), acetylcholine, and sodium nitroprusside (SNP). Skeletal muscle mitochondrial respiration was quantified by high-resolution respirometry, microvascular oxygen delivery, and utilization capacity (tissue oxygenation index, TOI) were assessed by near-infrared spectroscopy. Vasodilation was attenuated in PAD (P < 0.05) in response to acetylcholine (Con: 71.1 ± 11.1%, PAD: 45.7 ± 18.1%) and flow (Con: 46.6 ± 20.1%, PAD: 29.3 ± 10.5%) but not SNP (P = 0.30). Complex I + II state 3 respiration (P < 0.01) and TOI recovery rate were impaired in PAD (P < 0.05). Both flow and acetylcholine-mediated vasodilation were positively associated with complex I + II state 3 respiration (r = 0.5 and r = 0.5, respectively, P < 0.05). Flow-mediated vasodilation and complex I + II state 3 respiration were positively associated with TOI recovery rate (r = 0.8 and r = 0.7, respectively, P < 0.05). These findings suggest that chronic ischemia attenuates skeletal muscle arteriole endothelial function, which may be a key mediator for mitochondrial and microcirculatory dysfunction in the PAD leg skeletal muscle. Targeting microvascular dysfunction may be an effective strategy to prevent and/or reverse disease progression in PAD.NEW & NOTEWORTHY Ex vivo skeletal muscle arteriole endothelial function is impaired in claudicating patients with PAD, and this is associated with attenuated skeletal muscle mitochondrial respiration. In vivo skeletal muscle oxygen delivery and utilization capacity is compromised in PAD, and this may be due to microcirculatory and mitochondrial dysfunction. These results suggest that targeting skeletal muscle arteriole function may lead to improvements in skeletal muscle mitochondrial respiration and oxygen delivery and utilization capacity in claudicating patients with PAD.
Collapse
Affiliation(s)
- Song-Young Park
- School of Health and Kinesiology, University of Nebraska at Omaha, Omaha, Nebraska
| | - Elizabeth J Pekas
- School of Health and Kinesiology, University of Nebraska at Omaha, Omaha, Nebraska
| | - Cody P Anderson
- School of Health and Kinesiology, University of Nebraska at Omaha, Omaha, Nebraska
| | - Tyler N Kambis
- Department of Cellular and Integrative Physiology, University of Nebraska Medical Center, Omaha, Nebraska
| | - Paras K Mishra
- Department of Cellular and Integrative Physiology, University of Nebraska Medical Center, Omaha, Nebraska
| | - Molly N Schieber
- Department of Surgery, University of Nebraska Medical Center, Omaha, Nebraska
| | - TeSean K Wooden
- School of Health and Kinesiology, University of Nebraska at Omaha, Omaha, Nebraska
| | - Jonathan R Thompson
- Department of Surgery, University of Nebraska Medical Center, Omaha, Nebraska
| | - Kyung Soo Kim
- Department of Surgery, University of Nebraska Medical Center, Omaha, Nebraska
- Department of Surgery and Veterans Affairs Research Service, Nebraska-Western Iowa Health Care System, Omaha, Nebraska
| | - Iraklis I Pipinos
- Department of Surgery, University of Nebraska Medical Center, Omaha, Nebraska
- Department of Surgery and Veterans Affairs Research Service, Nebraska-Western Iowa Health Care System, Omaha, Nebraska
| |
Collapse
|
10
|
Ismaeel A, Miserlis D, Papoutsi E, Haynatzki G, Bohannon WT, Smith RS, Eidson JL, Casale GP, Pipinos II, Koutakis P. Endothelial cell-derived pro-fibrotic factors increase TGF-β1 expression by smooth muscle cells in response to cycles of hypoxia-hyperoxia. Biochim Biophys Acta Mol Basis Dis 2022; 1868:166278. [PMID: 34601016 PMCID: PMC8629962 DOI: 10.1016/j.bbadis.2021.166278] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2021] [Revised: 09/12/2021] [Accepted: 09/23/2021] [Indexed: 01/03/2023]
Abstract
BACKGROUND The vascular pathology of peripheral artery disease (PAD) encompasses abnormal microvascular architecture and fibrosis in response to ischemia-reperfusion (I/R) cycles. We aimed to investigate the mechanisms by which pathological changes in the microvasculature direct fibrosis in the context of I/R. METHODS Primary human aortic endothelial cells (ECs) were cultured under cycles of normoxia-hypoxia (NH) or normoxia-hypoxia-hyperoxia (NHH) to mimic I/R. Primary human aortic smooth muscle cells (SMCs) were cultured and treated with media from the ECs. FINDINGS The mRNA and protein expression of the pro-fibrotic factors platelet derived growth factor (PDGF)-BB and connective tissue growth factor (CTGF) were significantly upregulated in ECs undergoing NH or NHH cycles. Treatment of SMCs with media from ECs undergoing NH or NHH cycles led to significant increases in TGF-β1, TGF-β pathway signaling intermediates, and collagen expression. Addition of neutralizing antibodies against PDGF-BB and CTGF to the media blunted the increases in TGF-β1 and collagen expression. Treatment of SMCs with PAD patient-derived serum also led to increased TGF-β1 levels. INTERPRETATION In an in-vitro model of I/R, which recapitulates the pathophysiology of PAD, increased secretion of PDGF-BB and CTGF by ECs was shown to be predominantly driving TGF-β1-mediated expression by SMCs. These cell culture experiments help elucidate the mechanism and interaction between ECs and SMCs in microvascular fibrosis associated with I/R. Thus, targeting these pro-fibrotic factors may be an effective strategy to combat fibrosis in response to cycles of I/R. FUNDING National Institute on Aging at the National Institutes of Health grant number R01AG064420. RESEARCH IN CONTEXT Evidence before this study: Previous studies in gastrocnemius biopsies from peripheral artery disease (PAD) patients showed that transforming growth factor beta 1 (TGF-β1), the most potent inducer of pathological fibrosis, is increased in the vasculature of PAD patients and correlated with collagen deposition. However, the exact cellular source of TGF-β1 remained unclear. Added value of this study: Exposing cells to cycles of normoxia-hypoxia-hyperoxia (NHH) resulted in pathological changes that are consistent with human PAD. This supports the idea that the use of NHH may be a reliable, novel in vitro model of PAD useful for studying associated pathophysiological mechanisms. Furthermore, pro-fibrotic factors (PDGF-BB and CTGF) released from endothelial cells were shown to induce a fibrotic phenotype in smooth muscle cells. This suggests a potential interaction between these cell types in the microvasculature that drives increased TGF-β1 expression and collagen deposition. Thus, targeting these pro-fibrotic factors may be an effective strategy to combat fibrosis in response to cycles of ischemia-reperfusion.
Collapse
Affiliation(s)
- Ahmed Ismaeel
- Department of Biology, Baylor University, B.207 Baylor Science Building, One Bear Place #97388, Waco, TX 76798-7388, USA
| | - Dimitrios Miserlis
- Department of Surgery, University of Texas Health Science Center San Antonio, 8300 Floyd Curl Dr., San Antonio, TX 78229, USA
| | - Evlampia Papoutsi
- Department of Biology, Baylor University, B.207 Baylor Science Building, One Bear Place #97388, Waco, TX 76798-7388, USA
| | - Gleb Haynatzki
- Department of Biostatistics, University of Nebraska Medical Center, 984375 Nebraska Medical Center, Omaha, NE 68198-4375, USA
| | - William T Bohannon
- Department of Surgery, Baylor Scott & White Medical Center, 2401 S 31st St, Temple, TX 76508, USA
| | - Robert S Smith
- Department of Surgery, Baylor Scott & White Medical Center, 2401 S 31st St, Temple, TX 76508, USA
| | - Jack L Eidson
- Department of Surgery, Baylor Scott & White Medical Center, 2401 S 31st St, Temple, TX 76508, USA
| | - George P Casale
- Department of Surgery, University of Nebraska Medical Center, 982500 Nebraska Medical Center, Omaha, NE 68198-2500, USA
| | - Iraklis I Pipinos
- Department of Surgery, University of Nebraska Medical Center, 982500 Nebraska Medical Center, Omaha, NE 68198-2500, USA
| | - Panagiotis Koutakis
- Department of Biology, Baylor University, B.207 Baylor Science Building, One Bear Place #97388, Waco, TX 76798-7388, USA.
| |
Collapse
|
11
|
Ryan TE, Kim K, Scali ST, Berceli SA, Thome T, Salyers ZR, O'Malley KA, Green TD, Karnekar R, Fisher‐Wellman KH, Yamaguchi DJ, McClung JM. Interventional- and amputation-stage muscle proteomes in the chronically threatened ischemic limb. Clin Transl Med 2022; 12:e658. [PMID: 35073463 PMCID: PMC8785983 DOI: 10.1002/ctm2.658] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2021] [Revised: 11/05/2021] [Accepted: 11/11/2021] [Indexed: 12/19/2022] Open
Abstract
BACKGROUND Despite improved surgical approaches for chronic limb-threatening ischemia (CLTI), amputation rates remain high and contributing tissue-level factors remain unknown. The purpose of this study was twofold: (1) to identify differences between the healthy adult and CLTI limb muscle proteome, and (2) to identify differences in the limb muscle proteome of CLTI patients prior to surgical intervention or at the time of amputation. METHODS AND RESULTS Gastrocnemius muscle was collected from non-ischemic controls (n = 19) and either pre-interventional surgery (n = 10) or at amputation outcome (n = 29) CLTI patients. All samples were subjected to isobaric tandem-mass-tag-assisted proteomics. The mitochondrion was the primary classification of downregulated proteins (> 70%) in CLTI limb muscles and paralleled robust functional mitochondrial impairment. Upregulated proteins (> 38%) were largely from the extracellular matrix. Across the two independent sites, 39 proteins were downregulated and 12 upregulated uniformly. Pre-interventional CLTI muscles revealed a robust upregulation of mitochondrial proteins but modest functional impairments in fatty acid oxidation as compared with controls. Comparison of pre-intervention and amputation CLTI limb muscles revealed mitochondrial proteome and functional deficits similar to that between amputation and non-ischemic controls. Interestingly, these observed changes occurred despite 62% of the amputation CLTI patients having undergone a prior surgical intervention. CONCLUSIONS The CLTI proteome supports failing mitochondria as a phenotype that is unique to amputation outcomes. The signature of pre-intervention CLTI muscle reveals stable mitochondrial protein abundance that is insufficient to uniformly prevent functional impairments. Taken together, these findings support the need for future longitudinal investigations aimed to determine whether mitochondrial failure is causally involved in amputation outcomes from CLTI.
Collapse
Affiliation(s)
- Terence E. Ryan
- Department of Applied Physiology and KinesiologyUniversity of FloridaGainesvilleFloridaUSA
- Center for Exercise ScienceUniversity of FloridaGainesvilleFloridaUSA
- Myology InstituteUniversity of FloridaGainesvilleFloridaUSA
| | - Kyoungrae Kim
- Department of Applied Physiology and KinesiologyUniversity of FloridaGainesvilleFloridaUSA
| | - Salvatore T. Scali
- Division of Vascular Surgery and Endovascular TherapyUniversity of FloridaGainesvilleFloridaUSA
- Malcom Randall Veteran Affairs Medical CenterGainesvilleFloridaUSA
| | - Scott A. Berceli
- Division of Vascular Surgery and Endovascular TherapyUniversity of FloridaGainesvilleFloridaUSA
- Malcom Randall Veteran Affairs Medical CenterGainesvilleFloridaUSA
| | - Trace Thome
- Department of Applied Physiology and KinesiologyUniversity of FloridaGainesvilleFloridaUSA
| | - Zachary R. Salyers
- Department of Applied Physiology and KinesiologyUniversity of FloridaGainesvilleFloridaUSA
| | - Kerri A. O'Malley
- Division of Vascular Surgery and Endovascular TherapyUniversity of FloridaGainesvilleFloridaUSA
- Malcom Randall Veteran Affairs Medical CenterGainesvilleFloridaUSA
| | - Thomas D. Green
- Department of PhysiologyBrody School of MedicineEast Carolina UniversityGreenvilleNorth CarolinaUSA
- East Carolina Diabetes and Obesity InstituteEast Carolina UniversityGreenvilleNorth CarolinaUSA
| | - Reema Karnekar
- Department of PhysiologyBrody School of MedicineEast Carolina UniversityGreenvilleNorth CarolinaUSA
- East Carolina Diabetes and Obesity InstituteEast Carolina UniversityGreenvilleNorth CarolinaUSA
| | - Kelsey H. Fisher‐Wellman
- Department of PhysiologyBrody School of MedicineEast Carolina UniversityGreenvilleNorth CarolinaUSA
- East Carolina Diabetes and Obesity InstituteEast Carolina UniversityGreenvilleNorth CarolinaUSA
| | - Dean J. Yamaguchi
- Department of Cardiovascular ScienceEast Carolina UniversityGreenvilleNorth CarolinaUSA
- Division of SurgeryEast Carolina UniversityGreenvilleNorth CarolinaUSA
| | - Joseph M. McClung
- Department of PhysiologyBrody School of MedicineEast Carolina UniversityGreenvilleNorth CarolinaUSA
- East Carolina Diabetes and Obesity InstituteEast Carolina UniversityGreenvilleNorth CarolinaUSA
- Department of Cardiovascular ScienceEast Carolina UniversityGreenvilleNorth CarolinaUSA
| |
Collapse
|
12
|
Ring A, Ismaeel A, Wechsler M, Fletcher E, Papoutsi E, Miserlis D, Koutakis P. MicroRNAs in peripheral artery disease: potential biomarkers and pathophysiological mechanisms. Ther Adv Cardiovasc Dis 2022; 16:17539447221096940. [PMID: 35583375 PMCID: PMC9121511 DOI: 10.1177/17539447221096940] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/22/2021] [Accepted: 04/07/2022] [Indexed: 11/29/2022] Open
Abstract
Peripheral artery disease (PAD) is a disease of atherosclerosis in the lower extremities. PAD carries a massive burden worldwide, while diagnosis and treatment options are often lacking. One of the key points of research in recent years is the involvement of microRNAs (miRNAs), which are short 20-25 nucleotide single-stranded RNAs that can act as negative regulators of post-transcriptional gene expression. Many of these miRNAs have been discovered to be misregulated in PAD patients, suggesting a potential utility as biomarkers for PAD diagnosis. miRNAs have also been shown to play an important role in many different pathophysiological aspects involved in the initiation and progression of the disease including angiogenesis, hypoxia, inflammation, as well as other cellular functions like cell proliferation and migration. The research on miRNAs in PAD has the potential to lead to a whole new class of diagnostic tools and treatments.
Collapse
Affiliation(s)
- Andrew Ring
- Department of Biology, Baylor University, Waco,
TX, USA
| | - Ahmed Ismaeel
- Department of Biology, Baylor University, Waco,
TX, USA
| | - Marissa Wechsler
- Department of Biomedical Engineering and
Chemical Engineering, The University of Texas at San Antonio, San Antonio,
TX, USA
| | - Emma Fletcher
- Department of Biology, Baylor University, Waco,
TX, USA
| | | | - Dimitrios Miserlis
- Department of Surgery, The University of Texas
Health Science Center at San Antonio, San Antonio, TX, USA
| | - Panagiotis Koutakis
- Department of Biology, Baylor University, B.207
Baylor Science Building, One Bear Place #97388, Waco, TX 76798-7388,
USA
| |
Collapse
|
13
|
Zhang X, Wang L, Guo R, Xiao J, Liu X, Dong M, Luan X, Ji X, Lu H. Ginsenoside Rb1 Ameliorates Diabetic Arterial Stiffening via AMPK Pathway. Front Pharmacol 2021; 12:753881. [PMID: 34712140 PMCID: PMC8546248 DOI: 10.3389/fphar.2021.753881] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2021] [Accepted: 09/14/2021] [Indexed: 11/13/2022] Open
Abstract
Background and Purpose: Macrovascular complication of diabetes mellitus, characterized by increased aortic stiffness, is a major cause leading to many adverse clinical outcomes. It has been reported that ginsenoside Rb1 (Rb1) can improve glucose tolerance, enhance insulin activity, and restore the impaired endothelial functions in animal models. The aim of this study was to explore whether Rb1 could alleviate the pathophysiological process of arterial stiffening in diabetes and its potential mechanisms. Experimental Approach: Diabetes was induced in male C57BL/6 mice by administration of streptozotocin. These mice were randomly selected for treatment with Rb1 (10-60 mg/kg, i. p.) once daily for 8 weeks. Aortic stiffness was assessed using ultrasound and measurement of blood pressure and relaxant responses in the aortic rings. Mechanisms of Rb1 treatment were studied in MOVAS-1 VSMCs cultured in a high-glucose medium. Key Results: Rb1 improved DM-induced arterial stiffening and the impaired aortic compliance and endothelium-dependent vasodilation. Rb1 ameliorated DM-induced aortic remodeling characterized by collagen deposition and elastic fibers disorder. MMP2, MMP9, and TGFβ1/Smad2/3 pathways were involved in this process. In addition, Rb1-mediated improvement of arterial stiffness was partly achieved via inhibiting oxidative stress in DM mice, involving regulating NADPH oxidase. Finally, Rb1 could blunt the inhibition effects of DM on AMPK phosphorylation. Conclusion and Implications: Rb1 may represent a novel prevention strategy to alleviate collagen deposition and degradation to prevent diabetic macroangiopathy and diabetes-related complications.
Collapse
Affiliation(s)
- Xinyu Zhang
- The Key Laboratory of Cardiovascular Remodeling and Function Research, Chinese Ministry of Education, Chinese National Health Commission and Chinese Academy of Medical Sciences, The State and Shandong Province Joint Key Laboratory of Translational Cardiovascular Medicine, Department of Cardiology, Qilu Hospital, Cheeloo College of Medicine, Shandong University, Jinan, China
| | - Lei Wang
- The Key Laboratory of Cardiovascular Remodeling and Function Research, Chinese Ministry of Education, Chinese National Health Commission and Chinese Academy of Medical Sciences, The State and Shandong Province Joint Key Laboratory of Translational Cardiovascular Medicine, Department of Cardiology, Qilu Hospital, Cheeloo College of Medicine, Shandong University, Jinan, China
| | - Rong Guo
- Department of Cardiology, Ji'an Municipal Center People's Hospital, Ji'an, China
| | - Jie Xiao
- The Key Laboratory of Cardiovascular Remodeling and Function Research, Chinese Ministry of Education, Chinese National Health Commission and Chinese Academy of Medical Sciences, The State and Shandong Province Joint Key Laboratory of Translational Cardiovascular Medicine, Department of Cardiology, Qilu Hospital, Cheeloo College of Medicine, Shandong University, Jinan, China
| | - Xiaoling Liu
- The Key Laboratory of Cardiovascular Remodeling and Function Research, Chinese Ministry of Education, Chinese National Health Commission and Chinese Academy of Medical Sciences, The State and Shandong Province Joint Key Laboratory of Translational Cardiovascular Medicine, Department of Cardiology, Qilu Hospital, Cheeloo College of Medicine, Shandong University, Jinan, China
| | - Mei Dong
- The Key Laboratory of Cardiovascular Remodeling and Function Research, Chinese Ministry of Education, Chinese National Health Commission and Chinese Academy of Medical Sciences, The State and Shandong Province Joint Key Laboratory of Translational Cardiovascular Medicine, Department of Cardiology, Qilu Hospital, Cheeloo College of Medicine, Shandong University, Jinan, China
| | - Xiaorong Luan
- The Key Laboratory of Cardiovascular Remodeling and Function Research, Chinese Ministry of Education, Chinese National Health Commission and Chinese Academy of Medical Sciences, The State and Shandong Province Joint Key Laboratory of Translational Cardiovascular Medicine, Department of Cardiology, Qilu Hospital, Cheeloo College of Medicine, Shandong University, Jinan, China
| | - Xiaoping Ji
- The Key Laboratory of Cardiovascular Remodeling and Function Research, Chinese Ministry of Education, Chinese National Health Commission and Chinese Academy of Medical Sciences, The State and Shandong Province Joint Key Laboratory of Translational Cardiovascular Medicine, Department of Cardiology, Qilu Hospital, Cheeloo College of Medicine, Shandong University, Jinan, China
| | - Huixia Lu
- The Key Laboratory of Cardiovascular Remodeling and Function Research, Chinese Ministry of Education, Chinese National Health Commission and Chinese Academy of Medical Sciences, The State and Shandong Province Joint Key Laboratory of Translational Cardiovascular Medicine, Department of Cardiology, Qilu Hospital, Cheeloo College of Medicine, Shandong University, Jinan, China.,Dr. Gilbert Hung Ginseng Laboratory, Department of Biology, Faculty of Science, Hong Kong Baptist University, Hong Kong, Hong Kong, SAR China
| |
Collapse
|
14
|
Li C, Nie F, Liu X, Chen M, Chi D, Li S, Pipinos II, Li X. Antioxidative and Angiogenic Hyaluronic Acid-Based Hydrogel for the Treatment of Peripheral Artery Disease. ACS APPLIED MATERIALS & INTERFACES 2021; 13:45224-45235. [PMID: 34519480 DOI: 10.1021/acsami.1c11349] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/13/2023]
Abstract
Peripheral arterial disease (PAD) is a progressive atherosclerotic disorder characterized by blockages of the arteries supplying the lower extremities. Ischemia initiates oxidative damage and mitochondrial dysfunction in the legs of PAD patients, causing injury to the tissues of the leg, significant decline in walking performance, leg pain while walking, and in the most severe cases, nonhealing ulcers and gangrene. Current clinical trials based on cells/stem cells, the trophic factor, or gene therapy systems have shown some promising results for the treatment of PAD. Biomaterial matrices have been explored in animal models of PAD to enhance these therapies. However, current biomaterial approaches have not fully met the essential requirements for minimally invasive intramuscular delivery to the leg. Ideally, a biomaterial should present properties to ameliorate oxidative stress/damage and failure of angiogenesis. Recently, we have created a thermosensitive hyaluronic acid (HA) hydrogel with antioxidant capacity and skeletal muscle-matching stiffness. Here, we further optimized HA hydrogels with the cell adhesion peptide RGD to facilitate the development of vascular-like structures in vitro. The optimized HA hydrogel reduced intracellular reactive oxygen species levels and preserved vascular-like structures against H2O2-induced damage in vitro. HA hydrogels also provided prolonged release of the vascular endothelial growth factor (VEGF). After injection into rat ischemic hindlimb muscles, this VEGF-releasing hydrogel reduced lipid oxidation, regulated oxidative-related genes, enhanced local blood flow in the muscle, and improved running capacity of the treated rats. Our HA hydrogel system holds great potential for the treatment of the ischemic legs of patients with PAD.
Collapse
Affiliation(s)
- Cui Li
- Department of Physiology, Xuzhou Medical University, Xuzhou, Jiangsu 221004, China
- Department of Neurological Sciences, University of Nebraska Medical Center, Omaha, Nebraska 68198, United States
| | - Fujiao Nie
- Hunan Engineering Technology Research Center for the Prevention and Treatment of Otorhinolaryngologic Diseases and Protection of Visual Function with Chinese Medicine, Human University of Chinese Medicine, Changsha, Hunan 410208, China
- Department of Neurological Sciences, University of Nebraska Medical Center, Omaha, Nebraska 68198, United States
| | - Xiaoyan Liu
- Department of Neurological Sciences, University of Nebraska Medical Center, Omaha, Nebraska 68198, United States
| | - Meng Chen
- Department of Neurological Sciences, University of Nebraska Medical Center, Omaha, Nebraska 68198, United States
| | - David Chi
- Division of Plastic and Reconstructive Surgery, Department of Surgery, Washington University School of Medicine, St. Louis, Missouri 63110, United States
| | - Shuai Li
- Department of Surgery, University of Nebraska Medical Center, Omaha, Nebraska 68198, United States
| | - Iraklis I Pipinos
- Department of Surgery, University of Nebraska Medical Center, Omaha, Nebraska 68198, United States
| | - Xiaowei Li
- Department of Neurological Sciences, University of Nebraska Medical Center, Omaha, Nebraska 68198, United States
- Division of Plastic and Reconstructive Surgery, Department of Surgery, Washington University School of Medicine, St. Louis, Missouri 63110, United States
| |
Collapse
|
15
|
Stavres J, Wang J, Sica CT, Blaha C, Herr M, Pai S, Cauffman A, Vesek J, Yang QX, Sinoway LI. Diffusion tensor imaging indices of acute muscle damage are augmented after exercise in peripheral arterial disease. Eur J Appl Physiol 2021; 121:2595-2606. [PMID: 34106324 PMCID: PMC10445221 DOI: 10.1007/s00421-021-04711-7] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2020] [Accepted: 05/05/2021] [Indexed: 12/20/2022]
Abstract
PURPOSE Although it is known that peripheral arterial disease (PAD) is associated with chronic myopathies, the acute muscular responses to exercise in this population are less clear. This study used diffusion tensor imaging (DTI) to compare acute exercise-related muscle damage between PAD patients and healthy controls. METHODS Eight PAD patients and seven healthy controls performed graded plantar flexion in the bore of a 3T MRI scanner. Exercise began at 2 kg and increased by 2 kg every 2 min until failure, or completion of 10 min of exercise. DTI images were acquired from the lower leg pre- and post-exercise, and were analyzed for mean diffusivity, fractional anisotropy (FA), and eigenvalues 1-3 (λ1-3) of the medial gastrocnemius (MG) and tibialis anterior (TA). RESULTS Results indicated a significant leg by time interaction for mean diffusivity, explained by a significantly greater increase in diffusivity of the MG in the most affected legs of PAD patients (11.1 × 10-4 ± 0.5 × 10-4 mm2/s vs. 12.7 × 10-4 ± 1.2 × 10-4 mm2/s at pre and post, respectively, P = 0.02) compared to healthy control subjects (10.8 × 10-4 ± 0.3 × 10-4 mm2/s vs. 11.2 × 10-4 ± 0.5 × 10-4 mm2/s at pre and post, respectively, P = 1.0). No significant differences were observed for the TA, or λ1-3 (all P ≥ 0.06). Moreover, no reciprocal changes were observed for FA in either group (all P ≥ 0.29). CONCLUSION These data suggest that calf muscle diffusivity increases more in PAD patients compared to controls after exercise. These findings are consistent with the notion that acute exercise results in increased muscle damage in PAD.
Collapse
Affiliation(s)
- Jon Stavres
- Penn State Heart and Vascular Institute, Pennsylvania State University College of Medicine, Milton S. Hershey Medical Center, Hershey, PA, USA.
| | - Jianli Wang
- Department of Radiology, Pennsylvania State University College of Medicine, Milton S. Hershey Medical Center, Hershey, PA, USA
| | - Christopher T Sica
- Department of Radiology, Pennsylvania State University College of Medicine, Milton S. Hershey Medical Center, Hershey, PA, USA
| | - Cheryl Blaha
- Penn State Heart and Vascular Institute, Pennsylvania State University College of Medicine, Milton S. Hershey Medical Center, Hershey, PA, USA
| | - Michael Herr
- Penn State Heart and Vascular Institute, Pennsylvania State University College of Medicine, Milton S. Hershey Medical Center, Hershey, PA, USA
| | - Samuel Pai
- Penn State Heart and Vascular Institute, Pennsylvania State University College of Medicine, Milton S. Hershey Medical Center, Hershey, PA, USA
| | - Aimee Cauffman
- Penn State Heart and Vascular Institute, Pennsylvania State University College of Medicine, Milton S. Hershey Medical Center, Hershey, PA, USA
| | - Jeffrey Vesek
- Department of Molecular Biology, Pennsylvania State University College of Medicine, Milton S. Hershey Medical Center, Hershey, PA, USA
| | - Qing X Yang
- Department of Radiology, Pennsylvania State University College of Medicine, Milton S. Hershey Medical Center, Hershey, PA, USA
- Department of Neurosurgery, Pennsylvania State University College of Medicine, Milton S. Hershey Medical Center, Hershey, PA, USA
| | - Lawrence I Sinoway
- Penn State Heart and Vascular Institute, Pennsylvania State University College of Medicine, Milton S. Hershey Medical Center, Hershey, PA, USA
| |
Collapse
|
16
|
McDermott MM, Dayanidhi S, Kosmac K, Saini S, Slysz J, Leeuwenburgh C, Hartnell L, Sufit R, Ferrucci L. Walking Exercise Therapy Effects on Lower Extremity Skeletal Muscle in Peripheral Artery Disease. Circ Res 2021; 128:1851-1867. [PMID: 34110902 DOI: 10.1161/circresaha.121.318242] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
Walking exercise is the most effective noninvasive therapy that improves walking ability in peripheral artery disease (PAD). Biologic mechanisms by which exercise improves walking in PAD are unclear. This review summarizes evidence regarding effects of walking exercise on lower extremity skeletal muscle in PAD. In older people without PAD, aerobic exercise improves mitochondrial activity, muscle mass, capillary density, and insulin sensitivity in skeletal muscle. However, walking exercise increases lower extremity ischemia in people with PAD, and therefore, mechanisms by which this exercise improves walking may differ between people with and without PAD. Compared with people without PAD, gastrocnemius muscle in people with PAD has greater mitochondrial impairment, increased reactive oxygen species, and increased fibrosis. In multiple small trials, walking exercise therapy did not consistently improve mitochondrial activity in people with PAD. In one 12-week randomized trial of people with PAD randomized to supervised exercise or control, supervised treadmill exercise increased treadmill walking time from 9.3 to 15.1 minutes, but simultaneously increased the proportion of angular muscle fibers, consistent with muscle denervation (from 7.6% to 15.6%), while angular myofibers did not change in the control group (from 9.1% to 9.1%). These findings suggest an adaptive response to exercise in PAD that includes denervation and reinnervation, an adaptive process observed in skeletal muscle of people without PAD during aging. Small studies have not shown significant effects of exercise on increased capillary density in lower extremity skeletal muscle of participants with PAD, and there are no data showing that exercise improves microcirculatory delivery of oxygen and nutrients in patients with PAD. However, the effects of supervised exercise on increased plasma nitrite abundance after a treadmill walking test in people with PAD may be associated with improved lower extremity skeletal muscle perfusion and may contribute to improved walking performance in response to exercise in people with PAD. Randomized trials with serial, comprehensive measures of muscle biology, and physiology are needed to clarify mechanisms by which walking exercise interventions improve mobility in PAD.
Collapse
Affiliation(s)
- Mary M McDermott
- Department of Medicine and Preventive Medicine (M.M.M., J.S.), Northwestern University Feinberg School of Medicine
| | - Sudarshan Dayanidhi
- Shirley Ryan Ability Laboratory (S.D.), Northwestern University Feinberg School of Medicine
| | - Kate Kosmac
- Center for Muscle Biology, University of Kentucky (K.K.)
| | - Sunil Saini
- Jawaharlal Nehru University, School of Biotechnology, New Delhi, India (S.S.)
| | - Joshua Slysz
- Department of Medicine and Preventive Medicine (M.M.M., J.S.), Northwestern University Feinberg School of Medicine
| | | | - Lisa Hartnell
- Division of Intramural Research, National Institute on Aging (L.H., L.F.)
| | - Robert Sufit
- Department of Neurology (R.S.), Northwestern University Feinberg School of Medicine
| | - Luigi Ferrucci
- Division of Intramural Research, National Institute on Aging (L.H., L.F.)
| |
Collapse
|
17
|
Hypoxia-induced miR-210 modulates the inflammatory response and fibrosis upon acute ischemia. Cell Death Dis 2021; 12:435. [PMID: 33934122 PMCID: PMC8088433 DOI: 10.1038/s41419-021-03713-9] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2021] [Revised: 04/09/2021] [Accepted: 04/12/2021] [Indexed: 12/16/2022]
Abstract
Hypoxia-induced miR-210 is a crucial component of the tissue response to ischemia, stimulating angiogenesis and improving tissue regeneration. Previous analysis of miR-210 impact on the transcriptome in a mouse model of hindlimb ischemia showed that miR-210 regulated not only vascular regeneration functions, but also inflammation. To investigate this event, doxycycline-inducible miR-210 transgenic mice (Tg-210) and anti-miR-210 LNA-oligonucleotides were used. It was found that global miR-210 expression decreased inflammatory cells density and macrophages accumulation in the ischemic tissue. To dissect the underpinning cell mechanisms, Tg-210 mice were used in bone marrow (BM) transplantation experiments and chimeric mice underwent hindlimb ischemia. MiR-210 overexpression in the ischemic tissue was sufficient to increase capillary density and tissue repair, and to reduce inflammation in the presence of Wt-BM infiltrating cells. Conversely, when Tg-210-BM cells migrated in a Wt ischemic tissue, dysfunctional angiogenesis, inflammation, and impaired tissue repair, accompanied by fibrosis were observed. The fibrotic regions were positive for α-SMA, Vimentin, and Collagen V fibrotic markers and for phospho-Smad3, highlighting the activation of TGF-β1 pathway. Identification of Tg-210 cells by in situ hybridization showed that BM-derived cells contributed directly to fibrotic areas, where macrophages co-expressing fibrotic markers were observed. Cell cultures of Tg-210 BM-derived macrophages exhibited a pro-fibrotic phenotype and were enriched with myofibroblast-like cells, which expressed canonical fibrosis markers. Interestingly, inhibitors of TGF-β type-1-receptor completely abrogated this pro-fibrotic phenotype. In conclusion, a context-dependent regulation by miR-210 of the inflammatory response was identified. miR-210 expression in infiltrating macrophages is associated to improved angiogenesis and tissue repair when the ischemic recipient tissue also expresses high levels of miR-210. Conversely, when infiltrating an ischemic tissue with mismatched miR-210 levels, macrophages expressing high miR-210 levels display a pro-fibrotic phenotype, leading to impaired tissue repair, fibrosis, and dysfunctional angiogenesis.
Collapse
|
18
|
Gait variability is affected more by peripheral artery disease than by vascular occlusion. PLoS One 2021; 16:e0241727. [PMID: 33788839 PMCID: PMC8011739 DOI: 10.1371/journal.pone.0241727] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2020] [Accepted: 03/15/2021] [Indexed: 11/19/2022] Open
Abstract
Background Patients with peripheral artery disease with intermittent claudication (PAD-IC) have altered gait variability from the first step they take, well before the onset of claudication pain. The mechanisms underlying these gait alterations are poorly understood. Aims To determine the effect of reduced blood flow on gait variability by comparing healthy older controls and patients with PAD-IC. We also determined the diagnostic value of gait variability parameters to identify the presence of PAD. Methods A cross-sectional cohort design was used. Thirty healthy older controls and thirty patients with PAD-IC walked on a treadmill at their self-selected speed in pain free walking (normal walking for healthy older controls; prior to claudication onset for PAD) and reduced blood flow (post vascular occlusion with thigh tourniquet for healthy older controls; pain for PAD) conditions. Gait variability was assessed using the largest Lyapunov exponent, approximate entropy, standard deviation, and coefficient of variation of ankle, knee, and hip joints range of motion. Receiver operating characteristics curve analyses of the pain free walking condition were performed to determine the optimal cut-off values for separating individuals with PAD-IC from those without PAD-IC. Results and discussion Patients with PAD-IC have increased amount of variability for knee and hip ranges of motion compared with the healthy older control group. Regarding the main effect of condition, reduced blood flow demonstrated increased amount of variability compared with pain free walking. Significant interactions between group and condition at the ankle show increased values for temporal structure of variability, but a similar amount of variability in the reduced blood flow condition. This demonstrates subtle interactions in the movement patterns remain distinct between PAD-IC versus healthy older controls during the reduced blood flow condition. A combination of gait variability parameters correctly identifies PAD-IC disease 70% of the time or more. Conclusions Gait variability is affected both by PAD and by the mechanical induction of reduced blood flow. Gait variability parameters have potential diagnostic ability, as some measures had 90.0% probability of correctly identifying patients with PAD-IC.
Collapse
|
19
|
Casale GP, Thompson JR, Carpenter LC, Kim J, Lackner TJ, Mietus CJ, Ha DM, Myers SA, Brunette KE, Li S, Shields C, Willcockson G, Pipinos II. Cytokine signature of inflammation mediated by autoreactive Th-cells, in calf muscle of claudicating patients with Fontaine stage II peripheral artery disease. Transl Res 2021; 228:94-108. [PMID: 32835907 PMCID: PMC7779738 DOI: 10.1016/j.trsl.2020.08.008] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/06/2020] [Revised: 07/21/2020] [Accepted: 08/20/2020] [Indexed: 02/06/2023]
Abstract
Peripheral artery disease (PAD), a severe atherosclerotic condition primarily of the elderly, afflicts 200 million individuals, worldwide, and is associated with lower extremity myopathy. Circulating markers of inflammation have been linked to risk and severity of PAD but the contribution of local inflammation to myopathy remains unknown. We evaluated, by ELISA, calf muscle of PAD patients (N = 23) and control subjects (N = 18) for local expression of inflammatory cytokines including Granulocyte/Monocyte Colony-Stimulating Factor (GM-CSF), Interleukin 17A (IL-17A), Interferon ϒ (IFN-ϒ), tumor necrosis factor α (TNF-α), and Interleukin 6 (IL-6). One or more of these cytokines were expressed in nineteen patients and 2 controls and coordinated expression of GM-CSF, IL-17A, IFN-ϒ, and TNF-α, a signature of activated, MHC Class II dependent autoreactive Th-cells, was unique to 11 patients. GM-CSF is the central driver of tissue-damaging myeloid macrophages. Patients with this cytokine signature had a shorter (P= 0.017) Claudication Onset Distance (17 m) compared with patients lacking the signature (102 m). Transforming Growth Factor β1 (TGFβ1) and Chemokine Ligand 5 (CCL5) were expressed coordinately in all PAD and control muscles, independently of GM-CSF, IL-17A, IFN-ϒ, TNF-α, or IL-6. TGFβ1 and CCL5 and their gene transcripts were increased in PAD muscle, consistent with increased age-associated inflammation in these patients. Serum cytokines were not informative of muscle cytokine expression. We have identified a cytokine profile of autoimmune inflammation in calf muscles of a significant proportion of claudicating PAD patients, in association with decreased limb function, and a second independent profile consistent with increased "inflammaging" in all PAD patients.
Collapse
Affiliation(s)
- George P Casale
- Department of Surgery, University of Nebraska Medical Center, Omaha, Nebraska.
| | - Jonathan R Thompson
- Department of Surgery, University of Nebraska Medical Center, Omaha, Nebraska
| | - Lauren C Carpenter
- Department of Surgery, University of Nebraska Medical Center, Omaha, Nebraska
| | - Julian Kim
- Department of Surgery, University of Nebraska Medical Center, Omaha, Nebraska
| | - Timothy J Lackner
- Department of Surgery, University of Nebraska Medical Center, Omaha, Nebraska
| | - Constance J Mietus
- Department of Surgery, University of Nebraska Medical Center, Omaha, Nebraska
| | - Duy M Ha
- Department of Surgery, University of Nebraska Medical Center, Omaha, Nebraska
| | - Sara A Myers
- Department of Biomechanics, University of Nebraska at Omaha, Omaha, Nebraska
| | | | - Shuai Li
- Department of Surgery, University of Nebraska Medical Center, Omaha, Nebraska
| | - Christina Shields
- Department of Surgery, University of Nebraska Medical Center, Omaha, Nebraska
| | - Gregory Willcockson
- Department of Surgery, University of Nebraska Medical Center, Omaha, Nebraska
| | - Iraklis I Pipinos
- Department of Surgery, University of Nebraska Medical Center, Omaha, Nebraska
| |
Collapse
|
20
|
Johnson LL, Johnson J, Ober R, Holland A, Zhang G, Backer M, Backer J, Ali Z, Tekabe Y. Novel Receptor for Advanced Glycation End Products-Blocking Antibody to Treat Diabetic Peripheral Artery Disease. J Am Heart Assoc 2020; 10:e016696. [PMID: 33327730 PMCID: PMC7955479 DOI: 10.1161/jaha.120.016696] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Background Expression of receptor for advanced glycation end products (RAGE) plays an important role in diabetic peripheral artery disease. We proposed to show that treatment with an antibody blocking RAGE would improve hind limb perfusion and muscle viability in diabetic pig with femoral artery (FA) ligation. Methods and Results Purpose‐bred diabetic Yucatan minipigs with average fasting blood sugar of 357 mg/dL on insulin to maintain a glucose range of 300 to 500 mg/dL were treated with either a humanized monoclonal anti‐RAGE antibody (CR‐3) or nonimmune IgG. All pigs underwent intravascular occlusion of the anterior FA. Animals underwent (201Tl) single‐photon emission computed tomography/x‐ray computed tomography imaging on days 1 and 28 after FA occlusion, angiogenesis imaging with [99mTc]dodecane tetra‐acetic acid–polyethylene glycol–single chain vascular endothelial growth factor (scVEGF), muscle biopsies on day 7, and contrast angiogram day 28. Results showed greater increases in perfusion to the gastrocnemius from day 1 to day 28 in CR‐3 compared with IgG treated pigs (P=0.0024), greater uptake of [99mTc]dodecane tetra‐acetic acid‐polyethylene glycol‐scVEGF (scV/Tc) in the proximal gastrocnemius at day 7, confirmed by tissue staining for capillaries and vascular endothelial growth factor A, and less muscle loss and fibrosis at day 28. Contrast angiograms showed better reconstitution of the distal FA from collaterals in the CR‐3 versus IgG treated diabetic pigs (P=0.01). The gastrocnemius on nonoccluded limb at necropsy had higher 201Tl uptake (percentage injected dose per gram) and reduced RAGE staining in arterioles in CR‐3 treated compared with IgG treated animals (P=0.04). Conclusions A novel RAGE‐blocking antibody improved hind limb perfusion and angiogenesis in diabetic pigs with FA occlusion. Contributing factors are increased collaterals and reduced vascular RAGE expression. CR‐3 shows promise for clinical treatment in diabetic peripheral artery disease.
Collapse
Affiliation(s)
- Lynne L Johnson
- Department of Medicine Columbia University Medical Center New York NY
| | - Jordan Johnson
- Department of Medicine Columbia University Medical Center New York NY
| | - Rebecca Ober
- Department of Medicine Columbia University Medical Center New York NY
| | - April Holland
- Department of Medicine Columbia University Medical Center New York NY
| | - Geping Zhang
- Department of Medicine Columbia University Medical Center New York NY
| | | | | | - Ziad Ali
- Department of Medicine Columbia University Medical Center New York NY
| | - Yared Tekabe
- Department of Medicine Columbia University Medical Center New York NY
| |
Collapse
|
21
|
Cong G, Cui X, Ferrari R, Pipinos II, Casale GP, Chattopadhyay A, Sachdev U. Fibrosis Distinguishes Critical Limb Ischemia Patients from Claudicants in a Transcriptomic and Histologic Analysis. J Clin Med 2020; 9:jcm9123974. [PMID: 33302519 PMCID: PMC7763090 DOI: 10.3390/jcm9123974] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2020] [Revised: 11/24/2020] [Accepted: 11/26/2020] [Indexed: 01/01/2023] Open
Abstract
Most patients with critical limb ischemia (CLI) from peripheral arterial disease (PAD) do not have antecedent intermittent claudication (IC). We hypothesized that transcriptomic analysis would identify CLI-specific pathways, particularly in regards to fibrosis. Derivation cohort data from muscle biopsies in PAD and non-PAD (controls) was obtained from the Gene Expression Omnibus (GSE120642). Transcriptomic analysis indicated CLI patients (N = 16) had a unique gene expression profile, when compared with non-PAD controls (N = 15) and IC (N = 20). Ninety-eight genes differed between controls and IC, 2489 genes differed between CLI and controls, and 2783 genes differed between CLI and IC patients. Pathway enrichment analysis showed that pathways associated with TGFβ, collagen deposition, and VEGF signaling were enriched in CLI but not IC. Receiver operating curve (ROC) analysis of nine fibrosis core gene expression revealed the areas under the ROC (AUC) were all >0.75 for CLI. Furthermore, the fibrosis area (AUC = 0.81) and % fibrosis (AUC = 0.87) in validation cohort validated the fibrosis discrimination CLI from IC and control (all n = 12). In conclusion, transcriptomic analysis identified fibrosis pathways, including those involving TGFβ, as a novel gene expression feature for CLI but not IC. Fibrosis is an important characteristic of CLI, which we confirmed histologically, and may be a target for novel therapies in PAD.
Collapse
Affiliation(s)
- Guangzhi Cong
- Department of Surgery, University of Pittsburgh Medical Centre, Pittsburgh, PA 15217, USA; (G.C.); (X.C.); (R.F.)
- Department of Surgery, University of Nebraska at Medical Center, Omaha, NE 68198, USA
| | - Xiangdong Cui
- Department of Surgery, University of Pittsburgh Medical Centre, Pittsburgh, PA 15217, USA; (G.C.); (X.C.); (R.F.)
| | - Ricardo Ferrari
- Department of Surgery, University of Pittsburgh Medical Centre, Pittsburgh, PA 15217, USA; (G.C.); (X.C.); (R.F.)
| | - Iraklis I. Pipinos
- Department of Surgery and VA Research Service, VA Nebraska-Western Iowa Health Care System, Omaha, NE 68198, USA; (I.I.P.); (G.P.C.)
- Molecular Biology Information Service, Health Sciences Library System University of Pittsburgh, Pittsburgh, PA 15261, USA;
| | - George P. Casale
- Department of Surgery and VA Research Service, VA Nebraska-Western Iowa Health Care System, Omaha, NE 68198, USA; (I.I.P.); (G.P.C.)
| | - Ansuman Chattopadhyay
- Molecular Biology Information Service, Health Sciences Library System University of Pittsburgh, Pittsburgh, PA 15261, USA;
| | - Ulka Sachdev
- Department of Surgery, University of Pittsburgh Medical Centre, Pittsburgh, PA 15217, USA; (G.C.); (X.C.); (R.F.)
- Correspondence:
| |
Collapse
|
22
|
Chen M, Li C, Nie F, Liu X, Pipinos II, Li X. Synthesis and characterization of a hyaluronic acid-based hydrogel with antioxidative and thermosensitive properties. RSC Adv 2020; 10:33851-33860. [PMID: 35519025 PMCID: PMC9056774 DOI: 10.1039/d0ra07208g] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2020] [Accepted: 09/04/2020] [Indexed: 02/01/2023] Open
Abstract
Peripheral arterial disease (PAD) is initiated by progressive atherosclerotic blockages of the arteries supplying the lower extremities. The most common presentation of PAD is claudication (leg pain and severe walking limitation), with many patients progressing to limb threatening ischemia and amputation. Biomaterial approaches are just beginning to be explored in the therapy of PAD with different materials now being evaluated for the delivery of cells or growth factors in animal models of PAD. A biomaterial matrix optimized for minimally invasive injection in the ischemic leg muscles of patients with PAD is urgently needed. There are several important requirements for optimal delivery, retention, and performance of a biomaterial matrix in the mechanically, histologically, and biochemically dynamic intramuscular environment of the PAD leg. Ideally, the material should have mechanical properties matching those of the recipient muscle, undergo minimal swelling, and should introduce properties that can ameliorate the mechanisms operating in PAD like oxidative stress and damage. Here we have developed an injectable, antioxidative, and thermosensitive hydrogel system based on hyaluronic acid (HA). We first synthesized a unique crosslinker of disulfide-modified poloxamer F127 diacrylate. This crosslinker led to the creation of a thermosensitive HA hydrogel with minimal swelling and muscle-matching mechanical properties. We introduced unique disulfide groups into hydrogels which functioned as an effective reactive oxygen species scavenger, exhibited hydrogen peroxide (H2O2)-responsive degradation, and protected cells against H2O2-induced damage. Our antioxidative thermosensitive HA hydrogel system holds great potential for the treatment of the ischemic legs of patients with PAD.
Collapse
Affiliation(s)
- Meng Chen
- Mary & Dick Holland Regenerative Medicine Program, Department of Neurological Sciences, University of Nebraska Medical Center Omaha NE 68198 USA
| | - Cui Li
- Mary & Dick Holland Regenerative Medicine Program, Department of Neurological Sciences, University of Nebraska Medical Center Omaha NE 68198 USA
| | - Fujiao Nie
- Mary & Dick Holland Regenerative Medicine Program, Department of Neurological Sciences, University of Nebraska Medical Center Omaha NE 68198 USA
| | - Xiaoyan Liu
- Mary & Dick Holland Regenerative Medicine Program, Department of Neurological Sciences, University of Nebraska Medical Center Omaha NE 68198 USA
| | - Iraklis I Pipinos
- Department of Surgery, University of Nebraska Medical Center Omaha NE 68198 USA
| | - Xiaowei Li
- Mary & Dick Holland Regenerative Medicine Program, Department of Neurological Sciences, University of Nebraska Medical Center Omaha NE 68198 USA
| |
Collapse
|
23
|
Abnormal Microvascular Architecture, Fibrosis, and Pericyte Characteristics in the Calf Muscle of Peripheral Artery Disease Patients with Claudication and Critical Limb Ischemia. J Clin Med 2020; 9:jcm9082575. [PMID: 32784470 PMCID: PMC7464726 DOI: 10.3390/jcm9082575] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2020] [Revised: 07/17/2020] [Accepted: 07/22/2020] [Indexed: 01/05/2023] Open
Abstract
Work from our laboratory documents pathological events, including myofiber oxidative damage and degeneration, myofibrosis, micro-vessel (diameter = 50–150 μm) remodeling, and collagenous investment of terminal micro-vessels (diameter ≤ 15 µm) in the calf muscle of patients with Peripheral Artery Disease (PAD). In this study, we evaluate the hypothesis that the vascular pathology associated with the legs of PAD patients encompasses pathologic changes to the smallest micro-vessels in calf muscle. Biopsies were collected from the calf muscle of control subjects and patients with Fontaine Stage II and Stage IV PAD. Slide specimens were evaluated by Quantitative Multi-Spectral and Fluorescence Microscopy. Inter-myofiber collagen, stained with Masson Trichrome (MT), was increased in Stage II patients, and more substantially in Stage IV patients in association with collagenous thickening of terminal micro-vessel walls. Evaluation of the Basement Membrane (BM) of these vessels reveals increased thickness in Stage II patients, and increased thickness, diameter, and Collagen I deposition in Stage IV patients. Coverage of these micro-vessels with pericytes, key contributors to fibrosis and BM remodeling, was increased in Stage II patients, and was greatest in Stage IV patients. Vascular pathology of the legs of PAD patients extends beyond atherosclerotic main inflow arteries and affects the entire vascular tree—including the smallest micro-vessels.
Collapse
|
24
|
Pizzimenti M, Meyer A, Charles A, Giannini M, Chakfé N, Lejay A, Geny B. Sarcopenia and peripheral arterial disease: a systematic review. J Cachexia Sarcopenia Muscle 2020; 11:866-886. [PMID: 32648665 PMCID: PMC7432591 DOI: 10.1002/jcsm.12587] [Citation(s) in RCA: 60] [Impact Index Per Article: 15.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/29/2019] [Revised: 01/31/2020] [Accepted: 02/24/2020] [Indexed: 12/13/2022] Open
Abstract
BACKGROUND Patients with lower extremity peripheral arterial disease (PAD) and sarcopenia are a population at risk requiring specific and targeted care. The aim of this review is to gather all relevant studies associating sarcopenia and PAD and to identify the underlying pathophysiological mechanisms as well as potential therapeutic strategies to improve skeletal muscle function. METHODS A systematic review was carried out following the recommendations of the Preferred Reporting Items for Systematic Reviews and Meta-Analyses (PRISMA). RESULTS Data extraction allowed the evaluation of 140 publications; 87 met the inclusion criteria; of which 79 were included in the final review, reporting sufficient data for epidemiological and diagnostic criteria, mechanical analysis, and therapeutic approaches. Epidemiological analysis and diagnostic criteria were based on 18 studies following 2362 PAD patients [31.39% (SD 7.61) women], aged 72.42 (SD 2.84); sarcopenia was present in 34.63% (SD 12.86) of the patients. Mechanical and pathway analysis were based on five animal studies and 29 clinical reports, showing significantly altered muscle strength and function in 1352 PAD patients [26.49% (SD 17.32) women], aged 67.67 (SD 5.14) years; impaired muscle histology in 192 PAD patients (9.2% (SD 11.22) women), aged 64.3 (SD 0.99) years; +58.63% (SD 25.48) of oxidative stress in 69 PAD patients [16.96% (SD 8.10) women], aged 63.17 (SD 1.43) years; mitochondriopathy in 153 PAD patients [29.39% (SD 28.27) women], aged 63.50 (SD 1.83) years; +15.58% (SD 7.41) of inflammation in 900 PAD patients [40.77% (SD 3.71) women], aged 74.88 (SD 2.76) years; and altered signalling pathways in 51 PAD patients [34.45% (SD 32.23) women], aged 72.25 (SD 5.25) years. Therapeutic approaches analysis was based on seven animal studies and 21 clinical reports. In total, 884 patients followed an exercise therapy, and 18 received an angiogenesis treatment; 30.84% (SD 17.74) were women. Mean ages of patients studied were 66.85 (SD 3.96). CONCLUSIONS Sarcopenia and lower extremity PAD have musculoskeletal consequences that directly impair patients' quality of life and prognosis. Although PAD is primarily a vascular disease, all etiological factors of sarcopenia identified so far are present in PAD. Indeed, both sarcopenia and PAD are accompanied by oxidative stress, skeletal muscle mitochondrial impairments, inflammation, inhibition of specific pathways regulating muscle synthesis or protection (i.e. IGF-1, RISK, and SAFE), and activation of molecules associated with muscle degradation. To date, besides revascularization, the best therapeutic strategy includes exercise, but approaches targeting the underlying mechanisms still deserve further studies.
Collapse
Affiliation(s)
- Mégane Pizzimenti
- FMTS, Department of Physiology, EA3072 Mitochondria, Oxidative Stress and Muscular ProtectionUniversity of StrasbourgStrasbourgFrance
- Department of Physiology and Functional ExplorationsUniversity Hospital of StrasbourgStrasbourgFrance
| | - Alain Meyer
- FMTS, Department of Physiology, EA3072 Mitochondria, Oxidative Stress and Muscular ProtectionUniversity of StrasbourgStrasbourgFrance
- Department of Physiology and Functional ExplorationsUniversity Hospital of StrasbourgStrasbourgFrance
| | - Anne‐Laure Charles
- FMTS, Department of Physiology, EA3072 Mitochondria, Oxidative Stress and Muscular ProtectionUniversity of StrasbourgStrasbourgFrance
| | - Margherita Giannini
- FMTS, Department of Physiology, EA3072 Mitochondria, Oxidative Stress and Muscular ProtectionUniversity of StrasbourgStrasbourgFrance
- Department of Physiology and Functional ExplorationsUniversity Hospital of StrasbourgStrasbourgFrance
| | - Nabil Chakfé
- FMTS, Department of Physiology, EA3072 Mitochondria, Oxidative Stress and Muscular ProtectionUniversity of StrasbourgStrasbourgFrance
- Department of Vascular Surgery and Kidney TransplantationUniversity Hospital of StrasbourgStrasbourgFrance
| | - Anne Lejay
- FMTS, Department of Physiology, EA3072 Mitochondria, Oxidative Stress and Muscular ProtectionUniversity of StrasbourgStrasbourgFrance
- Department of Vascular Surgery and Kidney TransplantationUniversity Hospital of StrasbourgStrasbourgFrance
| | - Bernard Geny
- FMTS, Department of Physiology, EA3072 Mitochondria, Oxidative Stress and Muscular ProtectionUniversity of StrasbourgStrasbourgFrance
- Department of Physiology and Functional ExplorationsUniversity Hospital of StrasbourgStrasbourgFrance
| |
Collapse
|
25
|
Chevalier J, Yin H, Arpino JM, O'Neil C, Nong Z, Gilmore KJ, Lee JJ, Prescott E, Hewak M, Rice CL, Dubois L, Power AH, Hamilton DW, Pickering JG. Obstruction of Small Arterioles in Patients with Critical Limb Ischemia due to Partial Endothelial-to-Mesenchymal Transition. iScience 2020; 23:101251. [PMID: 32629616 PMCID: PMC7322363 DOI: 10.1016/j.isci.2020.101251] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2020] [Revised: 05/03/2020] [Accepted: 06/04/2020] [Indexed: 12/12/2022] Open
Abstract
Critical limb ischemia (CLI) is a hazardous manifestation of atherosclerosis and treatment failure is common. Abnormalities in the arterioles might underlie this failure but the cellular pathobiology of microvessels in CLI is poorly understood. We analyzed 349 intramuscular arterioles in lower limb specimens from individuals with and without CLI. Arteriolar densities were 1.8-fold higher in CLI muscles. However, 33% of small (<20 μm) arterioles were stenotic and 9% were completely occluded. The lumens were closed by bulky, re-oriented endothelial cells expressing abundant N-cadherin that uniquely localized between adjacent and opposing endothelial cells. S100A4 and SNAIL1 were also expressed, supporting an endothelial-to-mesenchymal transition. SMAD2/3 was activated in occlusive endothelial cells and TGFβ1 was increased in the adjacent mural cells. These findings identify a microvascular closure process based on mesenchymal transitions in a hyper-TGFß environment that may, in part, explain the limited success of peripheral artery revascularization procedures. Small arterioles in patients with critical limb ischemia can be narrowed or closed Arteriolar occlusion is due to bulky endothelial cells Bulky endothelial cells have partially transitioned to mesenchymal cells Occlusive cells interlock laterally and apically via N-cadherin neo-adhesions
Collapse
Affiliation(s)
- Jacqueline Chevalier
- Robarts Research Institute, Schulich School of Medicine and Dentistry, Western University, London, Canada; Department of Medical Biophysics, Schulich School of Medicine and Dentistry, Western University, London, Canada
| | - Hao Yin
- Robarts Research Institute, Schulich School of Medicine and Dentistry, Western University, London, Canada
| | - John-Michael Arpino
- Robarts Research Institute, Schulich School of Medicine and Dentistry, Western University, London, Canada; Department of Medical Biophysics, Schulich School of Medicine and Dentistry, Western University, London, Canada
| | - Caroline O'Neil
- Robarts Research Institute, Schulich School of Medicine and Dentistry, Western University, London, Canada
| | - Zengxuan Nong
- Robarts Research Institute, Schulich School of Medicine and Dentistry, Western University, London, Canada
| | - Kevin J Gilmore
- Department of Anatomy and Cell Biology, Schulich School of Medicine and Dentistry, Western University, London, Canada; School of Kinesiology, Faculty of Health Sciences, Western University, London, Canada
| | - Jason J Lee
- Robarts Research Institute, Schulich School of Medicine and Dentistry, Western University, London, Canada; Department of Medicine, Schulich School of Medicine and Dentistry, Western University, London, Canada; Department of Medical Biophysics, Schulich School of Medicine and Dentistry, Western University, London, Canada
| | - Emma Prescott
- Robarts Research Institute, Schulich School of Medicine and Dentistry, Western University, London, Canada; Department of Medical Biophysics, Schulich School of Medicine and Dentistry, Western University, London, Canada
| | - Matthew Hewak
- Department of Anatomy and Cell Biology, Schulich School of Medicine and Dentistry, Western University, London, Canada
| | - Charles L Rice
- Department of Anatomy and Cell Biology, Schulich School of Medicine and Dentistry, Western University, London, Canada; School of Kinesiology, Faculty of Health Sciences, Western University, London, Canada
| | - Luc Dubois
- Department of Surgery, Schulich School of Medicine and Dentistry, Western University, London, Canada
| | - Adam H Power
- Department of Surgery, Schulich School of Medicine and Dentistry, Western University, London, Canada
| | - Douglas W Hamilton
- Department of Anatomy and Cell Biology, Schulich School of Medicine and Dentistry, Western University, London, Canada
| | - J Geoffrey Pickering
- Robarts Research Institute, Schulich School of Medicine and Dentistry, Western University, London, Canada; Department of Medicine, Schulich School of Medicine and Dentistry, Western University, London, Canada; Department of Medical Biophysics, Schulich School of Medicine and Dentistry, Western University, London, Canada; Department of Biochemistry, Schulich School of Medicine and Dentistry, Western University, London, Canada.
| |
Collapse
|
26
|
Kosmac K, Gonzalez‐Freire M, McDermott MM, White SH, Walton RG, Sufit RL, Tian L, Li L, Kibbe MR, Criqui MH, Guralnik JM, S. Polonsky T, Leeuwenburgh C, Ferrucci L, Peterson CA. Correlations of Calf Muscle Macrophage Content With Muscle Properties and Walking Performance in Peripheral Artery Disease. J Am Heart Assoc 2020; 9:e015929. [PMID: 32390569 PMCID: PMC7660852 DOI: 10.1161/jaha.118.015929] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/15/2020] [Accepted: 04/03/2020] [Indexed: 12/25/2022]
Abstract
Background Peripheral artery disease (PAD) is a manifestation of atherosclerosis characterized by reduced blood flow to the lower extremities and mobility loss. Preliminary evidence suggests PAD damages skeletal muscle, resulting in muscle impairments that contribute to functional decline. We sought to determine whether PAD is associated with an altered macrophage profile in gastrocnemius muscles and whether muscle macrophage populations are associated with impaired muscle phenotype and walking performance in patients with PAD. Methods and Results Macrophages, satellite cells, and extracellular matrix in gastrocnemius muscles from 25 patients with PAD and 7 patients without PAD were quantified using immunohistochemistry. Among patients with PAD, both the absolute number and percentage of cluster of differentiation (CD) 11b+CD206+ M2-like macrophages positively correlated to satellite cell number (r=0.461 [P=0.023] and r=0.416 [P=0.042], respectively) but not capillary density or extracellular matrix. The number of CD11b+CD206- macrophages negatively correlated to 4-meter walk tests at normal (r=-0.447, P=0.036) and fast pace (r=-0.510, P=0.014). Extracellular matrix occupied more muscle area in PAD compared with non-PAD (8.72±2.19% versus 5.30±1.03%, P<0.001) and positively correlated with capillary density (r=0.656, P<0.001). Conclusions Among people with PAD, higher CD206+ M2-like macrophage abundance was associated with greater satellite cell numbers and muscle fiber size. Lower CD206- macrophage abundance was associated with better walking performance. Further study is needed to determine whether CD206+ macrophages are associated with ongoing reparative processes enabling skeletal muscle adaptation to damage with PAD. Registration URL: https://www.clinicaltrials.gov; Unique identifiers: NCT00693940, NCT01408901, NCT0224660.
Collapse
Affiliation(s)
- Kate Kosmac
- College of Health Sciences and Center for Muscle BiologyUniversity of KentuckyLexingtonKY
| | | | - Mary M. McDermott
- Department of MedicineNorthwestern University Feinberg School of MedicineChicagoIL
- Department of Preventive MedicineNorthwestern University Feinberg School of MedicineChicagoIL
| | - Sarah H. White
- College of Health Sciences and Center for Muscle BiologyUniversity of KentuckyLexingtonKY
| | - R. Grace Walton
- College of Health Sciences and Center for Muscle BiologyUniversity of KentuckyLexingtonKY
| | - Robert L. Sufit
- Department of NeurologyNorthwestern University Feinberg School of MedicineChicagoIL
| | - Lu Tian
- Department of Health Research & PolicyStanford UniversityStanfordCA
| | - Lingyu Li
- Department of Preventive MedicineNorthwestern University Feinberg School of MedicineChicagoIL
| | - Melina R. Kibbe
- Department of SurgeryUniversity of North Carolina School of MedicineChapel HillNC
| | - Michael H. Criqui
- Department of Family Medicine and Public HealthUniversity of California at San DiegoLa JollaCA
| | | | | | - Christiaan Leeuwenburgh
- Department of Aging and Geriatric ResearchUniversity of Florida Institute on AgingGainesvilleFL
| | | | - Charlotte A. Peterson
- College of Health Sciences and Center for Muscle BiologyUniversity of KentuckyLexingtonKY
| |
Collapse
|
27
|
Kim DJK, Kuroki M, Cui J, Gao Z, Luck JC, Pai S, Miller A, Sinoway L. Systemic and regional hemodynamic response to activation of the exercise pressor reflex in patients with peripheral artery disease. Am J Physiol Heart Circ Physiol 2020; 318:H916-H924. [PMID: 32108523 DOI: 10.1152/ajpheart.00493.2019] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
Patients with peripheral artery disease (PAD) have an accentuated exercise pressor reflex (EPR) during exercise of the affected limb. The underlying hemodynamic changes responsible for this, and its effect on blood flow to the exercising extremity, are unclear. We tested the hypothesis that the exaggerated EPR in PAD is mediated by an increase in total peripheral resistance (TPR), which augments redistribution of blood flow to the exercising limb. Twelve patients with PAD and 12 age- and sex-matched subjects without PAD performed dynamic plantar flexion (PF) using the most symptomatic leg at progressive workloads of 2-12 kg (increased by 1 kg/min until onset of fatigue). We measured heart rate, beat-by-beat blood pressure, femoral blood flow velocity (FBV), and muscle oxygen saturation (SmO2) continuously during the exercise. Femoral blood flow (FBF) was calculated from FBV and baseline femoral artery diameter. Stroke volume (SV), cardiac output (CO), and TPR were derived from the blood pressure tracings. Mean arterial blood pressure and TPR were significantly augmented in PAD compared with control during PF. FBF increased during exercise to an equal extent in both groups. However, SmO2 of the exercising limb remained significantly lower in PAD compared with control. We conclude that the exaggerated pressor response in PAD is mediated by an abnormal TPR response, which augments redistribution of blood flow to the exercising extremity, leading to an equal rise in FBF compared with controls. However, this increase in FBF is not sufficient to normalize the SmO2 response during exercise in patients with PAD.NEW & NOTEWORTHY In this study, peripheral artery disease (PAD) patients and healthy control subjects performed graded, dynamic plantar flexion exercise. Data from this study suggest that previously reported exaggerated exercise pressor reflex in patients with PAD is driven by greater vasoconstriction in nonexercising vascular territories which also results in a redistribution of blood flow to the exercising extremity. However, this rise in femoral blood flow does not fully correct the oxygen deficit due to changes in other mechanisms that require further investigation.
Collapse
Affiliation(s)
- Danielle Jin-Kwang Kim
- Penn State Heart and Vascular Institute, Penn State College of Medicine, Hershey, Pennsylvania
| | - Marcos Kuroki
- Penn State Heart and Vascular Institute, Penn State College of Medicine, Hershey, Pennsylvania.,Department of Surgery, Penn State College of Medicine, Hershey, Pennsylvania
| | - Jian Cui
- Penn State Heart and Vascular Institute, Penn State College of Medicine, Hershey, Pennsylvania
| | - Zhaohui Gao
- Penn State Heart and Vascular Institute, Penn State College of Medicine, Hershey, Pennsylvania
| | - J Carter Luck
- Penn State Heart and Vascular Institute, Penn State College of Medicine, Hershey, Pennsylvania
| | - Sam Pai
- Penn State Heart and Vascular Institute, Penn State College of Medicine, Hershey, Pennsylvania
| | - Amanda Miller
- Penn State Heart and Vascular Institute, Penn State College of Medicine, Hershey, Pennsylvania
| | - Lawrence Sinoway
- Penn State Heart and Vascular Institute, Penn State College of Medicine, Hershey, Pennsylvania
| |
Collapse
|
28
|
Cheng AJ, Jude B, Lanner JT. Intramuscular mechanisms of overtraining. Redox Biol 2020; 35:101480. [PMID: 32179050 PMCID: PMC7284919 DOI: 10.1016/j.redox.2020.101480] [Citation(s) in RCA: 56] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2020] [Revised: 02/08/2020] [Accepted: 02/24/2020] [Indexed: 01/04/2023] Open
Abstract
Strenuous exercise is a potent stimulus to induce beneficial skeletal muscle adaptations, ranging from increased endurance due to mitochondrial biogenesis and angiogenesis, to increased strength from hypertrophy. While exercise is necessary to trigger and stimulate muscle adaptations, the post-exercise recovery period is equally critical in providing sufficient time for metabolic and structural adaptations to occur within skeletal muscle. These cyclical periods between exhausting exercise and recovery form the basis of any effective exercise training prescription to improve muscle endurance and strength. However, imbalance between the fatigue induced from intense training/competitions, and inadequate post-exercise/competition recovery periods can lead to a decline in physical performance. In fact, prolonged periods of this imbalance may eventually lead to extended periods of performance impairment, referred to as the state of overreaching that may progress into overtraining syndrome (OTS). OTS may have devastating implications on an athlete's career and the purpose of this review is to discuss potential underlying mechanisms that may contribute to exercise-induced OTS in skeletal muscle. First, we discuss the conditions that lead to OTS, and their potential contributions to impaired skeletal muscle function. Then we assess the evidence to support or refute the major proposed mechanisms underlying skeletal muscle weakness in OTS: 1) glycogen depletion hypothesis, 2) muscle damage hypothesis, 3) inflammation hypothesis, and 4) the oxidative stress hypothesis. Current data implicates reactive oxygen and nitrogen species (ROS) and inflammatory pathways as the most likely mechanisms contributing to OTS in skeletal muscle. Finally, we allude to potential interventions that can mitigate OTS in skeletal muscle.
Collapse
Affiliation(s)
- Arthur J Cheng
- York University, Faculty of Health/ School of Kinesiology and Health Sciences, Muscle Health Research Centre/ Muscle Calcium Dynamics Lab, 351 Farquharson Life Sciences Building, Toronto, M3J 1P3, Canada
| | - Baptiste Jude
- Karolinska Institutet, Department of Physiology and Pharmacology, Molecular Muscle Physiology and Pathophysiology laboratory, Biomedicum C5, 17177, Stockholm, Sweden
| | - Johanna T Lanner
- Karolinska Institutet, Department of Physiology and Pharmacology, Molecular Muscle Physiology and Pathophysiology laboratory, Biomedicum C5, 17177, Stockholm, Sweden.
| |
Collapse
|
29
|
Stavres J, Sica CT, Blaha C, Herr M, Wang J, Pai S, Cauffman A, Vesek J, Yang QX, Sinoway LI. The exercise pressor reflex and active O 2 transport in peripheral arterial disease. Physiol Rep 2019; 7:e14243. [PMID: 31637857 PMCID: PMC6803779 DOI: 10.14814/phy2.14243] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2019] [Accepted: 09/06/2019] [Indexed: 12/15/2022] Open
Abstract
It is unclear if the exaggerated exercise pressor reflex observed in peripheral arterial disease (PAD) patients facilitates Oxygen (O2 ) transport during presymptomatic exercise. Accordingly, this study compared O2 transport between PAD patients and healthy controls during graded presymptomatic work. Seven PAD patients and seven healthy controls performed dynamic plantar flexion in the bore of a 3T MRI scanner. Perfusion, T2 * (an index of relative tissue oxygenation), and SvO2 (a measure of venous oxygen saturation) were collected from the medial gastrocnemius (MG) during the final 10 seconds of each stage. Blood pressure was also collected during the final minute of each stage. As expected, the pressor response to presymptomatic work (4 kg) was exaggerated in PAD patients compared to controls (+14 mmHg ± 4 and +7 mmHg ± 2, P ≤ 0.034). When normalized to changes in free water content (S0 ), T2 * was lower at 2 kg in PAD patients compared to controls (-0.91 Δms/ΔAU ± 0.3 and 0.57 Δms/ΔAU ± 0.3, P ≤ 0.008); followed by a greater increase in perfusion at 4 kg in the PAD group (+18.8 mL/min/100g ± 6.2 vs. -0.21 mL/min/100g ± 3.2 in PAD and controls, P ≤ 0.026). Lastly, SvO2 decreased at 4 kg in both groups (-13% ± 4 and -2% ± 4 in PAD and controls, P ≤ 0.049), suggesting an increase in O2 extraction in the PAD group. Based on these findings, O2 transport appears to be augmented during graded presymptomatic work in PAD patients, and this may be partially mediated by an exaggerated pressor response.
Collapse
Affiliation(s)
- Jon Stavres
- Penn State Heart and Vascular InstitutePennsylvania State University College of MedicineMilton S. Hershey Medical CenterHersheyPennsylvania
| | - Christopher T. Sica
- Department of RadiologyPennsylvania State University College of MedicineMilton S. Hershey Medical CenterHersheyPennsylvania
| | - Cheryl Blaha
- Penn State Heart and Vascular InstitutePennsylvania State University College of MedicineMilton S. Hershey Medical CenterHersheyPennsylvania
| | - Michael Herr
- Penn State Heart and Vascular InstitutePennsylvania State University College of MedicineMilton S. Hershey Medical CenterHersheyPennsylvania
| | - Jianli Wang
- Department of RadiologyPennsylvania State University College of MedicineMilton S. Hershey Medical CenterHersheyPennsylvania
| | - Samuel Pai
- Penn State Heart and Vascular InstitutePennsylvania State University College of MedicineMilton S. Hershey Medical CenterHersheyPennsylvania
| | - Aimee Cauffman
- Penn State Heart and Vascular InstitutePennsylvania State University College of MedicineMilton S. Hershey Medical CenterHersheyPennsylvania
| | - Jeffrey Vesek
- Milton S. Hershey Medical Center, Department of Molecular BiologyPennsylvania State University College of MedicineHersheyPennsylvania
| | - Qing X. Yang
- Department of RadiologyPennsylvania State University College of MedicineMilton S. Hershey Medical CenterHersheyPennsylvania
- Department of NeurosurgeryPennsylvania State University College of MedicineMilton S. Hershey Medical CenterHersheyPennsylvania
| | - Lawrence I. Sinoway
- Penn State Heart and Vascular InstitutePennsylvania State University College of MedicineMilton S. Hershey Medical CenterHersheyPennsylvania
| |
Collapse
|
30
|
Fuglestad MA, Hernandez H, Gao Y, Ybay H, Schieber MN, Brunette KE, Myers SA, Casale GP, Pipinos II. A low-cost, wireless near-infrared spectroscopy device detects the presence of lower extremity atherosclerosis as measured by computed tomographic angiography and characterizes walking impairment in peripheral artery disease. J Vasc Surg 2019; 71:946-957. [PMID: 31445826 DOI: 10.1016/j.jvs.2019.04.493] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2019] [Accepted: 04/28/2019] [Indexed: 01/14/2023]
Abstract
BACKGROUND Patients with peripheral artery disease (PAD) who experience intermittent claudication report a range of symptoms. Patients with symptoms other than classically described intermittent claudication may be at the highest risk for functional decline and mobility loss. Therefore, technologies allowing for characterization of PAD severity are desirable. Near-infrared spectroscopy (NIRS) allows for measurements of muscle heme oxygen saturation (StO2) during exercise. We hypothesized lower extremities affected by PAD would exhibit distinct NIRS profiles as measured by a low-cost, wireless NIRS device and that NIRS during exercise predicts walking limitation. METHODS We recruited 40 patients with PAD and 10 control participants. All patients with PAD completed a computed tomographic angiography, 6-minute walk test, and a standardized treadmill test. Controls completed a 540-second treadmill test for comparison. StO2 measurements were continuously taken from the gastrocnemius during exercise. Variables were analyzed by Fischer's exact, χ2, Wilcoxon rank-sum, and Kruskal-Wallis tests as appropriate. Correlations were assessed by partial Spearman correlation coefficients adjusted for occlusive disease pattern. RESULTS Patients with PAD experienced claudication onset at a median of 108 seconds with a median peak walking time of 288 seconds. The baseline StO2 was similar between PAD and control. The StO2 of PAD and control participants dropped below baseline at a median of 1 and 104 seconds of exercise, respectively (P < .0001). Patients with PAD reached minimum StO2 earlier than control participants (119 seconds vs 522 seconds, respectively; P < .001) and experienced a greater change in StO2 at 1 minute of exercise (-73.2% vs 8.3%; P < .0001) and a greater decrease at minimum exercise StO2 (-83.4% vs -16.1%; P < .0001). For patients with PAD, peak walking time, and 6-minute walking distance correlated with percent change in StO2 at 1 minute of exercise (r = -0.76 and -0.67, respectively; P < .001) and time to minimum StO2 (r = 0.79 and 0.70, respectively; P < .0001). CONCLUSIONS In this initial evaluation of a novel, low-cost NIRS device, lower extremities affected by PAD exhibited characteristic changes in calf muscle StO2, which differentiated them from healthy controls and were strongly correlated with walking impairment. These findings confirm and expand on previous work demonstrating the potential clinical value of NIRS devices and the need for further research investigating the ability of low-cost NIRS technology to evaluate, diagnose, and monitor treatment response in PAD.
Collapse
Affiliation(s)
| | - Hernan Hernandez
- Department of Surgery, University of Nebraska Medical Center, Omaha, Neb
| | - Yue Gao
- Department of Surgery, University of Nebraska Medical Center, Omaha, Neb
| | - Henamari Ybay
- Department of Biomechanics, University of Nebraska at Omaha, Omaha, Neb
| | - Molly N Schieber
- Department of Biomechanics, University of Nebraska at Omaha, Omaha, Neb
| | | | - Sara A Myers
- Department of Biomechanics, University of Nebraska at Omaha, Omaha, Neb
| | - George P Casale
- Department of Surgery, University of Nebraska Medical Center, Omaha, Neb
| | - Iraklis I Pipinos
- Department of Surgery, University of Nebraska Medical Center, Omaha, Neb; Department of Biomechanics, University of Nebraska at Omaha, Omaha, Neb; Department of Surgery, Veterans Affairs Medical Center, Omaha, Neb.
| |
Collapse
|
31
|
Ueshima E, Fujimori M, Kodama H, Felsen D, Chen J, Durack JC, Solomon SB, Coleman JA, Srimathveeravalli G. Macrophage-secreted TGF-β 1 contributes to fibroblast activation and ureteral stricture after ablation injury. Am J Physiol Renal Physiol 2019; 317:F52-F64. [PMID: 31017012 PMCID: PMC6692725 DOI: 10.1152/ajprenal.00260.2018] [Citation(s) in RCA: 55] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2018] [Revised: 04/10/2019] [Accepted: 04/16/2019] [Indexed: 12/28/2022] Open
Abstract
Iatrogenic injury to the healthy ureter during ureteroscope-guided ablation of malignant or nonmalignant disease can result in ureteral stricture. Transforming growth factor (TGF)-β1-mediated scar formation is considered to underlie ureteral stricture, but the cellular sources of this cytokine and the sequelae preceding iatrogenic stricture formation are unknown. Using a swine model of ureteral injury with irreversible electroporation (IRE), we evaluated the cellular sources of TGF-β1 and scar formation at the site of injury and examined in vitro whether the effects of TGF-β1 could be attenuated by pirfenidone. We observed that proliferation and α-smooth muscle actin expression by fibroblasts were restricted to injured tissue and coincided with proliferation of macrophages. Collagen deposition and scarring of the ureter were associated with increased TGF-β1 expression in both fibroblasts and macrophages. Using in vitro experiments, we demonstrated that macrophages stimulated by cells that were killed with IRE, but not LPS, secreted TGF-β1, consistent with a wound healing phenotype. Furthermore, using 3T3 fibroblasts, we demonstrated that stimulation with paracrine TGF-β1 is necessary and sufficient to promote differentiation of fibroblasts and increase collagen secretion. In vitro, we also showed that treatment with pirfenidone, which modulates TGF-β1 activity, limits proliferation and TGF-β1 secretion in macrophages and scar formation-related activity by fibroblasts. In conclusion, we identified wound healing-related macrophages to be an important source of TGF-β1 in the injured ureter, which may be a paracrine source of TGF-β1 driving scar formation by fibroblasts, resulting in stricture formation.
Collapse
Affiliation(s)
- Eisuke Ueshima
- Department of Radiology, Interventional Radiology Service, Memorial Sloan Kettering Cancer Center , New York, New York
| | - Masashi Fujimori
- Department of Radiology, Interventional Radiology Service, Memorial Sloan Kettering Cancer Center , New York, New York
| | - Hiroshi Kodama
- Department of Radiology, Interventional Radiology Service, Memorial Sloan Kettering Cancer Center , New York, New York
| | - Diane Felsen
- Institute for Pediatric Urology, Department of Urology, Weill Cornell Medicine, New York, New York
| | - Jie Chen
- Institute for Pediatric Urology, Department of Urology, Weill Cornell Medicine, New York, New York
| | - Jeremy C Durack
- Department of Radiology, Interventional Radiology Service, Memorial Sloan Kettering Cancer Center , New York, New York
- Department of Radiology, Weill Cornell Medicine, New York, New York
| | - Stephen B Solomon
- Department of Radiology, Interventional Radiology Service, Memorial Sloan Kettering Cancer Center , New York, New York
- Department of Radiology, Weill Cornell Medicine, New York, New York
| | - Jonathan A Coleman
- Division of Urology, Department of Surgery, Memorial Sloan Kettering Cancer Center , New York, New York
| | - Govindarajan Srimathveeravalli
- Department of Radiology, Interventional Radiology Service, Memorial Sloan Kettering Cancer Center , New York, New York
- Department of Radiology, Weill Cornell Medicine, New York, New York
- Department of Mechanical and Industrial Engineering, University of Massachusetts, Amherst, Massachusetts
| |
Collapse
|
32
|
Role of Transforming Growth Factor-β in Skeletal Muscle Fibrosis: A Review. Int J Mol Sci 2019; 20:ijms20102446. [PMID: 31108916 PMCID: PMC6566291 DOI: 10.3390/ijms20102446] [Citation(s) in RCA: 74] [Impact Index Per Article: 14.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2019] [Revised: 05/09/2019] [Accepted: 05/15/2019] [Indexed: 02/07/2023] Open
Abstract
Transforming growth factor-beta (TGF-β) isoforms are cytokines involved in a variety of cellular processes, including myofiber repair and regulation of connective tissue formation. Activation of the TGF-β pathway contributes to pathologic fibrosis in most organs. Here, we have focused on examining the evidence demonstrating the involvement of TGF-β in the fibrosis of skeletal muscle particularly. The TGF-β pathway plays a role in different skeletal muscle myopathies, and TGF-β signaling is highly induced in these diseases. In this review, we discuss different molecular mechanisms of TGF-β-mediated skeletal muscle fibrosis and highlight different TGF-β-targeted treatments that target these relevant pathways.
Collapse
|
33
|
Transforming Growth Factor- β Protects against Inflammation-Related Atherosclerosis in South African CKD Patients. Int J Nephrol 2018; 2018:8702372. [PMID: 29977619 PMCID: PMC6011064 DOI: 10.1155/2018/8702372] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/24/2017] [Revised: 04/16/2018] [Accepted: 05/10/2018] [Indexed: 12/18/2022] Open
Abstract
Background Transforming growth factor-β (TGF-β) may inhibit the development of atherosclerosis. We evaluated serum levels of TGF-β isoforms concurrently with serum levels of endotoxin and various inflammatory markers. In addition, we determined if any association exists between polymorphisms in the TGF-β1 gene and atherosclerosis in South African CKD patients. Methods We studied 120 CKD patients and 40 healthy controls. Serum TGF-β1, TGF-β2, TGF-β3, endotoxin, and inflammatory markers were measured. Functional polymorphisms in the TGF-β1 genes were genotyped using a polymerase chain reaction-sequence specific primer method and carotid intima media thickness (CIMT) was assessed by B-mode ultrasonography. Results TGF-β isoforms levels were significantly lower in the patients with atherosclerosis compared to patients without atherosclerosis (p<0.001). Overall, TGF-β isoforms had inverse relationships with CIMT. TGF-β1 and TGF-β2 levels were significantly lower in patients with carotid plaque compared to those without carotid plaque [TGF-β1: 31.9 (17.2 – 42.2) versus 45.9 (35.4 – 58.1) ng/ml, p=0.016; and TGF-β2: 1.46 (1.30 – 1.57) versus 1.70 (1.50 – 1.87) ng/ml, p=0.013]. In multiple logistic regression, age, TGF-β2, and TGF-β3 were the only independent predictors of subclinical atherosclerosis in CKD patients [age: odds ratio (OR), 1.054; 95% confidence interval (CI): 1.003 – 1.109, p=0.039; TGF-β2: OR, 0.996; 95% CI: 0.994–0.999, p=0.018; TGF-β3: OR, 0.992; 95% CI: 0.985–0.999, p=0.029). TGF-β1 genotypes did not influence serum levels of TGF-β1 and no association was found between the TGF-β1 gene polymorphisms and atherosclerosis risk. Conclusion TGF-β isoforms seem to offer protection against the development of atherosclerosis among South African CKD patients.
Collapse
|
34
|
Hart CR, Layec G, Trinity JD, Kwon OS, Zhao J, Reese VR, Gifford JR, Richardson RS. Increased skeletal muscle mitochondrial free radical production in peripheral arterial disease despite preserved mitochondrial respiratory capacity. Exp Physiol 2018; 103:838-850. [PMID: 29604234 DOI: 10.1113/ep086905] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2018] [Accepted: 03/23/2018] [Indexed: 12/17/2022]
Abstract
NEW FINDINGS What is the central question of this study? What is the degree to which skeletal muscle mitochondria-derived reactive oxygen species (ROS) production is linked to impaired skeletal muscle function in patients with early-stage peripheral arterial disease (PAD) and what is the impact on mitochondrial respiratory capacity? What is the main finding and its importance? This is the first study to document increased mitochondria-derived reactive oxygen species production associated with elevated intramuscular oxidative stress, despite preserved mitochondrial respiratory function, in patients with PAD. Furthermore, systemic inflammation, mitochondria-derived ROS production and skeletal muscle oxidative stress were strongly correlated to disease severity, as indicated by ankle-brachial index, in patients with PAD. ABSTRACT Skeletal muscle mitochondrial dysfunction, which is not fully explained by disease-related arterial occlusion, has been implicated in the pathophysiology of peripheral arterial disease (PAD). Therefore, this study comprehensively assessed mitochondrial respiratory function in biopsies from the gastrocnemius of 10 patients with PAD (Fontaine Stage II) and 12 healthy controls (HC). Intramuscular and systemic inflammation, mitochondria-derived reactive oxygen species (ROS) production, and oxidative stress were also assessed to better understand the mechanisms responsible for the proposed PAD-induced mitochondrial dysfunction. Interestingly, mitochondrial respiratory capacity, assessed as complex I (CI) and complex II (CII)-driven State 3 respiration, measured separately and in combination (State 3 CI+II), revealed no difference between the patients with PAD and the HC. However, mitochondria-derived ROS production was significantly elevated in PAD (HC: 1.0 ± 0.9; PAD: 4.3 ± 1.0 AU (mg tissue)-1 ). Furthermore, patients with PAD exhibited significantly greater concentrations of the pro-inflammatory markers tumour necrosis factor α in plasma (HC: 0.9 ± 0.4; PAD: 2.0 ± 0.3 pg ml-1 ) and interleukin 6 in both plasma (HC: 2.3 ± 0.4; PAD: 4.3 ± 0.5 pg ml-1 ) and muscle (∼75% greater). Intramuscular oxidative stress, assessed by protein carbonyls and 4-hydroxynonenal, was significantly greater in PAD compared to HC. Ankle brachial index was significantly correlated with intramuscular inflammation, oxidative stress and mitochondria-derived ROS production. Thus, elevated intramuscular inflammation, oxidative stress and mitochondria-derived ROS production are likely to contribute to the pathophysiology of the skeletal muscle dysfunction associated with PAD, even in the presence of preserved mitochondrial respiratory function in this population.
Collapse
Affiliation(s)
- Corey R Hart
- Geriatric Research, Education, and Clinical Center, George E. Whalen VA Medical Center, Salt Lake City, UT, USA.,Department of Exercise and Sport Science, University of Utah, Salt Lake City, UT, USA
| | - Gwenael Layec
- Geriatric Research, Education, and Clinical Center, George E. Whalen VA Medical Center, Salt Lake City, UT, USA.,Department of Medicine, Division of Geriatrics, University of Utah, Salt Lake City, UT, USA
| | - Joel D Trinity
- Geriatric Research, Education, and Clinical Center, George E. Whalen VA Medical Center, Salt Lake City, UT, USA.,Department of Medicine, Division of Geriatrics, University of Utah, Salt Lake City, UT, USA
| | - Oh Sung Kwon
- Geriatric Research, Education, and Clinical Center, George E. Whalen VA Medical Center, Salt Lake City, UT, USA.,Department of Medicine, Division of Geriatrics, University of Utah, Salt Lake City, UT, USA
| | - Jia Zhao
- Geriatric Research, Education, and Clinical Center, George E. Whalen VA Medical Center, Salt Lake City, UT, USA
| | - Van R Reese
- Geriatric Research, Education, and Clinical Center, George E. Whalen VA Medical Center, Salt Lake City, UT, USA
| | - Jayson R Gifford
- Geriatric Research, Education, and Clinical Center, George E. Whalen VA Medical Center, Salt Lake City, UT, USA.,Department of Medicine, Division of Geriatrics, University of Utah, Salt Lake City, UT, USA
| | - Russell S Richardson
- Geriatric Research, Education, and Clinical Center, George E. Whalen VA Medical Center, Salt Lake City, UT, USA.,Department of Medicine, Division of Geriatrics, University of Utah, Salt Lake City, UT, USA.,Department of Nutrition and Integrative Physiology, University of Utah, Salt Lake City, UT, USA
| |
Collapse
|
35
|
Frangogiannis NG. Cell therapy for peripheral artery disease. Curr Opin Pharmacol 2018; 39:27-34. [PMID: 29452987 DOI: 10.1016/j.coph.2018.01.005] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2017] [Revised: 01/22/2018] [Accepted: 01/23/2018] [Indexed: 12/28/2022]
Abstract
Patients with severe peripheral artery disease (PAD) who are not candidates for revascularization have poor prognosis. Cell therapy using peripheral blood-derived or bone marrow-derived mononuclear cells, mesenchymal stem cells, or marker-specific subsets of bone marrow cells with angiogenic properties may hold promise for no-option PAD patients. Injected cells may exert beneficial actions by enhancing local angiogenesis (either through maturation of endothelial progenitors, or through secretion of angiogenic mediators), or by transducing cytoprotective signals that preserve tissue structure. Despite extensive research, robust clinical evidence supporting the use of cell therapy in patients with critical limb ischemia is lacking. Larger, well-designed placebo-controlled clinical trials did not support the positive results of smaller less rigorous studies. There is a need for high-quality clinical studies to test the effectiveness of cell therapy in PAD patients. Moreover, fundamental cell biological studies are needed to identify the optimal cell types, and to develop strategies that may enhance homing, survival and effectiveness of the injected cells.
Collapse
Affiliation(s)
- Nikolaos G Frangogiannis
- The Wilf Family Cardiovascular Research Institute, Department of Medicine (Cardiology), Albert Einstein College of Medicine, Bronx, NY, United States.
| |
Collapse
|
36
|
Schieber MN, Hasenkamp RM, Pipinos II, Johanning JM, Stergiou N, DeSpiegelaere HK, Chien JH, Myers SA. Muscle strength and control characteristics are altered by peripheral artery disease. J Vasc Surg 2017. [PMID: 28647034 DOI: 10.1016/j.jvs.2017.01.051] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
OBJECTIVE Peripheral artery disease (PAD), a common manifestation of atherosclerosis, is characterized by lower leg ischemia and myopathy in association with leg dysfunction. Patients with PAD have impaired gait from the first step they take with consistent defects in the movement around the ankle joint, especially in plantar flexion. Our goal was to develop muscle strength profiles to better understand the problems in motor control responsible for the walking impairment in patients with PAD. METHODS Ninety-four claudicating PAD patients performed maximal isometric plantar flexion contractions lasting 10 seconds in two conditions: pain free (patient is well rested and has no claudication symptoms) and pain induced (patient has walked and has claudication symptoms). Sixteen matched healthy controls performed the pain-free condition only. Torque curves were analyzed for dependent variables of muscle strength and motor control. Independent t-tests were used to compare variables between groups, and dependent t-tests determined differences between conditions. RESULTS Patients with PAD had significantly reduced peak torque and area under the curve compared with controls. Measures of control differed between PAD conditions only. Load rate and linear region duration were greater in the pain condition. Time to peak torque was shorter in the pain condition. CONCLUSIONS This study conclusively demonstrates that the plantar flexor muscles of the PAD patient at baseline and without pain are weaker in patients with PAD compared with controls. With the onset of claudication pain, patients with PAD exhibit altered muscle control strategies and further strength deficits are manifest compared to baseline levels. The myopathy of PAD legs appears to have a central role in the functional deterioration of the calf muscles, as it is evident both before and after onset of ischemic pain.
Collapse
Affiliation(s)
- Molly N Schieber
- Department of Biomechanics, University of Nebraska at Omaha, Omaha, Neb
| | - Ryan M Hasenkamp
- Department of Biomechanics, University of Nebraska at Omaha, Omaha, Neb
| | - Iraklis I Pipinos
- Department of Surgery, Veterans Affairs Medical Center of Nebraska and Western Iowa, Omaha, Neb; Department of Surgery, University of Nebraska Medical Center, Omaha, Neb
| | - Jason M Johanning
- Department of Surgery, Veterans Affairs Medical Center of Nebraska and Western Iowa, Omaha, Neb; Department of Surgery, University of Nebraska Medical Center, Omaha, Neb
| | - Nicholas Stergiou
- Department of Biomechanics, University of Nebraska at Omaha, Omaha, Neb; College of Public Health, University of Nebraska Medical Center, Omaha, Neb
| | - Holly K DeSpiegelaere
- Department of Surgery, Veterans Affairs Medical Center of Nebraska and Western Iowa, Omaha, Neb
| | - Jung H Chien
- Department of Physical Therapy Education, University of Nebraska Medical Center, Omaha, Neb
| | - Sara A Myers
- Department of Biomechanics, University of Nebraska at Omaha, Omaha, Neb; Department of Surgery, Veterans Affairs Medical Center of Nebraska and Western Iowa, Omaha, Neb.
| |
Collapse
|
37
|
Sfyri P, Matsakas A. Crossroads between peripheral atherosclerosis, western-type diet and skeletal muscle pathophysiology: emphasis on apolipoprotein E deficiency and peripheral arterial disease. J Biomed Sci 2017; 24:42. [PMID: 28688452 PMCID: PMC5502081 DOI: 10.1186/s12929-017-0346-8] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2017] [Accepted: 06/07/2017] [Indexed: 12/16/2022] Open
Abstract
Atherosclerosis is a chronic inflammatory process that, in the presence of hyperlipidaemia, promotes the formation of atheromatous plaques in large vessels of the cardiovascular system. It also affects peripheral arteries with major implications for a number of other non-vascular tissues such as the skeletal muscle, the liver and the kidney. The aim of this review is to critically discuss and assimilate current knowledge on the impact of peripheral atherosclerosis and its implications on skeletal muscle homeostasis. Accumulating data suggests that manifestations of peripheral atherosclerosis in skeletal muscle originates in a combination of increased i)-oxidative stress, ii)-inflammation, iii)-mitochondrial deficits, iv)-altered myofibre morphology and fibrosis, v)-chronic ischemia followed by impaired oxygen supply, vi)-reduced capillary density, vii)- proteolysis and viii)-apoptosis. These structural, biochemical and pathophysiological alterations impact on skeletal muscle metabolic and physiologic homeostasis and its capacity to generate force, which further affects the individual's quality of life. Particular emphasis is given on two major areas representing basic and applied science respectively: a)-the abundant evidence from a well-recognised atherogenic model; the Apolipoprotein E deficient mouse and the role of a western-type diet and b)-on skeletal myopathy and oxidative stress-induced myofibre damage from human studies on peripheral arterial disease. A significant source of reactive oxygen species production and oxidative stress in cardiovascular disease is the family of NADPH oxidases that contribute to several pathologies. Finally, strategies targeting NADPH oxidases in skeletal muscle in an attempt to attenuate cellular oxidative stress are highlighted, providing a better understanding of the crossroads between peripheral atherosclerosis and skeletal muscle pathophysiology.
Collapse
Affiliation(s)
- Peggy Sfyri
- Molecular Physiology Laboratory, Centre for Atherothrombotic & Metabolic Disease, Hull York Medical School, University of Hull, Cottingham Road, Hull, HU6 7RX, United Kingdom
| | - Antonios Matsakas
- Molecular Physiology Laboratory, Centre for Atherothrombotic & Metabolic Disease, Hull York Medical School, University of Hull, Cottingham Road, Hull, HU6 7RX, United Kingdom.
| |
Collapse
|
38
|
Sachdeva J, Mahajan A, Cheng J, Baeten JT, Lilly B, Kuivaniemi H, Hans CP. Smooth muscle cell-specific Notch1 haploinsufficiency restricts the progression of abdominal aortic aneurysm by modulating CTGF expression. PLoS One 2017; 12:e0178538. [PMID: 28562688 PMCID: PMC5451061 DOI: 10.1371/journal.pone.0178538] [Citation(s) in RCA: 36] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2016] [Accepted: 05/15/2017] [Indexed: 02/06/2023] Open
Abstract
Aims Infiltration of macrophages and apoptosis of vascular smooth muscle cells (VSMCs) promote the development of abdominal aortic aneurysm (AAA). Previously, we demonstrated that global Notch1 deficiency prevents the formation of AAA in a mouse model. Herein, we sought to explore the cell-specific roles of Notch1 in AAA development. Methods and results Cell-specific Notch1 haploinsufficient mice, generated on Apoe-/- background using Cre-lox technology, were infused with angiotensin II (1000 ng/min/kg) for 28 days. Notch1 haploinsufficiency in myeloid cells (n = 9) prevented the formation of AAA attributed to decreased inflammation. Haploinsufficiency of Notch1 in SMCs (n = 14) per se did not prevent AAA formation, but histoarchitectural traits of AAA including elastin degradation and aortic remodeling, were minimal in SMC-Notch1+/-;Apoe-/- mice compared to Apoe-/- mice (n = 33). Increased immunostaining of the contractile SMC-phenotype markers and concomitant decreased expression of synthetic SMC-phenotype markers were observed in the aortae of SMC-Notch1+/-;Apoe-/- mice. Expression of connective tissue growth factor (CTGF), a matrix-associated protein that modulates the synthetic VSMC phenotype, increased in the abdominal aorta of Apoe-/- mice and in the adventitial region of the abdominal aorta in human AAA. Notch1 haploinsufficiency decreased the expression of Ctgf in the aorta and in vitro cell culture system. In vitro studies on SMCs using the Notch1 intracellular domain (NICD) plasmid, dominant negative mastermind-like (dnMAML), or specific siRNA suggest that Notch1, not Notch3, directly modulates the expression of CTGF. Conclusions Our data suggest that lack of Notch1 in SMCs limits dilation of the abdominal aorta by maintaining contractile SMC-phenotype and preventing matrix-remodeling.
Collapse
MESH Headings
- Animals
- Aortic Aneurysm, Abdominal/metabolism
- Aortic Aneurysm, Abdominal/pathology
- Cells, Cultured
- Coculture Techniques
- Connective Tissue Growth Factor/metabolism
- Haploinsufficiency
- Matrix Metalloproteinases/biosynthesis
- Mice
- Muscle, Smooth, Vascular/cytology
- Muscle, Smooth, Vascular/enzymology
- Muscle, Smooth, Vascular/metabolism
- Receptor, Notch1/metabolism
Collapse
Affiliation(s)
| | - Advitiya Mahajan
- Cardiology, Medical Pharmacology & Physiology and Dalton Cardiovascular Research Center, University of Missouri, Columbia, Missouri, United States of America
| | - Jeeyun Cheng
- Center for Cardiovascular Research and The Heart Center, Nationwide Children's Hospital, Columbus, Ohio, United States of America
| | - Jeremy T. Baeten
- Center for Cardiovascular Research and The Heart Center, Nationwide Children's Hospital, Columbus, Ohio, United States of America
| | - Brenda Lilly
- Center for Cardiovascular Research and The Heart Center, Nationwide Children's Hospital, Columbus, Ohio, United States of America
| | - Helena Kuivaniemi
- Division of Molecular Biology and Human Genetics, Department of Biomedical Sciences, Faculty of Medicine and Health Sciences, Stellenbosch University, Tygerberg, South Africa
| | - Chetan P. Hans
- Ohio State University, Columbus, Ohio, United States of America
- Cardiology, Medical Pharmacology & Physiology and Dalton Cardiovascular Research Center, University of Missouri, Columbia, Missouri, United States of America
- Center for Cardiovascular Research and The Heart Center, Nationwide Children's Hospital, Columbus, Ohio, United States of America
- * E-mail:
| |
Collapse
|
39
|
Pinnock CB, Xu Z, Lam MT. Scaling of Engineered Vascular Grafts Using 3D Printed Guides and the Ring Stacking Method. J Vis Exp 2017. [PMID: 28447994 DOI: 10.3791/55322] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022] Open
Abstract
Coronary artery disease remains a leading cause of death, affecting millions of Americans. With the lack of autologous vascular grafts available, engineered grafts offer great potential for patient treatment. However, engineered vascular grafts are generally not easily scalable, requiring manufacture of custom molds or polymer tubes in order to customize to different sizes, constituting a time-consuming and costly practice. Human arteries range in lumen diameter from about 2.0-38 mm and in wall thickness from about 0.5-2.5 mm. We have created a method, termed the "Ring Stacking Method," in which variable size rings of tissue of the desired cell type, demonstrated here with vascular smooth muscle cells (SMCs), can be created using guides of center posts to control lumen diameter and outer shells to dictate vessel wall thickness. These tissue rings are then stacked to create a tubular construct, mimicking the natural form of a blood vessel. The vessel length can be tailored by simply stacking the number of rings required to constitute the length needed. With our technique, tissues of tubular forms, similar to a blood vessel, can be readily manufactured in a variety of dimensions and lengths to meet the needs of the clinic and patient.
Collapse
Affiliation(s)
| | - Zhengfan Xu
- Department of Biomedical Engineering, Wayne State University
| | - Mai T Lam
- Department of Biomedical Engineering, Wayne State University; Cardiovascular Research Institute, Wayne State University;
| |
Collapse
|
40
|
Rontoyanni VG, Nunez Lopez O, Fankhauser GT, Cheema ZF, Rasmussen BB, Porter C. Mitochondrial Bioenergetics in the Metabolic Myopathy Accompanying Peripheral Artery Disease. Front Physiol 2017; 8:141. [PMID: 28348531 PMCID: PMC5346567 DOI: 10.3389/fphys.2017.00141] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2016] [Accepted: 02/23/2017] [Indexed: 11/14/2022] Open
Abstract
Peripheral artery disease (PAD) is a serious but relatively underdiagnosed and undertreated clinical condition associated with a marked reduction in functional capacity and a heightened risk of morbidity and mortality. The pathophysiology of lower extremity PAD is complex, and extends beyond the atherosclerotic arterial occlusion and subsequent mismatch between oxygen demand and delivery to skeletal muscle mitochondria. In this review, we evaluate and summarize the available evidence implicating mitochondria in the metabolic myopathy that accompanies PAD. Following a short discussion of the available in vivo and in vitro methodologies to quantitate indices of muscle mitochondrial function, we review the current evidence implicating skeletal muscle mitochondrial dysfunction in the pathophysiology of PAD myopathy, while attempting to highlight questions that remain unanswered. Given the rising prevalence of PAD, the detriment in quality of life for patients, and the associated significant healthcare resource utilization, new alternate therapies that ameliorate lower limb symptoms and the functional impairment associated with PAD are needed. A clear understanding of the role of mitochondria in the pathophysiology of PAD may contribute to the development of novel therapeutic interventions.
Collapse
Affiliation(s)
- Victoria G. Rontoyanni
- Metabolism Unit, Shriners Hospitals for ChildrenGalveston, TX, USA
- Department of Surgery, University of Texas Medical BranchGalveston, TX, USA
| | - Omar Nunez Lopez
- Metabolism Unit, Shriners Hospitals for ChildrenGalveston, TX, USA
- Department of Surgery, University of Texas Medical BranchGalveston, TX, USA
| | | | - Zulfiqar F. Cheema
- Department of Surgery, University of Texas Medical BranchGalveston, TX, USA
| | - Blake B. Rasmussen
- Department of Nutrition and Metabolism, University of Texas Medical BranchGalveston, TX, USA
| | - Craig Porter
- Metabolism Unit, Shriners Hospitals for ChildrenGalveston, TX, USA
- Department of Surgery, University of Texas Medical BranchGalveston, TX, USA
| |
Collapse
|
41
|
Zhao C, Isenberg JS, Popel AS. Transcriptional and Post-Transcriptional Regulation of Thrombospondin-1 Expression: A Computational Model. PLoS Comput Biol 2017; 13:e1005272. [PMID: 28045898 PMCID: PMC5207393 DOI: 10.1371/journal.pcbi.1005272] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2016] [Accepted: 11/29/2016] [Indexed: 01/09/2023] Open
Abstract
Hypoxia is an important physiological stress signal that drives angiogenesis, the formation of new blood vessels. Besides an increase in the production of pro-angiogenic signals such as vascular endothelial growth factor (VEGF), hypoxia also stimulates the production of anti-angiogenic signals. Thrombospondin-1 (TSP-1) is one of the anti-angiogenic factors whose synthesis is driven by hypoxia. Cellular synthesis of TSP-1 is tightly regulated by different intermediate biomolecules including proteins that interact with hypoxia-inducible factors (HIFs), transcription factors that are activated by receptor and intracellular signaling, and microRNAs which are small non-coding RNA molecules that function in post-transcriptional modification of gene expression. Here we present a computational model that describes the mechanistic interactions between intracellular biomolecules and cooperation between signaling pathways that together make up the complex network of TSP-1 regulation both at the transcriptional and post-transcriptional level. Assisted by the model, we conduct in silico experiments to compare the efficacy of different therapeutic strategies designed to modulate TSP-1 synthesis in conditions that simulate tumor and peripheral arterial disease microenvironment. We conclude that TSP-1 production in endothelial cells depends on not only the availability of certain growth factors but also the fine-tuned signaling cascades that are initiated by hypoxia.
Collapse
Affiliation(s)
- Chen Zhao
- Department of Biomedical Engineering, School of Medicine, Johns Hopkins University, Baltimore, Maryland, United States of America
- * E-mail:
| | - Jeffrey S. Isenberg
- Vascular Medicine Institute, Division of Pulmonary, Allergy, and Critical Care Medicine, Department of Medicine, University of Pittsburgh, Pittsburgh, Pennsylvania, United States of America
| | - Aleksander S. Popel
- Department of Biomedical Engineering, School of Medicine, Johns Hopkins University, Baltimore, Maryland, United States of America
| |
Collapse
|
42
|
Zhu HY, Bai WD, Li J, Tao K, Wang HT, Yang XK, Liu JQ, Wang YC, He T, Xie ST, Hu DH. Peroxisome proliferator-activated receptor-γ agonist troglitazone suppresses transforming growth factor-β1 signalling through miR-92b upregulation-inhibited Axl expression in human keloid fibroblasts in vitro. Am J Transl Res 2016; 8:3460-3470. [PMID: 27648136 PMCID: PMC5009398] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2016] [Accepted: 08/08/2016] [Indexed: 06/06/2023]
Abstract
Keloid, a skin benign tumor, is characterized by overgrowth of fibroblasts and the excessive deposition of extracellular matrix in wounded skin. Peroxisome proliferator-activated receptor-γ (PPAR-γ) agonist was recently evaluated to inhibit fibrosis. This study explored the underlying mechanisms. Fibroblasts isolated from 25 keloid patients (KFs) and fibroblasts isolated from healthy controls (NSFBs) were also subjected to treatment with PPAR-γ agonist troglitazone and antagonist GW9662 or for transfection with miR-92 mimics or inhibitor, Axl siRNA, and miR-92b or Axl promoter constructs, as well as being subjected to qRT-PCR, ELISA, Western blot, protein array, luciferase, and ChIP assays. The data demonstrated that TGF-β1 and Axl proteins were significantly elevated in samples from keloid patients, while troglitazone treatment significantly reduced levels of TGF-β1 and Axl mRNA and proteins in KFs. Moreover, knockdown of Axl expression reduced expression of TGF-β1 and its pathway genes (such as α-SMA and Snail). PPAR-γ regulation of Axl expression was through transcriptional activation of miR-92b. miR-92b expression downregulated Axl expression at both mRNA and protein levels, whereas GW9662 completely reversed the inhibitory effects of miR-92b mimics on Axl expression. Gene ontology analysis of miR-92b targeting genes showed that TGF-β and Axl were both potential targets of miR-92b, as confirmed by luciferase assay. These findings demonstrated that PPAR-γ-induced miR-92b expression inhibited Axl expression and in turn reduced expression of TGF-β1 and the downstream genes in KFs, suggesting that targeting of this novel gene pathway may be useful for therapeutic control of fibrosis or keloid.
Collapse
Affiliation(s)
- Hua-Yu Zhu
- Department of Burns and Cutaneous Surgery, Xijing Hospital, Fourth Military Medical UniversityXi’an 710032, Shaanxi, China
| | - Wen-Dong Bai
- Department of Hematology, Urumqi General Hospital of Chinese People’s Liberation ArmyUrumqi, Xinjiang, China
| | - Jun Li
- Department of Burns and Cutaneous Surgery, Xijing Hospital, Fourth Military Medical UniversityXi’an 710032, Shaanxi, China
| | - Ke Tao
- Department of Burns and Cutaneous Surgery, Xijing Hospital, Fourth Military Medical UniversityXi’an 710032, Shaanxi, China
| | - Hong-Tao Wang
- Department of Burns and Cutaneous Surgery, Xijing Hospital, Fourth Military Medical UniversityXi’an 710032, Shaanxi, China
| | - Xue-Kang Yang
- Department of Burns and Cutaneous Surgery, Xijing Hospital, Fourth Military Medical UniversityXi’an 710032, Shaanxi, China
| | - Jia-Qi Liu
- Department of Burns and Cutaneous Surgery, Xijing Hospital, Fourth Military Medical UniversityXi’an 710032, Shaanxi, China
| | - Yun-Chuan Wang
- Department of Burns and Cutaneous Surgery, Xijing Hospital, Fourth Military Medical UniversityXi’an 710032, Shaanxi, China
| | - Ting He
- Department of Burns and Cutaneous Surgery, Xijing Hospital, Fourth Military Medical UniversityXi’an 710032, Shaanxi, China
| | - Song-Tao Xie
- Department of Burns and Cutaneous Surgery, Xijing Hospital, Fourth Military Medical UniversityXi’an 710032, Shaanxi, China
| | - Da-Hai Hu
- Department of Burns and Cutaneous Surgery, Xijing Hospital, Fourth Military Medical UniversityXi’an 710032, Shaanxi, China
| |
Collapse
|