1
|
Lehmann PV, Karulin AY, Becza N, Yao L, Liu Z, Chepke J, Maul-Pavicic A, Wolf C, Köppert S, Valente AV, Gorbachev AV, Tary-Lehmann M, Kirchenbaum GA. Theoretical and practical considerations for validating antigen-specific B cell ImmunoSpot assays. J Immunol Methods 2025:113817. [PMID: 39864733 DOI: 10.1016/j.jim.2025.113817] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2024] [Revised: 10/17/2024] [Accepted: 01/20/2025] [Indexed: 01/28/2025]
Abstract
Owing to their ability to reliably detect even very rare antigen-specific B cells in cellular isolates such as peripheral blood mononuclear cells (PBMC), and doing so robustly in a high throughput-compatible manner, B cell ELISPOT/FluoroSpot (collectively "B cell ImmunoSpot") tests have become increasingly attractive for immune monitoring in regulated settings. Presently, there are no guidelines for the qualification and validation of B cell ImmunoSpot assay results. Here, we propose such guidelines, building on the experience acquired from T cell ImmunoSpot testing in an environment adhering to the requirements of regulatory bodies yet taking the unique features of B cell assays into account. A streamlined protocol is proposed that permits the performance of all tests needed for the formal validation of an antigen-specific B cell ImmunoSpot assay in only three experiments, utilizing 2.2 × 107 PBMC per donor. Subsequently, utilizing only 1-2 × 106 PBMC per sample (obtainable from 1 to 2 mL of blood), a validated multiplexed assay enables accurate quantification of the frequency of antigen-specific memory B cell-derived blasts secreting IgM, IgG, IgA or IgE antibodies. Collectively, such multiplexed B cell ImmunoSpot assays offer immense value for B cell immune monitoring programs due to their ease of implementation, scalability, applicability to essentially any antigenic system, economy of PBMC utilization, and last but not least, the high content information gained.
Collapse
Affiliation(s)
- Paul V Lehmann
- Research & Development Department, Cellular Technology Limited, Shaker Heights, OH 44122, USA
| | - Alexey Y Karulin
- Research & Development Department, Cellular Technology Limited, Shaker Heights, OH 44122, USA
| | - Noémi Becza
- Research & Development Department, Cellular Technology Limited, Shaker Heights, OH 44122, USA
| | - Lingling Yao
- Research & Development Department, Cellular Technology Limited, Shaker Heights, OH 44122, USA
| | - Zhigang Liu
- Research & Development Department, Cellular Technology Limited, Shaker Heights, OH 44122, USA
| | - Jack Chepke
- Research & Development Department, Cellular Technology Limited, Shaker Heights, OH 44122, USA
| | - Andrea Maul-Pavicic
- Research & Development Department, Cellular Technology Limited, Shaker Heights, OH 44122, USA
| | - Carla Wolf
- Research & Development Department, Cellular Technology Limited, Shaker Heights, OH 44122, USA
| | - Sebastian Köppert
- Research & Development Department, Cellular Technology Limited, Shaker Heights, OH 44122, USA
| | - Alexis V Valente
- Research & Development Department, Cellular Technology Limited, Shaker Heights, OH 44122, USA
| | - Anton V Gorbachev
- Research & Development Department, Cellular Technology Limited, Shaker Heights, OH 44122, USA
| | - Magdalena Tary-Lehmann
- Research & Development Department, Cellular Technology Limited, Shaker Heights, OH 44122, USA
| | - Greg A Kirchenbaum
- Research & Development Department, Cellular Technology Limited, Shaker Heights, OH 44122, USA.
| |
Collapse
|
2
|
Carreto-Binaghi LE, Nieto-Ponce M, Palencia-Reyes A, Chávez-Domínguez RL, Blancas-Zaragoza J, Franco-Mendoza P, García-Ramos MA, Hernández-Lázaro CI, Torres M, Carranza C. Validation of the Enzyme-Linked ImmunoSpot Analytic Method for the Detection of Human IFN-γ from Peripheral Blood Mononuclear Cells in Response to the SARS-CoV-2 Spike Protein. Biomolecules 2024; 14:1286. [PMID: 39456219 PMCID: PMC11506497 DOI: 10.3390/biom14101286] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2024] [Revised: 09/25/2024] [Accepted: 10/01/2024] [Indexed: 10/28/2024] Open
Abstract
COVID-19 vaccine evaluations are mainly focused on antibody analyses, but there is growing interest in measuring the cellular immune responses from the researchers evaluating these vaccines. The cellular responses to several COVID-19 vaccines have been studied using the enzyme-linked immunospot (ELISPOT) assay for IFN-γ. However, the ELISPOT assay is no longer used only for research purpose and so the performance of this assay must be validated. Since the bioanalytical validation of ELISPOT-IFN-γ is essential for evaluating the method's effectiveness and establishing confidence in a vaccine's immunogenicity, the present work validates the ELISPOT-IFN-γ assay's performance in determining the frequency of IFN-γ-producing cells after stimulation with the SARS-CoV-2 spike protein. The validation was performed in peripheral blood mononuclear cells from volunteers immunized with anti-COVID-19 vaccines. According to the findings, the LOD was 17 SFU and the LLOQ was 22 SFU, which makes the method highly sensitive and suitable for evaluating low levels of cellular responses. The procedure's accuracy is confirmed by the correlation coefficients for the spike protein and anti-CD3+, being 0.98 and 0.95, respectively. The repeatability and intermediate precision tests were confirmed to be reliable by obtaining a coefficient of variation of ≤25%. The results obtained in this validation enable the assay to be employed for studying antigen-specific cells and evaluating cellular responses to vaccines.
Collapse
Affiliation(s)
- Laura E. Carreto-Binaghi
- Laboratorio de Inmunobiología de la Tuberculosis, Instituto Nacional de Enfermedades Respiratorias (INER) Ismael Cosío Villegas, Mexico City 14080, Mexico; (L.E.C.-B.); (M.N.-P.); (A.P.-R.); (R.L.C.-D.); (J.B.-Z.); (P.F.-M.); (M.A.G.-R.)
| | - Milton Nieto-Ponce
- Laboratorio de Inmunobiología de la Tuberculosis, Instituto Nacional de Enfermedades Respiratorias (INER) Ismael Cosío Villegas, Mexico City 14080, Mexico; (L.E.C.-B.); (M.N.-P.); (A.P.-R.); (R.L.C.-D.); (J.B.-Z.); (P.F.-M.); (M.A.G.-R.)
| | - Andrea Palencia-Reyes
- Laboratorio de Inmunobiología de la Tuberculosis, Instituto Nacional de Enfermedades Respiratorias (INER) Ismael Cosío Villegas, Mexico City 14080, Mexico; (L.E.C.-B.); (M.N.-P.); (A.P.-R.); (R.L.C.-D.); (J.B.-Z.); (P.F.-M.); (M.A.G.-R.)
| | - Rodolfo L. Chávez-Domínguez
- Laboratorio de Inmunobiología de la Tuberculosis, Instituto Nacional de Enfermedades Respiratorias (INER) Ismael Cosío Villegas, Mexico City 14080, Mexico; (L.E.C.-B.); (M.N.-P.); (A.P.-R.); (R.L.C.-D.); (J.B.-Z.); (P.F.-M.); (M.A.G.-R.)
| | - Jessica Blancas-Zaragoza
- Laboratorio de Inmunobiología de la Tuberculosis, Instituto Nacional de Enfermedades Respiratorias (INER) Ismael Cosío Villegas, Mexico City 14080, Mexico; (L.E.C.-B.); (M.N.-P.); (A.P.-R.); (R.L.C.-D.); (J.B.-Z.); (P.F.-M.); (M.A.G.-R.)
| | - Pablo Franco-Mendoza
- Laboratorio de Inmunobiología de la Tuberculosis, Instituto Nacional de Enfermedades Respiratorias (INER) Ismael Cosío Villegas, Mexico City 14080, Mexico; (L.E.C.-B.); (M.N.-P.); (A.P.-R.); (R.L.C.-D.); (J.B.-Z.); (P.F.-M.); (M.A.G.-R.)
| | - Montserrat A. García-Ramos
- Laboratorio de Inmunobiología de la Tuberculosis, Instituto Nacional de Enfermedades Respiratorias (INER) Ismael Cosío Villegas, Mexico City 14080, Mexico; (L.E.C.-B.); (M.N.-P.); (A.P.-R.); (R.L.C.-D.); (J.B.-Z.); (P.F.-M.); (M.A.G.-R.)
| | - Claudia I. Hernández-Lázaro
- Laboratorio Clinico, Instituto Nacional de Enfermedades Respiratorias (INER) “Ismael Cosío Villegas”, Mexico City 14080, Mexico;
| | - Martha Torres
- Laboratorio de Inmunobiología de la Tuberculosis, Instituto Nacional de Enfermedades Respiratorias (INER) Ismael Cosío Villegas, Mexico City 14080, Mexico; (L.E.C.-B.); (M.N.-P.); (A.P.-R.); (R.L.C.-D.); (J.B.-Z.); (P.F.-M.); (M.A.G.-R.)
| | - Claudia Carranza
- Laboratorio de Inmunobiología de la Tuberculosis, Instituto Nacional de Enfermedades Respiratorias (INER) Ismael Cosío Villegas, Mexico City 14080, Mexico; (L.E.C.-B.); (M.N.-P.); (A.P.-R.); (R.L.C.-D.); (J.B.-Z.); (P.F.-M.); (M.A.G.-R.)
| |
Collapse
|
3
|
Fischer F, Mücke J, Werny L, Gerrer K, Mihatsch L, Zehetmaier S, Riedel I, Geisperger J, Bodenhausen M, Schulte-Hillen L, Hoffmann D, Protzer U, Mautner J, Behrends U, Bauer T, Körber N. Evaluation of novel Epstein-Barr virus-derived antigen formulations for monitoring virus-specific T cells in pediatric patients with infectious mononucleosis. Virol J 2024; 21:139. [PMID: 38877590 PMCID: PMC11179387 DOI: 10.1186/s12985-024-02411-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2023] [Accepted: 06/06/2024] [Indexed: 06/16/2024] Open
Abstract
BACKGROUND Infection with the Epstein-Barr virus (EBV) elicits a complex T-cell response against a broad range of viral proteins. Hence, identifying potential differences in the cellular immune response of patients with different EBV-associated diseases or different courses of the same disorder requires interrogation of a maximum number of EBV antigens. Here, we tested three novel EBV-derived antigen formulations for their ability to reactivate virus-specific T cells ex vivo in patients with EBV-associated infectious mononucleosis (IM). METHODS We comparatively analyzed EBV-specific CD4+ and CD8+ T-cell responses to three EBV-derived antigen formulations in 20 pediatric patients during the early phase of IM: T-activated EBV proteins (BZLF1, EBNA3A) and EBV-like particles (EB-VLP), both able to induce CD4+ and CD8+ T-cell responses ex vivo, as well as an EBV-derived peptide pool (PP) covering 94 well-characterized CD8+ T-cell epitopes. We assessed the specificity, magnitude, kinetics, and functional characteristics of EBV-specific immune responses at two sequential time points (v1 and v2) within the first six weeks after IM symptom onset (Tonset). RESULTS All three tested EBV-derived antigen formulations enabled the detection of EBV-reactive T cells during the early phase of IM without prior T-cell expansion in vitro. EBV-reactive CD4+ and CD8+ T cells were mainly mono-functional (CD4+: mean 64.92%, range 56.15-71.71%; CD8+: mean 58.55%, range 11.79-85.22%) within the first two weeks after symptom onset (v1) with IFN-γ and TNF-secreting cells representing the majority of mono-functional EBV-reactive T cells. By contrast, PP-reactive CD8+ T cells were primarily bi-functional (>60% at v1 and v2), produced IFN-γ and TNF and had more tri-functional than mono-functional components. We observed a moderate correlation between viral load and EBNA3A, EB-VLP, and PP-reactive CD8+ T cells (rs = 0.345, 0.418, and 0.356, respectively) within the first two weeks after Tonset, but no correlation with the number of detectable EBV-reactive CD4+ T cells. CONCLUSIONS All three EBV-derived antigen formulations represent innovative and generic recall antigens suitable for monitoring EBV-specific T-cell responses ex vivo. Their combined use facilitates a thorough analysis of EBV-specific T-cell immunity and allows the identification of functional T-cell signatures linked to disease development and severity.
Collapse
Affiliation(s)
- Franziska Fischer
- Children's Hospital, School of Medicine, Technical University of Munich, Munich, Germany
| | - Johannes Mücke
- Children's Hospital, School of Medicine, Technical University of Munich, Munich, Germany
| | - Louisa Werny
- Children's Hospital, School of Medicine, Technical University of Munich, Munich, Germany
- Institute of Virology, School of Medicine, Technical University of Munich and Helmholtz Munich, Schneckenburgerstr. 8, 81675, Munich, Germany
| | - Katrin Gerrer
- Children's Hospital, School of Medicine, Technical University of Munich, Munich, Germany
| | - Lorenz Mihatsch
- Children's Hospital, School of Medicine, Technical University of Munich, Munich, Germany
| | - Stefanie Zehetmaier
- Children's Hospital, School of Medicine, Technical University of Munich, Munich, Germany
- Research Unit Gene Vectors, Helmholtz Munich, Munich, Germany
| | - Isa Riedel
- Children's Hospital, School of Medicine, Technical University of Munich, Munich, Germany
| | - Jonas Geisperger
- Children's Hospital, School of Medicine, Technical University of Munich, Munich, Germany
| | - Maren Bodenhausen
- Children's Hospital, School of Medicine, Technical University of Munich, Munich, Germany
| | - Lina Schulte-Hillen
- Children's Hospital, School of Medicine, Technical University of Munich, Munich, Germany
| | - Dieter Hoffmann
- Institute of Virology, School of Medicine, Technical University of Munich and Helmholtz Munich, Schneckenburgerstr. 8, 81675, Munich, Germany
| | - Ulrike Protzer
- Institute of Virology, School of Medicine, Technical University of Munich and Helmholtz Munich, Schneckenburgerstr. 8, 81675, Munich, Germany
- German Centre for Infection Research (DZIF), Munich, Germany
| | - Josef Mautner
- Institute of Virology, School of Medicine, Technical University of Munich and Helmholtz Munich, Schneckenburgerstr. 8, 81675, Munich, Germany
- Research Unit Gene Vectors, Helmholtz Munich, Munich, Germany
- German Centre for Infection Research (DZIF), Munich, Germany
| | - Uta Behrends
- Children's Hospital, School of Medicine, Technical University of Munich, Munich, Germany
- Research Unit Gene Vectors, Helmholtz Munich, Munich, Germany
- German Centre for Infection Research (DZIF), Munich, Germany
| | - Tanja Bauer
- Institute of Virology, School of Medicine, Technical University of Munich and Helmholtz Munich, Schneckenburgerstr. 8, 81675, Munich, Germany
- German Centre for Infection Research (DZIF), Munich, Germany
| | - Nina Körber
- Institute of Virology, School of Medicine, Technical University of Munich and Helmholtz Munich, Schneckenburgerstr. 8, 81675, Munich, Germany.
- German Centre for Infection Research (DZIF), Munich, Germany.
| |
Collapse
|
4
|
Freen-van Heeren JJ, Palomares Cabeza V, Lopez DC, Kivits D, Rensink I, Turksma AW, Ten Brinke A. Assessing Antigen-Specific T Cell Responses Through IFN-γ Enzyme-Linked Immune Absorbent Spot (ELISpot). Methods Mol Biol 2024; 2782:209-226. [PMID: 38622405 DOI: 10.1007/978-1-0716-3754-8_17] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/17/2024]
Abstract
T cells are instrumental in protecting the host against invading pathogens and the development of cancer. To do so, they produce effector molecules such as granzymes, interleukins, interferons, and perforin. For the development and immunomonitoring of therapeutic applications such as cell-based therapies and vaccines, assessing T cell effector function is paramount. This can be achieved through various methods, such as 51Cr release assays, flow cytometry, and enzyme-linked immune absorbent spot (ELISpot) assays. For T cell ELISpots, plates are coated with antibodies directed against the effector molecule of interest (e.g., IFN-g). Subsequently, peripheral blood mononuclear cells (PBMCs) or isolated T cells are cultured on the plate together with stimuli of choice, and the production of effector molecules is visualized via labeled detection antibodies. For clinical studies, ELISpot is currently the gold standard to determine antigen-specific T cell frequencies. In contrast to 51Cr release assays, ELISpot allows for the exact enumeration of responding T cells, and compared to flow cytometry, ELISpot is more cost-effective and high throughput. Here, we optimize and describe, in a step-by-step fashion, how to perform a controlled IFN-γ ELISpot experiment to determine the frequency of responding or antigen-specific T cells in healthy human volunteers. Of note, this protocol can also be employed to assess the frequency of antigen-specific T cells induced in, e.g., vaccination studies or present in cellular products.
Collapse
Affiliation(s)
| | - Virginia Palomares Cabeza
- Department of Immunopathology, Sanquin Research and Landsteiner Laboratory, Amsterdam, the Netherlands
| | - David Cobeta Lopez
- Immunomonitoring Services, R&D, Sanquin Diagnostic Services, Amsterdam, the Netherlands
| | - Domenique Kivits
- Immunomonitoring Services, R&D, Sanquin Diagnostic Services, Amsterdam, the Netherlands
| | - Irma Rensink
- Immunomonitoring Services, R&D, Sanquin Diagnostic Services, Amsterdam, the Netherlands
| | - Annelies W Turksma
- Immunomonitoring Services, R&D, Sanquin Diagnostic Services, Amsterdam, the Netherlands.
| | - Anja Ten Brinke
- Department of Immunopathology, Sanquin Research and Landsteiner Laboratory, Amsterdam, the Netherlands.
| |
Collapse
|
5
|
Reischig T, Vlas T, Kacer M, Pivovarcikova K, Lysak D, Nemcova J, Drenko P, Machova J, Bouda M, Sedivcova M, Kormunda S. A Randomized Trial of Valganciclovir Prophylaxis Versus Preemptive Therapy in Kidney Transplant Recipients. J Am Soc Nephrol 2023; 34:920-934. [PMID: 36749127 PMCID: PMC10125645 DOI: 10.1681/asn.0000000000000090] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2022] [Accepted: 12/26/2022] [Indexed: 02/08/2023] Open
Abstract
SIGNIFICANCE STATEMENT Although cytomegalovirus (CMV) infection is an important factor in the pathogenesis of kidney allograft rejection, previous studies have not determined the optimal CMV prevention strategy to avoid indirect effects of the virus. In this randomized trial involving 140 kidney transplant recipients, incidence of acute rejection at 12 months was not lower with valganciclovir prophylaxis (for at least 3 months) compared with preemptive therapy initiated after detection of CMV DNA in whole blood. However, prophylaxis was associated with a lower risk of subclinical rejection at 3 months. Although both regimens were effective in preventing CMV disease, the incidence of CMV DNAemia (including episodes with higher viral loads) was significantly higher with preemptive therapy. Further research with long-term follow-up is warranted to better compare the two approaches. BACKGROUND The optimal regimen for preventing cytomegalovirus (CMV) infection in kidney transplant recipients, primarily in reducing indirect CMV effects, has not been defined. METHODS This open-label, single-center, randomized clinical trial of valganciclovir prophylaxis versus preemptive therapy included kidney transplant recipients recruited between June 2013 and May 2018. After excluding CMV-seronegative recipients with transplants from seronegative donors, we randomized 140 participants 1:1 to receive valganciclovir prophylaxis (900 mg, daily for 3 or 6 months for CMV-seronegative recipients who received a kidney from a CMV-seropositive donor) or preemptive therapy (valganciclovir, 900 mg, twice daily) that was initiated after detection of CMV DNA in whole blood (≥1000 IU/ml) and stopped after two consecutive negative tests (preemptive therapy patients received weekly CMV PCR tests for 4 months). The primary outcome was the incidence of biopsy-confirmed acute rejection at 12 months. Key secondary outcomes included subclinical rejection, CMV disease and DNAemia, and neutropenia. RESULTS The incidence of acute rejection was lower with valganciclovir prophylaxis than with preemptive therapy (13%, 9/70 versus 23%, 16/70), but the difference was not statistically significant. Subclinical rejection at 3 months was lower in the prophylaxis group (13% versus 29%, P = 0.027). Both regimens prevented CMV disease (in 4% of patients in both groups). Compared with prophylaxis, preemptive therapy resulted in significantly higher rates of CMV DNAemia (44% versus 75%, P < 0.001) and a higher proportion of patients experiencing episodes with higher viral load (≥2000 IU/ml), but significantly lower valganciclovir exposure and neutropenia. CONCLUSION Among kidney transplant recipients, the use of valganciclovir prophylaxis did not result in a significantly lower incidence of acute rejection compared with the use of preemptive therapy. CLINICAL TRIAL REGISTRY NAME AND REGISTRATION NUMBER Optimizing Valganciclovir Efficacy in Renal Transplantation (OVERT Study), ACTRN12613000554763 .
Collapse
Affiliation(s)
- Tomas Reischig
- Department of Internal Medicine I, Faculty of Medicine in Pilsen, Charles University, and Teaching Hospital, Pilsen, Czech Republic
- Biomedical Centre, Faculty of Medicine in Pilsen, Charles University, Pilsen, Czech Republic
| | - Tomas Vlas
- Biomedical Centre, Faculty of Medicine in Pilsen, Charles University, Pilsen, Czech Republic
- Department of Immunology and Allergology, Faculty of Medicine in Pilsen, Charles University, and Teaching Hospital, Pilsen, Czech Republic
| | - Martin Kacer
- Department of Internal Medicine I, Faculty of Medicine in Pilsen, Charles University, and Teaching Hospital, Pilsen, Czech Republic
- Biomedical Centre, Faculty of Medicine in Pilsen, Charles University, Pilsen, Czech Republic
| | - Kristyna Pivovarcikova
- Department of Pathology, Faculty of Medicine in Pilsen, Charles University, and Teaching Hospital, Pilsen, Czech Republic
| | - Daniel Lysak
- Biomedical Centre, Faculty of Medicine in Pilsen, Charles University, Pilsen, Czech Republic
- Department of Hematology and Oncology, Faculty of Medicine in Pilsen, Charles University, and Teaching Hospital, Pilsen, Czech Republic
| | - Jana Nemcova
- Biomedical Centre, Faculty of Medicine in Pilsen, Charles University, Pilsen, Czech Republic
- Department of Molecular Genetic, Biopticka laboratory, Pilsen, Czech Republic
| | - Petr Drenko
- Department of Internal Medicine I, Faculty of Medicine in Pilsen, Charles University, and Teaching Hospital, Pilsen, Czech Republic
| | - Jana Machova
- Department of Internal Medicine I, Faculty of Medicine in Pilsen, Charles University, and Teaching Hospital, Pilsen, Czech Republic
- Biomedical Centre, Faculty of Medicine in Pilsen, Charles University, Pilsen, Czech Republic
| | - Mirko Bouda
- Department of Internal Medicine I, Faculty of Medicine in Pilsen, Charles University, and Teaching Hospital, Pilsen, Czech Republic
- Biomedical Centre, Faculty of Medicine in Pilsen, Charles University, Pilsen, Czech Republic
| | - Monika Sedivcova
- Department of Molecular Genetic, Biopticka laboratory, Pilsen, Czech Republic
| | - Stanislav Kormunda
- Biomedical Centre, Faculty of Medicine in Pilsen, Charles University, Pilsen, Czech Republic
- Division of Information Technologies and Statistics, Faculty of Medicine in Pilsen, Charles University, Pilsen, Czech Republic
| |
Collapse
|
6
|
Anthony K, Ala P, Catapano F, Meng J, Domingos J, Perry M, Ricotti V, Maresh K, Phillips LC, Servais L, Seferian AM, De Lucia S, de Groot I, Krom YD, Verschuuren JGM, Niks EH, Straub V, Guglieri M, Voit T, Morgan J, Muntoni F. T Cell Responses to Dystrophin in a Natural History Study of Duchenne Muscular Dystrophy. Hum Gene Ther 2023; 34:439-448. [PMID: 36453228 DOI: 10.1089/hum.2022.166] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/03/2022] Open
Abstract
Duchenne muscular dystrophy (DMD) is caused by the lack of dystrophin, but many patients have rare revertant fibers that express dystrophin. The skeletal muscle pathology of DMD patients includes immune cell infiltration and inflammatory cascades. There are several strategies to restore dystrophin in skeletal muscles of patients, including exon skipping and gene therapy. There is some evidence that dystrophin restoration leads to a reduction in immune cells, but dystrophin epitopes expressed in revertant fibers or following genome editing, cell therapy, or microdystrophin delivery after adeno-associated viral gene therapy may elicit T cell production in patients. This may affect the efficacy of the therapeutic intervention, and potentially lead to serious adverse events. To confirm and extend previous studies, we performed annual enzyme- linked immunospot interferon-gamma assays on peripheral blood mononuclear cells from 77 pediatric boys with DMD recruited into a natural history study, 69 of whom (89.6%) were treated with corticosteroids. T cell responses to dystrophin were quantified using a total of 368 peptides spanning the entire dystrophin protein, organized into nine peptide pools. Peptide mapping pools were used to further localize the immune response in one positive patient. Six (7.8%) patients had a T cell-mediated immune response to dystrophin at at least one time point. All patients who had a positive result had been treated with corticosteroids, either prednisolone or prednisone. Our results show that ∼8% of DMD individuals in our cohort have a pre-existing T cell-mediated immune response to dystrophin, despite steroid treatment. Although these responses are relatively low level, this information should be considered a useful immunological baseline before undertaking clinical trials and future DMD studies. We further highlight the importance for a robust, reproducible standard operating procedure for collecting, storing, and shipping samples from multiple centers to minimize the number of inconclusive data.
Collapse
Affiliation(s)
- Karen Anthony
- The Dubowitz Neuromuscular Centre, UCL Great Ormond Street Institute of Child Health, London, United Kingdom
- National Institute for Health Research, Great Ormond Street Institute of Child Health Biomedical Research Centre, University College London, London, United Kingdom
- Centre for Physical Activity and Life Sciences, University of Northampton, Northampton, United Kingdom
| | - Pierpaolo Ala
- The Dubowitz Neuromuscular Centre, UCL Great Ormond Street Institute of Child Health, London, United Kingdom
- National Institute for Health Research, Great Ormond Street Institute of Child Health Biomedical Research Centre, University College London, London, United Kingdom
| | - Francesco Catapano
- The Dubowitz Neuromuscular Centre, UCL Great Ormond Street Institute of Child Health, London, United Kingdom
- National Institute for Health Research, Great Ormond Street Institute of Child Health Biomedical Research Centre, University College London, London, United Kingdom
| | - Jinhong Meng
- The Dubowitz Neuromuscular Centre, UCL Great Ormond Street Institute of Child Health, London, United Kingdom
- National Institute for Health Research, Great Ormond Street Institute of Child Health Biomedical Research Centre, University College London, London, United Kingdom
| | - Joana Domingos
- The Dubowitz Neuromuscular Centre, UCL Great Ormond Street Institute of Child Health, London, United Kingdom
- National Institute for Health Research, Great Ormond Street Institute of Child Health Biomedical Research Centre, University College London, London, United Kingdom
| | - Mark Perry
- The Dubowitz Neuromuscular Centre, UCL Great Ormond Street Institute of Child Health, London, United Kingdom
- National Institute for Health Research, Great Ormond Street Institute of Child Health Biomedical Research Centre, University College London, London, United Kingdom
| | - Valeria Ricotti
- The Dubowitz Neuromuscular Centre, UCL Great Ormond Street Institute of Child Health, London, United Kingdom
- National Institute for Health Research, Great Ormond Street Institute of Child Health Biomedical Research Centre, University College London, London, United Kingdom
| | - Kate Maresh
- The Dubowitz Neuromuscular Centre, UCL Great Ormond Street Institute of Child Health, London, United Kingdom
- National Institute for Health Research, Great Ormond Street Institute of Child Health Biomedical Research Centre, University College London, London, United Kingdom
| | - Lauren C Phillips
- John Walton Muscular Dystrophy Research Centre, Newcastle University and Newcastle Hospitals NHS Foundation Trust, Newcastle upon Tyne, United Kingdom
- Department of Pharmacology, University of Oxford, Oxford, United Kingdom
| | - Laurent Servais
- Institut de Myologie, Groupe hospitalier La Pitié Salpétrière, Paris, France
- MDUK Oxford Neuromuscular Center, University of Oxford, Oxford, United Kingdom
- Division of Paediatrics, Neuromuscular Center, University Hospital and University of Liège, Liège, Belgium
| | | | | | | | - Yvonne D Krom
- Leiden University Medical Centre, Leiden, Netherlands
| | | | - Erik H Niks
- Leiden University Medical Centre, Leiden, Netherlands
| | - Volker Straub
- John Walton Muscular Dystrophy Research Centre, Newcastle University and Newcastle Hospitals NHS Foundation Trust, Newcastle upon Tyne, United Kingdom
| | - Michela Guglieri
- John Walton Muscular Dystrophy Research Centre, Newcastle University and Newcastle Hospitals NHS Foundation Trust, Newcastle upon Tyne, United Kingdom
| | - Thomas Voit
- National Institute for Health Research, Great Ormond Street Institute of Child Health Biomedical Research Centre, University College London, London, United Kingdom
| | - Jennifer Morgan
- The Dubowitz Neuromuscular Centre, UCL Great Ormond Street Institute of Child Health, London, United Kingdom
- National Institute for Health Research, Great Ormond Street Institute of Child Health Biomedical Research Centre, University College London, London, United Kingdom
| | - Francesco Muntoni
- The Dubowitz Neuromuscular Centre, UCL Great Ormond Street Institute of Child Health, London, United Kingdom
- National Institute for Health Research, Great Ormond Street Institute of Child Health Biomedical Research Centre, University College London, London, United Kingdom
| |
Collapse
|
7
|
Bisceglia H, Barrier J, Ruiz J, Pagnon A. A FluoroSpot B assay for the detection of IgA and IgG SARS-CoV-2 spike-specific memory B cells: Optimization and qualification for use in COVID-19 vaccine trials. J Immunol Methods 2023; 515:113457. [PMID: 36914088 PMCID: PMC10008040 DOI: 10.1016/j.jim.2023.113457] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2022] [Revised: 02/23/2023] [Accepted: 03/08/2023] [Indexed: 03/13/2023]
Abstract
BACKGROUND The generation of antigen-specific memory B cells is crucial to the long-term effectiveness of vaccines. When the protective antibodies circulating in the blood wane, memory B cells (MBC) can be rapidly reactivated and differentiated into antibody-secreting cells during a new infection. Such MBC responses are considered to be key in providing long-term protection after infection or vaccination. Here, we describe the optimization and qualification of a FluoroSpot assay to measure MBCs directed against the SARS-CoV-2 spike protein in the peripheral blood, for use in COVID-19 vaccine trials. METHODS We developed a FluoroSpot assay enabling simultaneous enumeration of B cells secreting IgA or IgG spike-specific antibodies after polyclonal stimulation of peripheral blood mononuclear cells (PBMCs) with interleukin-2 and the toll-like receptor agonist R848 for 5 days. The antigen coating was optimized using a capture antibody directed against the spike subunit-2 glycoprotein of SARS-CoV-2 to immobilize recombinant trimeric spike protein onto the membrane. RESULTS Compared to a direct spike protein coating, the addition of a capture antibody increased the number and the quality of detected spots for both spike-specific IgA and IgG secreting cells in PBMCs from COVID-19 convalescents. The qualification showed good sensitivity of the dual-color IgA-IgG FluoroSpot assay, with lower limits of quantitation of 18 background-subtracted (BS) antibody-secreting cells (ASCs)/well for spike-specific IgA and IgG responses. Linearity was demonstrated at values ranging from 18 to 73 and from 18 to 607 BS ASCs/well for spike-specific IgA and IgG, respectively, as was precision, with intermediate precision (percentage geometric coefficients of variation) of 12% and 26% for the proportion of spike-specific IgA and IgG MBCs (ratio specific/total IgA or Ig). The assay was specific, since no spike-specific MBCs were detected in PBMCs from pre-pandemic samples; the results were below the limit of detection of 17 BS ASCs/well. CONCLUSIONS These results show that the dual-color IgA-IgG FluoroSpot provides a sensitive, specific, linear, and precise tool to detect spike-specific MBC responses. This MBC FluoroSpot assay is a method of choice for monitoring spike-specific IgA and IgG MBC responses induced by COVID-19 candidate vaccines in clinical trials.
Collapse
Affiliation(s)
- Hélène Bisceglia
- Research Global Immunology Department, Sanofi, Marcy l'Étoile, France
| | - Julie Barrier
- Research Global Immunology Department, Sanofi, Marcy l'Étoile, France
| | - Joseline Ruiz
- Translational and Early Development Biostatistics, Sanofi, Marcy l'Étoile, France
| | - Anke Pagnon
- Research Global Immunology Department, Sanofi, Marcy l'Étoile, France.
| |
Collapse
|
8
|
Ma J, Peng Z, Ma L, Diao L, Shao X, Zhao Z, Liu L, Zhang L, Huang C, Liu M. A Multiple-Target Simultaneous Detection Method for Immunosorbent Assay and Immunospot Assay. Anal Chem 2022; 94:8704-8714. [PMID: 35649130 DOI: 10.1021/acs.analchem.2c01087] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Enzyme-linked immunosorbent assay (ELISA) is one of the most common methods in biological studies, and enzyme-linked immunospot (ELISpot) is a method to measure specific cell numbers by detecting protein secretion at a single-cell level. However, these two current methods can only detect one signal at one time and the sensitivity is not high enough to test low-concentration samples, which are major shortcomings in systematically analyzing the samples of interest. Herein, we demonstrated fluorescence-based oligo-linked immunosorbent assay (FOLISA) and fluorescence-based oligo-linked immunospot (FOLISPOT), which utilized DNA-barcoded antibodies to provide a highly multiplexed method with signal amplification. Signal amplification and simultaneous multiple-target detection were achieved by DNA complementary pairing and modular orthogonal DNA concatemers. By comparing FOLISA with traditional ELISA and comparing FOLISPOT with traditional ELISPOT, we found that the detection sensitivities of FOLISA and FOLISPOT are much higher than those of traditional ELISA and ELISPOT. The detection limit of ELISA is around 3 pg/mL, and the detection limit of FOLISA is below 0.06 pg/mL. FOLISPOT can detect more spots than ELISPOT and can detect targets that are undetectable for ELISPOT. Furthermore, FOLISA and FOLISPOT allowed sequential detection of multiple targets by using a single dye or multiple dyes in one round and sequential detection in multiple rounds. Thus, FOLISA and FOLISPOT enabled simultaneous detection of a large number of targets, significantly improved the detection sensitivity, and overcame the shortcomings of ELISA and ELISPOT. Overall, FOLISA and FOLISPOT presented effective and general platforms for rapid and multiplexed detection of antigens or antibodies with high sensitivity, either in laboratory tests or potentially in clinic tests.
Collapse
Affiliation(s)
- Jianting Ma
- Kunshan Hospital of Traditional Chinese Medicine, Suzhou, Kunshan 215300, People's Republic of China.,Department of Pharmaceutics, College of Pharmaceutical Sciences, Soochow University, Suzhou 215123, People's Republic of China
| | - Zuofu Peng
- AlphaX (Beijing) Biotech Co., Ltd., Beijing 100083, People's Republic of China
| | - Lin Ma
- Department of Pharmaceutics, College of Pharmaceutical Sciences, Soochow University, Suzhou 215123, People's Republic of China
| | - Lu Diao
- Department of Pharmaceutics, College of Pharmaceutical Sciences, Soochow University, Suzhou 215123, People's Republic of China
| | - Xinyu Shao
- Department of Endocrinology and Metabolism, The First Affiliated Hospital of Soochow University, Suzhou 215006, People's Republic of China
| | - Zhiming Zhao
- Department of Pharmaceutics, College of Pharmaceutical Sciences, Soochow University, Suzhou 215123, People's Republic of China
| | - Lele Liu
- Kunshan Hospital of Traditional Chinese Medicine, Suzhou, Kunshan 215300, People's Republic of China
| | - Liang Zhang
- Department of Pharmaceutics, College of Pharmaceutical Sciences, Soochow University, Suzhou 215123, People's Republic of China
| | - Chenrong Huang
- Department of Clinical Pharmacology, The First Affiliated Hospital of Soochow University, Soochow University, Suzhou 215123, People's Republic of China
| | - Mi Liu
- Kunshan Hospital of Traditional Chinese Medicine, Suzhou, Kunshan 215300, People's Republic of China.,Department of Pharmaceutics, College of Pharmaceutical Sciences, Soochow University, Suzhou 215123, People's Republic of China
| |
Collapse
|
9
|
Reischig T, Kacer M, Vlas T, Drenko P, Kielberger L, Machova J, Topolcan O, Kucera R, Kormunda S. Insufficient response to mRNA SARS-CoV-2 vaccine and high incidence of severe COVID-19 in kidney transplant recipients during pandemic. Am J Transplant 2022; 22:801-812. [PMID: 34860470 PMCID: PMC9906453 DOI: 10.1111/ajt.16902] [Citation(s) in RCA: 35] [Impact Index Per Article: 11.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2021] [Revised: 11/24/2021] [Accepted: 11/24/2021] [Indexed: 01/25/2023]
Abstract
Severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) mRNA vaccination may fail to sufficiently protect transplant recipients against coronavirus disease 2019 (COVID-19). We retrospectively evaluated COVID-19 in kidney transplant recipients (n = 226) after BNT162b2 mRNA vaccine administration. The control group consisted of unvaccinated patients (n = 194) during the previous pandemic wave. We measured anti-spike protein immunoglobulin G (IgG) levels and cellular responses, using enzyme-linked immunosorbent spot assay, in a prospective cohort after vaccination (n = 31) and recovery from COVID-19 (n = 19). COVID-19 was diagnosed in 37 (16%) vaccinated and 43 (22%) unvaccinated patients. COVID-19 severity was similar in both groups, with patients exhibiting a comparable need for hospitalization (41% vs. 40%, p = 1.000) and mortality (14% vs. 9%, p = .726). Short posttransplant periods were associated with COVID-19 after vaccination (p < .001). Only 5 (16%) patients achieved positive SARS-CoV-2 IgG after vaccination, and 17 (89%, p < .001) recovered from COVID-19 (median IgG levels, 0.6 vs. 52.5 AU/ml, p < .001). A cellular response following vaccination was present in the majority (n = 22, 71%), with an increase in interleukin 2 secreting T cells (p < .001). Despite detectable T cell immunity after mRNA vaccination, kidney transplant recipients remained at a high risk of severe COVID-19. Humoral responses induced by vaccination were significantly lower than that after COVID-19.
Collapse
Affiliation(s)
- Tomas Reischig
- Department of Internal Medicine I, Faculty of Medicine in Pilsen, Charles University and Teaching Hospital, Pilsen, Czech Republic
- Biomedical Centre, Faculty of Medicine in Pilsen, Charles University, Pilsen, Czech Republic
| | - Martin Kacer
- Department of Internal Medicine I, Faculty of Medicine in Pilsen, Charles University and Teaching Hospital, Pilsen, Czech Republic
- Biomedical Centre, Faculty of Medicine in Pilsen, Charles University, Pilsen, Czech Republic
| | - Tomas Vlas
- Biomedical Centre, Faculty of Medicine in Pilsen, Charles University, Pilsen, Czech Republic
- Department of Immunology and Allergology, Faculty of Medicine in Pilsen, Charles University and Teaching Hospital, Pilsen, Czech Republic
| | - Petr Drenko
- Department of Internal Medicine I, Faculty of Medicine in Pilsen, Charles University and Teaching Hospital, Pilsen, Czech Republic
| | - Lukas Kielberger
- Department of Internal Medicine I, Faculty of Medicine in Pilsen, Charles University and Teaching Hospital, Pilsen, Czech Republic
- Biomedical Centre, Faculty of Medicine in Pilsen, Charles University, Pilsen, Czech Republic
| | - Jana Machova
- Department of Internal Medicine I, Faculty of Medicine in Pilsen, Charles University and Teaching Hospital, Pilsen, Czech Republic
- Biomedical Centre, Faculty of Medicine in Pilsen, Charles University, Pilsen, Czech Republic
| | - Ondrej Topolcan
- Department of Immunochemistry Diagnostics, Faculty of Medicine in Pilsen, Charles University and Teaching Hospital, Pilsen, Czech Republic
| | - Radek Kucera
- Department of Immunochemistry Diagnostics, Faculty of Medicine in Pilsen, Charles University and Teaching Hospital, Pilsen, Czech Republic
| | - Stanislav Kormunda
- Biomedical Centre, Faculty of Medicine in Pilsen, Charles University, Pilsen, Czech Republic
- Division of Information Technologies and Statistics, Faculty of Medicine in Pilsen, Charles University, Pilsen, Czech Republic
| |
Collapse
|
10
|
Abstract
The FluoroSpot assay is a development of the highly sensitive enzyme-linked immunospot (ELISpot) assay which enables functional measurement of immunity at the single-cell level. Both assays are performed in a 96-well format and measures the frequency of analyte-secreting cells, in ELISpot usually limited to one analyte per well due to the use of enzymes and precipitating substrates for detection. FluoroSpot, performed in a similar way as ELISpot, overcomes this limitation by detecting each analyte with an assigned fluorophore instead of an enzyme. By using readers equipped with fluorophore-specific filters, cells producing single or multiple cytokines can be identified simultaneously in the same well. This greatly facilitates the analysis of functionally distinct subpopulations in heterogenous cell samples, for example, the frequency of polyfunctional T cells, suggested to be of importance in various disease states. FluoroSpot maintains the simplicity and sensitivity of the ELISpot while taking the assay a step further towards a multiplex analysis and an in-depth understanding of the quality of an immune response. We describe here a 96-well plate method to analyze cells that have secreted up to four different cytokines simultaneously (Four-color Fluorospot).
Collapse
|
11
|
Körber N, Pohl L, Weinberger B, Grubeck-Loebenstein B, Wawer A, Knolle PA, Roggendorf H, Protzer U, Bauer T. Hepatitis B Vaccine Non-Responders Show Higher Frequencies of CD24 highCD38 high Regulatory B Cells and Lower Levels of IL-10 Expression Compared to Responders. Front Immunol 2021; 12:713351. [PMID: 34566969 PMCID: PMC8461011 DOI: 10.3389/fimmu.2021.713351] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2021] [Accepted: 08/25/2021] [Indexed: 12/16/2022] Open
Abstract
Background The cellular mechanisms involved in the lack of protective antibody response after hepatitis B vaccination are still rather unclear. Regulatory B cells (Breg) known as modulators of B-and T-cell responses may contribute to poor vaccine responsiveness. The current study aimed to investigate the role of regulatory B cells (Breg) in hepatitis B vaccine non-responsiveness after immunization with second- or third-generation hepatitis B vaccines. Method We performed comparative phenotypic and frequency analysis of Breg subsets (CD24+CD27+ and CD24highCD38high Breg) in second-generation hepatitis B vaccine non-responders (2nd HBvac NR, n = 11) and responders (2nd HBvac R, n = 8) before (d0), on day 7 (d7), and 28 (d28) after booster vaccination. Cryopreserved peripheral blood mononuclear cells were stimulated ex vivo with a combination of CpG, PMA, and Ionomycin (CpG+P/I) and analyzed for numbers and IL-10 expression levels of Breg by flow cytometry-based analyses. Results Flow cytometry-based analyses revealed elevated frequencies of CD24+CD27+ Breg at all time points and significantly higher frequencies of CD24highCD38high Breg on d0 (p = 0.004) and 28 (p = 0.012) in 2nd HBvac NR compared to 2nd HBvac R. In parallel, we observed significantly lower levels of CpG+P/I-induced IL-10 expression levels of CD24+CD27+ and CD24highCD38high Breg (d0: p < 0.0001; d7: p = 0.0004; d28: p = 0.0003 and d0: p = 0.016; d7: p = 0.016, respectively) in 2nd HBvac NR compared to 2nd HBvac R before and after booster immunization. Frequencies of CD24+CD27+ and CD24highCD38high Breg significantly decreased after third-generation hepatitis B booster vaccination (d7: p = 0.014; d28: p = 0.032 and d7: p = 0.045, respectively), whereas IL-10 expression levels of both Breg subsets remained stable. Conclusion Here we report significantly higher frequencies of CD24highCD38high Breg in parallel with significantly lower IL-10 expression levels of CD24+CD27+ and CD24highCD38high Breg in 2nd HBvac NR compared to 2nd HBvac R. Anti-HBs seroconversion accompanied by a decrease of Breg numbers after booster immunization with a third-generation hepatitis B vaccine could indicate a positive effect of third-generation hepatitis B vaccines on Breg-mediated immunomodulation in hepatitis B vaccine non-responders.
Collapse
Affiliation(s)
- Nina Körber
- Institute of Virology, Helmholtz Zentrum München, Munich, Germany.,German Center for Infection Research (DZIF), Munich, Germany
| | - Laureen Pohl
- Institute of Virology, Helmholtz Zentrum München, Munich, Germany
| | - Birgit Weinberger
- Institute for Biomedical Aging Research, Universität Innsbruck, Innsbruck, Austria
| | | | - Andrea Wawer
- Occupational Health Unit, School of Medicine, Technical University of Munich (TUM), Munich, Germany
| | - Percy A Knolle
- German Center for Infection Research (DZIF), Munich, Germany.,Institute of Molecular Immunology and Experimental Oncology, School of Medicine, Technical University of Munich (TUM), Munich, Germany
| | - Hedwig Roggendorf
- German Center for Infection Research (DZIF), Munich, Germany.,Institute of Molecular Immunology and Experimental Oncology, School of Medicine, Technical University of Munich (TUM), Munich, Germany
| | - Ulrike Protzer
- Institute of Virology, Helmholtz Zentrum München, Munich, Germany.,German Center for Infection Research (DZIF), Munich, Germany.,Institute of Virology, School of Medicine, Technical University of Munich (TUM), Munich, Germany
| | - Tanja Bauer
- Institute of Virology, Helmholtz Zentrum München, Munich, Germany.,German Center for Infection Research (DZIF), Munich, Germany
| |
Collapse
|
12
|
Patton KS, Harrison MT, Long BR, Lau K, Holcomb J, Owen R, Kasprzyk T, Janetzki S, Zoog SJ, Vettermann C. Monitoring cell-mediated immune responses in AAV gene therapy clinical trials using a validated IFN-γ ELISpot method. Mol Ther Methods Clin Dev 2021; 22:183-195. [PMID: 34485604 PMCID: PMC8399379 DOI: 10.1016/j.omtm.2021.05.012] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2020] [Accepted: 05/19/2021] [Indexed: 12/19/2022]
Abstract
Adeno-associated virus (AAV)-based gene therapies have recently shown promise as a novel treatment for hereditary diseases. Due to the viral origin of the vector capsid, however, cellular immune response may be elicited that could eliminate transduced target cells. To monitor cellular immune responses in clinical trials, we optimized and bioanalytically validated a sensitive, robust, and reliable interferon-γ (IFN-γ) enzyme-linked immunospot (ELISpot) assay. For method performance validation, human peripheral blood mononuclear cells (PBMCs) were stimulated with peptides derived from AAV5 capsid proteins and the encoded transgene product, human blood clotting factor VIII (FVIII), in addition to positive controls, such as peptides from the 65-kDa phosphoprotein of cytomegalovirus. We statistically assessed the limit of detection and confirmatory cutpoint, evaluated precision and linearity, and confirmed specificity using HIV peptides. Robustness parameter ranges and sample stability periods were established. The validated IFN-γ ELISpot assay was then implemented in an AAV5-FVIII gene therapy clinical trial. Cellular immune responses against the AAV5 capsid were observed in most participants as soon as 2 weeks following dose administration; only limited responses against the transgene product were detected. These data underscore the value of using validated methods for monitoring cellular immunity in AAV gene therapy trials.
Collapse
Affiliation(s)
- Kathryn S. Patton
- Bioanalytical Sciences, BioMarin Pharmaceutical, 791 Lincoln Avenue, San Rafael, CA 94901, USA
| | - M. Travis Harrison
- Immunology, Precision for Medicine, 2686 Middlefield Road, Redwood City, CA 94063, USA
| | - Brian R. Long
- Bioanalytical Sciences, BioMarin Pharmaceutical, 791 Lincoln Avenue, San Rafael, CA 94901, USA
| | - Kelly Lau
- Bioanalytical Sciences, BioMarin Pharmaceutical, 791 Lincoln Avenue, San Rafael, CA 94901, USA
| | - Jennifer Holcomb
- Bioanalytical Sciences, BioMarin Pharmaceutical, 791 Lincoln Avenue, San Rafael, CA 94901, USA
| | - Rachel Owen
- Immunology, Precision for Medicine, 2686 Middlefield Road, Redwood City, CA 94063, USA
| | - Theresa Kasprzyk
- Bioanalytical Sciences, BioMarin Pharmaceutical, 791 Lincoln Avenue, San Rafael, CA 94901, USA
| | - Sylvia Janetzki
- ZellNet Consulting, 555 North Avenue, Suite 25-S, Fort Lee, NJ 07024, USA
| | - Stephen J. Zoog
- Bioanalytical Sciences, BioMarin Pharmaceutical, 791 Lincoln Avenue, San Rafael, CA 94901, USA
| | - Christian Vettermann
- Bioanalytical Sciences, BioMarin Pharmaceutical, 791 Lincoln Avenue, San Rafael, CA 94901, USA
| |
Collapse
|
13
|
Li Q, Bencherif SA, Su M. Edge-Enhanced Microwell Immunoassay for Highly Sensitive Protein Detection. Anal Chem 2021; 93:10292-10300. [PMID: 34251806 DOI: 10.1021/acs.analchem.1c01754] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
Highly sensitive biosensors that can detect low concentrations of protein biomarkers at the early stages of diseases or proteins secreted from single cells are of importance for disease diagnosis and treatment assessment. This work reports a new signal amplification mechanism, that is, edge enhancement based on the vertical sidewalls of microwells for ultra-sensitive protein detection. The fluorescence emission at the edge of the microwells is highly amplified due to the microscopic axial resolution (depth of field) and demonstrates a microring effect. The enhanced fluorescence intensity from microrings is calibrated for bovine serum albumin detection, which shows a 6-fold sensitivity enhancement and a lower limit of detection at the microwell edge, compared to those obtained on a flat surface. The microwell chip is used to separate single cells, and the wall of each microwell is used to detect interferon-γ secretion from T cells stimulated with a peptide and whole cancer cells. Given its edge-enhancement ability, the microwell technique can be a highly sensitive biosensing platform for disease diagnosis at an early stage and for assessing potential treatments at the single-cell level.
Collapse
Affiliation(s)
- Qingxuan Li
- Department of Chemical Engineering, Northeastern University, Boston, Massachusetts 02115, United States
| | - Sidi A Bencherif
- Department of Chemical Engineering, Northeastern University, Boston, Massachusetts 02115, United States.,Department of Bioengineering, Northeastern University, Boston, Massachusetts 02115, United States
| | - Ming Su
- Department of Chemical Engineering, Northeastern University, Boston, Massachusetts 02115, United States
| |
Collapse
|
14
|
Bucheli OTM, Sigvaldadóttir I, Eyer K. Measuring single-cell protein secretion in immunology: Technologies, advances, and applications. Eur J Immunol 2021; 51:1334-1347. [PMID: 33734428 PMCID: PMC8252417 DOI: 10.1002/eji.202048976] [Citation(s) in RCA: 22] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2020] [Revised: 01/12/2021] [Accepted: 03/15/2021] [Indexed: 12/19/2022]
Abstract
The dynamics, nature, strength, and ultimately protective capabilities of an active immune response are determined by the extracellular constitution and concentration of various soluble factors. Generated effector cells secrete such mediators, including antibodies, chemo‐ and cytokines to achieve functionality. These secreted factors organize the individual immune cells into functional tissues, initiate, orchestrate, and regulate the immune response. Therefore, a single‐cell resolved analysis of protein secretion is a valuable tool for studying the heterogeneity and functionality of immune cells. This review aims to provide a comparative overview of various methods to characterize immune reactions by measuring single‐cell protein secretion. Spot‐based and cytometry‐based assays, such as ELISpot and flow cytometry, respectively, are well‐established methods applied in basic research and clinical settings. Emerging novel technologies, such as microfluidic platforms, offer new ways to measure and exploit protein secretion in immune reactions. Further technological advances will allow the deciphering of protein secretion in immunological responses with unprecedented detail, linking secretion to functionality. Here, we summarize the development and recent advances of tools that allow the analysis of protein secretion at the single‐cell level, and discuss and contrast their applications within immunology.
Collapse
Affiliation(s)
- Olivia T M Bucheli
- ETH Laboratory for Functional Immune Repertoire Analysis, Institute of Pharmaceutical Sciences, D-CHAB, ETH Zürich, Zürich, Switzerland
| | - Ingibjörg Sigvaldadóttir
- ETH Laboratory for Functional Immune Repertoire Analysis, Institute of Pharmaceutical Sciences, D-CHAB, ETH Zürich, Zürich, Switzerland
| | - Klaus Eyer
- ETH Laboratory for Functional Immune Repertoire Analysis, Institute of Pharmaceutical Sciences, D-CHAB, ETH Zürich, Zürich, Switzerland
| |
Collapse
|
15
|
Yang F, Patton K, Kasprzyk T, Long B, Gupta S, Zoog SJ, Tracy K, Vettermann C. Validation of an IFN-gamma ELISpot assay to measure cellular immune responses against viral antigens in non-human primates. Gene Ther 2021; 29:41-54. [PMID: 33432123 PMCID: PMC7797710 DOI: 10.1038/s41434-020-00214-w] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2020] [Revised: 11/19/2020] [Accepted: 12/04/2020] [Indexed: 12/30/2022]
Abstract
Adeno-Associated Virus (AAV)-based gene therapy vectors are in development for many inherited human disorders. In nonclinical studies, cellular immune responses mediated by cytotoxic T cells may target vector-transduced cells, which could impact safety and efficacy. Here, we describe the bioanalytical validation of an interferon-gamma (IFN-γ)-based Enzyme-Linked Immunospot (ELISpot) assay for measuring T cell responses against viral antigens in cynomolgus monkeys. Since ELISpots performed with antigen-derived peptides offer a universal assay format, method performance characteristics were validated using widely available peripheral blood mononuclear cells (PBMCs) responsive to cytomegalovirus peptides. The limit of detection and confirmatory cut point were established using statistical methods; precision, specificity, and linearity were confirmed. Monkey PBMCs from an AAV5 gene therapy study were then analyzed, using peptide pools spanning the vector capsid and transgene product. AAV5-specific T cell responses were detected only in 2 of 18 monkeys at Day 28, but not at Day 13 and 56 after vector administration, with no correlation to liver enzyme elevations or transgene expression levels. No transgene product-specific T cell responses occurred. In conclusion, while viral peptide-specific IFN-γ ELISpots can be successfully validated for monkey PBMCs, monitoring peripheral T cell responses in non-clinical AAV5 gene therapy studies was of limited value to interpret safety or efficacy.
Collapse
Affiliation(s)
- Fan Yang
- BioMarin Pharmaceutical, Inc, Novato, CA, USA
| | | | | | - Brian Long
- BioMarin Pharmaceutical, Inc, Novato, CA, USA
| | - Soumi Gupta
- BioMarin Pharmaceutical, Inc, Novato, CA, USA
| | | | | | | |
Collapse
|
16
|
Wickramarachchi D, Steeno G, You Z, Shaik S, Lepsy C, Xue L. Fit-for-Purpose Validation and Establishment of Assay Acceptance and Reporting Criteria of Dendritic Cell Activation Assay Contributing to the Assessment of Immunogenicity Risk. AAPS JOURNAL 2020; 22:114. [PMID: 32839919 DOI: 10.1208/s12248-020-00491-8] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/07/2020] [Accepted: 07/20/2020] [Indexed: 01/01/2023]
Abstract
Validation of key analytical and functional performance characteristics of in vitro immunogenicity risk assessment assays increases our confidence in utilizing them for screening biotherapeutics. Herein, we present a fit-for-purpose (FFP) validation of a dendritic cell (DC) activation assay designed to assess the immunogenicity liability of protein biotherapeutics. Characterization of key assay parameters was achieved using monocyte-derived DCs (MoDCs) treated with cell culture medium only (i.e., background control (BC)), keyhole limpet hemocyanin (KLH) as system positive control (SPC), and 2 therapeutic monoclonal antibodies (mAbs) with known clinical immunogenicity profiles (bococizumab and TAM163) as therapeutic controls (TCs). In the absence of established validation guidelines for primary cell-based assays, the present DC activation assay was validated using a novel FFP approach which allows more flexibility in selection of validation parameters and designing of experiments based on the intended use of the assay. The present FFP validation allowed us to understand the impact of experimental variables on assay precision, develop a clear concise readout for DC activation results, establish a reliable response threshold to define a result as a positive DC activation response, and define in-study donor acceptance criteria and cohort size. FFP validation of this DC activation assay indicated that the assay is sufficient to support its context of use, a preclinical immunogenicity risk management tool.
Collapse
Affiliation(s)
- Dilki Wickramarachchi
- Immunogenicity Sciences, Biomedicine Design, Worldwide Research, Development & Medical, Pfizer Inc., Andover, Massachusetts, USA
| | - Gregory Steeno
- Nonclinical Biostatistics, Early Clinical Development, Worldwide Research, Development & Medical, Pfizer Inc., Groton, Connecticut, USA
| | - Zhiping You
- Nonclinical Biostatistics, Early Clinical Development, Worldwide Research, Development & Medical, Pfizer Inc., Groton, Connecticut, USA
| | - Saleem Shaik
- Immunogenicity Sciences, Biomedicine Design, Worldwide Research, Development & Medical, Pfizer Inc., Andover, Massachusetts, USA
| | - Christopher Lepsy
- Immunogenicity Sciences, Biomedicine Design, Worldwide Research, Development & Medical, Pfizer Inc., Andover, Massachusetts, USA
| | - Li Xue
- Immunogenicity Sciences, Biomedicine Design, Worldwide Research, Development & Medical, Pfizer Inc., Andover, Massachusetts, USA.
| |
Collapse
|
17
|
Körber N, Behrends U, Protzer U, Bauer T. Evaluation of T-activated proteins as recall antigens to monitor Epstein-Barr virus and human cytomegalovirus-specific T cells in a clinical trial setting. J Transl Med 2020; 18:242. [PMID: 32552697 PMCID: PMC7298696 DOI: 10.1186/s12967-020-02385-x] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/27/2019] [Accepted: 05/21/2020] [Indexed: 12/13/2022] Open
Abstract
BACKGROUND Pools of overlapping synthetic peptides are routinely used for ex vivo monitoring of antigen-specific T-cell responses. However, it is rather unlikely that these peptides match those resulting from naturally processed antigens. T-activated proteins have been described as immunogenic and more natural stimulants, since they have to pass through antigen processing and comprise activation of all clinically relevant effector cell populations. METHODS We performed comparative analysis of numbers and cytokine expression pattern of CD4 and CD8 T cells after stimulation with recombinant, urea-formulated T-activated EBV-BZLF1, -EBNA3A, and HCMV-IE1, and -pp65 proteins or corresponding overlapping peptide pools. Freshly isolated and cryopreserved PBMC of 30 EBV- and 19 HCMV-seropositive and seven EBV- and HCMV-seronegative subjects were stimulated ex vivo and analysed for IFN-γ, TNF and IL-2 production by flow cytometry-based intracellular cytokine staining. RESULTS T-activated proteins showed a high specificity of 100% (EBV-BZLF1, HCMV-IE1, and -pp65) and 86% (EBV-EBNA3A), and a high T-cell stimulatory capacity of 73-95% and 67-95% using freshly isolated and cryopreserved PBMC, respectively. The overall CD4 T-cell response rates in both cohorts were comparable after stimulation with either T-activated protein or peptide pools with the exception of lower numbers of CD8 T cells detected after stimulation with T-activated EBV-EBNA3A- (p = 0.038) and HCMV-pp65- (p = 0.0006). Overall, the number of detectable antigen-specific T cells varied strongly between individuals. Cytokine expression patterns in response to T-activated protein and peptide pool-based stimulation were similar for CD4, but significantly different for CD8 T-cell responses. CONCLUSION EBV and HCMV-derived T-activated proteins represent innovative, highly specific recall antigens suitable for use in immunological endpoint assays to evaluate success or failure in immunotherapy clinical trials (e.g. to assess the risk of EBV and/or HCMV reactivation after allogenic hematopoietic stem cell transplantation). T-activated proteins could be of particular importance, if an impaired antigen processing (e.g. in a post-transplant setting) must be taken into account.
Collapse
Affiliation(s)
- Nina Körber
- Institute of Virology, Helmholtz Zentrum München/Technical University of Munich, School of Medicine, Schneckenburgerstr. 8, 81675, Munich, Germany.
| | - Uta Behrends
- Children's Hospital, School of Medicine, Technical University of Munich, Munich, Germany.,Research Unit Gene Vectors, Helmholtz Zentrum München, Munich, Germany.,German Center for Infection Research (DZIF), Partner Site, Munich, Germany
| | - Ulrike Protzer
- Institute of Virology, Helmholtz Zentrum München/Technical University of Munich, School of Medicine, Schneckenburgerstr. 8, 81675, Munich, Germany.,German Center for Infection Research (DZIF), Partner Site, Munich, Germany
| | - Tanja Bauer
- Institute of Virology, Helmholtz Zentrum München/Technical University of Munich, School of Medicine, Schneckenburgerstr. 8, 81675, Munich, Germany.,German Center for Infection Research (DZIF), Partner Site, Munich, Germany
| |
Collapse
|
18
|
Abstract
Monitoring allograft function after kidney transplant has routinely relied on the use of nonspecific markers, such as serum creatinine, glomerular filtration rate, proteinuria, and donor-specific antibodies. These traditional markers have low sensitivity and fail to detect subclinical changes. Diagnosis of renal allograft dysfunction still requires an allograft biopsy, as it remains the criterion standard for assessment of graft status. However, renal biopsy is an invasive procedure, and sampling errors may result in misdiagnosis, perhaps causing graft failure. New biomarkers have been developed to monitor allograft function, although many are not yet routinely used. Other shortcomings, such as lack of standardization and high cost, should be solved before their widespread application in the clinic. A recipient's immune status could be monitored by use of urine or blood samples. These include functional cell-based assays and the evaluation of molecular expression at the messenger RNA or protein levels. Molecular technologies, including molecular microscope diagnostic systems, have been recently developed to improve the yield of histologic evaluation of the allograft biopsy. Prospective, interventional trials are required to demonstrate whether these new biomarkers improve patient or transplant outcomes. Implementation of these technologies into standard clinical practice remains challenging until their generalizability, cost, ease of interpretation, and the identification of patients who may benefit from more than standard-of-care surveillance can be determined. These biomarkers could allow immunosuppressive therapy to be individualized for patients.
Collapse
Affiliation(s)
- Hassan Argani
- From the Urology and Nephrology Research Center, Shahidbeheshti University of Medical Sciences, Tehran, Iran
| |
Collapse
|
19
|
Negri D, Sestili P, Borghi M, Ciccolella M, Bracci L. Enzyme-linked immunospot assay to monitor antigen-specific cellular immune responses in mouse tumor models. Methods Enzymol 2019; 632:457-477. [PMID: 32000910 DOI: 10.1016/bs.mie.2019.05.058] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023]
Abstract
Critical to the advancement of tumor immunotherapy is the reliable identification of responders and the quantification of the tumor-specific immune response elicited by treatments. In this regard, Enzyme-Linked Immunospot assay (ELISpot) is an ideal monitoring technique due to its high sensitivity, ease of execution and cost-effectiveness. Originally developed for the enumeration of B cells secreting antigen-specific antibodies, ELISpot assay has been adapted to detect and quantify cytokine-secreting immune cells present at low frequency in a variety of biological samples, including blood, in response to antigen-specific stimuli. The above-mentioned features emphasize the role of ELISpot as valuable assay for translational research and clinical applications. In the present chapter, we will focus on the use of ELISpot assay for monitoring the tumor-specific effector responses induced by different treatments in preclinical models and will provide some protocols and technical hints for its application.
Collapse
Affiliation(s)
- Donatella Negri
- Department of Infectious Diseases, Istituto Superiore di Sanità, Rome, Italy.
| | - Paola Sestili
- National Centre for the Control and the Evaluation of Medicines, Istituto Superiore di Sanità, Rome, Italy
| | - Martina Borghi
- Department of Infectious Diseases, Istituto Superiore di Sanità, Rome, Italy
| | - Maria Ciccolella
- Department of Oncology and Molecular Medicine, Istituto Superiore di Sanità, Rome, Italy
| | - Laura Bracci
- Department of Oncology and Molecular Medicine, Istituto Superiore di Sanità, Rome, Italy.
| |
Collapse
|
20
|
Cirac A, Stützle S, Dieckmeyer M, Adhikary D, Moosmann A, Körber N, Bauer T, Witter K, Delecluse HJ, Behrends U, Mautner J. Epstein-Barr virus strain heterogeneity impairs human T-cell immunity. Cancer Immunol Immunother 2018; 67:663-674. [PMID: 29374782 PMCID: PMC11028080 DOI: 10.1007/s00262-018-2118-z] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2017] [Accepted: 01/19/2018] [Indexed: 12/12/2022]
Abstract
The Epstein-Barr virus (EBV) establishes lifelong infections in > 90% of the human population. Although contained as asymptomatic infection by the immune system in most individuals, EBV is associated with the pathogenesis of approximately 1.5% of all cancers in humans. Some of these EBV-associated tumors have been successfully treated by the infusion of virus-specific T-cell lines. Recent sequence analyses of a large number of viral isolates suggested that distinct EBV strains have evolved in different parts of the world. Here, we assessed the impact of such sequence variations on EBV-specific T-cell immunity. With the exceptions of EBNA2 and the EBNA3 family of proteins, an overall low protein sequence disparity of about 1% was noted between Asian viral isolates, including the newly characterized M81 strain, and the prototypic EBV type 1 and type 2 strains. However, when T-cell epitopes including their flanking regions were compared, a substantial proportion was found to be polymorphic in different EBV strains. Importantly, CD4+ and CD8+ T-cell clones specific for viral epitopes from one strain often showed diminished recognition of the corresponding epitopes in other strains. In addition, T-cell recognition of a conserved epitope was affected by amino acid exchanges within the epitope flanking region. Moreover, the CD8+ T-cell response against polymorphic epitopes varied between donors and often ignored antigen variants. These results demonstrate that viral strain heterogeneity may impair antiviral T-cell immunity and suggest that immunotherapeutic approaches against EBV should preferably target broad sets of conserved epitopes including their flanking regions.
Collapse
Affiliation(s)
- Ana Cirac
- Children's Hospital, Technische Universität München, Munich, Germany
- Research Unit Gene Vectors, Helmholtz Zentrum München, Marchionini Strasse 25, 81377, Munich, Germany
- German Centre for Infection Research (DZIF), Partner Site Munich, Munich, Germany
| | - Simon Stützle
- Institute of Virology, Technische Universität München/Helmholtz Zentrum München, Munich, Germany
| | - Michael Dieckmeyer
- Department of Diagnostic and Interventional Radiology, Technische Universität München, Munich, Germany
| | - Dinesh Adhikary
- Children's Hospital, Technische Universität München, Munich, Germany
- Research Unit Gene Vectors, Helmholtz Zentrum München, Marchionini Strasse 25, 81377, Munich, Germany
- German Centre for Infection Research (DZIF), Partner Site Munich, Munich, Germany
| | - Andreas Moosmann
- DZIF Research Group Host Control of Viral Latency and Reactivation, Helmholtz Zentrum München, Munich, Germany
| | - Nina Körber
- German Centre for Infection Research (DZIF), Partner Site Munich, Munich, Germany
- Institute of Virology, Technische Universität München/Helmholtz Zentrum München, Munich, Germany
| | - Tanja Bauer
- German Centre for Infection Research (DZIF), Partner Site Munich, Munich, Germany
- Institute of Virology, Technische Universität München/Helmholtz Zentrum München, Munich, Germany
| | - Klaus Witter
- Laboratory of Immunogenetics, Ludwig-Maximilians Universität, Munich, Germany
| | - Henri-Jacques Delecluse
- German Centre for Infection Research (DZIF), Partner Site Munich, Munich, Germany
- German Cancer Research Center (DKFZ) Unit F100 and Institut National de la Santé et de la Recherche Médicale Unit U1074, Heidelberg, Germany
| | - Uta Behrends
- Children's Hospital, Technische Universität München, Munich, Germany
- Research Unit Gene Vectors, Helmholtz Zentrum München, Marchionini Strasse 25, 81377, Munich, Germany
- German Centre for Infection Research (DZIF), Partner Site Munich, Munich, Germany
| | - Josef Mautner
- Children's Hospital, Technische Universität München, Munich, Germany.
- Research Unit Gene Vectors, Helmholtz Zentrum München, Marchionini Strasse 25, 81377, Munich, Germany.
- German Centre for Infection Research (DZIF), Partner Site Munich, Munich, Germany.
| |
Collapse
|