1
|
Targeting arginase-1 exerts antitumor effects in multiple myeloma and mitigates bortezomib-induced cardiotoxicity. Sci Rep 2022; 12:19660. [PMID: 36385153 PMCID: PMC9668840 DOI: 10.1038/s41598-022-24137-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2022] [Accepted: 11/10/2022] [Indexed: 11/17/2022] Open
Abstract
Multiple myeloma (MM) remains an incurable malignancy of plasma cells despite constantly evolving therapeutic approaches including various types of immunotherapy. Increased arginase activity has been associated with potent suppression of T-cell immune responses in different types of cancer. Here, we investigated the role of arginase 1 (ARG1) in Vκ*MYC model of MM in mice. ARG1 expression in myeloid cells correlated with tumor progression and was accompanied by a systemic drop in ʟ-arginine levels. In MM-bearing mice antigen-induced proliferation of adoptively transferred T-cells was strongly suppressed and T-cell proliferation was restored by pharmacological arginase inhibition. Progression of Vκ*MYC tumors was significantly delayed in mice with myeloid-specific ARG1 deletion. Arginase inhibition effectively inhibited tumor progression although it failed to augment anti-myeloma effects of bortezomib. However, arginase inhibitor completely prevented development of bortezomib-induced cardiotoxicity in mice. Altogether, these findings indicate that arginase inhibitors could be further tested as a complementary strategy in multiple myeloma to mitigate adverse cardiac events without compromising antitumor efficacy of proteasome inhibitors.
Collapse
|
2
|
Bradey AL, Fitter S, Duggan J, Wilczek V, Williams CMD, Cheney EA, Noll JE, Tangseefa P, Panagopoulos V, Zannettino ACW. Calorie restriction has no effect on bone marrow tumour burden in a Vk*MYC transplant model of multiple myeloma. Sci Rep 2022; 12:13128. [PMID: 35908046 PMCID: PMC9338941 DOI: 10.1038/s41598-022-17403-9] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2022] [Accepted: 07/25/2022] [Indexed: 12/05/2022] Open
Abstract
Multiple myeloma (MM) is an incurable haematological malignancy, caused by the uncontrolled proliferation of plasma cells within the bone marrow (BM). Obesity is a known risk factor for MM, however, few studies have investigated the potential of dietary intervention to prevent MM progression. Calorie restriction (CR) is associated with many health benefits including reduced cancer incidence and progression. To investigate if CR could reduce MM progression, dietary regimes [30% CR, normal chow diet (NCD), or high fat diet (HFD)] were initiated in C57BL/6J mice. Diet-induced changes were assessed, followed by inoculation of mice with Vk*MYC MM cells (Vk14451-GFP) at 16 weeks of age. Tumour progression was monitored by serum paraprotein, and at endpoint, BM and splenic tumour burden was analysed by flow cytometry. 30% CR promoted weight loss, improved glucose tolerance, increased BM adiposity and elevated serum adiponectin compared to NCD-fed mice. Despite these metabolic changes, CR had no significant effect on serum paraprotein levels. Furthermore, endpoint analysis found that dietary changes were insufficient to affect BM tumour burden, however, HFD resulted in an average two-fold increase in splenic tumour burden. Overall, these findings suggest diet-induced BM changes may not be key drivers of MM progression in the Vk14451-GFP transplant model of myeloma.
Collapse
Affiliation(s)
- Alanah L Bradey
- Myeloma Research Laboratory, Faculty of Health and Medical Sciences, School of Biomedicine, University of Adelaide, Adelaide, Australia.,Precision Cancer Medicine Theme, Solid Tumour Program, South Australian Health and Medical Research Institute, Adelaide, Australia
| | - Stephen Fitter
- Myeloma Research Laboratory, Faculty of Health and Medical Sciences, School of Biomedicine, University of Adelaide, Adelaide, Australia.,Precision Cancer Medicine Theme, Solid Tumour Program, South Australian Health and Medical Research Institute, Adelaide, Australia
| | - Jvaughn Duggan
- Myeloma Research Laboratory, Faculty of Health and Medical Sciences, School of Biomedicine, University of Adelaide, Adelaide, Australia.,Precision Cancer Medicine Theme, Solid Tumour Program, South Australian Health and Medical Research Institute, Adelaide, Australia
| | - Vicki Wilczek
- Myeloma Research Laboratory, Faculty of Health and Medical Sciences, School of Biomedicine, University of Adelaide, Adelaide, Australia.,Precision Cancer Medicine Theme, Solid Tumour Program, South Australian Health and Medical Research Institute, Adelaide, Australia
| | - Connor M D Williams
- Myeloma Research Laboratory, Faculty of Health and Medical Sciences, School of Biomedicine, University of Adelaide, Adelaide, Australia.,Precision Cancer Medicine Theme, Solid Tumour Program, South Australian Health and Medical Research Institute, Adelaide, Australia
| | - Emma Aj Cheney
- Myeloma Research Laboratory, Faculty of Health and Medical Sciences, School of Biomedicine, University of Adelaide, Adelaide, Australia.,Precision Cancer Medicine Theme, Solid Tumour Program, South Australian Health and Medical Research Institute, Adelaide, Australia
| | - Jacqueline E Noll
- Myeloma Research Laboratory, Faculty of Health and Medical Sciences, School of Biomedicine, University of Adelaide, Adelaide, Australia.,Precision Cancer Medicine Theme, Solid Tumour Program, South Australian Health and Medical Research Institute, Adelaide, Australia
| | - Pawanrat Tangseefa
- Myeloma Research Laboratory, Faculty of Health and Medical Sciences, School of Biomedicine, University of Adelaide, Adelaide, Australia.,Precision Cancer Medicine Theme, Solid Tumour Program, South Australian Health and Medical Research Institute, Adelaide, Australia
| | - Vasilios Panagopoulos
- Myeloma Research Laboratory, Faculty of Health and Medical Sciences, School of Biomedicine, University of Adelaide, Adelaide, Australia. .,Precision Cancer Medicine Theme, Solid Tumour Program, South Australian Health and Medical Research Institute, Adelaide, Australia.
| | - Andrew C W Zannettino
- Myeloma Research Laboratory, Faculty of Health and Medical Sciences, School of Biomedicine, University of Adelaide, Adelaide, Australia.,Precision Cancer Medicine Theme, Solid Tumour Program, South Australian Health and Medical Research Institute, Adelaide, Australia.,Department of Haematology, Royal Adelaide Hospital, Adelaide, Australia.,Central Adelaide Local Health Network, Adelaide, Australia
| |
Collapse
|
3
|
Croucher DC, Richards LM, Tsofack SP, Waller D, Li Z, Wei EN, Huang XF, Chesi M, Bergsagel PL, Sebag M, Pugh TJ, Trudel S. Longitudinal single-cell analysis of a myeloma mouse model identifies subclonal molecular programs associated with progression. Nat Commun 2021; 12:6322. [PMID: 34732728 PMCID: PMC8566524 DOI: 10.1038/s41467-021-26598-w] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2021] [Accepted: 10/12/2021] [Indexed: 12/16/2022] Open
Abstract
Molecular programs that underlie precursor progression in multiple myeloma are incompletely understood. Here, we report a disease spectrum-spanning, single-cell analysis of the Vκ*MYC myeloma mouse model. Using samples obtained from mice with serologically undetectable disease, we identify malignant cells as early as 30 weeks of age and show that these tumours contain subclonal copy number variations that persist throughout progression. We detect intratumoural heterogeneity driven by transcriptional variability during active disease and show that subclonal expression programs are enriched at different times throughout early disease. We then show how one subclonal program related to GCN2 stress response is progressively activated during progression in myeloma patients. Finally, we use chemical and genetic perturbation of GCN2 in vitro to support this pathway as a therapeutic target in myeloma. These findings therefore present a model of precursor progression in Vκ*MYC mice, nominate an adaptive mechanism important for myeloma survival, and highlight the need for single-cell analyses to understand the biological underpinnings of disease progression.
Collapse
Affiliation(s)
- Danielle C Croucher
- Princess Margaret Cancer Centre, University Health Network, Toronto, ON, Canada
- Department of Medical Biophysics, University of Toronto, Toronto, ON, Canada
| | - Laura M Richards
- Princess Margaret Cancer Centre, University Health Network, Toronto, ON, Canada
- Department of Medical Biophysics, University of Toronto, Toronto, ON, Canada
| | - Serges P Tsofack
- Princess Margaret Cancer Centre, University Health Network, Toronto, ON, Canada
| | - Daniel Waller
- Department of Medicine, McGill University, Montréal, QC, Canada
| | - Zhihua Li
- Princess Margaret Cancer Centre, University Health Network, Toronto, ON, Canada
| | - Ellen Nong Wei
- Princess Margaret Cancer Centre, University Health Network, Toronto, ON, Canada
| | - Xian Fang Huang
- Department of Medicine, McGill University, Montréal, QC, Canada
| | - Marta Chesi
- Division of Hematology/Oncology, Mayo Clinic, Scottsdale, AZ, USA
| | - P Leif Bergsagel
- Division of Hematology/Oncology, Mayo Clinic, Scottsdale, AZ, USA
| | - Michael Sebag
- Department of Medicine, McGill University, Montréal, QC, Canada
| | - Trevor J Pugh
- Princess Margaret Cancer Centre, University Health Network, Toronto, ON, Canada.
- Department of Medical Biophysics, University of Toronto, Toronto, ON, Canada.
- Ontario Institute for Cancer Research, Toronto, ON, Canada.
| | - Suzanne Trudel
- Princess Margaret Cancer Centre, University Health Network, Toronto, ON, Canada.
- Department of Medical Biophysics, University of Toronto, Toronto, ON, Canada.
| |
Collapse
|
4
|
Pisano M, Cheng Y, Sun F, Dhakal B, D’Souza A, Chhabra S, Knight JM, Rao S, Zhan F, Hari P, Janz S. Laboratory Mice - A Driving Force in Immunopathology and Immunotherapy Studies of Human Multiple Myeloma. Front Immunol 2021; 12:667054. [PMID: 34149703 PMCID: PMC8206561 DOI: 10.3389/fimmu.2021.667054] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2021] [Accepted: 04/28/2021] [Indexed: 11/13/2022] Open
Abstract
Mouse models of human cancer provide an important research tool for elucidating the natural history of neoplastic growth and developing new treatment and prevention approaches. This is particularly true for multiple myeloma (MM), a common and largely incurable neoplasm of post-germinal center, immunoglobulin-producing B lymphocytes, called plasma cells, that reside in the hematopoietic bone marrow (BM) and cause osteolytic lesions and kidney failure among other forms of end-organ damage. The most widely used mouse models used to aid drug and immunotherapy development rely on in vivo propagation of human myeloma cells in immunodeficient hosts (xenografting) or myeloma-like mouse plasma cells in immunocompetent hosts (autografting). Both strategies have made and continue to make valuable contributions to preclinical myeloma, including immune research, yet are ill-suited for studies on tumor development (oncogenesis). Genetically engineered mouse models (GEMMs), such as the widely known Vκ*MYC, may overcome this shortcoming because plasma cell tumors (PCTs) develop de novo (spontaneously) in a highly predictable fashion and accurately recapitulate many hallmarks of human myeloma. Moreover, PCTs arise in an intact organism able to mount a complete innate and adaptive immune response and tumor development reproduces the natural course of human myelomagenesis, beginning with monoclonal gammopathy of undetermined significance (MGUS), progressing to smoldering myeloma (SMM), and eventually transitioning to frank neoplasia. Here we review the utility of transplantation-based and transgenic mouse models of human MM for research on immunopathology and -therapy of plasma cell malignancies, discuss strengths and weaknesses of different experimental approaches, and outline opportunities for closing knowledge gaps, improving the outcome of patients with myeloma, and working towards a cure.
Collapse
Affiliation(s)
- Michael Pisano
- Division of Hematology and Oncology, Department of Medicine, Medical College of Wisconsin, Milwaukee, WI, United States
- Interdisciplinary Graduate Program in Immunology, University of Iowa, Iowa City, IA, United States
| | - Yan Cheng
- Division of Hematology and Oncology, Department of Medicine, Medical College of Wisconsin, Milwaukee, WI, United States
| | - Fumou Sun
- Division of Hematology and Oncology, Department of Medicine, Medical College of Wisconsin, Milwaukee, WI, United States
| | - Binod Dhakal
- Division of Hematology and Oncology, Department of Medicine, Medical College of Wisconsin, Milwaukee, WI, United States
| | - Anita D’Souza
- Division of Hematology and Oncology, Department of Medicine, Medical College of Wisconsin, Milwaukee, WI, United States
| | - Saurabh Chhabra
- Division of Hematology and Oncology, Department of Medicine, Medical College of Wisconsin, Milwaukee, WI, United States
| | - Jennifer M. Knight
- Departments of Psychiatry, Medicine, and Microbiology & Immunology, Medical College of Wisconsin, Milwaukee, WI, United States
| | - Sridhar Rao
- Division of Hematology, Oncology and Marrow Transplant, Department of Pediatrics, Medical College of Wisconsin, Milwaukee, WI, United States
- Blood Research Institute, Versiti Wisconsin, Milwaukee, WI, United States
| | - Fenghuang Zhan
- Myeloma Center, Department of Internal Medicine and Winthrop P. Rockefeller Cancer Institute, University of Arkansas for Medical Sciences, Little Rock, AR, United States
| | - Parameswaran Hari
- Division of Hematology and Oncology, Department of Medicine, Medical College of Wisconsin, Milwaukee, WI, United States
| | - Siegfried Janz
- Division of Hematology and Oncology, Department of Medicine, Medical College of Wisconsin, Milwaukee, WI, United States
| |
Collapse
|
5
|
Immune recovery in patients with mantle cell lymphoma receiving long-term ibrutinib and venetoclax combination therapy. Blood Adv 2021; 4:4849-4859. [PMID: 33031542 DOI: 10.1182/bloodadvances.2020002810] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2020] [Accepted: 08/16/2020] [Indexed: 02/07/2023] Open
Abstract
Combination venetoclax plus ibrutinib for the treatment of mantle cell lymphoma (MCL) has demonstrated efficacy in the relapsed or refractory setting; however, the long-term impact on patient immunology is unknown. In this study, changes in immune subsets of MCL patients treated with combination venetoclax and ibrutinib were assessed over a 4-year period. Multiparameter flow cytometry of peripheral blood mononuclear cells showed that ≥12 months of treatment resulted in alterations in the proportions of multiple immune subsets, most notably CD4+ and CD8+ effector and central memory T cells and natural killer cells, and normalization of T-cell cytokine production in response to T-cell receptor stimulation. Gene expression analysis identified upregulation of multiple myeloid genes (including S100 and cathepsin family members) and inflammatory pathways over 12 months. Four patients with deep responses stopped study drugs, resulting in restoration of normal immune subsets for all study parameters except myeloid gene/pathway expression, suggesting long-term combination venetoclax and ibrutinib irreversibly affects this population. Our findings demonstrate that long-term combination therapy is associated with immune recovery in MCL, which may allow responses to subsequent immunotherapies and suggests that this targeted therapy results in beneficial impacts on immunological recovery. This trial was registered at www.clinicaltrials.gov as #NCT02471391.
Collapse
|
6
|
Meermeier EW, Welsh SJ, Sharik ME, Du MT, Garbitt VM, Riggs DL, Shi CX, Stein CK, Bergsagel M, Chau B, Wheeler ML, Bezman N, Wang F, Strop P, Leif Bergsagel P, Chesi M. Tumor burden limits bispecific antibody efficacy through T cell exhaustion averted by concurrent cytotoxic therapy. Blood Cancer Discov 2021; 2:354-369. [PMID: 34258584 DOI: 10.1158/2643-3230.bcd-21-0038] [Citation(s) in RCA: 50] [Impact Index Per Article: 16.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022] Open
Abstract
BCMA-CD3-targeting bispecific antibodies (BsAb) are a recently developed immunotherapy class which shows potent tumor killing activity in multiple myeloma (MM). Here, we investigated a murine BCMA-CD3-targeting BsAb in the immunocompetent Vk*MYC and its IMiD-sensitive derivative Vk*MYChCRBN models of MM. The BCMA-CD3 BsAb was safe and efficacious in a subset of mice, but failed in those with high-tumor burden, consistent with clinical reports of BsAb in leukemia. The combination of BCMA-CD3 BsAb with pomalidomide expanded lytic T cells and improved activity even in IMiD resistant high-tumor burden cases. Yet, survival was only marginally extended due to acute toxicity and T cell exhaustion, which impaired T cell persistence. In contrast, the combination with cyclophosphamide was safe and allowed for a tempered pro-inflammatory response associated with long-lasting complete remission. Concurrent cytotoxic therapy with BsAb actually improved T cell persistence and function, offering a promising approach to patients with a large tumor burden.
Collapse
Affiliation(s)
- Erin W Meermeier
- Department of Medicine, Division of Hematology/Oncology, Mayo Clinic Arizona, 13400 East Shea Boulevard, Scottsdale, AZ, 85259
| | - Seth J Welsh
- Department of Medicine, Division of Hematology/Oncology, Mayo Clinic Arizona, 13400 East Shea Boulevard, Scottsdale, AZ, 85259
| | - Meaghen E Sharik
- Department of Medicine, Division of Hematology/Oncology, Mayo Clinic Arizona, 13400 East Shea Boulevard, Scottsdale, AZ, 85259
| | - Megan T Du
- Department of Medicine, Division of Hematology/Oncology, Mayo Clinic Arizona, 13400 East Shea Boulevard, Scottsdale, AZ, 85259
| | - Victoria M Garbitt
- Department of Medicine, Division of Hematology/Oncology, Mayo Clinic Arizona, 13400 East Shea Boulevard, Scottsdale, AZ, 85259
| | - Daniel L Riggs
- Department of Medicine, Division of Hematology/Oncology, Mayo Clinic Arizona, 13400 East Shea Boulevard, Scottsdale, AZ, 85259
| | - Chang-Xin Shi
- Department of Medicine, Division of Hematology/Oncology, Mayo Clinic Arizona, 13400 East Shea Boulevard, Scottsdale, AZ, 85259
| | - Caleb K Stein
- Department of Medicine, Division of Hematology/Oncology, Mayo Clinic Arizona, 13400 East Shea Boulevard, Scottsdale, AZ, 85259
| | - Marco Bergsagel
- Department of Medicine, Division of Hematology/Oncology, Mayo Clinic Arizona, 13400 East Shea Boulevard, Scottsdale, AZ, 85259
| | - Bryant Chau
- Discovery Biotherapeutics, Bristol Myers Squibb, 700 Bay Road, Redwood City, CA, 94063
| | - Matthew L Wheeler
- Tumor Microenvironment Thematic Research Center, Bristol Myers Squibb, 700 Bay Road, Redwood City, CA, 94063
| | - Natalie Bezman
- Tumor Microenvironment Thematic Research Center, Bristol Myers Squibb, 700 Bay Road, Redwood City, CA, 94063
| | - Feng Wang
- Discovery Biotherapeutics, Bristol Myers Squibb, 700 Bay Road, Redwood City, CA, 94063
| | - Pavel Strop
- Discovery Biotherapeutics, Bristol Myers Squibb, 700 Bay Road, Redwood City, CA, 94063
| | - P Leif Bergsagel
- Department of Medicine, Division of Hematology/Oncology, Mayo Clinic Arizona, 13400 East Shea Boulevard, Scottsdale, AZ, 85259
| | - Marta Chesi
- Department of Medicine, Division of Hematology/Oncology, Mayo Clinic Arizona, 13400 East Shea Boulevard, Scottsdale, AZ, 85259
| |
Collapse
|
7
|
Ma X, Xiao L, Liu L, Ye L, Su P, Bi E, Wang Q, Yang M, Qian J, Yi Q. CD36-mediated ferroptosis dampens intratumoral CD8 + T cell effector function and impairs their antitumor ability. Cell Metab 2021; 33:1001-1012.e5. [PMID: 33691090 PMCID: PMC8102368 DOI: 10.1016/j.cmet.2021.02.015] [Citation(s) in RCA: 434] [Impact Index Per Article: 144.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/20/2020] [Revised: 01/06/2021] [Accepted: 02/12/2021] [Indexed: 12/21/2022]
Abstract
Understanding the mechanisms underlying how T cells become dysfunctional in a tumor microenvironment (TME) will greatly benefit cancer immunotherapy. We found that increased CD36 expression in tumor-infiltrating CD8+ T cells, which was induced by TME cholesterol, was associated with tumor progression and poor survival in human and murine cancers. Genetic ablation of Cd36 in effector CD8+ T cells exhibited increased cytotoxic cytokine production and enhanced tumor eradication. CD36 mediated uptake of fatty acids by tumor-infiltrating CD8+ T cells in TME, induced lipid peroxidation and ferroptosis, and led to reduced cytotoxic cytokine production and impaired antitumor ability. Blocking CD36 or inhibiting ferroptosis in CD8+ T cells effectively restored their antitumor activity and, more importantly, possessed greater antitumor efficacy in combination with anti-PD-1 antibodies. This study reveals a new mechanism of CD36 regulating the function of CD8+ effector T cells and therapeutic potential of targeting CD36 or inhibiting ferroptosis to restore T cell function.
Collapse
Affiliation(s)
- Xingzhe Ma
- Center for Translational Research in Hematologic Malignancies, Houston Methodist Cancer Center/Houston Methodist Research Institute, Houston Methodist, Houston, TX 77030, USA
| | - Liuling Xiao
- Center for Translational Research in Hematologic Malignancies, Houston Methodist Cancer Center/Houston Methodist Research Institute, Houston Methodist, Houston, TX 77030, USA
| | - Lintao Liu
- Center for Translational Research in Hematologic Malignancies, Houston Methodist Cancer Center/Houston Methodist Research Institute, Houston Methodist, Houston, TX 77030, USA
| | - Lingqun Ye
- Center for Translational Research in Hematologic Malignancies, Houston Methodist Cancer Center/Houston Methodist Research Institute, Houston Methodist, Houston, TX 77030, USA
| | - Pan Su
- Center for Translational Research in Hematologic Malignancies, Houston Methodist Cancer Center/Houston Methodist Research Institute, Houston Methodist, Houston, TX 77030, USA
| | - Enguang Bi
- Center for Translational Research in Hematologic Malignancies, Houston Methodist Cancer Center/Houston Methodist Research Institute, Houston Methodist, Houston, TX 77030, USA
| | - Qiang Wang
- Center for Translational Research in Hematologic Malignancies, Houston Methodist Cancer Center/Houston Methodist Research Institute, Houston Methodist, Houston, TX 77030, USA
| | - Maojie Yang
- Center for Translational Research in Hematologic Malignancies, Houston Methodist Cancer Center/Houston Methodist Research Institute, Houston Methodist, Houston, TX 77030, USA
| | - Jianfei Qian
- Center for Translational Research in Hematologic Malignancies, Houston Methodist Cancer Center/Houston Methodist Research Institute, Houston Methodist, Houston, TX 77030, USA
| | - Qing Yi
- Center for Translational Research in Hematologic Malignancies, Houston Methodist Cancer Center/Houston Methodist Research Institute, Houston Methodist, Houston, TX 77030, USA.
| |
Collapse
|
8
|
Cooke RE, Quinn KM, Quach H, Harrison S, Prince HM, Koldej R, Ritchie D. Conventional Treatment for Multiple Myeloma Drives Premature Aging Phenotypes and Metabolic Dysfunction in T Cells. Front Immunol 2020; 11:2153. [PMID: 33013907 PMCID: PMC7494758 DOI: 10.3389/fimmu.2020.02153] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2020] [Accepted: 08/07/2020] [Indexed: 12/17/2022] Open
Abstract
New diagnoses of multiple myeloma (MM) tend to occur after the age of 60, by which time thymic output is severely reduced. As a consequence, lymphocyte recovery after lymphopenia-inducing anti-MM therapies relies on homeostatic proliferation of peripheral T cells rather than replenishment by new thymic emigrants. To assess lymphocyte recovery and phenotype in patients with newly diagnosed MM (NDMM) and relapsed/refractory MM (RRMM), we tracked CD4+ and CD8+ T cell populations at serial time points throughout treatment and compared them to age-matched healthy donors (HD). Anti-MM therapies and autologous stem cell transplant (ASCT) caused a permanent reduction in the CD4:8 ratio, a decrease in naïve CD4+ T cells, and an increase in effector memory T cells and PD1-expressing CD4+ T cells. Transcriptional profiling highlighted that genes associated with fatty acid β-oxidation were upregulated in T cells in RRMM, suggesting increased reliance on mitochondrial respiration. High mitochondrial mass was seen in all T cell subsets in RRMM but with relatively suppressed reactive oxygen species and mitochondrial membrane potential, indicating mitochondrial dysfunction. These findings highlight that anti-MM and ASCT therapies perturb the composition of the T cell compartment and drive substantial metabolic remodeling, which may affect the fitness of T cells for immunotherapies. This is particularly pertinent to chimeric antigen receptor (CAR)-T therapy, which might be more efficacious if T cells were stored prior to ASCT rather than at relapse.
Collapse
Affiliation(s)
- Rachel Elizabeth Cooke
- Australian Cancer Research Foundation Translational Research Laboratory, Royal Melbourne Hospital, Melbourne, VIC, Australia
- Department of Medicine, University of Melbourne, Melbourne, VIC, Australia
| | - Kylie Margaret Quinn
- School of Health and Biomedical Sciences, RMIT University, Melbourne, VIC, Australia
| | - Hang Quach
- Department of Medicine, University of Melbourne, Melbourne, VIC, Australia
- Peter MacCallum Cancer Centre, Melbourne, VIC, Australia
| | - Simon Harrison
- Department of Medicine, University of Melbourne, Melbourne, VIC, Australia
- Peter MacCallum Cancer Centre, Melbourne, VIC, Australia
| | - Henry Miles Prince
- Department of Medicine, University of Melbourne, Melbourne, VIC, Australia
- Peter MacCallum Cancer Centre, Melbourne, VIC, Australia
| | - Rachel Koldej
- Australian Cancer Research Foundation Translational Research Laboratory, Royal Melbourne Hospital, Melbourne, VIC, Australia
- Department of Medicine, University of Melbourne, Melbourne, VIC, Australia
| | - David Ritchie
- Australian Cancer Research Foundation Translational Research Laboratory, Royal Melbourne Hospital, Melbourne, VIC, Australia
- Department of Medicine, University of Melbourne, Melbourne, VIC, Australia
- Peter MacCallum Cancer Centre, Melbourne, VIC, Australia
| |
Collapse
|
9
|
Quinn KM, Kartikasari AER, Cooke RE, Koldej RM, Ritchie DS, Plebanski M. Impact of age-, cancer-, and treatment-driven inflammation on T cell function and immunotherapy. J Leukoc Biol 2020; 108:953-965. [PMID: 32678927 DOI: 10.1002/jlb.5mr0520-466r] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2019] [Revised: 06/16/2020] [Accepted: 06/03/2020] [Indexed: 12/11/2022] Open
Abstract
Many cancers are predominantly diagnosed in older individuals and chronic inflammation has a major impact on the overall health and immune function of older cancer patients. Chronic inflammation is a feature of aging, it can accelerate disease in many cancers and it is often exacerbated during conventional treatments for cancer. This review will provide an overview of the factors that lead to increased inflammation in older individuals and/or individuals with cancer, as well as those that result from conventional treatments for cancer, using ovarian cancer (OC) and multiple myeloma (MM) as key examples. We will also consider the impact of chronic inflammation on immune function, with a particular focus on T cells as they are key targets for novel cancer immunotherapies. Overall, this review aims to highlight specific pathways for potential interventions that may be able to mitigate the impact of chronic inflammation in older cancer patients.
Collapse
Affiliation(s)
- Kylie M Quinn
- School of Health and Biomedical Sciences, RMIT University, Bundoora, Victoria, Australia.,Department of Biochemistry, Biomedicine Discovery Institute, Monash University, Clayton, Victoria, Australia
| | | | - Rachel E Cooke
- Australian Cancer Research Foundation (ACRF) Translational Laboratory, Royal Melbourne Hospital, Melbourne, Australia.,Department of Medicine, University of Melbourne, Melbourne, Australia
| | - Rachel M Koldej
- Australian Cancer Research Foundation (ACRF) Translational Laboratory, Royal Melbourne Hospital, Melbourne, Australia.,Department of Medicine, University of Melbourne, Melbourne, Australia
| | - David S Ritchie
- Australian Cancer Research Foundation (ACRF) Translational Laboratory, Royal Melbourne Hospital, Melbourne, Australia.,Department of Medicine, University of Melbourne, Melbourne, Australia
| | - Magdalena Plebanski
- School of Health and Biomedical Sciences, RMIT University, Bundoora, Victoria, Australia
| |
Collapse
|
10
|
Fan S, Price T, Huang W, Plue M, Warren J, Sundaramoorthy P, Paul B, Feinberg D, MacIver N, Chao N, Sipkins D, Kang Y. PINK1-Dependent Mitophagy Regulates the Migration and Homing of Multiple Myeloma Cells via the MOB1B-Mediated Hippo-YAP/TAZ Pathway. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2020; 7:1900860. [PMID: 32154065 PMCID: PMC7055555 DOI: 10.1002/advs.201900860] [Citation(s) in RCA: 28] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/13/2019] [Revised: 11/23/2019] [Indexed: 05/07/2023]
Abstract
The roles of mitochondrial dysfunction in carcinogenesis remain largely unknown. The effects of PTEN-induced putative kinase 1 (PINK1)-dependent mitophagy on the pathogenesis of multiple myeloma (MM) are determined. The levels of the PINK1-dependent mitophagy markers PINK1 and parkin RBR E3 ubiquitin protein ligase (PARK2) in CD138+ plasma cells are reduced in patients with MM and correlate with clinical outcomes in myeloma patients. Moreover, the induction of PINK1-dependent mitophagy with carbonylcyanide-m-chlorophenylhydrazone (CCCP) or salinomycin, or overexpression of PINK1 leads to inhibition of transwell migration, suppression of myeloma cell homing to calvarium, and decreased osteolytic bone lesions. Furthermore, genetic deletion of pink1 accelerates myeloma development in a spontaneous X-box binding protein-1 spliced isoform (XBP-1s) transgenic myeloma mouse model and in VK*MYC transplantable myeloma recipient mice. Additionally, treatment with salinomycin shows significant antimyeloma activities in vivo in murine myeloma xenograft models. Finally, the effects of PINK1-dependent mitophagy on myeloma pathogenesis are driven by the activation of the Mps one binder kinase activator (MOB1B)-mediated Hippo pathway and the subsequent downregulation of Yes-associated protein (YAP)/transcriptional co-activator with PDZ-binding motif (TAZ) expression. These data provide direct evidence that PINK1-dependent mitophagy plays a critical role in the pathogenesis of MM and is a potential therapeutic target.
Collapse
Affiliation(s)
- Shengjun Fan
- Division of Hematologic Malignancies and Cellular TherapyDepartment of MedicineDuke University Medical CenterDurhamNC27710USA
| | - Trevor Price
- Division of Hematologic Malignancies and Cellular TherapyDepartment of MedicineDuke University Medical CenterDurhamNC27710USA
| | - Wei Huang
- Division of Hematologic Malignancies and Cellular TherapyDepartment of MedicineDuke University Medical CenterDurhamNC27710USA
| | - Michelle Plue
- Shared Materials Instrumentation FacilityPratt School of EngineeringDuke UniversityDurhamNC27708USA
| | | | - Pasupathi Sundaramoorthy
- Division of Hematologic Malignancies and Cellular TherapyDepartment of MedicineDuke University Medical CenterDurhamNC27710USA
| | - Barry Paul
- Division of Hematologic Malignancies and Cellular TherapyDepartment of MedicineDuke University Medical CenterDurhamNC27710USA
| | - Daniel Feinberg
- Division of Hematologic Malignancies and Cellular TherapyDepartment of MedicineDuke University Medical CenterDurhamNC27710USA
| | | | - Nelson Chao
- Division of Hematologic Malignancies and Cellular TherapyDepartment of MedicineDuke University Medical CenterDurhamNC27710USA
| | - Dorothy Sipkins
- Division of Hematologic Malignancies and Cellular TherapyDepartment of MedicineDuke University Medical CenterDurhamNC27710USA
| | - Yubin Kang
- Division of Hematologic Malignancies and Cellular TherapyDepartment of MedicineDuke University Medical CenterDurhamNC27710USA
| |
Collapse
|
11
|
Immunotherapeutics in Multiple Myeloma: How Can Translational Mouse Models Help? JOURNAL OF ONCOLOGY 2019; 2019:2186494. [PMID: 31093282 PMCID: PMC6481018 DOI: 10.1155/2019/2186494] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Received: 12/28/2018] [Accepted: 03/04/2019] [Indexed: 12/30/2022]
Abstract
Multiple myeloma (MM) is usually diagnosed in older adults at the time of immunosenescence, a collection of age-related changes in the immune system that contribute to increased susceptibility to infection and cancer. The MM tumor microenvironment and cumulative chemotherapies also add to defects in immunity over the course of disease. In this review we discuss how mouse models have furthered our understanding of the immune defects caused by MM and enabled immunotherapeutics to progress to clinical trials, but also question the validity of using immunodeficient models for these purposes. Immunocompetent models, in particular the 5T series and Vk⁎MYC models, are increasingly being utilized in preclinical studies and are adding to our knowledge of not only the adaptive immune system but also how the innate system might be enhanced in anti-MM activity. Finally we discuss the concept of immune profiling to target patients who might benefit the most from immunotherapeutics, and the use of humanized mice and 3D culture systems for personalized medicine.
Collapse
|
12
|
Vuckovic S, Minnie SA, Smith D, Gartlan KH, Watkins TS, Markey KA, Mukhopadhyay P, Guillerey C, Kuns RD, Locke KR, Pritchard AL, Johansson PA, Varelias A, Zhang P, Huntington ND, Waddell N, Chesi M, Miles JJ, Smyth MJ, Hill GR. Bone marrow transplantation generates T cell-dependent control of myeloma in mice. J Clin Invest 2018; 129:106-121. [PMID: 30300141 DOI: 10.1172/jci98888] [Citation(s) in RCA: 36] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2017] [Accepted: 10/02/2018] [Indexed: 12/14/2022] Open
Abstract
Transplantation with autologous hematopoietic progenitors remains an important consolidation treatment for patients with multiple myeloma (MM) and is thought to prolong the disease plateau phase by providing intensive cytoreduction. However, transplantation induces inflammation in the context of profound lymphodepletion that may cause hitherto unexpected immunological effects. We developed preclinical models of bone marrow transplantation (BMT) for MM using Vk*MYC myeloma-bearing recipient mice and donor mice that were myeloma naive or myeloma experienced to simulate autologous transplantation. Surprisingly, we demonstrated broad induction of T cell-dependent myeloma control, most efficiently from memory T cells within myeloma-experienced grafts, but also through priming of naive T cells after BMT. CD8+ T cells from mice with controlled myeloma had a distinct T cell receptor (TCR) repertoire and higher clonotype overlap relative to myeloma-free BMT recipients. Furthermore, T cell-dependent myeloma control could be adoptively transferred to secondary recipients and was myeloma cell clone specific. Interestingly, donor-derived IL-17A acted directly on myeloma cells expressing the IL-17 receptor to induce a transcriptional landscape that promoted tumor growth and immune escape. Conversely, donor IFN-γ secretion and signaling were critical to protective immunity and were profoundly augmented by CD137 agonists. These data provide new insights into the mechanisms of action of transplantation in myeloma and provide rational approaches to improving clinical outcomes.
Collapse
Affiliation(s)
- Slavica Vuckovic
- QIMR Berghofer Medical Research Institute, Brisbane, Australia.,Faculty of Medicine, The University of Queensland, Herston, Australia.,Multiple Myeloma Research Group, Institute of Haematology, Royal Prince Alfred Hospital, Camperdown, Australia
| | - Simone A Minnie
- QIMR Berghofer Medical Research Institute, Brisbane, Australia.,Faculty of Medicine, The University of Queensland, Herston, Australia
| | - David Smith
- QIMR Berghofer Medical Research Institute, Brisbane, Australia
| | - Kate H Gartlan
- QIMR Berghofer Medical Research Institute, Brisbane, Australia.,Faculty of Medicine, The University of Queensland, Herston, Australia.,Clinical Research Division, Fred Hutchinson Cancer Research Center, Seattle, Washington, USA
| | | | - Kate A Markey
- QIMR Berghofer Medical Research Institute, Brisbane, Australia.,Faculty of Medicine, The University of Queensland, Herston, Australia.,Division of Immunology, Memorial Sloan Kettering Cancer Center, New York, New York, USA
| | | | - Camille Guillerey
- QIMR Berghofer Medical Research Institute, Brisbane, Australia.,Faculty of Medicine, The University of Queensland, Herston, Australia
| | - Rachel D Kuns
- QIMR Berghofer Medical Research Institute, Brisbane, Australia
| | - Kelly R Locke
- QIMR Berghofer Medical Research Institute, Brisbane, Australia
| | - Antonia L Pritchard
- QIMR Berghofer Medical Research Institute, Brisbane, Australia.,Genetics and Immunology, University of the Highlands and Islands, Inverness, United Kingdom
| | | | - Antiopi Varelias
- QIMR Berghofer Medical Research Institute, Brisbane, Australia.,Faculty of Medicine, The University of Queensland, Herston, Australia
| | - Ping Zhang
- QIMR Berghofer Medical Research Institute, Brisbane, Australia
| | - Nicholas D Huntington
- Molecular Immunology Division, Walter and Eliza Hall Institute of Medical Research, Parkville, Australia.,Department of Medical Biology and.,Faculty of Medicine, Dentistry and Health Sciences, The University of Melbourne, Melbourne, Australia
| | - Nicola Waddell
- QIMR Berghofer Medical Research Institute, Brisbane, Australia
| | - Marta Chesi
- Comprehensive Cancer Center, Mayo Clinic, Scottsdale, Arizona, USA
| | - John J Miles
- Centre for Biodiscovery and Molecular Development of Therapeutics, Australian Institute of Tropical Health and Medicine (AITHM), James Cook University, Cairns, Australia
| | - Mark J Smyth
- QIMR Berghofer Medical Research Institute, Brisbane, Australia
| | - Geoffrey R Hill
- QIMR Berghofer Medical Research Institute, Brisbane, Australia.,Clinical Research Division, Fred Hutchinson Cancer Research Center, Seattle, Washington, USA.,Department of Haematology, The Royal Brisbane and Women's Hospital, Brisbane, Australia.,Division of Medical Oncology, University of Washington, Seattle, Washington, USA
| |
Collapse
|
13
|
Zheng J, Sha Y, Roof L, Foreman O, Lazarchick J, Venkta JK, Kozlowski C, Gasparetto C, Chao N, Ebens A, Hu J, Kang Y. Pan-PIM kinase inhibitors enhance Lenalidomide's anti-myeloma activity via cereblon-IKZF1/3 cascade. Cancer Lett 2018; 440-441:1-10. [PMID: 30312729 DOI: 10.1016/j.canlet.2018.10.003] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2018] [Revised: 09/19/2018] [Accepted: 10/02/2018] [Indexed: 12/22/2022]
Abstract
Multiple myeloma remains an incurable disease, and continued efforts are required to develop novel agents and novel drug combinations with more effective anti-myeloma activity. Here, we show that the pan-PIM kinase inhibitors SGI1776 and CX6258 exhibit significant anti-myeloma activity and that combining a pan-PIM kinase inhibitor with the immunomodulatory agent lenalidomide in an in vivo myeloma xenograft mouse model resulted in synergistic myeloma cell killing without additional hematologic or hepatic toxicities. Further investigations indicated that treatment with a pan-PIM kinase inhibitor promoted increased ubiquitination and subsequent degradation of IKZF1 and IKZF3, two transcription factors crucial for survival of myeloma cells. Combining a pan-PIM kinase inhibitor with lenalidomide led to more effective degradation of IKZF1 and IKZF3 in multiple myeloma cell lines as well as xenografts of myeloma tumors. We also demonstrated that treatment with a pan-PIM kinase inhibitor resulted in increased expression of cereblon, and that knockdown of cereblon via a shRNA lentivirus abolished the effects of PIM kinase inhibition on the degradation of IKZF1 and IKZF3 and myeloma cell apoptosis, demonstrating a central role of cereblon in pan-PIM kinase inhibitor-mediated down-regulation of IKZF1 and IKZF3 and myeloma cell killing. These data elucidate the mechanism of pan-PIM kinase inhibitor mediated anti-myeloma effect and the rationale for the synergy observed with lenalidomide co-treatment, and provide justification for a clinical trial of the combination of pan-PIM kinase inhibitors and lenalidomide for the treatment of multiple myeloma.
Collapse
Affiliation(s)
- Jing Zheng
- Division of Hematologic Malignancies and Cellular Therapy, Department of Medicine, Duke University Medical Center, Durham, NC, USA; Fujian Institute of Hematology, Fujian Provincial Key Laboratory of Hematology, Fujian Medical University Union Hospital, China
| | - Yonggang Sha
- Division of Hematologic Malignancies and Cellular Therapy, Department of Medicine, Duke University Medical Center, Durham, NC, USA
| | - Logan Roof
- Department of Internal Medicine, University of Cincinnati Medical Center, Cincinnati, OH, USA
| | - Oded Foreman
- Genentech Research Oncology, Genentech Inc., San Francisco, CA, USA
| | - John Lazarchick
- Department of Pathology, Medical University of South Carolina, Charleston, SC, USA
| | - Jagadish Kummetha Venkta
- Division of Hematology and Oncology, Department of Medicine, Medical University of South Carolina, Charleston, SC, USA
| | - Cleopatra Kozlowski
- Genentech Safety Assessment Pathology, Genentech Inc, San Francisco, CA, USA
| | - Cristina Gasparetto
- Division of Hematologic Malignancies and Cellular Therapy, Department of Medicine, Duke University Medical Center, Durham, NC, USA
| | - Nelson Chao
- Division of Hematologic Malignancies and Cellular Therapy, Department of Medicine, Duke University Medical Center, Durham, NC, USA
| | - Allen Ebens
- Genentech Research Oncology, Genentech Inc., San Francisco, CA, USA
| | - Jianda Hu
- Fujian Institute of Hematology, Fujian Provincial Key Laboratory of Hematology, Fujian Medical University Union Hospital, China.
| | - Yubin Kang
- Division of Hematologic Malignancies and Cellular Therapy, Department of Medicine, Duke University Medical Center, Durham, NC, USA.
| |
Collapse
|
14
|
Bianchi-Smiraglia A, Bagati A, Fink EE, Affronti HC, Lipchick BC, Moparthy S, Long MD, Rosario SR, Lightman SM, Moparthy K, Wolff DW, Yun DH, Han Z, Polechetti A, Roll MV, Gitlin II, Leonova KI, Rowsam AM, Kandel ES, Gudkov AV, Bergsagel PL, Lee KP, Smiraglia DJ, Nikiforov MA. Inhibition of the aryl hydrocarbon receptor/polyamine biosynthesis axis suppresses multiple myeloma. J Clin Invest 2018; 128:4682-4696. [PMID: 30198908 PMCID: PMC6159960 DOI: 10.1172/jci70712] [Citation(s) in RCA: 26] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2018] [Accepted: 07/24/2018] [Indexed: 12/18/2022] Open
Abstract
Polyamine inhibition for cancer therapy is, conceptually, an attractive approach but has yet to meet success in the clinical setting. The aryl hydrocarbon receptor (AHR) is the central transcriptional regulator of the xenobiotic response. Our study revealed that AHR also positively regulates intracellular polyamine production via direct transcriptional activation of 2 genes, ODC1 and AZIN1, which are involved in polyamine biosynthesis and control, respectively. In patients with multiple myeloma (MM), AHR levels were inversely correlated with survival, suggesting that AHR inhibition may be beneficial for the treatment of this disease. We identified clofazimine (CLF), an FDA-approved anti-leprosy drug, as a potent AHR antagonist and a suppressor of polyamine biosynthesis. Experiments in a transgenic model of MM (Vk*Myc mice) and in immunocompromised mice bearing MM cell xenografts revealed high efficacy of CLF comparable to that of bortezomib, a first-in-class proteasome inhibitor used for the treatment of MM. This study identifies a previously unrecognized regulatory axis between AHR and polyamine metabolism and reveals CLF as an inhibitor of AHR and a potentially clinically relevant anti-MM agent.
Collapse
Affiliation(s)
| | | | | | - Hayley C. Affronti
- Department of Cancer Genetics, Roswell Park Comprehensive Cancer Center, Buffalo, New York, USA
| | - Brittany C. Lipchick
- Department of Cell Stress Biology
- Department of Cancer Biology, Wake Forest University School of Medicine, Winston-Salem, North Carolina, USA
| | - Sudha Moparthy
- Department of Cell Stress Biology
- Department of Cancer Biology, Wake Forest University School of Medicine, Winston-Salem, North Carolina, USA
| | - Mark D. Long
- Department of Cancer Genetics, Roswell Park Comprehensive Cancer Center, Buffalo, New York, USA
| | - Spencer R. Rosario
- Department of Cancer Genetics, Roswell Park Comprehensive Cancer Center, Buffalo, New York, USA
| | - Shivana M. Lightman
- Department of Immunology, Roswell Park Comprehensive Cancer Center, Buffalo, New York, USA
| | - Kalyana Moparthy
- Department of Cell Stress Biology
- Department of Cancer Biology, Wake Forest University School of Medicine, Winston-Salem, North Carolina, USA
| | - David W. Wolff
- Department of Cell Stress Biology
- Department of Cancer Biology, Wake Forest University School of Medicine, Winston-Salem, North Carolina, USA
| | | | - Zhannan Han
- Department of Cell Stress Biology
- Department of Cancer Biology, Wake Forest University School of Medicine, Winston-Salem, North Carolina, USA
| | | | - Matthew V. Roll
- Department of Cell Stress Biology
- Department of Cancer Biology, Wake Forest University School of Medicine, Winston-Salem, North Carolina, USA
| | | | | | - Aryn M. Rowsam
- Department of Cancer Genetics, Roswell Park Comprehensive Cancer Center, Buffalo, New York, USA
| | | | | | | | - Kelvin P. Lee
- Department of Immunology, Roswell Park Comprehensive Cancer Center, Buffalo, New York, USA
| | - Dominic J. Smiraglia
- Department of Cancer Genetics, Roswell Park Comprehensive Cancer Center, Buffalo, New York, USA
| | - Mikhail A. Nikiforov
- Department of Cell Stress Biology
- Department of Cancer Biology, Wake Forest University School of Medicine, Winston-Salem, North Carolina, USA
| |
Collapse
|
15
|
Gherardin NA, Loh L, Admojo L, Davenport AJ, Richardson K, Rogers A, Darcy PK, Jenkins MR, Prince HM, Harrison SJ, Quach H, Fairlie DP, Kedzierska K, McCluskey J, Uldrich AP, Neeson PJ, Ritchie DS, Godfrey DI. Enumeration, functional responses and cytotoxic capacity of MAIT cells in newly diagnosed and relapsed multiple myeloma. Sci Rep 2018. [PMID: 29515123 PMCID: PMC5841305 DOI: 10.1038/s41598-018-22130-1] [Citation(s) in RCA: 59] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022] Open
Abstract
Mucosal-associated invariant T (MAIT) cells are T cells that recognise vitamin-B derivative Ag presented by the MHC-related-protein 1 (MR1) antigen-presenting molecule. While MAIT cells are highly abundant in humans, their role in tumour immunity remains unknown. Here we have analysed the frequency and function of MAIT cells in multiple myeloma (MM) patients. We show that MAIT cell frequency in blood is reduced compared to healthy adult donors, but comparable to elderly healthy control donors. Furthermore, there was no evidence that MAIT cells accumulated at the disease site (bone marrow) of these patients. Newly diagnosed MM patient MAIT cells had reduced IFNγ production and CD27 expression, suggesting an exhausted phenotype, although IFNγ-producing capacity is restored in relapsed/refractory patient samples. Moreover, immunomodulatory drugs Lenalidomide and Pomalidomide, indirectly inhibited MAIT cell activation. We further show that cell lines can be pulsed with vitamin-B derivative Ags and that these can be presented via MR1 to MAIT cells in vitro, to induce cytotoxic activity comparable to that of natural killer (NK) cells. Thus, MAIT cells are reduced in MM patients, which may contribute to disease in these individuals, and moreover, MAIT cells may represent new immunotherapeutic targets for treatment of MM and other malignancies.
Collapse
Affiliation(s)
- Nicholas A Gherardin
- Department of Microbiology and Immunology, Peter Doherty Institute for Infection and Immunity, University of Melbourne, Parkville, Victoria, 3010, Australia.,Cancer Immunology Program, Peter MacCallum Cancer Centre, Melbourne, Victoria, 3000, Australia.,ARC Centre of Excellence in Advanced Molecular Imaging, University of Melbourne, Parkville, Victoria, 3010, Australia.,Sir Peter MacCallum Department of Oncology, The University of Melbourne, Parkville, 3010, Australia
| | - Liyen Loh
- Department of Microbiology and Immunology, Peter Doherty Institute for Infection and Immunity, University of Melbourne, Parkville, Victoria, 3010, Australia
| | - Lorenztino Admojo
- Cancer Immunology Program, Peter MacCallum Cancer Centre, Melbourne, Victoria, 3000, Australia.,Sir Peter MacCallum Department of Oncology, The University of Melbourne, Parkville, 3010, Australia
| | - Alexander J Davenport
- Cancer Immunology Program, Peter MacCallum Cancer Centre, Melbourne, Victoria, 3000, Australia.,Sir Peter MacCallum Department of Oncology, The University of Melbourne, Parkville, 3010, Australia
| | - Kelden Richardson
- Cancer Immunology Program, Peter MacCallum Cancer Centre, Melbourne, Victoria, 3000, Australia.,Sir Peter MacCallum Department of Oncology, The University of Melbourne, Parkville, 3010, Australia
| | - Amy Rogers
- Cancer Immunology Program, Peter MacCallum Cancer Centre, Melbourne, Victoria, 3000, Australia.,Sir Peter MacCallum Department of Oncology, The University of Melbourne, Parkville, 3010, Australia
| | - Phillip K Darcy
- Cancer Immunology Program, Peter MacCallum Cancer Centre, Melbourne, Victoria, 3000, Australia.,Sir Peter MacCallum Department of Oncology, The University of Melbourne, Parkville, 3010, Australia
| | - Misty R Jenkins
- Cancer Immunology Program, Peter MacCallum Cancer Centre, Melbourne, Victoria, 3000, Australia.,The Walter and Eliza Hall Institute of Medical Research, Parkville, Victoria, 3050, Australia.,Sir Peter MacCallum Department of Oncology, The University of Melbourne, Parkville, 3010, Australia
| | - H Miles Prince
- Cancer Immunology Program, Peter MacCallum Cancer Centre, Melbourne, Victoria, 3000, Australia.,Clinical Haematology and Bone Marrow Transplant Service, Royal Melbourne Hospital, Parkville, Victoria, 3002, Australia.,Department of Medicine, University of Melbourne, Parkville, Victoria, 3010, Australia.,Sir Peter MacCallum Department of Oncology, The University of Melbourne, Parkville, 3010, Australia
| | - Simon J Harrison
- Cancer Immunology Program, Peter MacCallum Cancer Centre, Melbourne, Victoria, 3000, Australia.,Clinical Haematology and Bone Marrow Transplant Service, Royal Melbourne Hospital, Parkville, Victoria, 3002, Australia.,Department of Medicine, University of Melbourne, Parkville, Victoria, 3010, Australia.,Sir Peter MacCallum Department of Oncology, The University of Melbourne, Parkville, 3010, Australia
| | - Hang Quach
- Cancer Immunology Program, Peter MacCallum Cancer Centre, Melbourne, Victoria, 3000, Australia.,Department of Medicine, University of Melbourne, Parkville, Victoria, 3010, Australia.,Sir Peter MacCallum Department of Oncology, The University of Melbourne, Parkville, 3010, Australia
| | - David P Fairlie
- Division of Chemistry & Structural Biology, Institute for Molecular Bioscience, The University of Queensland, Brisbane, Queensland, 4072, Australia.,ARC Centre of Excellence in Advanced Molecular Imaging, University of Queensland, Queensland, 4072, Australia
| | - Katherine Kedzierska
- Department of Microbiology and Immunology, Peter Doherty Institute for Infection and Immunity, University of Melbourne, Parkville, Victoria, 3010, Australia
| | - James McCluskey
- Department of Microbiology and Immunology, Peter Doherty Institute for Infection and Immunity, University of Melbourne, Parkville, Victoria, 3010, Australia
| | - Adam P Uldrich
- Department of Microbiology and Immunology, Peter Doherty Institute for Infection and Immunity, University of Melbourne, Parkville, Victoria, 3010, Australia.,ARC Centre of Excellence in Advanced Molecular Imaging, University of Melbourne, Parkville, Victoria, 3010, Australia
| | - Paul J Neeson
- Cancer Immunology Program, Peter MacCallum Cancer Centre, Melbourne, Victoria, 3000, Australia.,Sir Peter MacCallum Department of Oncology, The University of Melbourne, Parkville, 3010, Australia
| | - David S Ritchie
- Cancer Immunology Program, Peter MacCallum Cancer Centre, Melbourne, Victoria, 3000, Australia.,Clinical Haematology and Bone Marrow Transplant Service, Royal Melbourne Hospital, Parkville, Victoria, 3002, Australia.,Department of Medicine, University of Melbourne, Parkville, Victoria, 3010, Australia.,Sir Peter MacCallum Department of Oncology, The University of Melbourne, Parkville, 3010, Australia
| | - Dale I Godfrey
- Department of Microbiology and Immunology, Peter Doherty Institute for Infection and Immunity, University of Melbourne, Parkville, Victoria, 3010, Australia. .,ARC Centre of Excellence in Advanced Molecular Imaging, University of Melbourne, Parkville, Victoria, 3010, Australia.
| |
Collapse
|