1
|
Alic L, Dendinovic K, Papac-Milicevic N. The complement system in lipid-mediated pathologies. Front Immunol 2024; 15:1511886. [PMID: 39635529 PMCID: PMC11614835 DOI: 10.3389/fimmu.2024.1511886] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2024] [Accepted: 10/31/2024] [Indexed: 12/07/2024] Open
Abstract
The complement system, a coordinator and facilitator of the innate immune response, plays an essential role in maintaining host homeostasis. It promotes clearance of pathogen- and danger-associated molecular patterns, regulates adaptive immunity, and can modify various metabolic processes such as energy expenditure, lipid metabolism, and glucose homeostasis. In this review, we will focus on the intricate interplay between complement components and lipid metabolism. More precisely, we will display how alterations in the activation and regulation of the complement system affect pathological outcome in lipid-associated diseases, such as atherosclerosis, obesity, metabolic syndrome, age-related macular degeneration, and metabolic dysfunction-associated steatotic liver disease. In addition to that, we will present and evaluate underlying complement-mediated physiological mechanisms, observed both in vitro and in vivo. Our manuscript will demonstrate the clinical significance of the complement system as a bridging figure between innate immunity and lipid homeostasis.
Collapse
Affiliation(s)
- Lejla Alic
- Department of Medical Biochemistry, Faculty of Medicine, University of Sarajevo, Sarajevo, Bosnia and Herzegovina
| | - Kristina Dendinovic
- Department of Neurophysiology and Neuropharmacology, Center for Physiology and Pharmacology, Medical University of Vienna, Vienna, Austria
| | - Nikolina Papac-Milicevic
- Department of Neurophysiology and Neuropharmacology, Center for Physiology and Pharmacology, Medical University of Vienna, Vienna, Austria
| |
Collapse
|
2
|
Mollahosseini A, Bahig J, Shoker A, Abdelrasoul A. Aminolysis-Based Zwitterionic Immobilization on Polyethersulfone Membranes for Enhanced Hemocompatibility: Experimental, Computational, and Ex Vivo Investigations. Biomimetics (Basel) 2024; 9:320. [PMID: 38921200 PMCID: PMC11201488 DOI: 10.3390/biomimetics9060320] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2024] [Revised: 04/30/2024] [Accepted: 05/09/2024] [Indexed: 06/27/2024] Open
Abstract
Dialysis membranes are not hemocompatible with human blood, as the patients are suffering from the blood-membrane interactions' side effects. Zwitterionic structures have shown improved hemocompatibility; however, their complicated synthesis hinders their commercialization. The goal of the study is to achieve fast functionalization for carboxybetaine and sulfobetaine zwitterionic immobilization on PES membranes while comparing the stability and the targeted hemocompatibility. The chemical modification approach is based on an aminolysis reaction. Characterization, computational simulations, and clinical analysis were conducted to study the modified membranes. Atomic force microscopy (AFM) patterns showed a lower mean roughness for carboxybetaine-modified (6.3 nm) and sulfobetaine-modified (7.7 nm) membranes compared to the neat membrane (52.61 nm). The pore size of the membranes was reduced from values above 50 nm for the neat PES to values between 2 and 50 nm for zwitterionized membranes, using Brunauer-Emmett-Teller (BET) analysis. More hydrophilic surfaces led to a growth equilibrium water content (EWC) of nearly 6% for carboxybetaine and 10% for sulfobetaine-modified membranes. Differential scanning calorimetry (DSC) measurements were 12% and 16% stable water for carboxybetaine- and sulfobetaine-modified membranes, respectively. Sulfobetaine membranes showed better compatibility with blood with respect to C5a, IL-1a, and IL-6 biomarkers. Aminolysis-based zwitterionization was found to be suitable for the improvement of hemodialysis membranes. The approach introduced in this paper could be used to modify the current dialysis membranes with minimal change in the production facilities.
Collapse
Affiliation(s)
- Arash Mollahosseini
- Department of Chemical and Biological Engineering, University of Saskatchewan, 57 Campus Drive, Saskatoon, SK S7N 5A9, Canada
| | - Jumanah Bahig
- Division of Biomedical Engineering, University of Saskatchewan, 57 Campus Drive, Saskatoon, SK S7N 5A9, Canada
- Kinesiology, University of Saskatchewan, 87 Campus Dr, Saskatoon, SK S7N 5B, Canada
| | - Ahmed Shoker
- Saskatchewan Transplant Program, St. Paul’s Hospital, 1702 20th Street West, Saskatoon, SK S7M 0Z9, Canada
- Nephrology Division, College of Medicine, University of Saskatchewan, 107 Wiggins Rd, Saskatoon, SK S7N 5E5, Canada
| | - Amira Abdelrasoul
- Department of Chemical and Biological Engineering, University of Saskatchewan, 57 Campus Drive, Saskatoon, SK S7N 5A9, Canada
- Division of Biomedical Engineering, University of Saskatchewan, 57 Campus Drive, Saskatoon, SK S7N 5A9, Canada
| |
Collapse
|
3
|
Faria B, Gaya da Costa M, Meter-Arkema AH, Berger SP, Lima C, Pêgo C, van den Born J, Franssen CF, Daha MR, Pestana M, Seelen MA, Poppelaars F. Systemic and local complement activation in peritoneal dialysis patients via conceivably distinct pathways. Perit Dial Int 2024; 44:37-47. [PMID: 37794761 DOI: 10.1177/08968608231198984] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/06/2023] Open
Abstract
BACKGROUND Despite several advantages compared to haemodialysis (HD), peritoneal dialysis (PD) remains an underused dialysis technique due to its high technique failure rate related to membrane fibrosis and peritonitis events. Previous work has suggested a harmful role for the complement system in these processes, highlighting the need for a more comprehensive examination in PD. METHODS Plasma levels of C1q, mannose-binding lectin (MBL), Properdin, Factor D, C3d/C3-ratio and soluble membrane attack complex (sC5b-9) were determined in PD patients (n = 55), HD patients (n = 41), non-dialysis chronic kidney disease (CKD) patients (n = 15) and healthy controls (n = 14). Additionally, C1q, MBL, Properdin, Factor D and sC5b-9 levels were assessed in the peritoneal dialysis fluid (PDF). In a subgroup, interleukin-6, matrix metalloproteinase-2 (MMP-2), myeloperoxidase (MPO) and elastase were measured in the PDF. RESULTS PD patients had significantly higher systemic levels of sC5b-9 compared to healthy controls, CKD and HD patients (p < 0.001). Plasma levels of C1q and C3d/C3-ratios were significantly associated with systemic sC5b-9 levels (p < 0.001). Locally, sC5b-9 was detected in the PDF of all PD patients, and levels were approximately 33% of those in matched plasma, but they did not correlate. In the PDF, only Properdin levels remained significantly associated with PDF sC5b-9 levels in multivariate analysis (p < 0.001). Additionally, PDF levels of sC5b-9 positively correlated with elastase, MPO and MMP-2 levels in the PDF (p < 0.01). CONCLUSIONS Our data reveal both systemic and local complement activation in PD patients. Furthermore, these two processes seem independent considering the involvement of different pathways and the lack of correlation.
Collapse
Affiliation(s)
- Bernardo Faria
- Division of Nephrology, Department of Internal Medicine, University Medical Center Groningen, University of Groningen, The Netherlands
- Nephrology and Infectious Disease R&D Group, INEB, Institute of Investigation and Innovation in Health (i3S), University of Porto, Portugal
- Department of Medicine, Faculty of Medicine, University of Porto, Portugal
| | - Mariana Gaya da Costa
- Division of Nephrology, Department of Internal Medicine, University Medical Center Groningen, University of Groningen, The Netherlands
- Department of Anesthesiology, University Medical Center Groningen, University of Groningen, The Netherlands
| | - Anita H Meter-Arkema
- Division of Nephrology, Department of Internal Medicine, University Medical Center Groningen, University of Groningen, The Netherlands
| | - Stefan P Berger
- Division of Nephrology, Department of Internal Medicine, University Medical Center Groningen, University of Groningen, The Netherlands
| | - Carla Lima
- Division of Nephrology, Hospital São Teotônio, Viseu, Portugal
| | - Catia Pêgo
- Division of Nephrology, Hospital São Teotônio, Viseu, Portugal
| | - Jacob van den Born
- Division of Nephrology, Department of Internal Medicine, University Medical Center Groningen, University of Groningen, The Netherlands
| | - Casper Fm Franssen
- Division of Nephrology, Department of Internal Medicine, University Medical Center Groningen, University of Groningen, The Netherlands
| | - Mohamed R Daha
- Division of Nephrology, Department of Internal Medicine, University Medical Center Groningen, University of Groningen, The Netherlands
- Department of Nephrology, Leiden University Medical Center, University of Leiden, The Netherlands
| | - Manuel Pestana
- Nephrology and Infectious Disease R&D Group, INEB, Institute of Investigation and Innovation in Health (i3S), University of Porto, Portugal
- Department of Medicine, Faculty of Medicine, University of Porto, Portugal
| | - Marc A Seelen
- Division of Nephrology, Department of Internal Medicine, University Medical Center Groningen, University of Groningen, The Netherlands
| | - Felix Poppelaars
- Division of Nephrology, Department of Internal Medicine, University Medical Center Groningen, University of Groningen, The Netherlands
| |
Collapse
|
4
|
Baralić M, Pažitná L, Brković V, Laušević M, Gligorijević N, Katrlík J, Nedić O, Robajac D. Prediction of Mortality in Patients on Peritoneal Dialysis Based on the Fibrinogen Mannosylation. Cells 2023; 12:cells12030351. [PMID: 36766693 PMCID: PMC9913213 DOI: 10.3390/cells12030351] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2022] [Revised: 01/15/2023] [Accepted: 01/16/2023] [Indexed: 01/20/2023] Open
Abstract
As we already reported, fibrinogen fucosylation emerged as a prognostic marker of peritoneal membrane function in end-stage renal disease (ESRD) patients on peritoneal dialysis. After a follow-up period of 18 months, we estimated the ability of employed lectins, as well as other biochemical parameters, to serve as mortality predictors in these patients. Following a univariate Cox regression analysis, ferritin, urea clearance, residual diuresis, hyperglycemia, and an increase in the signal intensity obtained with Galanthus nivalis lectin (GNL) emerged as potential mortality predictors, but additional multivariate Cox regression analysis pointed only to glucose concentration and GNL as mortality predictors. Higher signal intensity obtained with GNL in patients that died suggested the importance of paucimannosidic/highly mannosidic N-glycan structures on fibrinogen as factors that are related to unwanted cardiovascular events and all-cause mortality and can possibly be seen as a prediction tool. Altered glycan structures composed of mannose residues are expected to affect the reactivity of mannosylated glycoproteins with mannose-binding lectin and possibly the entire cascade of events linked to this lectin. Since patients with ESRD are prone to cardiovascular complications and the formation of atherosclerotic plaques, one can hypothesize that fibrinogen with increasingly exposed mannose residues may contribute to the unwanted events.
Collapse
Affiliation(s)
- Marko Baralić
- School of Medicine, University of Belgrade, 11000 Belgrade, Serbia
- Clinic of Nephrology, University Clinical Centre of Serbia, 11000 Belgrade, Serbia
| | - Lucia Pažitná
- Institute of Chemistry, Slovak Academy of Sciences, 84538 Bratislava, Slovakia
| | - Voin Brković
- School of Medicine, University of Belgrade, 11000 Belgrade, Serbia
- Clinic of Nephrology, University Clinical Centre of Serbia, 11000 Belgrade, Serbia
| | - Mirjana Laušević
- School of Medicine, University of Belgrade, 11000 Belgrade, Serbia
- Clinic of Nephrology, University Clinical Centre of Serbia, 11000 Belgrade, Serbia
| | - Nikola Gligorijević
- Institute for the Application of Nuclear Energy (INEP), University of Belgrade, 11080 Belgrade, Serbia
| | - Jaroslav Katrlík
- Institute of Chemistry, Slovak Academy of Sciences, 84538 Bratislava, Slovakia
| | - Olgica Nedić
- Institute for the Application of Nuclear Energy (INEP), University of Belgrade, 11080 Belgrade, Serbia
| | - Dragana Robajac
- Institute for the Application of Nuclear Energy (INEP), University of Belgrade, 11080 Belgrade, Serbia
- Correspondence:
| |
Collapse
|
5
|
Evaluating the clinical utility of measuring levels of factor H and the related proteins. Mol Immunol 2022; 151:166-182. [PMID: 36162225 DOI: 10.1016/j.molimm.2022.08.010] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2022] [Revised: 08/04/2022] [Accepted: 08/15/2022] [Indexed: 11/21/2022]
Abstract
After years of disappointing clinical results, the tide has finally changed and complement targeted-therapies have become a validated and accepted treatment option for several diseases. These accomplishments have revitalized the field and brought renewed attention to the prospects that complement therapeutics can offer. Streamlining diagnostics and therapeutics is imperative in this new era of clinical use of complement therapeutics. However, the incredible success in therapeutics has not been accompanied by the development of novel standardized tools for complement testing. Complement biomarkers can assist in the risk assessment and diagnosis of diseases as well as the prediction of disease progression and treatment response. Recently, a group of complement proteins has been suggested to be highly relevant in various complement-associated disorders, namely the human factor H (FH) protein family. This family of closely related proteins consists of FH, FH-like protein 1, and five factor H-related proteins, and they have been linked to eye, kidney, infectious, vascular, and autoimmune diseases as well as cancer. The goal of this review is to provide a comprehensive overview of the available data on circulating levels of FH and its related proteins in different pathologies. In addition, we examined the current literature to determine the clinical utility of measuring levels of the FH protein family in health and disease. Finally, we discuss future steps that are needed to make their clinical translation a reality.
Collapse
|
6
|
Xing Z, Wang Y, Gong K, Chen Y. Plasma C4 level was associated with mortality, cardiovascular and cerebrovascular complications in hemodialysis patients. BMC Nephrol 2022; 23:232. [PMID: 35768780 PMCID: PMC9245318 DOI: 10.1186/s12882-022-02829-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2022] [Accepted: 05/19/2022] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND Patients on maintenance hemodialysis (HD) exhibit a high risk of death, cardiovascular and cerebrovascular diseases (CCDs). Previous studies indicated complement activation associated with the increased risk of cardiovascular diseases in HD patients. This study aimed to explore whether the critical complement factors were associated with the adverse outcomes in HD patients. METHODS A total of 108 HD patients were included and followed up for 52 months. The baseline clinical characteristics and plasma C3c, C1q, CFH, CFB, C4, MAC, C5a, C3a and MBL were measured. The three endpoints were death, cardiovascular and cerebrovascular events (CCEs) and the composition of them. Univariate and multivariate Cox regression identified factors associated with the three endpoints respectively. X-tile analyses determined the optimal cut-off values for high risks. Restricted cubic spline plots illustrated the dose-response relationships. Correlations between the complement factors and risk factors for CCDs were analyzed. RESULTS Baseline plasma C4 was finally selected by univariate and multivariate Cox regression analyses for three endpoints, including all-cause mortality, CCEs and the composition of them. When baseline plasma C4 exceeded 0.47 (P = 0.001) or 0.44 (P = 0.018) g/L respectively, the risks for death or achieving the composite endpoint enhanced significantly. The relationships of C4 and HR for the three endpoints showed a positive linear trend. Plasma C4 had prominent correlations with blood TG (r = 0.62, P < 0.001) and HDL (r = -0.38, P < 0.001). CONCLUSIONS A higher baseline plasma C4 level was significantly associated with the future incidence of decease, CCEs and either of them. Plasma C4 level correlated with blood TG and HDL.
Collapse
Affiliation(s)
- Zheyu Xing
- Renal Division, Peking University First Hospital, Beijing, China.,Institute of Nephrology, Peking University, Beijing, China.,Key Laboratory of Renal Disease, Ministry of Health of China, Beijing, China.,Key Laboratory of CKD Prevention and Treatment, Ministry of Education of China, Beijing, China
| | - Yaqin Wang
- Renal Division, Peking University First Hospital, Beijing, China.,Institute of Nephrology, Peking University, Beijing, China.,Key Laboratory of Renal Disease, Ministry of Health of China, Beijing, China.,Key Laboratory of CKD Prevention and Treatment, Ministry of Education of China, Beijing, China
| | - Kunjing Gong
- Renal Division, Peking University First Hospital, Beijing, China.,Institute of Nephrology, Peking University, Beijing, China.,Key Laboratory of Renal Disease, Ministry of Health of China, Beijing, China.,Key Laboratory of CKD Prevention and Treatment, Ministry of Education of China, Beijing, China
| | - Yuqing Chen
- Renal Division, Peking University First Hospital, Beijing, China. .,Institute of Nephrology, Peking University, Beijing, China. .,Key Laboratory of Renal Disease, Ministry of Health of China, Beijing, China. .,Key Laboratory of CKD Prevention and Treatment, Ministry of Education of China, Beijing, China.
| |
Collapse
|
7
|
Poppelaars F, Faria B, Schwaeble W, Daha MR. The Contribution of Complement to the Pathogenesis of IgA Nephropathy: Are Complement-Targeted Therapies Moving from Rare Disorders to More Common Diseases? J Clin Med 2021; 10:4715. [PMID: 34682837 PMCID: PMC8539100 DOI: 10.3390/jcm10204715] [Citation(s) in RCA: 23] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2021] [Revised: 10/05/2021] [Accepted: 10/06/2021] [Indexed: 12/29/2022] Open
Abstract
Primary IgA nephropathy (IgAN) is a leading cause of chronic kidney disease and kidney failure for which there is no disease-specific treatment. However, this could change, since novel therapeutic approaches are currently being assessed in clinical trials, including complement-targeting therapies. An improved understanding of the role of the lectin and the alternative pathway of complement in the pathophysiology of IgAN has led to the development of these treatment strategies. Recently, in a phase 2 trial, treatment with a blocking antibody against mannose-binding protein-associated serine protease 2 (MASP-2, a crucial enzyme of the lectin pathway) was suggested to have a potential benefit for IgAN. Now in a phase 3 study, this MASP-2 inhibitor for the treatment of IgAN could mark the start of a new era of complement therapeutics where common diseases can be treated with these drugs. The clinical development of complement inhibitors requires a better understanding by physicians of the biology of complement, the pathogenic role of complement in IgAN, and complement-targeted therapies. The purpose of this review is to provide an overview of the role of complement in IgAN, including the recent discovery of new mechanisms of complement activation and opportunities for complement inhibitors as the treatment of IgAN.
Collapse
Affiliation(s)
- Felix Poppelaars
- Department of Internal Medicine, Division of Nephrology, University Medical Center Groningen, University of Groningen, 9700 AD Groningen, The Netherlands; (B.F.); (M.R.D.)
| | - Bernardo Faria
- Department of Internal Medicine, Division of Nephrology, University Medical Center Groningen, University of Groningen, 9700 AD Groningen, The Netherlands; (B.F.); (M.R.D.)
- Nephrology and Infectious Disease R&D Group, INEB, Institute of Investigation and Innovation in Health (i3S), University of Porto, 4200-135 Porto, Portugal
| | - Wilhelm Schwaeble
- Department of Veterinary Medicine, University of Cambridge, Cambridge CB3 0ES, UK;
| | - Mohamed R. Daha
- Department of Internal Medicine, Division of Nephrology, University Medical Center Groningen, University of Groningen, 9700 AD Groningen, The Netherlands; (B.F.); (M.R.D.)
- Department of Nephrology, Leiden University Medical Center, University of Leiden, 2300 RC Leiden, The Netherlands
| |
Collapse
|
8
|
Ducloux D, Legendre M, Bamoulid J, Saas P, Courivaud C, Crepin T. End-Stage Renal Disease-Related Accelerated Immune Senescence: Is Rejuvenation of the Immune System a Therapeutic Goal? Front Med (Lausanne) 2021; 8:720402. [PMID: 34540869 PMCID: PMC8446427 DOI: 10.3389/fmed.2021.720402] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2021] [Accepted: 08/17/2021] [Indexed: 02/05/2023] Open
Abstract
End-stage renal disease (ESRD) patients exhibit clinical features of premature ageing, including frailty, cardiovascular disease, and muscle wasting. Accelerated ageing also concerns the immune system. Patients with ESRD have both immune senescence and chronic inflammation that are resumed in the so-called inflammaging syndrome. Immune senescence is particularly characterised by premature loss of thymic function that is associated with hyporesponsiveness to vaccines, susceptibility to infections, and death. ESRD-related chronic inflammation has multiple causes and participates to accelerated cardiovascular disease. Although, both characterisation of immune senescence and its consequences are relatively well-known, mechanisms are more uncertain. However, prevention of immune senescence/inflammation or/and rejuvenation of the immune system are major goal to ameliorate clinical outcomes of ESRD patients.
Collapse
Affiliation(s)
- Didier Ducloux
- Inserm, UMR1098, Federation Hospitalo-Universitaire INCREASE, Besançon, France.,University Bourgogne Franche-Comté, Faculté de Médecine et de Pharmacie, LabEx LipSTIC, Besançon, France.,Structure Fédérative de Recherche, SFR FED4234, Besançon, France.,CHU Besançon, Department of Nephrology, Dialysis, and Renal Transplantation, Besançon, France
| | - Mathieu Legendre
- Inserm, UMR1098, Federation Hospitalo-Universitaire INCREASE, Besançon, France.,University Bourgogne Franche-Comté, Faculté de Médecine et de Pharmacie, LabEx LipSTIC, Besançon, France
| | - Jamal Bamoulid
- Inserm, UMR1098, Federation Hospitalo-Universitaire INCREASE, Besançon, France.,University Bourgogne Franche-Comté, Faculté de Médecine et de Pharmacie, LabEx LipSTIC, Besançon, France.,Structure Fédérative de Recherche, SFR FED4234, Besançon, France.,CHU Besançon, Department of Nephrology, Dialysis, and Renal Transplantation, Besançon, France
| | - Philippe Saas
- Inserm, UMR1098, Federation Hospitalo-Universitaire INCREASE, Besançon, France.,University Bourgogne Franche-Comté, Faculté de Médecine et de Pharmacie, LabEx LipSTIC, Besançon, France.,Structure Fédérative de Recherche, SFR FED4234, Besançon, France.,EFS Bourgogne Franche-Comté, Plateforme de Biomonitoring, CIC 1431/UMR1098, Besançon, France
| | - Cécile Courivaud
- Inserm, UMR1098, Federation Hospitalo-Universitaire INCREASE, Besançon, France.,University Bourgogne Franche-Comté, Faculté de Médecine et de Pharmacie, LabEx LipSTIC, Besançon, France.,Structure Fédérative de Recherche, SFR FED4234, Besançon, France.,CHU Besançon, Department of Nephrology, Dialysis, and Renal Transplantation, Besançon, France
| | - Thomas Crepin
- Inserm, UMR1098, Federation Hospitalo-Universitaire INCREASE, Besançon, France.,CHU Besançon, Department of Nephrology, Dialysis, and Renal Transplantation, Besançon, France
| |
Collapse
|
9
|
Skinner SC, Derebail VK, Poulton CJ, Bunch DC, Roy-Chaudhury P, Key NS. Hemodialysis-Related Complement and Contact Pathway Activation and Cardiovascular Risk: A Narrative Review. Kidney Med 2021; 3:607-618. [PMID: 34401728 PMCID: PMC8350825 DOI: 10.1016/j.xkme.2021.04.006] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022] Open
Abstract
Individuals receiving long-term hemodialysis are at increased risk of developing cardiovascular disease (CVD). Traditional cardiovascular risk factors do not fully explain the high CVD risk in this population. During hemodialysis, blood interacts with the biomaterials of the hemodialysis circuit. This interaction can activate the complement system and the factor XII-driven contact system. FXII activation triggers both the intrinsic pathway of coagulation and the kallikrein-kinin pathway, resulting in thrombin and bradykinin production, respectively. The complement system plays a key role in the innate immune response, but also contributes to the pathogenesis of numerous disease states. Components of the complement pathway, including mannose binding lectin and C3, are associated with CVD risk in people with end-stage kidney disease (ESKD). Both the complement system and the factor XII-driven contact coagulation system mediate proinflammatory and procoagulant responses that could contribute to or accelerate CVD in hemodialysis recipents. This review summarizes what is already known about hemodialysis-mediated activation of the complement system and in particular the coagulation contact system, emphasizing the potential role these systems play in the identification of new biomarkers for CVD risk stratification and the development of potential therapeutic targets or innovative therapies that decrease CVD risk in ESKD patients.
Collapse
Affiliation(s)
- Sarah C. Skinner
- Division of Hematology and UNC Blood Research Center, Department of Medicine, University of North Carolina, Chapel Hill, NC
| | - Vimal K. Derebail
- Division of Nephrology and UNC Kidney Center, Department of Medicine, University of North Carolina, Chapel Hill, NC
| | - Caroline J. Poulton
- Division of Nephrology and UNC Kidney Center, Department of Medicine, University of North Carolina, Chapel Hill, NC
| | - Donna C. Bunch
- Division of Nephrology and UNC Kidney Center, Department of Medicine, University of North Carolina, Chapel Hill, NC
| | - Prabir Roy-Chaudhury
- Division of Nephrology and UNC Kidney Center, Department of Medicine, University of North Carolina, Chapel Hill, NC
- WG (Bill) Hefner VA Medical Center, Salisbury, NC
| | - Nigel S. Key
- Division of Hematology and UNC Blood Research Center, Department of Medicine, University of North Carolina, Chapel Hill, NC
| |
Collapse
|
10
|
Faria B, Gaya da Costa M, Lima C, Willems L, Brandwijk R, Berger SP, Daha MR, Pestana M, Seelen MA, Poppelaars F. Soluble CD59 in peritoneal dialysis: a potential biomarker for peritoneal membrane function. J Nephrol 2020; 34:801-810. [PMID: 33306183 PMCID: PMC8192357 DOI: 10.1007/s40620-020-00934-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2020] [Accepted: 11/19/2020] [Indexed: 11/28/2022]
Abstract
INTRODUCTION Various studies have reported the importance of complement regulators in preventing mesothelial damage during peritoneal dialysis (PD). Its assessment, however, is limited in clinical practice due to the lack of easy access to the peritoneal membrane. Recently, a soluble form of the complement regulatory protein CD59 (sCD59) has been described. We therefore aimed to investigate the role of sCD59 in PD. METHODS Plasma sCD59 was measured in 48 PD patients, 41 hemodialysis patients, 15 non-dialysis patients with chronic kidney disease and 14 healthy controls by ELISA (Hycult; HK374-02). Additionally, sCD59 and sC5b-9 were assessed in the peritoneal dialysate. RESULTS sCD59 and sC5b-9 were detectable in the peritoneal dialysate of all patients, and marginally correlated (r = 0.27, P = 0.06). Plasma sCD59 levels were significantly higher in PD patients than in patients with chronic kidney disease and healthy controls, but did not differ from hemodialysis patients. During follow-up, 19% of PD patients developed peritoneal membrane failure and 27% of PD patients developed loss of residual renal function. In adjusted models, increased sCD59 levels in the dialysate (HR 3.44, 95% CI 1.04-11.40, P = 0.04) and in plasma (HR 1.08, 95% CI 1.01-1.17, P = 0.04) were independently associated with the occurrence of peritoneal membrane failure. Higher plasma levels of sCD59 were also associated with loss of residual renal function (HR 1.10, 95% CI 1.04-1.17, P < 0.001). CONCLUSIONS Our study suggests that sCD59 has potential as a biomarker to predict peritoneal membrane function and loss of residual renal function in PD, thereby offering a tool to improve patient management.
Collapse
Affiliation(s)
- Bernardo Faria
- Department of Internal Medicine, Division of Nephrology, University of Groningen, University Medical Center Groningen, Groningen, The Netherlands.
- Nephrology and Infectious Disease R&D Group, INEB, Institute of Investigation and Innovation in Health (i3S), University of Porto, Al. Professor Hernâni Monteiro, 4200-319, Porto, Portugal.
| | - Mariana Gaya da Costa
- Department of Internal Medicine, Division of Nephrology, University of Groningen, University Medical Center Groningen, Groningen, The Netherlands
| | | | | | | | - Stefan P Berger
- Department of Internal Medicine, Division of Nephrology, University of Groningen, University Medical Center Groningen, Groningen, The Netherlands
| | - Mohamed R Daha
- Department of Internal Medicine, Division of Nephrology, University of Groningen, University Medical Center Groningen, Groningen, The Netherlands
- Department of Nephrology, University of Leiden, Leiden University Medical Center, Leiden, The Netherlands
| | - Manuel Pestana
- Nephrology and Infectious Disease R&D Group, INEB, Institute of Investigation and Innovation in Health (i3S), University of Porto, Al. Professor Hernâni Monteiro, 4200-319, Porto, Portugal
| | - Marc A Seelen
- Department of Internal Medicine, Division of Nephrology, University of Groningen, University Medical Center Groningen, Groningen, The Netherlands
| | - Felix Poppelaars
- Department of Internal Medicine, Division of Nephrology, University of Groningen, University Medical Center Groningen, Groningen, The Netherlands
| |
Collapse
|
11
|
Gedebjerg A, Bjerre M, Kjaergaard AD, Steffensen R, Nielsen JS, Rungby J, Friborg SG, Brandslund I, Thiel S, Beck-Nielsen H, Sørensen HT, Hansen TK, Thomsen RW. Mannose-Binding Lectin and Risk of Cardiovascular Events and Mortality in Type 2 Diabetes: A Danish Cohort Study. Diabetes Care 2020; 43:2190-2198. [PMID: 32616614 DOI: 10.2337/dc20-0345] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/20/2020] [Accepted: 04/28/2020] [Indexed: 02/03/2023]
Abstract
OBJECTIVE Mannose-binding lectin (MBL) is linked to risk of cardiovascular disease (CVD) in diabetes, but the nature of the association is unclear. We investigated the association between MBL and the risk of cardiovascular events (CVE) and all-cause mortality in type 2 diabetes. RESEARCH DESIGN AND METHODS In a cohort study of 7,588 patients with type 2 diabetes, we measured serum MBL in 7,305 patients and performed MBL expression genotyping in 3,043 patients. We grouped serum MBL and MBL expression genotypes into three categories: low, intermediate, and high. Outcomes were CVE (myocardial infarction, stroke, coronary revascularization, unstable angina, or cardiovascular death) and all-cause mortality. The association with outcomes was examined by spline and Cox regression analyses. RESULTS Serum MBL and CVE showed a U-shaped association. Compared with the intermediate serum MBL category, the adjusted hazard ratio (HR) for CVE was 1.82 (95% CI 1.34-2.46) for the low-MBL category and 1.48 (95% CI 1.14-1.92) for the high-MBL category. We found a similar U-shaped association for all-cause mortality, but with lower risk estimates. Compared with the intermediate MBL expression genotype, the adjusted HR for CVE was 1.40 (95% CI 0.87-2.25) for the low-expression genotype and 1.44 (95% CI 1.01-2.06) for the high-expression genotype. MBL expression genotype was not associated with all-cause mortality. CONCLUSIONS Both serum MBL and MBL expression genotype showed a U-shaped association with CVE risk in individuals with type 2 diabetes. Our findings suggest that serum MBL is a risk factor for CVD in this population.
Collapse
Affiliation(s)
- Anne Gedebjerg
- Department of Clinical Epidemiology, Aarhus University Hospital, Aarhus, Denmark .,Danish Diabetes Academy, Odense University Hospital, Odense, Denmark
| | - Mette Bjerre
- Medical Research Laboratory, Department of Clinical Medicine, Aarhus University, Aarhus, Denmark
| | | | - Rudi Steffensen
- Department of Immunology, Aalborg University Hospital, Aalborg, Denmark
| | - Jens Steen Nielsen
- DD2, Steno Diabetes Center Odense, Odense University Hospital, Odense, Denmark
| | - Jørgen Rungby
- Department of Endocrinology IC, Bispebjerg University Hospital, Copenhagen, Denmark.,Copenhagen Center for Translational Research, Bispebjerg University Hospital, Copenhagen, Denmark
| | - Søren Gunnar Friborg
- Diabetes Research Centre, Department of Endocrinology, Odense University Hospital, Odense, Denmark
| | - Ivan Brandslund
- Department of Biochemistry, Lillebaelt Hospital, Vejle, Denmark
| | - Steffen Thiel
- Department of Biomedicine, Aarhus University, Aarhus, Denmark
| | - Henning Beck-Nielsen
- DD2, Steno Diabetes Center Odense, Odense University Hospital, Odense, Denmark.,Diabetes Research Centre, Department of Endocrinology, Odense University Hospital, Odense, Denmark
| | - Henrik Toft Sørensen
- Department of Clinical Epidemiology, Aarhus University Hospital, Aarhus, Denmark.,Department of Epidemiology, Boston University, Boston, MA.,Center for Population Health Sciences, Stanford University, Stanford, CA
| | | | | |
Collapse
|
12
|
Molecular Mechanisms of Premature Aging in Hemodialysis: The Complex Interplay Between Innate and Adaptive Immune Dysfunction. Int J Mol Sci 2020; 21:ijms21103422. [PMID: 32408613 PMCID: PMC7279398 DOI: 10.3390/ijms21103422] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2020] [Revised: 05/01/2020] [Accepted: 05/07/2020] [Indexed: 02/07/2023] Open
Abstract
Hemodialysis (HD) patient are known to be susceptible to a wide range of early and long-term complication such as chronic inflammation, infections, malnutrition, and cardiovascular disease that significantly affect the incidence of mortality. A large gap between the number of people with end-stage kidney disease (ESKD) and patients who received kidney transplantation has been identified. Therefore, there is a huge need to explore the underlying pathophysiology of HD complications in order to provide treatment guidelines. The immunological dysregulation, involving both the innate and adaptive response, plays a crucial role during the HD sessions and in chronic, maintenance treatments. Innate immune system mediators include the dysfunction of neutrophils, monocytes, and natural killer (NK) cells with signaling mediated by NOD-like receptor P3 (NLRP3) and Toll-like receptor 4 (TLR4); in addition, there is a significant activation of the complement system that is mediated by dialysis membrane-surfaces. These effectors induce a persistent, systemic, pro-inflammatory, and pro-coagulant milieu that has been described as inflammaging. The adaptive response, the imbalance in the CD4+/CD8+ T cell ratio, and the reduction of Th2 and regulatory T cells, together with an altered interaction with B lymphocyte by CD40/CD40L, have been mainly implicated in immune system dysfunction. Altogether, these observations suggest that intervention targeting the immune system in HD patients could improve morbidity and mortality. The purpose of this review is to expand our understanding on the role of immune dysfunction in both innate and adaptive response in patients undergoing hemodialysis treatment.
Collapse
|
13
|
Angeletti A, Zappulo F, Donadei C, Cappuccilli M, Di Certo G, Conte D, Comai G, Donati G, La Manna G. Immunological Effects of a Single Hemodialysis Treatment. MEDICINA (KAUNAS, LITHUANIA) 2020; 56:E71. [PMID: 32059426 PMCID: PMC7074458 DOI: 10.3390/medicina56020071] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/21/2020] [Revised: 02/06/2020] [Accepted: 02/10/2020] [Indexed: 12/19/2022]
Abstract
Immune disorders, involving both innate and adaptive response, are common in patients with end-stage renal disease under chronic hemodialysis. Endogenous and exogenous factors, such as uremic toxins and the extracorporeal treatment itself, alter the immune balance, leading to chronic inflammation and higher risk of cardiovascular events. Several studies have previously described the immune effects of chronic hemodialysis and the possibility to modulate inflammation through more biocompatible dialyzers and innovative techniques. On the other hand, very limited data are available on the possible immunological effects of a single hemodialysis treatment. In spite of the lacking information about the immunological reactivity related to a single session, there is evidence to indicate that mediators of innate and adaptive response, above all complement cascade and T cells, are implicated in immune system modulation during hemodialysis treatment. Expanding our understanding of these modulations represents a necessary basis to develop pro-tolerogenic strategies in specific conditions, like hemodialysis in septic patients or the last session prior to kidney transplant in candidates for receiving a graft.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | | | - Gaetano La Manna
- Department of Experimental Diagnostic and Specialty Medicine (DIMES), Nephrology, Dialysis and Renal Transplant Unit, S. Orsola-Malpighi Hospital, University of Bologna, 40138 Bologna, Italy; (A.A.); (F.Z.); (C.D.); (M.C.); (G.D.C.); (D.C.); (G.C.); (G.D.)
| |
Collapse
|
14
|
Gaya da Costa M, Poppelaars F, Berger SP, Daha MR, Seelen MA. The lectin pathway in renal disease: old concept and new insights. Nephrol Dial Transplant 2019; 33:2073-2079. [PMID: 29701808 DOI: 10.1093/ndt/gfy073] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2017] [Accepted: 02/18/2018] [Indexed: 02/06/2023] Open
Abstract
The complement system is composed of a network of at least 40 proteins, which significantly contributes to health and disease. The lectin pathway (LP) is one of three pathways that can activate the complement system. Next to protection of the host against pathogens, the LP has been shown to play a crucial role in multiple renal diseases as well as during renal replacement therapy. Therefore, several complement-targeted drugs are currently being explored in clinical trials. Among these complement inhibitors, specific LP inhibitors are also being tested in renal abnormalities such as in immunoglobulin A nephropathy and lupus nephritis. Using various in vitro models, Yaseen et al. (Lectin pathway effector enzyme mannan-binding lectin-associated serine protease-2 can activate native complement component 3 (C3) in absence of C4 and/or C2. FASEB J 2017; 31: 2210-2219) showed that Mannan-associated serine protease2 can directly activate C3 thereby bypassing C2 and C4 in the activation of the LP. These new findings broaden our understanding of the mechanisms of complement activation and could potentially impact our strategies to inhibit the LP in renal diseases. In support of these findings, we present data of human renal biopsies, demonstrating the occurrence of the LP bypass mechanism in vivo. In conclusion, this review provides a detailed overview of the LP and clarifies the recently described bypass mechanism and its relevance. Finally, we speculate on the role of the C4 bypass mechanism in other renal diseases.
Collapse
Affiliation(s)
- Mariana Gaya da Costa
- Department of Internal Medicine, Division of Nephrology, University of Groningen, University Medical Center Groningen, Groningen, The Netherlands
| | - Felix Poppelaars
- Department of Internal Medicine, Division of Nephrology, University of Groningen, University Medical Center Groningen, Groningen, The Netherlands
| | - Stefan P Berger
- Department of Internal Medicine, Division of Nephrology, University of Groningen, University Medical Center Groningen, Groningen, The Netherlands
| | - Mohamed R Daha
- Department of Internal Medicine, Division of Nephrology, University of Groningen, University Medical Center Groningen, Groningen, The Netherlands.,Department of Nephrology, Leiden University Medical Centre, Leiden, The Netherlands
| | - Marc A Seelen
- Department of Internal Medicine, Division of Nephrology, University of Groningen, University Medical Center Groningen, Groningen, The Netherlands
| |
Collapse
|
15
|
Faria B, Gaya da Costa M, Poppelaars F, Franssen CFM, Pestana M, Berger SP, Daha MR, Gaillard CAJM, Seelen MA. Administration of Intravenous Iron Formulations Induces Complement Activation in-vivo. Front Immunol 2019; 10:1885. [PMID: 31497011 PMCID: PMC6712170 DOI: 10.3389/fimmu.2019.01885] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2019] [Accepted: 07/25/2019] [Indexed: 12/19/2022] Open
Abstract
Background: Intravenous (IV) iron is widely used to treat anemia in chronic kidney disease patients. Previously, iron formulations were shown to induce immune activation in-vitro. The current study aimed to investigate the effect of IV iron on complement activation in-vivo, and whether this subsequently induces inflammation and/or oxidative stress. Methods: Two distinct patient groups were included: 51 non-dialysis and 32 dialysis patients. The non-dialysis group received iron sucrose or ferric carboxymaltose, based on physicians' choice. Plasma samples were collected prior to and 1 h after completion of IV iron infusion. The dialysis group received iron sucrose exclusively. Plasma samples were collected at the start and end of two consecutive hemodialysis sessions, one with and one without IV iron. Finally, plasma levels of MBL, C1q, properdin, factor D, sC5b-9, MPO, PTX3 were assessed by ELISA. Results: In the non-dialysis group, sC5b-9 levels significantly increased after IV iron by 32%, while levels of factor D and MBL significantly dropped. Subgroup analysis demonstrated that iron sucrose induced complement activation whereas ferric carboxymaltose did not. In the dialysis group, levels of sC5b-9 significantly increased by 46% during the dialysis session with IV iron, while factor D levels significantly fell. Furthermore, the relative decrease in factor D by IV iron correlated significantly with the relative increase in sC5b-9 by IV iron. MPO levels rose significantly during the dialysis session with IV iron, but not in the session without iron. Moreover, the relative increase in MPO and sC5b-9 by IV iron correlated significantly. PTX3 levels were not affected by IV iron. Conclusions: Iron sucrose but not ferric carboxymaltose, results in complement activation possibly via the lectin and alternative pathway partially mediating oxidative stress but not inflammation.
Collapse
Affiliation(s)
- Bernardo Faria
- Division of Nephrology, Department of Internal Medicine, University Medical Center Groningen, University of Groningen, Groningen, Netherlands
- Department of Nephrology, Hospital de Braga, Braga, Portugal
- Nephrology and Infectious Disease R&D Group, INEB, I3S, University of Porto, Porto, Portugal
| | - Mariana Gaya da Costa
- Division of Nephrology, Department of Internal Medicine, University Medical Center Groningen, University of Groningen, Groningen, Netherlands
| | - Felix Poppelaars
- Division of Nephrology, Department of Internal Medicine, University Medical Center Groningen, University of Groningen, Groningen, Netherlands
| | - Casper F. M. Franssen
- Division of Nephrology, Department of Internal Medicine, University Medical Center Groningen, University of Groningen, Groningen, Netherlands
| | - Manuel Pestana
- Nephrology and Infectious Disease R&D Group, INEB, I3S, University of Porto, Porto, Portugal
| | - Stefan P. Berger
- Division of Nephrology, Department of Internal Medicine, University Medical Center Groningen, University of Groningen, Groningen, Netherlands
| | - Mohamed R. Daha
- Division of Nephrology, Department of Internal Medicine, University Medical Center Groningen, University of Groningen, Groningen, Netherlands
- Department of Nephrology, Leiden University Medical Center, University of Leiden, Leiden, Netherlands
| | - Carlo A. J. M. Gaillard
- Division of Internal Medicine and Dermatology, University Medical Center Utrecht, University of Utrecht, Utrecht, Netherlands
| | - Marc A. Seelen
- Division of Nephrology, Department of Internal Medicine, University Medical Center Groningen, University of Groningen, Groningen, Netherlands
| |
Collapse
|
16
|
Wang Y, Miao Y, Gong K, Cheng X, Chen Y, Zhao MH. Plasma Complement Protein C3a Level Was Associated with Abdominal Aortic Calcification in Patients on Hemodialysis. J Cardiovasc Transl Res 2019; 12:496-505. [DOI: 10.1007/s12265-019-09885-2] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/24/2018] [Accepted: 03/25/2019] [Indexed: 12/17/2022]
|
17
|
Hijmans RS, van Londen M, Sarpong KA, Bakker SJL, Navis GJ, Storteboom TTR, de Jong WHA, Pol RA, van den Born J. Dermal tissue remodeling and non-osmotic sodium storage in kidney patients. J Transl Med 2019; 17:88. [PMID: 30885222 PMCID: PMC6421653 DOI: 10.1186/s12967-019-1815-5] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2018] [Accepted: 02/21/2019] [Indexed: 12/28/2022] Open
Abstract
Background Excess dietary sodium is not only excreted by the kidneys, but can also be stored by non-osmotic binding with glycosaminoglycans in dermal connective tissue. Such storage has been associated with dermal inflammation and lymphangiogenesis. We aim to investigate if skin storage of sodium is increased in kidney patients and if this storage is associated with clinical parameters of sodium homeostasis and dermal tissue remodeling. Methods Abdominal skin tissue of 12 kidney patients (5 on hemodialysis) and 12 healthy kidney donors was obtained during surgery. Skin biopsies were processed for dermal sodium measurement by atomic absorption spectroscopy, and evaluated for CD68+ macrophages, CD3+ T-cells, collagen I, podoplanin + lymph vessels, and glycosaminoglycans by qRT-PCR and immunohistochemistry. Results Dermal sodium content of kidney patients did not differ from healthy individuals, but was inversely associated with plasma sodium values (p < 0.05). Compared to controls, kidney patients showed dermal tissue remodeling by increased CD68+ macrophages, CD3+ T-cells and Collagen I expression (all p < 0.05). Also, both N- and O-sulfation of heparan sulfate glycosaminoglycans were increased (all p < 0.05), most outspoken in hemodialysis patients. Plasma and urinary sodium associates with dermal lymph vessel number (both p < 0.05), whereas loss of eGFR, proteinuria and high systolic blood pressure associated with dermal macrophage density (all p < 0.05). Conclusion Kidney patients did not show increased skin sodium storage compared to healthy individuals. Results do indicate that kidney failure associates with dermal inflammation, whereas increased sodium excretion and plasma sodium associate with dermal lymph vessel formation and loss of dermal sodium storage capacity. Trial registration The cohort is registered at clinicaltrials.gov as NCT (September 6, 2017). NCT, NCT03272841. Registered 6 September 2017—Retrospectively registered, https://clinicaltrials.gov
Collapse
Affiliation(s)
- Ryanne S Hijmans
- Department of Internal Medicine, Division of Nephrology, University Medical Center Groningen, University of Groningen, Groningen, The Netherlands. .,Department of Surgery, Division of Transplantation Surgery, University Medical Center Groningen, University of Groningen, Groningen, The Netherlands. .,Surgical Department, Martini Hospital Groningen, Groningen, The Netherlands.
| | - Marco van Londen
- Department of Internal Medicine, Division of Nephrology, University Medical Center Groningen, University of Groningen, Groningen, The Netherlands
| | - Kwaku A Sarpong
- Department of Internal Medicine, Division of Nephrology, University Medical Center Groningen, University of Groningen, Groningen, The Netherlands
| | - Stephan J L Bakker
- Department of Internal Medicine, Division of Nephrology, University Medical Center Groningen, University of Groningen, Groningen, The Netherlands
| | - Gerjan J Navis
- Department of Internal Medicine, Division of Nephrology, University Medical Center Groningen, University of Groningen, Groningen, The Netherlands
| | - Twan T R Storteboom
- Department of Laboratory Medicine, University Medical Center Groningen, University of Groningen, Groningen, The Netherlands
| | - Wilhelmina H A de Jong
- Department of Laboratory Medicine, University Medical Center Groningen, University of Groningen, Groningen, The Netherlands
| | - Robert A Pol
- Department of Surgery, Division of Transplantation Surgery, University Medical Center Groningen, University of Groningen, Groningen, The Netherlands
| | - Jacob van den Born
- Department of Internal Medicine, Division of Nephrology, University Medical Center Groningen, University of Groningen, Groningen, The Netherlands
| |
Collapse
|
18
|
Michels MAHM, Volokhina EB, van de Kar NCAJ, van den Heuvel LPWJ. The role of properdin in complement-mediated renal diseases: a new player in complement-inhibiting therapy? Pediatr Nephrol 2019; 34:1349-1367. [PMID: 30141176 PMCID: PMC6579773 DOI: 10.1007/s00467-018-4042-z] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/18/2018] [Revised: 07/31/2018] [Accepted: 08/03/2018] [Indexed: 12/16/2022]
Abstract
Properdin is known as the only positive regulator of the complement system. Properdin promotes the activity of this defense system by stabilizing its key enzymatic complexes: the complement alternative pathway (AP) convertases. Besides, some studies have indicated a role for properdin as an initiator of complement activity. Though the AP is a powerful activation route of the complement system, it is also involved in a wide variety of autoimmune and inflammatory diseases, many of which affect the kidneys. The role of properdin in regulating complement in health and disease has not received as much appraisal as the many negative AP regulators, such as factor H. Historically, properdin deficiency has been strongly associated with an increased risk for meningococcal disease. Yet only recently had studies begun to link properdin to other complement-related diseases, including renal diseases. In the light of the upcoming complement-inhibiting therapies, it is interesting whether properdin can be a therapeutic target to attenuate AP-mediated injury. A full understanding of the basic concepts of properdin biology is therefore needed. Here, we first provide an overview of the function of properdin in health and disease. Then, we explore its potential as a therapeutic target for the AP-associated renal diseases C3 glomerulopathy, atypical hemolytic uremic syndrome, and proteinuria-induced tubulointerstitial injury. Considering current knowledge, properdin-inhibiting therapy seems promising in certain cases. However, knowing the complexity of properdin's role in renal pathologies in vivo, further research is required to clarify the exact potential of properdin-targeted therapy in complement-mediated renal diseases.
Collapse
Affiliation(s)
- Marloes A. H. M. Michels
- Radboud Institute for Molecular Life Sciences, Department of Pediatric Nephrology, Amalia Children’s Hospital, Radboud University Medical Center, Geert Grooteplein Zuid 10, PO Box 9101, 6525 GA Nijmegen, The Netherlands
| | - Elena B. Volokhina
- Radboud Institute for Molecular Life Sciences, Department of Pediatric Nephrology, Amalia Children’s Hospital, Radboud University Medical Center, Geert Grooteplein Zuid 10, PO Box 9101, 6525 GA Nijmegen, The Netherlands ,Department of Laboratory Medicine, Radboud University Medical Center, Geert Grooteplein Zuid 10, PO Box 9101, 6525 GA Nijmegen, The Netherlands
| | - Nicole C. A. J. van de Kar
- Radboud Institute for Molecular Life Sciences, Department of Pediatric Nephrology, Amalia Children’s Hospital, Radboud University Medical Center, Geert Grooteplein Zuid 10, PO Box 9101, 6525 GA Nijmegen, The Netherlands
| | - Lambertus P. W. J. van den Heuvel
- Radboud Institute for Molecular Life Sciences, Department of Pediatric Nephrology, Amalia Children’s Hospital, Radboud University Medical Center, Geert Grooteplein Zuid 10, PO Box 9101, 6525 GA Nijmegen, The Netherlands ,Department of Laboratory Medicine, Radboud University Medical Center, Geert Grooteplein Zuid 10, PO Box 9101, 6525 GA Nijmegen, The Netherlands ,Department of Pediatrics/Pediatric Nephrology and Department of Development & Regeneration, University Hospitals Leuven, Herestraat 49, 3000 Leuven, Belgium
| |
Collapse
|
19
|
Taming hemodialysis-induced inflammation: Are complement C3 inhibitors a viable option? Clin Immunol 2018; 198:102-105. [PMID: 30472267 DOI: 10.1016/j.clim.2018.11.010] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2018] [Accepted: 11/19/2018] [Indexed: 12/11/2022]
Abstract
Owing to an increasing shortage of donor organs, the majority of patients with end-stage kidney disease remains reliant on extracorporeal hemodialysis (HD) in order to counter the lifelong complications of a failing kidney. While HD remains a life-saving option for these patients, mounting evidence suggests that it also fuels a vicious cycle of thromboinflammation that can increase the risk of cardiovascular disease. During HD, blood-borne innate immune systems become inappropriately activated on the biomaterial surface, instigating proinflammatory reactions that can alter endothelial and vascular homeostasis. Complement activation, early during the HD process, has been shown to fuel a multitude of detrimental thromboinflammatory reactions that collectively contribute to patient morbidity. Here we discuss emerging aspects of complement's involvement in HD-induced inflammation and put forth the concept that targeted intervention at the level of C3 might constitute a promising therapeutic approach in HD patients.
Collapse
|
20
|
Poppelaars F, Gaya da Costa M, Faria B, Berger SP, Assa S, Daha MR, Medina Pestana JO, van Son WJ, Franssen CFM, Seelen MA. Intradialytic Complement Activation Precedes the Development of Cardiovascular Events in Hemodialysis Patients. Front Immunol 2018; 9:2070. [PMID: 30271407 PMCID: PMC6146103 DOI: 10.3389/fimmu.2018.02070] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2018] [Accepted: 08/21/2018] [Indexed: 12/13/2022] Open
Abstract
Background: Hemodialysis (HD) is a life-saving treatment for patients with end stage renal disease. However, HD patients have markedly increased rates of cardiovascular morbidity and mortality. Previously, a link between the complement system and cardiovascular events (CV-events) has been reported. In HD, systemic complement activation occurs due to blood-to-membrane interaction. We hypothesize that HD-induced complement activation together with inflammation and thrombosis are involved in the development of CV-events in these patients. Methods: HD patients were followed for the occurrence of CV-events during a maximum follow-up of 45 months. Plasma samples were collected from 55 patients at different time points during one HD session prior to follow-up. Plasma levels of mannose-binding lectin, properdin and C3d/C3 ratios were assessed by ELISA. In addition, levels of von Willebrand factor, TNF-α and IL-6/IL-10 ratios were determined. An ex-vivo model of HD was used to assess the effect of complement inhibition. Results: During median follow-up of 32 months, 17 participants developed CV-events. In the CV-event group, the C3d/C3-ratio sharply increased 30 min after the start of the HD session, while in the event-free group the ratio did not increase. In accordance, HD patients that developed a CV-event also had a sustained higher IL-6/IL-10-ratio during the first 60 min of the HD session, followed by a greater rise in TNF-α levels and von Willebrand factor at the end of the session. In the ex-vivo HD model, we found that complement activation contributed to the induction of TNF-α levels, IL-6/IL-10-ratio and levels of von Willebrand factor. Conclusions: In conclusion, these findings suggest that early intradialytic complement activation predominantly occurred in HD patients who develop a CV-event during follow-up. In addition, in these patients complement activation was accompanied by a pro-inflammatory and pro-thrombotic response. Experimental complement inhibition revealed that this reaction is secondary to complement activation. Therefore, our data suggests that HD-induced complement, inflammation and coagulation are involved in the increased CV risk of HD patients.
Collapse
Affiliation(s)
- Felix Poppelaars
- Division of Nephrology, Department of Internal Medicine, University of Groningen, University Medical Center Groningen, Groningen, Netherlands
| | - Mariana Gaya da Costa
- Division of Nephrology, Department of Internal Medicine, University of Groningen, University Medical Center Groningen, Groningen, Netherlands
| | - Bernardo Faria
- Division of Nephrology, Department of Internal Medicine, University of Groningen, University Medical Center Groningen, Groningen, Netherlands
- Nephrology and Infecciology Group, INEB/I3S, University of Porto, Porto, Portugal
- Department of Nephrology, Hospital Braga, Braga, Portugal
| | - Stefan P. Berger
- Division of Nephrology, Department of Internal Medicine, University of Groningen, University Medical Center Groningen, Groningen, Netherlands
| | - Solmaz Assa
- Department of Cardiology, University of Groningen, University Medical Center Groningen, Groningen, Netherlands
| | - Mohamed R. Daha
- Division of Nephrology, Department of Internal Medicine, University of Groningen, University Medical Center Groningen, Groningen, Netherlands
- Department of Nephrology, University of Leiden, Leiden University Medical Center, Leiden, Netherlands
| | | | - Willem J. van Son
- Division of Nephrology, Department of Internal Medicine, University of Groningen, University Medical Center Groningen, Groningen, Netherlands
| | - Casper F. M. Franssen
- Division of Nephrology, Department of Internal Medicine, University of Groningen, University Medical Center Groningen, Groningen, Netherlands
| | - Marc A. Seelen
- Division of Nephrology, Department of Internal Medicine, University of Groningen, University Medical Center Groningen, Groningen, Netherlands
| |
Collapse
|
21
|
Maestro de la Calle G, Fernández-Ruiz M, López-Medrano F, Polanco N, González E, San Juan R, Ruiz-Merlo T, Origüen J, Paz-Artal E, Andrés A, Aguado JM. Post-transplant hypocomplementemia: A novel marker of cardiovascular risk in kidney transplant recipients? Atherosclerosis 2018; 269:204-210. [PMID: 29407595 DOI: 10.1016/j.atherosclerosis.2018.01.021] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/29/2017] [Revised: 12/22/2017] [Accepted: 01/12/2018] [Indexed: 10/18/2022]
Abstract
BACKGROUND AND AIMS Cardiovascular disease (CVD) is a leading cause of mortality after kidney transplantation (KT). The potential role of the complement system in the pathogenesis of post-transplant CVD remains unexplored. METHODS Serum complement (C3 and C4) levels were measured at baseline and post-transplant months 1 and 6 in 447 kT recipients. The study outcome was post-transplant atherothrombotic event (PAE), a composite of acute coronary syndrome, critical peripheral arterial disease, stroke and/or transient ischemic attack. RESULTS After a median follow-up of 4.2 years, 48 PAEs occurred in 43 patients (cumulative incidence: 9.6%; incidence rate: 2.6 events per 100 transplant-years). No differences were found in C3 and C4 levels at baseline or month 1 between patients with or without PAE. However, C3 levels at month 6 were significantly lower in patients developing PAE beyond that point (i.e., late PAE) (96.9 ± 22.3 vs. 109.6 ± 24.0 mg/dL; p = 0.013). The presence of C3 hypocomplementemia at month 6 was associated with a lower PAE-free survival (p = 0.002). After adjusting for conventional CVD risk factors and acute graft rejection, C3 hypocomplementemia at month 6 remained as an independent risk factor for late PAE in all the exploratory models (minimum hazard ratio: 3.24; p = 0.011). With respect to a model exclusively based on clinical variables, the inclusion of C3 levels at month 6 improved predictive capacity (areas under ROC curves: 0.788 and 0.812, respectively). CONCLUSIONS Post-transplant monitoring of serum C3 levels might be useful to identify KT recipients at increased risk of CVD.
Collapse
Affiliation(s)
- Guillermo Maestro de la Calle
- Unit of Infectious Diseases, Hospital Universitario "12 de Octubre", Instituto de Investigación Hospital "12 de Octubre" (i+12), School of Medicine, Universidad Complutense, Madrid, Spain
| | - Mario Fernández-Ruiz
- Unit of Infectious Diseases, Hospital Universitario "12 de Octubre", Instituto de Investigación Hospital "12 de Octubre" (i+12), School of Medicine, Universidad Complutense, Madrid, Spain.
| | - Francisco López-Medrano
- Unit of Infectious Diseases, Hospital Universitario "12 de Octubre", Instituto de Investigación Hospital "12 de Octubre" (i+12), School of Medicine, Universidad Complutense, Madrid, Spain
| | - Natalia Polanco
- Department of Nephrology, Hospital Universitario "12 de Octubre", Instituto de Investigación Hospital "12 de Octubre" (i+12), School of Medicine, Universidad Complutense, Madrid, Spain
| | - Esther González
- Department of Nephrology, Hospital Universitario "12 de Octubre", Instituto de Investigación Hospital "12 de Octubre" (i+12), School of Medicine, Universidad Complutense, Madrid, Spain
| | - Rafael San Juan
- Unit of Infectious Diseases, Hospital Universitario "12 de Octubre", Instituto de Investigación Hospital "12 de Octubre" (i+12), School of Medicine, Universidad Complutense, Madrid, Spain
| | - Tamara Ruiz-Merlo
- Unit of Infectious Diseases, Hospital Universitario "12 de Octubre", Instituto de Investigación Hospital "12 de Octubre" (i+12), School of Medicine, Universidad Complutense, Madrid, Spain
| | - Julia Origüen
- Unit of Infectious Diseases, Hospital Universitario "12 de Octubre", Instituto de Investigación Hospital "12 de Octubre" (i+12), School of Medicine, Universidad Complutense, Madrid, Spain
| | - Estela Paz-Artal
- Department of Immunology, Hospital Universitario "12 de Octubre", Instituto de Investigación Hospital "12 de Octubre" (i+12), School of Medicine, Universidad Complutense, Madrid, Spain
| | - Amado Andrés
- Department of Nephrology, Hospital Universitario "12 de Octubre", Instituto de Investigación Hospital "12 de Octubre" (i+12), School of Medicine, Universidad Complutense, Madrid, Spain
| | - José María Aguado
- Unit of Infectious Diseases, Hospital Universitario "12 de Octubre", Instituto de Investigación Hospital "12 de Octubre" (i+12), School of Medicine, Universidad Complutense, Madrid, Spain
| |
Collapse
|
22
|
Poppelaars F, Faria B, Gaya da Costa M, Franssen CFM, van Son WJ, Berger SP, Daha MR, Seelen MA. The Complement System in Dialysis: A Forgotten Story? Front Immunol 2018; 9:71. [PMID: 29422906 PMCID: PMC5788899 DOI: 10.3389/fimmu.2018.00071] [Citation(s) in RCA: 76] [Impact Index Per Article: 10.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2017] [Accepted: 01/11/2018] [Indexed: 12/20/2022] Open
Abstract
Significant advances have lead to a greater understanding of the role of the complement system within nephrology. The success of the first clinically approved complement inhibitor has created renewed appreciation of complement-targeting therapeutics. Several clinical trials are currently underway to evaluate the therapeutic potential of complement inhibition in renal diseases and kidney transplantation. Although, complement has been known to be activated during dialysis for over four decades, this area of research has been neglected in recent years. Despite significant progress in biocompatibility of hemodialysis (HD) membranes and peritoneal dialysis (PD) fluids, complement activation remains an undesired effect and relevant issue. Short-term effects of complement activation include promoting inflammation and coagulation. In addition, long-term complications of dialysis, such as infection, fibrosis and cardiovascular events, are linked to the complement system. These results suggest that interventions targeting the complement system in dialysis could improve biocompatibility, dialysis efficacy, and long-term outcome. Combined with the clinical availability to safely target complement in patients, the question is not if we should inhibit complement in dialysis, but when and how. The purpose of this review is to summarize previous findings and provide a comprehensive overview of the role of the complement system in both HD and PD.
Collapse
Affiliation(s)
- Felix Poppelaars
- Department of Internal Medicine, Division of Nephrology, University Medical Center Groningen, Groningen, Netherlands
| | - Bernardo Faria
- Department of Internal Medicine, Division of Nephrology, University Medical Center Groningen, Groningen, Netherlands
- Nephrology and Infectious Diseases Research and Development Group, University of Porto, Porto, Portugal
- Department of Nephrology, Hopsital Braga, Braga, Portugal
| | - Mariana Gaya da Costa
- Department of Internal Medicine, Division of Nephrology, University Medical Center Groningen, Groningen, Netherlands
| | - Casper F. M. Franssen
- Department of Internal Medicine, Division of Nephrology, University Medical Center Groningen, Groningen, Netherlands
| | - Willem J. van Son
- Department of Internal Medicine, Division of Nephrology, University Medical Center Groningen, Groningen, Netherlands
| | - Stefan P. Berger
- Department of Internal Medicine, Division of Nephrology, University Medical Center Groningen, Groningen, Netherlands
| | - Mohamed R. Daha
- Department of Internal Medicine, Division of Nephrology, University Medical Center Groningen, Groningen, Netherlands
- Department of Nephrology, Leiden University Medical Centre, Leiden, Netherlands
| | - Marc A. Seelen
- Department of Internal Medicine, Division of Nephrology, University Medical Center Groningen, Groningen, Netherlands
| |
Collapse
|
23
|
Hori D, Yamaguchi A, Adachi H. Coronary Artery Bypass Surgery in End-Stage Renal Disease Patients. Ann Vasc Dis 2017; 10:79-87. [PMID: 29034031 PMCID: PMC5579782 DOI: 10.3400/avd.ra.17-00024] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2017] [Accepted: 03/21/2017] [Indexed: 12/21/2022] Open
Abstract
The number of patients requiring hemodialysis is continuously increasing around the world. Hemodialysis affects patient quality of life and it is also associated with a higher risk for cardiovascular events. In addition to traditional risk factors for cardiovascular events such as hypertension, hyperlipidemia, and diabetes, hemodialysis is associated with hyperphosphatemia, chronic inflammation, vascular calcification, and anemia which accelerate atherosclerosis, vascular stiffness, and cardiac ischemia. Treatment strategy for coronary revascularization in this progressive disease remains controversial. However, a systematic treatment including medical therapy and complete revascularization through a less invasive strategy should be considered in addressing this problem. This review discusses the epidemiology, vascular pathology and current treatment options in patients with end-stage renal disease requiring coronary revascularization.
Collapse
Affiliation(s)
- Daijiro Hori
- Department of Cardiovascular Surgery, Saitama Medical Center, Jichi Medical University, Saitama, Saitama, Japan
| | - Atsushi Yamaguchi
- Department of Cardiovascular Surgery, Saitama Medical Center, Jichi Medical University, Saitama, Saitama, Japan
| | - Hideo Adachi
- Department of Cardiovascular Surgery, Saitama Medical Center, Jichi Medical University, Saitama, Saitama, Japan
| |
Collapse
|
24
|
Hempel JC, Poppelaars F, Gaya da Costa M, Franssen CFM, de Vlaam TPG, Daha MR, Berger SP, Seelen MAJ, Gaillard CAJM. Distinct in vitro Complement Activation by Various Intravenous Iron Preparations. Am J Nephrol 2016; 45:49-59. [PMID: 27889746 DOI: 10.1159/000451060] [Citation(s) in RCA: 54] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2016] [Accepted: 07/17/2016] [Indexed: 01/01/2023]
Abstract
BACKGROUND Intravenous (IV) iron preparations are widely used in the treatment of anemia in patients undergoing hemodialysis (HD). All IV iron preparations carry a risk of causing hypersensitivity reactions. However, the pathophysiological mechanism is poorly understood. We hypothesize that a relevant number of these reactions are mediated by complement activation, resulting in a pseudo-anaphylactic clinical picture known as complement activation-related pseudo allergy (CARPA). METHODS First, the in-vitro complement-activating capacity was determined for 5 commonly used IV iron preparations using functional complement assays for the 3 pathways. Additionally, the preparations were tested in an ex-vivo model using the whole blood of healthy volunteers and HD patients. Lastly, in-vivo complement activation was tested for one preparation in HD patients. RESULTS In the in-vitro assays, iron dextran, and ferric carboxymaltose caused complement activation, which was only possible under alternative pathway conditions. Iron sucrose may interact with complement proteins, but did not activate complement in-vitro. In the ex-vivo assay, iron dextran significantly induced complement activation in the blood of healthy volunteers and HD patients. Furthermore, in the ex-vivo assay, ferric carboxymaltose and iron sucrose only caused significant complement activation in the blood of HD patients. No in-vitro or ex-vivo complement activation was found for ferumoxytol and iron isomaltoside. IV iron therapy with ferric carboxymaltose in HD patients did not lead to significant in-vivo complement activation. CONCLUSION This study provides evidence that iron dextran and ferric carboxymaltose have complement-activating capacities in-vitro, and hypersensitivity reactions to these drugs could be CARPA-mediated.
Collapse
Affiliation(s)
- Julia Cordelia Hempel
- Department of Internal Medicine, Division of Nephrology, University of Groningen, University Medical Center Groningen, Groningen, The Netherlands
| | | | | | | | | | | | | | | | | |
Collapse
|
25
|
Poppelaars F, Gaya da Costa M, Berger SP, Assa S, Meter-Arkema AH, Daha MR, van Son WJ, Franssen CFM, Seelen MAJ. Erratum to: Strong predictive value of mannose-binding lectin levels for cardiovascular risk of hemodialysis patients. J Transl Med 2016; 14:245. [PMID: 27557787 PMCID: PMC4997692 DOI: 10.1186/s12967-016-1004-8] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022] Open
Affiliation(s)
- Felix Poppelaars
- Division of Nephrology, Department of Internal Medicine, University Medical Center Groningen, University of Groningen, Groningen, The Netherlands.
| | - Mariana Gaya da Costa
- Division of Nephrology, Department of Internal Medicine, University Medical Center Groningen, University of Groningen, Groningen, The Netherlands
| | - Stefan P Berger
- Division of Nephrology, Department of Internal Medicine, University Medical Center Groningen, University of Groningen, Groningen, The Netherlands
| | - Solmaz Assa
- Department of Cardiology, University Medical Center Groningen, University of Groningen, Groningen, The Netherlands
| | - Anita H Meter-Arkema
- Division of Nephrology, Department of Internal Medicine, University Medical Center Groningen, University of Groningen, Groningen, The Netherlands
| | - Mohamed R Daha
- Division of Nephrology, Department of Internal Medicine, University Medical Center Groningen, University of Groningen, Groningen, The Netherlands.,Department of Nephrology, Leiden University Medical Center, University of Leiden, Leiden, The Netherlands
| | - Willem J van Son
- Division of Nephrology, Department of Internal Medicine, University Medical Center Groningen, University of Groningen, Groningen, The Netherlands
| | - Casper F M Franssen
- Division of Nephrology, Department of Internal Medicine, University Medical Center Groningen, University of Groningen, Groningen, The Netherlands
| | - Marc A J Seelen
- Division of Nephrology, Department of Internal Medicine, University Medical Center Groningen, University of Groningen, Groningen, The Netherlands
| |
Collapse
|