1
|
Wang F, Ning A, Sun X, Zhou Y, Deng H, Zhou H, Chen S, He M, Meng Z, Wang Y, Xia H, Ma X, Xia Q. Fabrication of a transforming growth factor β1 functionalized silk sericin hydrogel through genetical engineering to repair alveolar bone defects in rabbit. Biomaterials 2024; 316:122986. [PMID: 39644879 DOI: 10.1016/j.biomaterials.2024.122986] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2024] [Revised: 11/08/2024] [Accepted: 12/01/2024] [Indexed: 12/09/2024]
Abstract
Cleft palate is one of the most prevalent congenital craniofacial birth defects in human congenital facial anomaly. Severe cleft palate is usually accompanied by alveolar bone defects (ABDs). Growth factors (GFs) are considered as desirable opportunity to promote the craniofacial healing post the surgery. However, limited resource, susceptibility to degradation, and lack of appropriate delivery systems greatly hinder the clinic application of GFs in the ABDs repair. In this study, a transforming growth factor β1 variant (eTGF-β1) with enhanced extracellular matrix (ECM) binding efficiency was engineered to generate transgenic silkworm using the silk gland biosynthesizing system for cost effective and massive bio-synthesis of the eTGF-β1 functionalized silk fibers. The eTGF-β1 achieved a highly-efficient expression in the middle silk gland (MSG) cells of transgenic silkworm, and secretion and distribution in the sericin layer of silk fiber which accounted for approximately 5.57 ± 0.72 % of the cocoon shell weight. The eTGF-β1 functionalized silk sericin hydrogel (eTGF-β1 SH) was then fabricated with excellent mechanical and processing properties, injectability, biocompatibility, biodegradability, sustained release of eTGF-β1, and capability to promote cell proliferation, which significantly accelerated the bone defect repair particularly the osteoblast maturation and new bone formation through regulating the expressions of the bone formation-related genes in a rabbit alveolar process cleft model. This study provides a valuable strategy for future the treatments of ABDs in rabbit with cleft palate using the genetically engineered eTGF-β1 silk sericin hydrogel.
Collapse
Affiliation(s)
- Feng Wang
- Integrative Science Center of Germplasm Creation in Western China (CHONGQING) Science City, Biological Science Research Center, Southwest University, Chongqing, 400716, China
| | - Anfeng Ning
- Reproductive and Genetic Center & NHC Key Laboratory of Reproductive Health Engineering Technology Research, National Research Institute for Family Planning (NRIFP), Beijing, China; Graduate Schools, Peking Union Medical College & Chinese Academy of Medical Sciences, Beijing, China
| | - Xuecheng Sun
- Reproductive and Genetic Center & NHC Key Laboratory of Reproductive Health Engineering Technology Research, National Research Institute for Family Planning (NRIFP), Beijing, China; Graduate Schools, Peking Union Medical College & Chinese Academy of Medical Sciences, Beijing, China
| | - Yujuan Zhou
- Integrative Science Center of Germplasm Creation in Western China (CHONGQING) Science City, Biological Science Research Center, Southwest University, Chongqing, 400716, China
| | - Hanxin Deng
- Integrative Science Center of Germplasm Creation in Western China (CHONGQING) Science City, Biological Science Research Center, Southwest University, Chongqing, 400716, China
| | - Hongji Zhou
- Integrative Science Center of Germplasm Creation in Western China (CHONGQING) Science City, Biological Science Research Center, Southwest University, Chongqing, 400716, China
| | - Siyu Chen
- Integrative Science Center of Germplasm Creation in Western China (CHONGQING) Science City, Biological Science Research Center, Southwest University, Chongqing, 400716, China
| | - Mengyao He
- Integrative Science Center of Germplasm Creation in Western China (CHONGQING) Science City, Biological Science Research Center, Southwest University, Chongqing, 400716, China
| | - Zihan Meng
- Integrative Science Center of Germplasm Creation in Western China (CHONGQING) Science City, Biological Science Research Center, Southwest University, Chongqing, 400716, China
| | - Yushu Wang
- Department of Biomedical Engineering, Tufts University, Medford, MA, 02155, USA
| | - Hongfei Xia
- Reproductive and Genetic Center & NHC Key Laboratory of Reproductive Health Engineering Technology Research, National Research Institute for Family Planning (NRIFP), Beijing, China; Graduate Schools, Peking Union Medical College & Chinese Academy of Medical Sciences, Beijing, China.
| | - Xu Ma
- Reproductive and Genetic Center & NHC Key Laboratory of Reproductive Health Engineering Technology Research, National Research Institute for Family Planning (NRIFP), Beijing, China; Graduate Schools, Peking Union Medical College & Chinese Academy of Medical Sciences, Beijing, China.
| | - Qingyou Xia
- Integrative Science Center of Germplasm Creation in Western China (CHONGQING) Science City, Biological Science Research Center, Southwest University, Chongqing, 400716, China.
| |
Collapse
|
2
|
Aboelmahasen MMF, Othman SS, Dena ASA, Zhran M, Ma M, El-Destawy MT, Bilal AM. Histomorphometric and CBCT comparison of osseointegration around orthodontic titanium miniscrews coated with different nanoparticles: An in-vivo animal study. Int Orthod 2024; 22:100823. [PMID: 37992473 DOI: 10.1016/j.ortho.2023.100823] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2023] [Revised: 10/16/2023] [Accepted: 10/22/2023] [Indexed: 11/24/2023]
Abstract
BACKGROUND Temporarily installed titanium orthodontic miniscrews are usually used for many orthodontic applications, especially those cases that need high force, such as skeletally anchored orthodontic appliance cases. Surface modification of titanium miniscrews has proved success in preventing failure and overcoming their limitations. OBJECTIVE The present study aims at the assessment of the quality of osseointegration of surface modified titanium miniscrews installed in the maxilla of albino rabbits with cone-beam computed tomography (CBCT) imaging as well as histomorphometric investigations. MATERIAL AND METHODS The orthodontic titanium miniscrews (TMSs) were coated with silver/hydroxyapatite (Ag/HA) nanoparticles (NPs) or zinc oxide (ZnO) NPs via electrochemical deposition. The coating nanomaterials were then characterized with X-ray diffractometry (XRD) and scanning electron microscopy (SEM) imaging. Moreover, the antimicrobial activity of the coated titanium miniscrews were evaluated in the rabbits' oral cavity to investigate their ability to prevent biofilm formation. RESULTS It was found that the Ag/HA-coated TMSs demonstrated the highest antimicrobial activity and bone area fill, followed by the ZnO NPs-coated TMSs when compared to their uncoated counterparts. In the anterior area surrounding the installed TMSs, the highest osseointegration was demonstrated by ZnO NPs-coated TMSs. However, Ag/HA-coated TMSs showed the highest osseointegration values in the posterior peri-implant area. CONCLUSIONS Ag/HA- and ZnO NPs-coated TMSs may provide a promising solution to overcome the 30% probable failure in temporarily installed orthodontic miniscrews, as they can enhance the osseointegration process and prevent biofilm formation.
Collapse
Affiliation(s)
| | - Samer Salim Othman
- Department of Clinical Dental Sciences, College of Dentistry, Ibnsina University of Medical and Pharmaceutical Sciences, Baghdad, Iraq
| | - Ahmed S Abo Dena
- Pharmaceutical Chemistry Department, National Organization for Drug Control and Research (NODCAR), Giza, Egypt; Faculty of Oral and Dental Medicine, Future University in Egypt (FUE), New Cairo, Egypt
| | - Monira Zhran
- Botany and Microbiology Department, Faculty of Science (Girls Branch), Al-Azhar University, Cairo, Egypt
| | - Mohamed Ma
- Oral pathology Department, Faculty of Dental Medicine (Cairo-Boys), Al-Azhar University, Cairo, Egypt
| | - Mahmoud Taha El-Destawy
- Oral medicine Department, Faculty of Dental Medicine (Cairo-Boys), Al-Azhar University, Cairo, Egypt
| | - Ahmed Mohamed Bilal
- Oral medicine Department, Faculty of Dental Medicine (Cairo-Boys), Al-Azhar University, Cairo, Egypt
| |
Collapse
|
3
|
Park JJ, Rochlin DH, Parsaei Y, Shetye PR, Witek L, Leucht P, Rabbani PS, Flores RL. Bone Tissue Engineering Strategies for Alveolar Cleft: Review of Preclinical Results and Guidelines for Future Studies. Cleft Palate Craniofac J 2023; 60:1450-1461. [PMID: 35678607 DOI: 10.1177/10556656221104954] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
The current standard of care for an alveolar cleft defect is an autogenous bone graft, typically from the iliac crest. Given the limitations of alveolar bone graft surgery, such as limited supply, donor site morbidity, graft failure, and need for secondary surgery, there has been growing interest in regenerative medicine strategies to supplement and replace traditional alveolar bone grafts. Though there have been preliminary clinical studies investigating bone tissue engineering methods in human subjects, lack of consistent results as well as limitations in study design make it difficult to determine the efficacy of these interventions. As the field of bone tissue engineering is rapidly advancing, reconstructive surgeons should be aware of the preclinical studies informing these regenerative strategies. We review preclinical studies investigating bone tissue engineering strategies in large animal maxillary or mandibular defects and provide an overview of scaffolds, stem cells, and osteogenic agents applicable to tissue engineering of the alveolar cleft. An electronic search conducted in the PubMed database up to December 2021 resulted in 35 studies for inclusion in our review. Most studies showed increased bone growth with a tissue engineering construct compared to negative control. However, heterogeneity in the length of follow up, method of bone growth analysis, and inconsistent use of positive control groups make comparisons across studies difficult. Future studies should incorporate a pediatric study model specific to alveolar cleft with long-term follow up to fully characterize volumetric defect filling, cellular ingrowth, bone strength, tooth movement, and implant support.
Collapse
Affiliation(s)
- Jenn J Park
- Hansjörg Wyss Department of Plastic Surgery, NYU Langone Health, New York, NY, USA
| | - Danielle H Rochlin
- Hansjörg Wyss Department of Plastic Surgery, NYU Langone Health, New York, NY, USA
| | - Yassmin Parsaei
- Hansjörg Wyss Department of Plastic Surgery, NYU Langone Health, New York, NY, USA
| | - Pradip R Shetye
- Hansjörg Wyss Department of Plastic Surgery, NYU Langone Health, New York, NY, USA
| | - Lukasz Witek
- New York University College of Dentistry, New York, NY, USA
| | - Philipp Leucht
- Hansjörg Wyss Department of Plastic Surgery, NYU Langone Health, New York, NY, USA
| | - Piul S Rabbani
- Hansjörg Wyss Department of Plastic Surgery, NYU Langone Health, New York, NY, USA
| | - Roberto L Flores
- Hansjörg Wyss Department of Plastic Surgery, NYU Langone Health, New York, NY, USA
| |
Collapse
|
4
|
Kamal M, Al‐Obaidly S, Lethaus B, Bartella AK. A novel pilot animal model for bone augmentation using osseous shell technique for preclinical in vivo studies. Clin Exp Dent Res 2022; 8:1331-1340. [PMID: 35933723 PMCID: PMC9760144 DOI: 10.1002/cre2.644] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2022] [Revised: 04/25/2022] [Accepted: 05/01/2022] [Indexed: 01/26/2023] Open
Abstract
OBJECTIVES Bone grafting is commonly used to reconstruct skeletal defects in the craniofacial region. Several bone augmentation models have been developed to evaluate bone formation using novel bone substitute materials. The aim of this study was to evaluate a surgical animal model for establishing a three-dimensional (3D) grafting environment in the animal's mandibular ramus for bone augmentation using the osseous shell technique, as in humans. MATERIALS AND METHODS Osteological survey of New Zealand white (NZW) rabbit skull (Oryctolagus cuniculus): Initial osteological and imaging surveys were performed on a postmortem skull for a feasibility assessment of the surgical procedure. Postmortem pilot surgery and cone beam computed tomography imaging: a 3D osseous defect was created in the mandibular ramus through a submandibular incision. The osseous shell plates were stabilized with osteosynthesis fixation screws, and defects were filled with particular bone grafting material. In vivo surgical procedure: surgeries were conducted in four 8-week-old NZW rabbits utilizing two osseous shell materials: xenogeneic human cortical plates and autogenous rabbit cortical plates. The created 3D defects were filled using xenograft and allograft bone grafting materials. The healed defects were evaluated for bone formation after 12 weeks using histological and cone beam computed tomography imaging analysis. RESULTS Clinical analysis 12 weeks after surgery revealed the stability of the 3D grafted bone augmentation defects using the osseous shell technique. Imaging and histological analyses confirmed the effectiveness of this model in assessing bone formation. CONCLUSIONS The proposed animal model is a promising model with the potential to study various bone grafting materials for augmentation in the mandibular ramus using the osseous shell technique without compromising the health of the animal. The filled defects could be analyzed for osteogenesis, quantification of bone formation, and healing potential using histomorphometric analysis, in addition to 3D morphologic evaluation using radiation imaging.
Collapse
Affiliation(s)
- Mohammad Kamal
- Department of Surgical Sciences, Faculty of Dentistry, Health Sciences CenterKuwait UniversityJabryiaKuwait
| | - Sara Al‐Obaidly
- Kuwait Dental AdministrationKuwait Ministry of HealthSafatKuwait
| | - Bernd Lethaus
- Department of Oral and Maxillofacial SurgeryLeipzig University HospitalLeipzigGermany
| | - Alexander K. Bartella
- Department of Oral and Maxillofacial SurgeryLeipzig University HospitalLeipzigGermany
| |
Collapse
|
5
|
Möhlhenrich SC, Kniha K, Magnuska Z, Chhatwani S, Hermanns-Sachweh B, Gremse F, Hölzle F, Danesh G, Modabber A. Development of root resorption during orthodontic tooth movement after cleft repair using different grafting materials in rats. Clin Oral Investig 2022; 26:5809-5821. [PMID: 35567639 PMCID: PMC9474460 DOI: 10.1007/s00784-022-04537-3] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2021] [Accepted: 05/03/2022] [Indexed: 11/03/2022]
Abstract
OBJECTIVE The aim of the present study was to investigate the influence of three grafting materials for cleft repair on orthodontic tooth movement in rats. MATERIALS AND METHODS Artificial alveolar clefts were created in 21 Wistar rats and were repaired 4 weeks later using autografts, human xenografts and synthetic bone substitute (beta-tricalcium phosphate/hydroxyapatite [β-TCP/HA]). A further 4 weeks later, the first molar was moved into the reconstructed maxilla. Microfocus computed tomography (μCT) was performed six times (T0-T5) to assess the tooth movement and root resorption. After 8 weeks, the affected reconstructed jaw was resected for histopathological investigation. RESULTS Total distances reached ranged from 0.82 ± 0.72 mm (β-TCP/HA) to 0.67 ± 0.27 mm (autograft). The resorption was particularly determined at the mesiobuccal root. Descriptive tooth movement slowed and root resorption increased slightly. However, neither the radiological changes during tooth movement (µCT T1 vs. µCT T5: autograft 1.85 ± 0.39 mm3 vs. 2.38 ± 0.35 mm3, p = 0.30; human xenograft 1.75 ± 0.45 mm3 vs. 2.17 ± 0.26 mm3, p = 0.54; β-TCP/HA: 1.52 ± 0.42 mm3 vs. 1.88 ± 0.41 mm3, p = 0.60) nor the histological differences after tooth movement (human xenograft: 0.078 ± 0.05 mm2; β-TCP/HA: 0.067 ± 0.049 mm2; autograft: 0.048 ± 0.015 mm2) were statistically significant. CONCLUSION The autografts, human xenografts or synthetic bone substitute used for cleft repair seem to have a similar effect on the subsequent orthodontic tooth movement and the associated root resorptions. CLINICAL RELEVANCE Development of root resorptions seems to have a secondary role in choosing a suitable grafting material for cleft repair.
Collapse
Affiliation(s)
| | - Kristian Kniha
- Department of Oral and Maxillofacial Surgery, University Hospital of Aachen, Pauwelsstraße 30, 52074, Aachen, Germany
| | - Zuzanna Magnuska
- Institute for Experimental Molecular Imaging, Department of Nanomedicine and Theragnostic, RWTH Aachen University, Forckenbeckstraße 55, 52074, Aachen, Germany
| | - Sachin Chhatwani
- Department of Orthodontics, University of Witten/Herdecke, Alfred-Herrhausen Str. 45, 58455, Witten, Germany
| | | | - Felix Gremse
- Institute for Experimental Molecular Imaging, Department of Nanomedicine and Theragnostic, RWTH Aachen University, Forckenbeckstraße 55, 52074, Aachen, Germany
| | - Frank Hölzle
- Department of Oral and Maxillofacial Surgery, University Hospital of Aachen, Pauwelsstraße 30, 52074, Aachen, Germany
| | - Gholamreza Danesh
- Department of Orthodontics, University of Witten/Herdecke, Alfred-Herrhausen Str. 45, 58455, Witten, Germany
| | - Ali Modabber
- Department of Oral and Maxillofacial Surgery, University Hospital of Aachen, Pauwelsstraße 30, 52074, Aachen, Germany
| |
Collapse
|
6
|
Lee SW, Kim JY, Hong KY, Choi TH, Kim BJ, Kim S. The effect of biphasic calcium phosphate and demineralized bone matrix on tooth eruption in mongrel dogs. Arch Craniofac Surg 2021; 22:239-246. [PMID: 34732035 PMCID: PMC8568493 DOI: 10.7181/acfs.2021.00325] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2021] [Accepted: 10/20/2021] [Indexed: 11/11/2022] Open
Abstract
BACKGROUND Bone grafts can provide an optimal environment for permanent tooth to erupt and enhance the stability of the alveolar maxilla. Although autologous bone is an optimal source for osteogenesis, its inevitable donor site morbidity has led to active research on bone substitutes. This study was designed to evaluate the safety and feasibility of using biphasic calcium phosphate (BCP; Osteon) as a bone substitute in dogs. METHODS Bilateral third and fourth premolars of four 15-week-old mongrel dogs were used. All teeth were extracted except the third premolar of the right mandible, which was used as a control. After extraction of the premolars, each dog was administered BCP (Osteon), demineralized bone matrix (DBM; DBX), and no graft in the hollow sockets of the right fourth premolar, left fourth premolar, and left third premolar, respectively. Radiographs were taken at 2-week intervals to check for tooth eruption. After 8 weeks, each dog was sacrificed, and tooth and bone biopsies were performed to check for the presence of tooth and bone substitute particle remnants. RESULTS Four weeks after the operation, permanent tooth eruptions had started at all the extraction sites in each dog. Eight weeks after the operation, all teeth had normally erupted, and histological examination revealed BCP particles at the right fourth premolar. CONCLUSION In all four dogs, no delay in the eruption of the teeth or shape disfigurement of permanent teeth was observed on gross inspection and radiologic evaluation. On histological examination, most of the BCP and DBM were replaced by new bone. Bone substitutes can be used as graft materials in patients with alveolar clefts.
Collapse
Affiliation(s)
- Si Woo Lee
- Si Woo Aesthetic Plastic Surgery Clinic, Seoul, Korea
| | - Ji-Young Kim
- Division of Pediatric Plastic Surgery, Seoul National University Children's Hospital, Seoul National University College of Medicine, Seoul, Korea
| | - Ki Yong Hong
- Division of Pediatric Plastic Surgery, Seoul National University Children's Hospital, Seoul National University College of Medicine, Seoul, Korea
| | | | - Byung Jun Kim
- Division of Pediatric Plastic Surgery, Seoul National University Children's Hospital, Seoul National University College of Medicine, Seoul, Korea
| | - Sukwha Kim
- Department of Plastic Surgery, CHA Bundang Medical Center, Seongnam, Korea
| |
Collapse
|
7
|
Evaluation of different grafting materials for alveolar cleft repair in the context of orthodontic tooth movement in rats. Sci Rep 2021; 11:13586. [PMID: 34193933 PMCID: PMC8245488 DOI: 10.1038/s41598-021-93033-x] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2021] [Accepted: 06/09/2021] [Indexed: 12/05/2022] Open
Abstract
To minimize the postoperative risks posed by grafting autologous transplants for cleft repair, efforts are being made to improve grafting materials for use as potential alternatives. The aim of this study was to compare the bone graft quality of different bone substitutes including the gold standard autografts during the healing processes after cleft repair in the context of orthodontic treatment. In 21 Wistar rats, a complete, continuity-interrupting cleft was created. After 4 weeks, cleft repair was performed using autografts from the hips’ ischial tuberosity, human xenografts, or synthetic bone substitutes [beta-tricalcium phosphate (β-TCP)/hydroxyapatite (HA)]. After another 4 weeks, the first molar movement was initiated in the reconstructed jaw for 8 weeks. The bone remodeling was analyzed in vivo using micro-computed tomography (bone mineral density and bone volume fraction) and histology (new bone formation). All the grafting materials were statistically different in bone morphology, which changed during the treatment period. The β-TCP/HA substitute demonstrated less resorption compared to the autologous and xenogeneic/human bone, and the autografts led to a stronger reaction in the surrounding bone. Histologically, the highest level of new bone formation was found in the human xenografts, and the lowest was found in the β-TCP/HA substitute. The differences between the two bone groups and the synthetic materials were statistically significant. Autografts were confirmed to be the gold standard in cleft repair with regard to graft integration. However, parts of the human xenograft seemed comparable to the autografts. Thus, this substitute could perhaps be used as an alternative after additional tissue-engineered modification.
Collapse
|
8
|
AlOtaibi NM, Dunne M, Ayoub AF, Naudi KB. A novel surgical model for the preclinical assessment of the osseointegration of dental implants: a surgical protocol and pilot study results. J Transl Med 2021; 19:276. [PMID: 34183031 PMCID: PMC8240288 DOI: 10.1186/s12967-021-02944-w] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2021] [Accepted: 06/15/2021] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND Dental implants are considered the gold standard replacement for missing natural teeth. The successful clinical performance of dental implants is due to their ability to osseointegrate with the surrounding bone. Most dental implants are manufactured from Titanium and it alloys. Titanium does however have some shortcomings so alternative materials are frequently being investigated. Effective preclinical studies are essential to transfer the innovations from the benchtop to the patients. Many preclinical studies are carried out in the extra-oral bones of small animal models to assess the osseointegration of the newly developed materials. This does not simulate the oral environment where the dental implants are subjected to several factors that influence osseointegration; therefore, they can have limited clinical value. AIM This study aimed to develop an appropriate in-vivo model for dental implant research that mimic the clinical setting. The study evaluated the applicability of the new model and investigated the impact of the surgical procedure on animal welfare. MATERIALS AND METHODS The model was developed in male New Zealand white rabbits. The implants were inserted in the extraction sockets of the secondary incisors in the maxilla. The model allows a split-mouth comparative analysis. The implants' osseointegration was assessed clinically, radiographically using micro-computed tomography (µ-CT), and histologically. A randomised, controlled split-mouth design was conducted in 6 rabbits. A total of twelve implants were inserted. In each rabbit, two implants; one experimental implant on one side, and one control implant on the other side were applied. Screw-shaped implants were used with a length of 8 mm and a diameter of 2 mm. RESULTS All the rabbits tolerated the surgical procedure well. The osseointegration was confirmed clinically, histologically and radiographically. Quantitative assessment of bone volume and mineral density was measured in the peri-implant bone tissues. The findings suggest that the new preclinical model is excellent, facilitating a comprehensive evaluation of osseointegration of dental implants in translational research pertaining to the human application. CONCLUSION The presented model proved to be safe, reproducible and required basic surgical skills to perform.
Collapse
Affiliation(s)
- Noura M AlOtaibi
- Department of Oral and Maxillofacial Surgery, Glasgow University Dental Hospital and School, 378 Sauchiehall Street, Glasgow, G23JZ, UK
- Oral and Maxillofacial Surgery, King Saud University, Riyadh, 11362, Saudi Arabia
| | - Michael Dunne
- Institute of Cardiovascular and Medical Sciences, University of Glasgow, Glasgow, G12 8QQ, UK
| | - Ashraf F Ayoub
- Department of Oral and Maxillofacial Surgery, Glasgow University Dental Hospital and School, 378 Sauchiehall Street, Glasgow, G23JZ, UK
| | - Kurt B Naudi
- Department of Oral and Maxillofacial Surgery, Glasgow University Dental Hospital and School, 378 Sauchiehall Street, Glasgow, G23JZ, UK.
| |
Collapse
|
9
|
Kandalam U, Kawai T, Ravindran G, Brockman R, Romero J, Munro M, Ortiz J, Heidari A, Thomas R, Kuriakose S, Naglieri C, Ejtemai S, Kaltman SI. Predifferentiated Gingival Stem Cell-Induced Bone Regeneration in Rat Alveolar Bone Defect Model. Tissue Eng Part A 2020; 27:424-436. [PMID: 32729362 PMCID: PMC8098763 DOI: 10.1089/ten.tea.2020.0052] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
Cleft alveolus, a common birth defect of the maxillary bone, affects one in 700 live births every year. This defect is traditionally restored by autogenous bone grafts or allografts, which may possibly cause complications. Cell-based therapies using the mesenchymal stem cells (MSCs) derived from human gingiva (gingiva-derived mesenchymal stem cells [GMSCs]) is attracting the research interest due to their highly proliferative and multilineage differentiation capacity. Undifferentiated GMSCs expressed high level of MSC-distinctive surface antigens, including CD73, CD105, CD90, and CD166. Importantly, GMSCs induced with osteogenic medium for a week increased the surface markers of osteogenic phenotypes, such as CD10, CD92, and CD140b, indicating their osteogenic potential. The objective of this study was to assess the bone regenerative efficacy of predifferentiated GMSCs (dGMSCs) toward an osteogenic lineage in combination with a self-assembling hydrogel scaffold PuraMatrix™ (PM) and/or bone morphogenetic protein 2 (BMP2), on a rodent model of maxillary alveolar bone defect. A critical size maxillary alveolar defect of 7 mm × 1 mm × 1 mm was surgically created in athymic nude rats. The defect was filled with either PM/BMP2 or PM/dGMSCs or the combination of three (PM/dGMSCs/BMP2) and the bone regeneration was evaluated at 4 and 8 weeks postsurgery. New bone formation was evaluated by microcomputed tomography and histology using Hematoxylin and Eosin staining. The results demonstrated the absence of spontaneous bone healing, either at 4 or 8 weeks postsurgery in the defect group. However, the PM/dGMSCs/BMP2 group showed significant enhancement in bone regeneration at 4 and 8 weeks postsurgery, compared with the transplantation of individual material/cells alone. Apart from developing the smallest critical size defect, results showed that PM/dGMSCs/BMP2 could serve as a promising option for the regeneration of bone in the cranio/maxillofacial region in humans.
Collapse
Affiliation(s)
- Umadevi Kandalam
- Department of Oral Sciences and Translational Research, College of Dental Medicine, Nova Southeastern University, Fort Lauderdale, Florida, USA
| | - Toshihisa Kawai
- Department of Oral Sciences and Translational Research, College of Dental Medicine, Nova Southeastern University, Fort Lauderdale, Florida, USA
| | - Geeta Ravindran
- NSU Cell Therapy Institute, Dr. Kiran C. Patel College of Allopathic Medicine, Nova Southeastern University, Fort Lauderdale, Florida, USA.,Department of Medicine, Karolinska Institutet, Stockholm, Sweden
| | - Ross Brockman
- Department of Oral Sciences and Translational Research, College of Dental Medicine, Nova Southeastern University, Fort Lauderdale, Florida, USA.,Oral and Maxillofacial, LSU Health Sciences Center New Orleans, New Orleans, Louisiana, USA
| | - Jorge Romero
- Department of Oral Sciences and Translational Research, College of Dental Medicine, Nova Southeastern University, Fort Lauderdale, Florida, USA
| | - Matthew Munro
- Department of Oral Sciences and Translational Research, College of Dental Medicine, Nova Southeastern University, Fort Lauderdale, Florida, USA
| | - Julian Ortiz
- Department of Oral Sciences and Translational Research, College of Dental Medicine, Nova Southeastern University, Fort Lauderdale, Florida, USA
| | - Alireza Heidari
- Department of Oral Sciences and Translational Research, College of Dental Medicine, Nova Southeastern University, Fort Lauderdale, Florida, USA
| | - Ron Thomas
- NSU Cell Therapy Institute, Dr. Kiran C. Patel College of Allopathic Medicine, Nova Southeastern University, Fort Lauderdale, Florida, USA
| | - Sajish Kuriakose
- Department of Oral Medicine and Oral Surgery and College of Dental Medicine, Nova Southeastern University, Fort Lauderdale, Florida, USA
| | - Christopher Naglieri
- Department of Oral Sciences and Translational Research, College of Dental Medicine, Nova Southeastern University, Fort Lauderdale, Florida, USA
| | - Shaileen Ejtemai
- Department of Oral Sciences and Translational Research, College of Dental Medicine, Nova Southeastern University, Fort Lauderdale, Florida, USA
| | - Steven I Kaltman
- Department of Oral Sciences and Translational Research, College of Dental Medicine, Nova Southeastern University, Fort Lauderdale, Florida, USA.,Department of Oral and Maxillofacial Surgery, College of Dental Medicine, Nova Southeastern University, Fort Lauderdale, Florida, USA
| |
Collapse
|
10
|
Sun XC, Zhang ZB, Wang H, Li JH, Ma X, Xia HF. Comparison of three surgical models of bone tissue defects in cleft palate in rabbits. Int J Pediatr Otorhinolaryngol 2019; 124:164-172. [PMID: 31200319 DOI: 10.1016/j.ijporl.2019.05.002] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/23/2019] [Revised: 05/02/2019] [Accepted: 05/04/2019] [Indexed: 12/14/2022]
Abstract
OBJECTIVE Cleft palate is one of the most common craniofacial birth defects in the maxillofacial region. There is an urgent need in tissue regeneration research to establish animal models that faithfully mimic human diseases. Here, we compared three surgical models of bone tissue defects in cleft palate in rabbits in order to screen for the biomaterials that induced optimal bone regeneration. DESIGN Rabbits were used to establish the models of hard palate cleft, alveolar cleft, and alveolar process cleft. Eight weeks following surgery, bone tissue self-healing capacity was estimated by macroscopic appearance and calculating the area of defective bone tissue. The dimensions of the upper jaw in left and right sides were measured at zero and eight weeks. RESULTS Bone defects in three types of cleft palate models were made at the positions of the hard palate, alveoli and alveolar process. After 8 weeks, when the hard palate was partially excised, it underwent self-healing. When the hard palate was completely excised, it underwent partial self-healing. However, in the models of alveolar cleft and alveolar process cleft, there was no significant self-healing in the bone tissues. The dimensions of the upper jaw in left and right sides were no significant differences in three types of cleft palate models. CONCLUSIONS Bone defects in the alveolar and alveolar process clefts exhibit a diminished capability for self-healing. This study may provide valuable information for the screening of materials that induce bone regeneration.
Collapse
Affiliation(s)
- Xue-Cheng Sun
- Reproductive and Genetic Center of National Research Institute for Family Planning, Beijing, 100081, China; Graduate Schools, Peking Union Medical College, Beijing, 100730,China
| | - Ze-Biao Zhang
- Reproductive and Genetic Center of National Research Institute for Family Planning, Beijing, 100081, China
| | - Hu Wang
- Reproductive and Genetic Center of National Research Institute for Family Planning, Beijing, 100081, China; Graduate Schools, Peking Union Medical College, Beijing, 100730,China
| | - Jian-Hui Li
- Reproductive and Genetic Center of National Research Institute for Family Planning, Beijing, 100081, China; Graduate Schools, Peking Union Medical College, Beijing, 100730,China
| | - Xu Ma
- Reproductive and Genetic Center of National Research Institute for Family Planning, Beijing, 100081, China; Graduate Schools, Peking Union Medical College, Beijing, 100730,China.
| | - Hong-Fei Xia
- Reproductive and Genetic Center of National Research Institute for Family Planning, Beijing, 100081, China; Graduate Schools, Peking Union Medical College, Beijing, 100730,China.
| |
Collapse
|
11
|
Application of Hydroxycholesterols for Alveolar Cleft Osteoplasty in a Rodent Model. Plast Reconstr Surg 2019; 143:1385-1395. [PMID: 30789479 DOI: 10.1097/prs.0000000000005528] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
BACKGROUND Bone morphogenetic proteins (BMPs) have played a central role in the regenerative therapies for bone reconstruction, including alveolar cleft and craniofacial surgery. However, the high cost and significant adverse effect of BMPs limit their broad application. Hydroxycholesterols, naturally occurring products of cholesterol oxidation, are a promising alternative to BMPs. The authors studied the osteogenic capability of hydroxycholesterols on human mesenchymal stem cells and the impact of hydroxycholesterols on a rodent alveolar cleft model. METHODS Human mesenchymal stem cells were treated with control medium or osteogenic medium with or without hydroxycholesterols. Evaluation of cellular osteogenic activity was performed. A critical-size alveolar cleft was created and one of the following treatment options was assigned randomly to each defect: collagen sponge incorporated with hydroxycholesterols, BMP-2, or no treatment. Bone regeneration was assessed by means of radiologic and histologic analyses and local inflammation in the cleft evaluated. Moreover, the role of the hedgehog signaling pathway in hydroxycholesterol-mediated osteogenesis was examined. RESULTS All cellular osteogenic activities were significantly increased on human mesenchymal stem cells treated with hydroxycholesterols relative to others. The alveolar cleft treated with collagen sponge with hydroxycholesterols and BMP-2 demonstrated robust bone regeneration. The hydroxycholesterol group revealed histologically complete bridging of the alveolar defect with architecturally mature new bone. The inflammatory responses were less in the hydroxycholesterol group compared with the BMP-2 group. Induction of hydroxycholesterol-mediated in vitro osteogenesis and in vivo bone regeneration were attenuated by hedgehog signaling inhibitor, implicating involvement of the hedgehog signaling pathway. CONCLUSION Hydroxycholesterols may represent a viable alternative to BMP-2 in bone tissue engineering for alveolar cleft.
Collapse
|
12
|
Martín-Del-Campo M, Rosales-Ibañez R, Rojo L. Biomaterials for Cleft Lip and Palate Regeneration. Int J Mol Sci 2019; 20:E2176. [PMID: 31052503 PMCID: PMC6540257 DOI: 10.3390/ijms20092176] [Citation(s) in RCA: 22] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2019] [Revised: 04/02/2019] [Accepted: 04/30/2019] [Indexed: 12/21/2022] Open
Abstract
Craniofacial bone defect anomalies affect both soft and hard tissues and can be caused by trauma, bone recessions from tumors and cysts, or even from congenital disorders. On this note, cleft/lip palate is the most prevalent congenital craniofacial defect caused by disturbed embryonic development of soft and hard tissues around the oral cavity and face area, resulting in most cases, of severe limitations with chewing, swallowing, and talking as well as problems of insufficient space for teeth, proper breathing, and self-esteem problems as a consequence of facial appearance. Spectacular advances in regenerative medicine have arrived, giving new hope to patients that can benefit from new tissue engineering therapies based on the supportive action of 3D biomaterials together with the synergic action of osteo-inductive molecules and recruited stem cells that can be driven to the process of bone regeneration. However, few studies have focused on the application of tissue engineering to the regeneration of the cleft/lip and only a few have reported significant advances to offer real clinical solutions. This review provides an updated and deep analysis of the studies that have reported on the use of advanced biomaterials and cell therapies for the regeneration of cleft lip and palate regeneration.
Collapse
Affiliation(s)
- Marcela Martín-Del-Campo
- Facultad de Estomatología, Universidad Autónoma de San Luis Potosí, Av. Dr. Salvador Nava No. 2, Zona Universitaria, San Luis Potosí (S.L.P.) 78290, Mexico.
- Consejo Superior de Investigaciones Científicas, Instituto de Ciencia y Tecnología de Polímeros, Calle Juan de la Cierva, 3, 28006 Madrid, Spain.
| | - Raúl Rosales-Ibañez
- Laboratorio de Ingeniería Tisular y Medicina Traslacional, Facultad de Estudios Superiores Iztacala, Universidad Nacional Autónoma de Mexico, Avenida de los Barrios N 1, Iztacala Tlalnepantla, Estado de Mexico 54090, Mexico.
| | - Luis Rojo
- Consejo Superior de Investigaciones Científicas, Instituto de Ciencia y Tecnología de Polímeros, Calle Juan de la Cierva, 3, 28006 Madrid, Spain.
- Consorcio Centro de Investigación Biomédica en Red CIBER-BBN, Calle Monforte de Lemos S/N, 28029 Madrid, Spain.
| |
Collapse
|
13
|
Jiang H, Cheng P, Li D, Li J, Wang J, Gao Y, Zhang S, Cao T, Wang C, Yang L, Pei G. Novel standardized massive bone defect model in rats employing an internal eight-hole stainless steel plate for bone tissue engineering. J Tissue Eng Regen Med 2018; 12:e2162-e2171. [PMID: 29427540 DOI: 10.1002/term.2650] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2017] [Revised: 10/30/2017] [Accepted: 01/16/2018] [Indexed: 12/22/2022]
Abstract
Massive bone defects are a challenge in orthopaedic research. Defective regeneration leads to bone atrophy, non-union of bone, and physical morbidity. Large animals are important models, however, production costs are high, nursing is complex, and evaluation methods are limited. A suitable laboratory animal model is required to explore the underlying molecular mechanism and cellular process of bone tissue engineering. We designed a stainless steel plate with 8 holes; the middle 2 holes were used as a guide to create a standardized critical size defect in the femur of anaesthetized rats. The plate was fixed to the bone using 6 screws, serving as an inner fixed bracket to secure a tricalcium phosphate implant seeded with green fluorescent protein-positive rat bone marrow mesenchymal stem cells within the defect. In some animals, we also grafted a vessel bundle into the lateral side of the implant, to promote vascularized bone tissue engineering. X-ray, microcomputed tomography, and histological analyses demonstrated the stainless steel plate resulted in a stable large segmental defect model in the rat femur. Vascularization significantly increased bone formation and implant degradation. Moreover, survival and expansion of green fluorescent protein-positive seeded cells could be clearly monitored in vivo at 1, 4, and 8 weeks postoperation via fluorescent microscopy. This standardized large segmental defect model in a small animal may help to advance the study of bone tissue engineering. Furthermore, availability of antibodies and genetically modified rats could help to dissect the precise cellular and molecular mechanisms of bone repair.
Collapse
Affiliation(s)
- Huijie Jiang
- Institute of Orthopedic Surgery, Xijing Hospital, Fourth Military Medical University, Xi'an, People's Republic of China
| | - Pengzhen Cheng
- Institute of Orthopedic Surgery, Xijing Hospital, Fourth Military Medical University, Xi'an, People's Republic of China
| | - Donglin Li
- Institute of Orthopedic Surgery, Xijing Hospital, Fourth Military Medical University, Xi'an, People's Republic of China
| | - Junqin Li
- Institute of Orthopedic Surgery, Xijing Hospital, Fourth Military Medical University, Xi'an, People's Republic of China
| | - Jimeng Wang
- Institute of Orthopedic Surgery, Xijing Hospital, Fourth Military Medical University, Xi'an, People's Republic of China
| | - Yi Gao
- Institute of Orthopedic Surgery, Xijing Hospital, Fourth Military Medical University, Xi'an, People's Republic of China
| | - Shuaishuai Zhang
- Institute of Orthopedic Surgery, Xijing Hospital, Fourth Military Medical University, Xi'an, People's Republic of China
| | - Tianqing Cao
- Institute of Orthopedic Surgery, Xijing Hospital, Fourth Military Medical University, Xi'an, People's Republic of China
| | - Chunmei Wang
- Institute of Orthopedic Surgery, Xijing Hospital, Fourth Military Medical University, Xi'an, People's Republic of China
| | - Liu Yang
- Institute of Orthopedic Surgery, Xijing Hospital, Fourth Military Medical University, Xi'an, People's Republic of China
| | - Guoxian Pei
- Institute of Orthopedic Surgery, Xijing Hospital, Fourth Military Medical University, Xi'an, People's Republic of China
| |
Collapse
|
14
|
Kamal M, Andersson L, Tolba R, Al-Asfour A, Bartella AK, Gremse F, Rosenhain S, Hölzle F, Kessler P, Lethaus B. Bone regeneration using composite non-demineralized xenogenic dentin with beta-tricalcium phosphate in experimental alveolar cleft repair in a rabbit model. J Transl Med 2017; 15:263. [PMID: 29274638 PMCID: PMC5742260 DOI: 10.1186/s12967-017-1369-3] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2017] [Accepted: 12/15/2017] [Indexed: 01/24/2023] Open
Abstract
Background Alveolar cleft repair is performed via bone grafting procedure to restore the dental arch continuity. A suitable bone substitute materials should possess osteoinductive and osteoconductive properties, to promote new bone formation, along with a slowly resorbable scaffold that is subsequently replaced with functionally viable bone. Calcium phosphate biomaterials have long proved their efficacy as bone replacement materials. Dentin in several forms has also demonstrated its possibility to be used as bone graft replacement material in several studies. The purpose of this study was to evaluate bone regeneration pattern and quantify bone formation after grafting pre-established experimental alveolar clefts defects model in rabbits using composite xenogenic dentin and β-TCP in comparison to β-TCP alone. Methods Unilateral alveolar cleft defects were created in 16 New Zealand rabbits according to previously described methodology. Alveolar clefts were allowed 8 weeks healing period. 8 defects were filled with β-TCP, whereas 8 defects filled with composite xenogenic dentin with β-TCP. Bone regeneration of the healed defects was compared at the 8 weeks after intervention. Quantification of bone formation was analyzed using micro-computed tomography (µCT) and histomorphometric analysis. Results µCT and histomorphometric analysis revealed that defects filled with composite dentin/β-TCP showed statistically higher bone volume fraction, bone mineral density and percentage residual graft volume when compared to β-TCP alone. An improved surgical handling of the composite dentin/β-TCP graft was also noted. Conclusions Composite xenogenic dentin/β-TCP putty expresses enhanced bone regeneration compared to β-TCP alone in the reconstruction of rabbit alveolar clefts defects.
Collapse
Affiliation(s)
- Mohammad Kamal
- Department of Cranio-Maxillofacial Surgery and GROW School for Oncology and Developmental Biology, Maastricht University Medical Center, P. Debyelaan, Postbus 5800, 6202 AZ, Maastricht, The Netherlands. .,Department of Oral and Maxillofacial Surgery, RWTH Aachen University, Pauwelsstraße 30, 52074, Aachen, Germany.
| | - Lars Andersson
- Department of Surgical Sciences, Health Sciences Center, Kuwait University, 13110, Safat, Kuwait
| | - Rene Tolba
- Institute for Laboratory Animal Science and Experimental Surgery, RWTH Aachen University, Pauwelsstraße 30, 52074, Aachen, Germany
| | - Adel Al-Asfour
- Department of Surgical Sciences, Health Sciences Center, Kuwait University, 13110, Safat, Kuwait
| | - Alexander K Bartella
- Department of Oral and Maxillofacial Surgery, RWTH Aachen University, Pauwelsstraße 30, 52074, Aachen, Germany
| | - Felix Gremse
- Department of Experimental Molecular Imaging, RWTH Aachen University, Pauwelsstraße 30, 52074, Aachen, Germany
| | - Stefanie Rosenhain
- Department of Experimental Molecular Imaging, RWTH Aachen University, Pauwelsstraße 30, 52074, Aachen, Germany
| | - Frank Hölzle
- Department of Oral and Maxillofacial Surgery, RWTH Aachen University, Pauwelsstraße 30, 52074, Aachen, Germany
| | - Peter Kessler
- Department of Cranio-Maxillofacial Surgery and GROW School for Oncology and Developmental Biology, Maastricht University Medical Center, P. Debyelaan, Postbus 5800, 6202 AZ, Maastricht, The Netherlands
| | - Bernd Lethaus
- Department of Oral and Maxillofacial Surgery, RWTH Aachen University, Pauwelsstraße 30, 52074, Aachen, Germany
| |
Collapse
|