1
|
Watanabe T, Hatayama N, Guo M, Yuhara S, Shinoka T. Bridging the Gap: Advances and Challenges in Heart Regeneration from In Vitro to In Vivo Applications. Bioengineering (Basel) 2024; 11:954. [PMID: 39451329 PMCID: PMC11505552 DOI: 10.3390/bioengineering11100954] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2024] [Revised: 08/22/2024] [Accepted: 08/26/2024] [Indexed: 10/26/2024] Open
Abstract
Cardiovascular diseases, particularly ischemic heart disease, area leading cause of morbidity and mortality worldwide. Myocardial infarction (MI) results in extensive cardiomyocyte loss, inflammation, extracellular matrix (ECM) degradation, fibrosis, and ultimately, adverse ventricular remodeling associated with impaired heart function. While heart transplantation is the only definitive treatment for end-stage heart failure, donor organ scarcity necessitates the development of alternative therapies. In such cases, methods to promote endogenous tissue regeneration by stimulating growth factor secretion and vascular formation alone are insufficient. Techniques for the creation and transplantation of viable tissues are therefore highly sought after. Approaches to cardiac regeneration range from stem cell injections to epicardial patches and interposition grafts. While numerous preclinical trials have demonstrated the positive effects of tissue transplantation on vasculogenesis and functional recovery, long-term graft survival in large animal models is rare. Adequate vascularization is essential for the survival of transplanted tissues, yet pre-formed microvasculature often fails to achieve sufficient engraftment. Recent studies report success in enhancing cell survival rates in vitro via tissue perfusion. However, the transition of these techniques to in vivo models remains challenging, especially in large animals. This review aims to highlight the evolution of cardiac patch and stem cell therapies for the treatment of cardiovascular disease, identify discrepancies between in vitro and in vivo studies, and discuss critical factors for establishing effective myocardial tissue regeneration in vivo.
Collapse
Affiliation(s)
- Tatsuya Watanabe
- Center for Regenerative Medicine, The Abigail Wexner Research Institute, Nationwide Children’s Hospital, Columbus, OH 43205, USA; (T.W.); (M.G.); (S.Y.)
| | - Naoyuki Hatayama
- Department of Anatomy, Aichi Medical University, Nagakute 480-1195, Japan;
| | - Marissa Guo
- Center for Regenerative Medicine, The Abigail Wexner Research Institute, Nationwide Children’s Hospital, Columbus, OH 43205, USA; (T.W.); (M.G.); (S.Y.)
- Department of Surgery, Ohio State University, Columbus, OH 43210, USA
| | - Satoshi Yuhara
- Center for Regenerative Medicine, The Abigail Wexner Research Institute, Nationwide Children’s Hospital, Columbus, OH 43205, USA; (T.W.); (M.G.); (S.Y.)
| | - Toshiharu Shinoka
- Department of Surgery, Ohio State University, Columbus, OH 43210, USA
- Department of Cardiothoracic Surgery, The Heart Center, Nationwide Children’s Hospital, Columbus, OH 43205, USA
| |
Collapse
|
2
|
Akbar N, Razzaq SS, Salim A, Haneef K. Mesenchymal Stem Cell-Derived Exosomes and Their MicroRNAs in Heart Repair and Regeneration. J Cardiovasc Transl Res 2024; 17:505-522. [PMID: 37875715 DOI: 10.1007/s12265-023-10449-8] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/13/2023] [Accepted: 10/06/2023] [Indexed: 10/26/2023]
Abstract
Mesenchymal stem cells (MSCs) can be differentiated into cardiac, endothelial, and smooth muscle cells. Therefore, MSC-based therapeutic approaches have the potential to deal with the aftermaths of cardiac diseases. However, transplanted stem cells rarely survive in damaged myocardium, proposing that paracrine factors other than trans-differentiation may involve in heart regeneration. Apart from cytokines/growth factors, MSCs secret small, single-membrane organelles named exosomes. The MSC-secreted exosomes are enriched in lipids, proteins, nucleic acids, and microRNA (miRNA). There has been an increasing amount of data that confirmed that MSC-derived exosomes and their active molecule microRNA (miRNAs) regulate signaling pathways involved in heart repair/regeneration. In this review, we systematically present an overview of MSCs, their cardiac differentiation, and the role of MSC-derived exosomes and exosomal miRNAs in heart regeneration. In addition, biological functions regulated by MSC-derived exosomes and exosomal-derived miRNAs in the process of heart regeneration are reviewed.
Collapse
Affiliation(s)
- Nukhba Akbar
- Dr. Zafar H. Zaidi Center for Proteomics, University of Karachi, Karachi, 75270, Pakistan
| | - Syeda Saima Razzaq
- Dr. Zafar H. Zaidi Center for Proteomics, University of Karachi, Karachi, 75270, Pakistan
| | - Asmat Salim
- Dr. Panjwani Center for Molecular Medicine and Drug Research, International Center for Chemical and Biological Sciences, University of Karachi, Karachi, 75270, Pakistan
| | - Kanwal Haneef
- Dr. Zafar H. Zaidi Center for Proteomics, University of Karachi, Karachi, 75270, Pakistan.
| |
Collapse
|
3
|
Nakamura K, Henry TD, Traverse JH, Latter DA, Mokadam NA, Answini GA, Williams AR, Sun BC, Burke CR, Bakaeen FG, DiCarli MF, Chaitman BR, Peterson MW, Byrnes DG, Ohman EM, Pepine CJ, Crystal RG, Rosengart TK, Kowalewski E, Koch GG, Dittrich HC, Povsic TJ. Angiogenic Gene Therapy for Refractory Angina: Results of the EXACT Phase 2 Trial. Circ Cardiovasc Interv 2024; 17:e014054. [PMID: 38696284 PMCID: PMC11097950 DOI: 10.1161/circinterventions.124.014054] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/29/2024] [Accepted: 04/01/2024] [Indexed: 05/04/2024]
Abstract
BACKGROUND XC001 is a novel adenoviral-5 vector designed to express multiple isoforms of VEGF (vascular endothelial growth factor) and more safely and potently induce angiogenesis. The EXACT trial (Epicardial Delivery of XC001 Gene Therapy for Refractory Angina Coronary Treatment) assessed the safety and preliminary efficacy of XC001 in patients with no option refractory angina. METHODS In this single-arm, multicenter, open-label trial, 32 patients with no option refractory angina received a single treatment of XC001 (1×1011 viral particles) via transepicardial delivery. RESULTS There were no severe adverse events attributed to the study drug. Twenty expected severe adverse events in 13 patients were related to the surgical procedure. Total exercise duration increased from a mean±SD of 359.9±105.55 seconds at baseline to 448.2±168.45 (3 months), 449.2±175.9 (6 months), and 477.6±174.7 (12 months; +88.3 [95% CI, 37.1-139.5], +84.5 [95% CI, 34.1-134.9], and +115.5 [95% CI, 59.1-171.9]). Total myocardial perfusion deficit on positron emission tomography imaging decreased by 10.2% (95% CI, -3.1% to 23.5%), 14.3% (95% CI, 2.8%-25.7%), and 10.2% (95% CI, -0.8% to -21.2%). Angina frequency decreased from a mean±SD 12.2±12.5 episodes to 5.2±7.2 (3 months), 5.1±7.8 (6 months), and 2.7±4.8 (12 months), with an average decrease of 7.7 (95% CI, 4.1-11.3), 6.6 (95% CI, 3.5-9.7), and 8.8 (4.6-13.0) episodes at 3, 6, and 12 months. Angina class improved in 81% of participants at 6 months. CONCLUSIONS XC001 administered via transepicardial delivery is safe and generally well tolerated. Exploratory improvements in total exercise duration, ischemic burden, and subjective measures support a biologic effect sustained to 12 months, warranting further investigation. REGISTRATION URL: https://www.clinicaltrials.gov; Unique identifier: NCT04125732.
Collapse
Affiliation(s)
- Kenta Nakamura
- Division of Cardiology, Department of Medicine (K.N.), University of Washington, Seattle
| | - Timothy D. Henry
- The Carl and Edith Lindner Center of Research and Education, The Christ Hospital, Cincinnati, OH (T.D.H.)
| | - Jay H. Traverse
- Minneapolis Heart Institute Foundation, Abbott Northwestern Hospital, MN (J.H.T., B.C.S.)
| | - David A. Latter
- Department of Cardiovascular Surgery, St. Michael’s Hospital, University of Toronto, ON, Canada (D.A.L.)
| | - Nahush A. Mokadam
- Department of Cardiac Surgery, Ohio State University Wexner Medical Center, Columbus (N.A.M.)
| | | | - Adam R. Williams
- Division of Cardiovascular and Thoracic Surgery, Department of Surgery, Duke University Medical Center, Durham, NC (A.R.W.)
| | - Benjamin C. Sun
- Minneapolis Heart Institute Foundation, Abbott Northwestern Hospital, MN (J.H.T., B.C.S.)
| | - Christopher R. Burke
- Division of Cardiothoracic Surgery, Department of Surgery (C.R.B.), University of Washington, Seattle
| | - Faisal G. Bakaeen
- Department of Thoracic and Cardiovascular Surgery, Cleveland Clinic Foundation, OH (F.G.B.)
| | - Marcelo F. DiCarli
- Departments of Radiology and Medicine, Brigham and Women’s Hospital, Boston, MA (M.F.D.)
| | - Bernard R. Chaitman
- Core ECG/MI Classification Laboratory, St. Louis University School of Medicine, MO (B.R.C.)
| | | | - Dawn G. Byrnes
- XyloCor Therapeutics, Malvern, PA (M.W.P., D.G.B., H.C.D.)
| | - E. Magnus Ohman
- Duke Clinical Research Institute and Duke Medicine, Durham, NC (E.M.O., T.J.P.)
| | - Carl J. Pepine
- Department of Cardiovascular Medicine, University of Florida, Gainesville (C.J.P.)
| | - Ronald G. Crystal
- Department of Genetic Medicine, Weill Cornell Medical College, New York, NY (R.G.C.)
| | - Todd K. Rosengart
- Michael E. DeBakey Department of Surgery, Baylor College of Medicine, Houston, TX (T.K.R.)
| | - Elaine Kowalewski
- Department of Biostatistics, University of North Carolina, Chapel Hill (E.K., G.G.K.)
| | - Gary G. Koch
- Department of Biostatistics, University of North Carolina, Chapel Hill (E.K., G.G.K.)
| | | | - Thomas J. Povsic
- Duke Clinical Research Institute and Duke Medicine, Durham, NC (E.M.O., T.J.P.)
| |
Collapse
|
4
|
Povsic TJ, Henry TD, Traverse JH, Anderson RD, Answini GA, Sun BC, Arnaoutakis GJ, Boudoulas KD, Williams AR, Dittrich HC, Tarka EA, Latter DA, Ohman EM, Peterson MW, Byrnes D, Pepine CJ, DiCarli MF, Crystal RG, Rosengart TK, Mokadam NA. EXACT Trial: Results of the Phase 1 Dose-Escalation Study. Circ Cardiovasc Interv 2023; 16:e012997. [PMID: 37503661 DOI: 10.1161/circinterventions.123.012997] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/24/2023] [Accepted: 06/27/2023] [Indexed: 07/29/2023]
Abstract
BACKGROUND New therapies are needed for patients with refractory angina. Encoberminogene rezmadenovec (XC001), a novel adenoviral-5 vector coding for all 3 major isoforms of VEGF (vascular endothelial growth factor), demonstrated enhanced local angiogenesis in preclinical models; however, the maximal tolerated dose and safety of direct epicardial administration remain unknown. METHODS In the phase 1 portion of this multicenter, open-label, single-arm, dose-escalation study, patients with refractory angina received increasing doses of encoberminogene rezmadenovec (1×109, 1×1010, 4×1010, and 1×1011 viral particles) to evaluate its safety, tolerability, and preliminary efficacy. Patients had class II to IV angina on maximally tolerated medical therapy, demonstrable ischemia on stress testing, and were angina-limited on exercise treadmill testing. Patients underwent minithoracotomy with epicardial delivery of 15 0.1-mL injections of encoberminogene rezmadenovec. The primary outcome was safety via adverse event monitoring over 6 months. Efficacy assessments included difference from baseline to months 3, 6 (primary), and 12 in total exercise duration, myocardial perfusion deficit using positron emission tomography, angina class, angina frequency, and quality of life. RESULTS From June 2, 2020 to June 25, 2021, 12 patients were enrolled into 4 dosing cohorts with 1×1011 viral particle as the highest planned dose. Seventeen serious adverse events were reported in 7 patients; none were related to study drug. Six serious adverse events in 4 patients were related to the thoracotomy, 3 non-serious adverse events were possibly related to study drug. The 2 lowest doses did not demonstrate improvements in total exercise duration, myocardial perfusion deficit, or angina frequency; however, there appeared to be improvements in all parameters with the 2 higher doses. CONCLUSIONS Epicardial delivery of encoberminogene rezmadenovec via minithoracotomy is feasible, and up to 1×1011 viral particle appears well tolerated. A dose response was observed across 4 dosing cohorts in total exercise duration, myocardial perfusion deficit, and angina class. The highest dose (1×1011 viral particle) was carried forward into phase 2. REGISTRATION URL: https://www. CLINICALTRIALS gov; Unique identifier: NCT04125732.
Collapse
Affiliation(s)
- Thomas J Povsic
- Program for Advanced Coronary Disease, Duke University Medical Center and Duke Clinical Research Institute, Durham, NC (T.J.P., E.M.O.)
| | - Timothy D Henry
- The Carl and Edyth Lindner Center for Research and Education at The Christ Hospital, Cincinnati, OH (T.D.H.)
| | - Jay H Traverse
- Minneapolis Heart Institute Foundation at Abbott Northwestern Hospital, Minneapolis (J.H.T., B.C.S.)
| | - R David Anderson
- University of Florida Heart and Vascular Center, Gainesville (R.D.A.)
| | - Geoffrey A Answini
- Division of Cardiovascular Surgery, Christ Hospital, Cincinnati, OH (G.A.A.)
| | - Benjamin C Sun
- Minneapolis Heart Institute Foundation at Abbott Northwestern Hospital, Minneapolis (J.H.T., B.C.S.)
| | - George J Arnaoutakis
- Department of Surgery, University of Florida Heart and Vascular Center, Gainesville (G.J.A.)
| | | | - Adam R Williams
- Department of Cardiovascular Surgery, Duke University Medical Center, Durham, NC (A.R.W.)
| | | | | | - David A Latter
- Department of Cardiovascular Surgery, St Michael's Hospital, University of Toronto, Ontario, Canada (D.A.L.)
| | - E Magnus Ohman
- Program for Advanced Coronary Disease, Duke University Medical Center and Duke Clinical Research Institute, Durham, NC (T.J.P., E.M.O.)
| | | | - Dawn Byrnes
- XyloCor Therapeutics, Malvern, PA (H.C.D., D.B., M.W.P.)
| | - Carl J Pepine
- Division of Cardiovascular Medicine, University of Florida, Gainesville (C.J.P.)
| | - Marcelo F DiCarli
- Departments of Radiology and Medicine, Brigham and Women's Hospital, Boston, MA (M.F.D.)
| | - Ronald G Crystal
- Department of Genetic Medicine, Weill Cornell Medicine, New York (R.G.C.)
| | - Todd K Rosengart
- Department of Surgery, Baylor College of Medicine, Houston, TX (T.K.R.)
| | - Nahush A Mokadam
- Division of Cardiac Surgery, The Ohio State Wexner Medical Center, Columbus (N.A.M.)
| |
Collapse
|
5
|
Bryl R, Nawrocki MJ, Jopek K, Kaczmarek M, Bukowska D, Antosik P, Mozdziak P, Zabel M, Dzięgiel P, Kempisty B. Transcriptomic Characterization of Genes Regulating the Stemness in Porcine Atrial Cardiomyocytes during Primary In Vitro Culture. Genes (Basel) 2023; 14:1223. [PMID: 37372403 PMCID: PMC10297922 DOI: 10.3390/genes14061223] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2023] [Revised: 06/01/2023] [Accepted: 06/02/2023] [Indexed: 06/29/2023] Open
Abstract
Heart failure remains a major cause of death worldwide. There is a need to establish new management options as current treatment is frequently suboptimal. Clinical approaches based on autologous stem cell transplant is potentially a good alternative. The heart was long considered an organ unable to regenerate and renew. However, several reports imply that it may possess modest intrinsic regenerative potential. To allow for detailed characterization of cell cultures, whole transcriptome profiling was performed after 0, 7, 15, and 30 days of in vitro cell cultures (IVC) from the right atrial appendage and right atrial wall utilizing microarray technology. In total, 4239 differentially expressed genes (DEGs) with ratio > abs |2| and adjusted p-value ≤ 0.05 for the right atrial wall and 4662 DEGs for the right atrial appendage were identified. It was shown that a subset of DEGs, which have demonstrated some regulation of expression levels with the duration of the cell culture, were enriched in the following GO BP (Gene Ontology Biological Process) terms: "stem cell population maintenance" and "stem cell proliferation". The results were validated by RT-qPCR. The establishment and detailed characterization of in vitro culture of myocardial cells may be important for future applications of these cells in heart regeneration processes.
Collapse
Affiliation(s)
- Rut Bryl
- Section of Regenerative Medicine and Cancer Research, Natural Sciences Club, Faculty of Biology, Adam Mickiewicz University, Poznań, 61-614 Poznan, Poland;
| | - Mariusz J. Nawrocki
- Department of Anatomy, Poznan University of Medical Sciences, 60-781 Poznan, Poland;
| | - Karol Jopek
- Department of Histology and Embryology, Poznan University of Medical Sciences, 60-781 Poznan, Poland;
| | - Mariusz Kaczmarek
- Department of Cancer Immunology, Chair of Medical Biotechnology, Poznan University of Medical Sciences, 61-866 Poznan, Poland;
- Gene Therapy Laboratory, Department of Cancer Diagnostics and Immunology, Greater Poland Cancer Centre, 61-866 Poznan, Poland
| | - Dorota Bukowska
- Department of Diagnostics and Clinical Sciences, Institute of Veterinary Medicine, Nicolaus Copernicus University in Torun, 87-100 Torun, Poland;
| | - Paweł Antosik
- Department of Veterinary Surgery, Institute of Veterinary Medicine, Nicolaus Copernicus University in Torun, 87-100 Torun, Poland;
| | - Paul Mozdziak
- Prestage Department of Poultry Science, North Carolina State University, Raleigh, NC 27695, USA;
- Physiology Graduate Faculty, North Carolina State University, Raleigh, NC 27695, USA
| | - Maciej Zabel
- Department of Human Morphology and Embryology, Division of Histology and Embryology, Wroclaw Medical University, 50-368 Wroclaw, Poland; (M.Z.); (P.D.)
- Division of Anatomy and Histology, University of Zielona Góra, 65-046 Zielona Góra, Poland
| | - Piotr Dzięgiel
- Department of Human Morphology and Embryology, Division of Histology and Embryology, Wroclaw Medical University, 50-368 Wroclaw, Poland; (M.Z.); (P.D.)
| | - Bartosz Kempisty
- Department of Veterinary Surgery, Institute of Veterinary Medicine, Nicolaus Copernicus University in Torun, 87-100 Torun, Poland;
- Physiology Graduate Faculty, North Carolina State University, Raleigh, NC 27695, USA
- Department of Human Morphology and Embryology, Division of Anatomy, Wroclaw Medical University, 50-367 Wroclaw, Poland
- Department of Obstetrics and Gynaecology, University Hospital and Masaryk University, 62500 Brno, Czech Republic
| |
Collapse
|
6
|
Gawne P, Man F, Blower PJ, T. M. de Rosales R. Direct Cell Radiolabeling for in Vivo Cell Tracking with PET and SPECT Imaging. Chem Rev 2022; 122:10266-10318. [PMID: 35549242 PMCID: PMC9185691 DOI: 10.1021/acs.chemrev.1c00767] [Citation(s) in RCA: 49] [Impact Index Per Article: 24.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2021] [Indexed: 02/07/2023]
Abstract
The arrival of cell-based therapies is a revolution in medicine. However, its safe clinical application in a rational manner depends on reliable, clinically applicable methods for determining the fate and trafficking of therapeutic cells in vivo using medical imaging techniques─known as in vivo cell tracking. Radionuclide imaging using single photon emission computed tomography (SPECT) or positron emission tomography (PET) has several advantages over other imaging modalities for cell tracking because of its high sensitivity (requiring low amounts of probe per cell for imaging) and whole-body quantitative imaging capability using clinically available scanners. For cell tracking with radionuclides, ex vivo direct cell radiolabeling, that is, radiolabeling cells before their administration, is the simplest and most robust method, allowing labeling of any cell type without the need for genetic modification. This Review covers the development and application of direct cell radiolabeling probes utilizing a variety of chemical approaches: organic and inorganic/coordination (radio)chemistry, nanomaterials, and biochemistry. We describe the key early developments and the most recent advances in the field, identifying advantages and disadvantages of the different approaches and informing future development and choice of methods for clinical and preclinical application.
Collapse
Affiliation(s)
- Peter
J. Gawne
- School
of Biomedical Engineering & Imaging Sciences, King’s College London, St Thomas’ Hospital, London, SE1 7EH, U.K.
| | - Francis Man
- School
of Biomedical Engineering & Imaging Sciences, King’s College London, St Thomas’ Hospital, London, SE1 7EH, U.K.
- Institute
of Pharmaceutical Science, School of Cancer
and Pharmaceutical Sciences, King’s College London, London, SE1 9NH, U.K.
| | - Philip J. Blower
- School
of Biomedical Engineering & Imaging Sciences, King’s College London, St Thomas’ Hospital, London, SE1 7EH, U.K.
| | - Rafael T. M. de Rosales
- School
of Biomedical Engineering & Imaging Sciences, King’s College London, St Thomas’ Hospital, London, SE1 7EH, U.K.
| |
Collapse
|
7
|
Suhar RA, Doulames VM, Liu Y, Hefferon ME, Figueroa O, Buabbas H, Heilshorn SC. Hyaluronan and elastin-like protein (HELP) gels significantly improve microsphere retention in the myocardium. Biomater Sci 2022; 10:2590-2608. [PMID: 35411353 PMCID: PMC9123900 DOI: 10.1039/d1bm01890f] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2023]
Abstract
Heart disease is the leading cause of death globally, and delivery of therapeutic cargo (e.g., particles loaded with proteins, drugs, or genes and cells) through direct injection into the myocardium is a promising clinical intervention. However, retention of deliverables to the contracting myocardium is low, with as much as 60-90% of payload being lost within 24 hr. Commercially-available injectable hydrogels, including Matrigel, have been hypothesized to increase payload retention but have not yielded significant improvements in quantified analyses. Here, we assess a recombinant hydrogel composed of chemically modified hyaluronan and elastin-like protein (HELP) as an alternative injectable carrier to increase cargo retention. HELP is crosslinked using dynamic covalent bonds, and tuning the hyaluronan chemistry significantly alters hydrogel mechanical properties including stiffness, stress relaxation rate, and ease of injectability through a needle or catheter. These materials can be injected even after complete crosslinking, extending the time window for surgical delivery. We show that HELP gels significantly improve in vivo retention of microsphere cargo compared to Matrigel, both 1 day and 7 days post-injection directly into the rat myocardium. These data suggest that HELP gels may assist with the clinical translation of therapeutic cargo designed for delivery into the contracting myocardium by preventing acute cargo loss.
Collapse
Affiliation(s)
- Riley A Suhar
- Department of Materials Science and Engineering, Stanford University, Stanford, California 94305, USA.
| | - Vanessa M Doulames
- Department of Materials Science and Engineering, Stanford University, Stanford, California 94305, USA.
- Department of Neurosurgery, Stanford University School of Medicine, Stanford, California 94305, USA
| | - Yueming Liu
- Department of Materials Science and Engineering, Stanford University, Stanford, California 94305, USA.
| | - Meghan E Hefferon
- Department of Materials Science and Engineering, Stanford University, Stanford, California 94305, USA.
- Department of Neurosurgery, Stanford University School of Medicine, Stanford, California 94305, USA
| | | | - Hana Buabbas
- Department of Materials Science and Engineering, Stanford University, Stanford, California 94305, USA.
- Department of Biology, Stanford University, Stanford, California, 94305, USA
| | - Sarah C Heilshorn
- Department of Materials Science and Engineering, Stanford University, Stanford, California 94305, USA.
| |
Collapse
|
8
|
Sun SJ, Wei R, Li F, Liao SY, Tse HF. Mesenchymal stromal cell-derived exosomes in cardiac regeneration and repair. Stem Cell Reports 2021; 16:1662-1673. [PMID: 34115984 PMCID: PMC8282428 DOI: 10.1016/j.stemcr.2021.05.003] [Citation(s) in RCA: 55] [Impact Index Per Article: 18.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2021] [Revised: 05/08/2021] [Accepted: 05/10/2021] [Indexed: 02/08/2023] Open
Abstract
Mesenchymal stromal cell (MSC)-derived exosomes play a promising role in regenerative medicine. Their trophic and immunomodulatory potential has made them a promising candidate for cardiac regeneration and repair. Numerous studies have demonstrated that MSC-derived exosomes can replicate the anti-inflammatory, anti-apoptotic, and pro-angiogenic and anti-fibrotic effects of their parent cells and are considered a substitute for cell-based therapies. In addition, their lower tumorigenic risk, superior immune tolerance, and superior stability compared with their parent stem cells make them an attractive option in regenerative medicine. The therapeutic effects of MSC-derived exosomes have consequently been evaluated for application in cardiac regeneration and repair. In this review, we summarize the potential mechanisms and therapeutic effects of MSC-derived exosomes in cardiac regeneration and repair and provide evidence to support their clinical application.
Collapse
Affiliation(s)
- Si-Jia Sun
- Cardiology Division, Department of Medicine, Queen Mary Hospital, the University of Hong Kong, Hong Kong SAR, China
| | - Rui Wei
- Cardiology Division, Department of Medicine, Queen Mary Hospital, the University of Hong Kong, Hong Kong SAR, China
| | - Fei Li
- Cardiology Division, Department of Medicine, Queen Mary Hospital, the University of Hong Kong, Hong Kong SAR, China
| | - Song-Yan Liao
- Cardiology Division, Department of Medicine, Queen Mary Hospital, the University of Hong Kong, Hong Kong SAR, China; Shenzhen Institutes of Research and Innovation, the University of Hong Kong, Hong Kong SAR, China.
| | - Hung-Fat Tse
- Cardiology Division, Department of Medicine, Queen Mary Hospital, the University of Hong Kong, Hong Kong SAR, China; Shenzhen Institutes of Research and Innovation, the University of Hong Kong, Hong Kong SAR, China; Research Center of Heart, Brain, Hormone and Healthy Aging, Li Ka Shing Faculty of Medicine, the University of Hong Kong, Hong Kong SAR, China; Hong Kong-Guangdong Joint Laboratory on Stem Cell and Regenerative Medicine, the University of Hong Kong and Guangzhou Institutes of Biomedicine and Health, Hong Kong SAR, China.
| |
Collapse
|
9
|
Li J, Hu S, Zhu D, Huang K, Mei X, López de Juan Abad B, Cheng K. All Roads Lead to Rome (the Heart): Cell Retention and Outcomes From Various Delivery Routes of Cell Therapy Products to the Heart. J Am Heart Assoc 2021; 10:e020402. [PMID: 33821664 PMCID: PMC8174178 DOI: 10.1161/jaha.120.020402] [Citation(s) in RCA: 41] [Impact Index Per Article: 13.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
In the past decades, numerous preclinical studies and several clinical trials have evidenced the feasibility of cell transplantation in treating heart diseases. Over the years, different delivery routes of cell therapy have emerged and broadened the width of the field. However, a common hurdle is shared by all current delivery routes: low cell retention. A myriad of studies confirm that cell retention plays a crucial role in the success of cell-mediated cardiac repair. It is important for any delivery route to maintain donor cells in the recipient heart for enough time to not only proliferate by themselves, but also to send paracrine signals to surrounding damaged heart cells and repair them. In this review, we first undertake an in-depth study of primary theories of cell loss, including low efficiency in cell injection, "washout" effects, and cell death, and then organize the literature from the past decade that focuses on cell transplantation to the heart using various cell delivery routes, including intracoronary injection, systemic intravenous injection, retrograde coronary venous injection, and intramyocardial injection. In addition to a recapitulation of these approaches, we also clearly evaluate their strengths and weaknesses. Furthermore, we conduct comparative research on the cell retention rate and functional outcomes of these delivery routes. Finally, we extend our discussion to state-of-the-art bioengineering techniques that enhance cell retention, as well as alternative delivery routes, such as intrapericardial delivery. A combination of these novel strategies and more accurate assessment methods will help to address the hurdle of low cell retention and boost the efficacy of cell transplantation to the heart.
Collapse
Affiliation(s)
- Junlang Li
- Department of Molecular Biomedical SciencesNorth Carolina State UniversityRaleighNC
- Joint Department of Biomedical EngineeringNorth Carolina State University and University of North Carolina at Chapel HillRaleighNC
| | - Shiqi Hu
- Department of Molecular Biomedical SciencesNorth Carolina State UniversityRaleighNC
- Joint Department of Biomedical EngineeringNorth Carolina State University and University of North Carolina at Chapel HillRaleighNC
| | - Dashuai Zhu
- Department of Molecular Biomedical SciencesNorth Carolina State UniversityRaleighNC
- Joint Department of Biomedical EngineeringNorth Carolina State University and University of North Carolina at Chapel HillRaleighNC
| | - Ke Huang
- Department of Molecular Biomedical SciencesNorth Carolina State UniversityRaleighNC
- Joint Department of Biomedical EngineeringNorth Carolina State University and University of North Carolina at Chapel HillRaleighNC
| | - Xuan Mei
- Department of Molecular Biomedical SciencesNorth Carolina State UniversityRaleighNC
- Joint Department of Biomedical EngineeringNorth Carolina State University and University of North Carolina at Chapel HillRaleighNC
| | - Blanca López de Juan Abad
- Department of Molecular Biomedical SciencesNorth Carolina State UniversityRaleighNC
- Joint Department of Biomedical EngineeringNorth Carolina State University and University of North Carolina at Chapel HillRaleighNC
| | - Ke Cheng
- Department of Molecular Biomedical SciencesNorth Carolina State UniversityRaleighNC
- Joint Department of Biomedical EngineeringNorth Carolina State University and University of North Carolina at Chapel HillRaleighNC
| |
Collapse
|
10
|
Chandrasekaran R, Madheswaran T, Tharmalingam N, Bose RJ, Park H, Ha DH. Labeling and tracking cells with gold nanoparticles. Drug Discov Today 2020; 26:94-105. [PMID: 33130336 DOI: 10.1016/j.drudis.2020.10.020] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2020] [Revised: 09/03/2020] [Accepted: 10/22/2020] [Indexed: 12/11/2022]
Abstract
Gold nanoparticles (AuNPs) have garnered much attention as contrast agents for computerized tomography (CT) because of their facile synthesis and surface functionalization, in addition to their significant X-ray attenuation and minimal cytotoxicity. Cell labeling using AuNPs and tracking of the labeled cells using CT has become a time-efficient and cost-effective method. Actively targeted AuNPs can enhance CT contrast and sensitivity, and further reduce the radiation dosage needed during CT imaging. In this review, we summarize the state-of-the-art use of AuNPs in CT for cell tracking, including the precautionary steps necessary for their use and the difficulty in translating the process into clinical use.
Collapse
Affiliation(s)
| | - Thiagarajan Madheswaran
- Department of Pharmaceutical Technology, School of Pharmacy, International Medical University, No. 126 Jalan Jalil Perkasa 19, Bukit Jalil, 57000 Kuala Lumpur, Malaysia
| | - Nagendran Tharmalingam
- Infectious Diseases Division, Warren Alpert Medical School of Brown University, Rhode Island Hospital, Providence, RI 02903, USA
| | - Rajendran Jc Bose
- School of Integrative Engineering, Chung-Ang University, Seoul, Republic of Korea; Masonic Medical Research Institute, Utica, NY, USA
| | - Hansoo Park
- School of Integrative Engineering, Chung-Ang University, Seoul, Republic of Korea.
| | - Don-Hyung Ha
- School of Integrative Engineering, Chung-Ang University, Seoul, Republic of Korea.
| |
Collapse
|
11
|
Plasmatic Membrane Expression of Adhesion Molecules in Human Cardiac Progenitor/Stem Cells Might Explain Their Superior Cell Engraftment after Cell Transplantation. Stem Cells Int 2020; 2020:8872009. [PMID: 33101423 PMCID: PMC7569451 DOI: 10.1155/2020/8872009] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2020] [Revised: 09/15/2020] [Accepted: 09/24/2020] [Indexed: 01/12/2023] Open
Abstract
Human bone marrow mesenchymal stem cells (BM-MSCs) and cardiac progenitor/stem cells (CPCs) have been extensively studied as a potential therapeutic treatment for myocardial infarction (MI). Previous reports suggest that lower doses of CPCs are needed to improve cardiac function relative to their bone marrow counterparts. Here, we confirmed this observations and investigated the surface protein expression profile that might explain this effect. Myocardial infarction was performed in nude rats by permanent ligation of the left coronary artery. Cardiac function and infarct size before and after cell transplantation were evaluated by echocardiography and morphometry, respectively. The CPC and BM-MSC receptome were analyzed by proteomic analysis of biotin-labeled surface proteins. Rats transplanted with CPCs showed a greater improvement in cardiac function after MI than those transplanted with BM-MSCs, and this was associated with a smaller infarct size. Analysis of the receptome of CPCs and BM-MSCs showed that gene ontology biological processes and KEGG pathways associated with adhesion mechanisms were upregulated in CPCs compared with BM-MSCs. Moreover, the membrane protein interactome in CPCs showed a strong relationship with biological processes related to cell adhesion whereas the BM-MSCs interactome was more related to immune regulation processes. We conclude that the stronger capacity of CPCs over BM-MSCs to engraft in the infarcted area is likely linked to a more pronounced cell adhesion expression program.
Collapse
|
12
|
Cobo AA, Margallo FMS, Díaz CB, Blázquez VB, Bueno IG, Crisóstomo V. Anesthesia Protocols used to Create Ischemia Reperfusion Myocardial Infarcts in Swine. JOURNAL OF THE AMERICAN ASSOCIATION FOR LABORATORY ANIMAL SCIENCE 2020; 59:478-487. [PMID: 32709259 DOI: 10.30802/aalas-jaalas-19-000137] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Abstract
The porcine ischemia-reperfusion model is one of the most commonly used for cardiology research and for testing interventions for myocardial regeneration. In creating ischemic reperfusion injury, the anesthetic protocol is important for assuring hemodynamic stability of the animal during the induction of the experimental lesion and may affect its postoperative survival. This paper reviews the many drugs and anesthetic protocols used in recent studies involving porcine models of ischemiareperfusion injury. The paper also summarizes the most important characteristics of some commonly used anesthetic drugs. Literature was selected for inclusion in this review if the authors described the anesthetic protocol used and also reported the mortality rate attributed to the creation of the model. This information is an important consideration because the anesthetic protocol can influence hemodynamic stability during the experimental induction of an acute myocardial infarction, thereby impacting the survival rate and affecting the number of animals needed for each study.
Collapse
Affiliation(s)
- Ana Abad Cobo
- Jesús Usón Minimally Invasive Surgery Centre, Cáceres, Spain;,
| | | | - Claudia Báez Díaz
- Jesús Usón Minimally Invasive Surgery Centre, Cáceres, Spain; CIBERCV, Madrid, Spain
| | | | | | - Verónica Crisóstomo
- Jesús Usón Minimally Invasive Surgery Centre, Cáceres, Spain; CIBERCV, Madrid, Spain
| |
Collapse
|
13
|
Perrin J, Capitao M, Mougin-Degraef M, Guérard F, Faivre-Chauvet A, Rbah-Vidal L, Gaschet J, Guilloux Y, Kraeber-Bodéré F, Chérel M, Barbet J. Cell Tracking in Cancer Immunotherapy. Front Med (Lausanne) 2020; 7:34. [PMID: 32118018 PMCID: PMC7033605 DOI: 10.3389/fmed.2020.00034] [Citation(s) in RCA: 43] [Impact Index Per Article: 10.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2019] [Accepted: 01/23/2020] [Indexed: 12/19/2022] Open
Abstract
The impressive development of cancer immunotherapy in the last few years originates from a more precise understanding of control mechanisms in the immune system leading to the discovery of new targets and new therapeutic tools. Since different stages of disease progression elicit different local and systemic inflammatory responses, the ability to longitudinally interrogate the migration and expansion of immune cells throughout the whole body will greatly facilitate disease characterization and guide selection of appropriate treatment regiments. While using radiolabeled white blood cells to detect inflammatory lesions has been a classical nuclear medicine technique for years, new non-invasive methods for monitoring the distribution and migration of biologically active cells in living organisms have emerged. They are designed to improve detection sensitivity and allow for a better preservation of cell activity and integrity. These methods include the monitoring of therapeutic cells but also of all cells related to a specific disease or therapeutic approach. Labeling of therapeutic cells for imaging may be performed in vitro, with some limitations on sensitivity and duration of observation. Alternatively, in vivo cell tracking may be performed by genetically engineering cells or mice so that may be revealed through imaging. In addition, SPECT or PET imaging based on monoclonal antibodies has been used to detect tumors in the human body for years. They may be used to detect and quantify the presence of specific cells within cancer lesions. These methods have been the object of several recent reviews that have concentrated on technical aspects, stressing the differences between direct and indirect labeling. They are briefly described here by distinguishing ex vivo (labeling cells with paramagnetic, radioactive, or fluorescent tracers) and in vivo (in vivo capture of injected radioactive, fluorescent or luminescent tracers, or by using labeled antibodies, ligands, or pre-targeted clickable substrates) imaging methods. This review focuses on cell tracking in specific therapeutic applications, namely cell therapy, and particularly CAR (Chimeric Antigen Receptor) T-cell therapy, which is a fast-growing research field with various therapeutic indications. The potential impact of imaging on the progress of these new therapeutic modalities is discussed.
Collapse
Affiliation(s)
- Justine Perrin
- CRCINA, INSERM, CNRS, Université d'Angers, Université de Nantes, Nantes, France
| | - Marisa Capitao
- CRCINA, INSERM, CNRS, Université d'Angers, Université de Nantes, Nantes, France
| | - Marie Mougin-Degraef
- CRCINA, INSERM, CNRS, Université d'Angers, Université de Nantes, Nantes, France.,Nuclear Medicine, University Hospital, Nantes, France
| | - François Guérard
- CRCINA, INSERM, CNRS, Université d'Angers, Université de Nantes, Nantes, France
| | - Alain Faivre-Chauvet
- CRCINA, INSERM, CNRS, Université d'Angers, Université de Nantes, Nantes, France.,Nuclear Medicine, University Hospital, Nantes, France
| | - Latifa Rbah-Vidal
- CRCINA, INSERM, CNRS, Université d'Angers, Université de Nantes, Nantes, France
| | - Joëlle Gaschet
- CRCINA, INSERM, CNRS, Université d'Angers, Université de Nantes, Nantes, France
| | - Yannick Guilloux
- CRCINA, INSERM, CNRS, Université d'Angers, Université de Nantes, Nantes, France
| | - Françoise Kraeber-Bodéré
- CRCINA, INSERM, CNRS, Université d'Angers, Université de Nantes, Nantes, France.,Nuclear Medicine, University Hospital, Nantes, France.,Nuclear Medicine, ICO Cancer Center, Saint-Herblain, France
| | - Michel Chérel
- CRCINA, INSERM, CNRS, Université d'Angers, Université de Nantes, Nantes, France.,Nuclear Medicine, ICO Cancer Center, Saint-Herblain, France
| | | |
Collapse
|
14
|
Baehr A, Klymiuk N, Kupatt C. Evaluating Novel Targets of Ischemia Reperfusion Injury in Pig Models. Int J Mol Sci 2019; 20:E4749. [PMID: 31557793 PMCID: PMC6801853 DOI: 10.3390/ijms20194749] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2019] [Revised: 09/19/2019] [Accepted: 09/22/2019] [Indexed: 12/12/2022] Open
Abstract
Coronary heart diseases are of high relevance for health care systems in developed countries regarding patient numbers and costs. Disappointingly, the enormous effort put into the development of innovative therapies and the high numbers of clinical studies conducted are counteracted by the low numbers of therapies that become clinically effective. Evidently, pre-clinical research in its present form does not appear informative of the performance of treatments in the clinic and, even more relevant, it appears that there is hardly any consent about how to improve the predictive capacity of pre-clinical experiments. According to the steadily increasing relevance that pig models have gained in biomedical research in the recent past, we anticipate that research in pigs can be highly predictive for ischemia-reperfusion injury (IRI) therapies as well. Thus, we here describe the significance of pig models in IRI, give an overview about recent developments in evaluating such models by clinically relevant methods and present the latest insight into therapies applied to pigs under IRI.
Collapse
Affiliation(s)
- Andrea Baehr
- Klinikum Rechts der Isar, Internal Medicine I, Technical University of Munich, 81675 Munich, Germany.
- German Centre for Cardiovascular Research, Munich Heart Alliance, 80802 Munich, Germany.
| | - Nikolai Klymiuk
- Klinikum Rechts der Isar, Internal Medicine I, Technical University of Munich, 81675 Munich, Germany.
- German Centre for Cardiovascular Research, Munich Heart Alliance, 80802 Munich, Germany.
| | - Christian Kupatt
- Klinikum Rechts der Isar, Internal Medicine I, Technical University of Munich, 81675 Munich, Germany.
- German Centre for Cardiovascular Research, Munich Heart Alliance, 80802 Munich, Germany.
| |
Collapse
|
15
|
Crisostomo V, Baez C, Abad JL, Sanchez B, Alvarez V, Rosado R, Gómez-Mauricio G, Gheysens O, Blanco-Blazquez V, Blazquez R, Torán JL, Casado JG, Aguilar S, Janssens S, Sánchez-Margallo FM, Rodriguez-Borlado L, Bernad A, Palacios I. Dose-dependent improvement of cardiac function in a swine model of acute myocardial infarction after intracoronary administration of allogeneic heart-derived cells. Stem Cell Res Ther 2019; 10:152. [PMID: 31151405 PMCID: PMC6544975 DOI: 10.1186/s13287-019-1237-6] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2019] [Revised: 04/15/2019] [Accepted: 04/16/2019] [Indexed: 01/14/2023] Open
Abstract
BACKGROUND Allogeneic cardiac-derived progenitor cells (CPC) without immunosuppression could provide an effective ancillary therapy to improve cardiac function in reperfused myocardial infarction. We set out to perform a comprehensive preclinical feasibility and safety evaluation of porcine CPC (pCPC) in the infarcted porcine model, analyzing biodistribution and mid-term efficacy, as well as safety in healthy non-infarcted swine. METHODS The expression profile of several pCPC isolates was compared with humans using both FACS and RT-qPCR. ELISA was used to compare the functional secretome. One week after infarction, female swine received an intracoronary (IC) infusion of vehicle (CON), 25 × 106 pCPC (25 M), or 50 × 106 pCPC (50 M). Animals were followed up for 10 weeks using serial cardiac magnetic resonance imaging to assess functional and structural remodeling (left ventricular ejection fraction (LVEF), systolic and diastolic volumes, and myocardial salvage index). Statistical comparisons were performed using Kruskal-Wallis and Mann-Whitney U tests. Biodistribution analysis of 18F-FDG-labeled pCPC was also performed 4 h after infarction in a different subset of animals. RESULTS Phenotypic and functional characterization of pCPC revealed a gene expression profile comparable to their human counterparts as well as preliminary functional equivalence. Left ventricular functional and structural remodeling showed significantly increased LVEF 10 weeks after IC administration of 50 M pCPC, associated to the recovery of left ventricular volumes that returned to pre-infarction values (LVEF at 10 weeks was 42.1 ± 10.0% in CON, 46.5 ± 7.4% in 25 M, and 50.2 ± 4.9% in 50 M, p < 0.05). Infarct remodeling was also improved following pCPC infusion with a significantly higher myocardial salvage index in both treated groups (0.35 ± 0.20 in CON; 0.61 ± 0.20, p = 0.04, in 25 M; and 0.63 ± 0.17, p = 0.01, in 50 M). Biodistribution studies demonstrated cardiac tropism 4 h after IC administration, with substantial myocardial retention of pCPC-associated tracer activity (18% of labeled cells in the heart), and no obstruction of coronary flow, indicating their suitability as a cell therapy product. CONCLUSIONS IC administration of allogeneic pCPC at 1 week after acute myocardial infarction is feasible, safe, and associated with marked structural and functional benefit. The robust cardiac tropism of pCPC and the paracrine effects on left ventricle post-infarction remodeling established the preclinical bases for the CAREMI clinical trial (NCT02439398).
Collapse
Affiliation(s)
- Veronica Crisostomo
- Fundación Centro de Cirugía de Mínima Invasión Jesús Usón, Carretera N-521, km 41, 10071, Cáceres, Spain. .,CIBERCV, Instituto de Salud Carlos III. C/Monforte de Lemos 3-5, Pabellón 11. Planta 0, 28029, Madrid, Spain.
| | - Claudia Baez
- Fundación Centro de Cirugía de Mínima Invasión Jesús Usón, Carretera N-521, km 41, 10071, Cáceres, Spain.,CIBERCV, Instituto de Salud Carlos III. C/Monforte de Lemos 3-5, Pabellón 11. Planta 0, 28029, Madrid, Spain
| | - José Luis Abad
- Coretherapix S.L.U./Tigenix Group C/Marconi 1, 28076, Tres Cantos, Madrid, Spain
| | - Belén Sanchez
- Coretherapix S.L.U./Tigenix Group C/Marconi 1, 28076, Tres Cantos, Madrid, Spain
| | - Virginia Alvarez
- Coretherapix S.L.U./Tigenix Group C/Marconi 1, 28076, Tres Cantos, Madrid, Spain
| | - Rosalba Rosado
- Coretherapix S.L.U./Tigenix Group C/Marconi 1, 28076, Tres Cantos, Madrid, Spain
| | - Guadalupe Gómez-Mauricio
- Fundación Centro de Cirugía de Mínima Invasión Jesús Usón, Carretera N-521, km 41, 10071, Cáceres, Spain
| | - Olivier Gheysens
- Department of Cardiovascular Medicine, UZ Leuven Campus Gasthuisberg, Herestraat 49, B-3000, Leuven, Belgium
| | - Virginia Blanco-Blazquez
- Fundación Centro de Cirugía de Mínima Invasión Jesús Usón, Carretera N-521, km 41, 10071, Cáceres, Spain.,CIBERCV, Instituto de Salud Carlos III. C/Monforte de Lemos 3-5, Pabellón 11. Planta 0, 28029, Madrid, Spain
| | - Rebeca Blazquez
- Fundación Centro de Cirugía de Mínima Invasión Jesús Usón, Carretera N-521, km 41, 10071, Cáceres, Spain.,CIBERCV, Instituto de Salud Carlos III. C/Monforte de Lemos 3-5, Pabellón 11. Planta 0, 28029, Madrid, Spain
| | - José Luis Torán
- Department of Immunology and Oncology, Spanish National Center for Biotechnology (CNB-CSIC), C/Darwin, 3 (Campus UAM Cantoblanco), 28049, Madrid, Spain
| | - Javier G Casado
- Fundación Centro de Cirugía de Mínima Invasión Jesús Usón, Carretera N-521, km 41, 10071, Cáceres, Spain.,CIBERCV, Instituto de Salud Carlos III. C/Monforte de Lemos 3-5, Pabellón 11. Planta 0, 28029, Madrid, Spain
| | - Susana Aguilar
- Department of Immunology and Oncology, Spanish National Center for Biotechnology (CNB-CSIC), C/Darwin, 3 (Campus UAM Cantoblanco), 28049, Madrid, Spain
| | - Stefan Janssens
- Department of Cardiovascular Medicine, UZ Leuven Campus Gasthuisberg, Herestraat 49, B-3000, Leuven, Belgium
| | - Francisco M Sánchez-Margallo
- Fundación Centro de Cirugía de Mínima Invasión Jesús Usón, Carretera N-521, km 41, 10071, Cáceres, Spain.,CIBERCV, Instituto de Salud Carlos III. C/Monforte de Lemos 3-5, Pabellón 11. Planta 0, 28029, Madrid, Spain
| | | | - Antonio Bernad
- Department of Immunology and Oncology, Spanish National Center for Biotechnology (CNB-CSIC), C/Darwin, 3 (Campus UAM Cantoblanco), 28049, Madrid, Spain
| | - Itziar Palacios
- Coretherapix S.L.U./Tigenix Group C/Marconi 1, 28076, Tres Cantos, Madrid, Spain.
| |
Collapse
|
16
|
Zlabinger K, Lukovic D, Hemetsberger R, Gugerell A, Winkler J, Mandic L, Traxler D, Spannbauer A, Wolbank S, Zanoni G, Kaun C, Posa A, Gyenes A, Petrasi Z, Petnehazy Ö, Repa I, Hofer-Warbinek R, de Martin R, Gruber F, Charwat S, Huber K, Pavo N, Pavo IJ, Nyolczas N, Kraitchman DL, Gyöngyösi M. Matrix Metalloproteinase-2 Impairs Homing of Intracoronary Delivered Mesenchymal Stem Cells in a Porcine Reperfused Myocardial Infarction: Comparison With Intramyocardial Cell Delivery. Front Bioeng Biotechnol 2018; 6:35. [PMID: 29670878 PMCID: PMC5893806 DOI: 10.3389/fbioe.2018.00035] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2017] [Accepted: 03/15/2018] [Indexed: 12/16/2022] Open
Abstract
Background Intracoronary (IC) injection of mesenchymal stem cells (MSCs) results in a prompt decrease of absolute myocardial blood flow (AMF) with late and incomplete recovery of myocardial tissue perfusion. Here, we investigated the effect of decreased AMF on oxidative stress marker matrix metalloproteinase-2 (MMP-2) and its influence on the fate and homing and paracrine character of MSCs after IC or intramyocardial cell delivery in a closed-chest reperfused myocardial infarction (MI) model in pigs. Methods Porcine MSCs were transiently transfected with Ad-Luc and Ad-green fluorescent protein (GFP). One week after MI, the GFP-Luc-MSCs were injected either IC (group IC, 11.00 ± 1.07 × 106) or intramyocardially (group IM, 9.88 ± 1.44 × 106). AMF was measured before, immediately after, and 24 h post GFP-Luc-MSC delivery. In vitro bioluminescence signal was used to identify tissue samples containing GFP-Luc-MSCs. Myocardial tissue MMP-2 and CXCR4 receptor expression (index of homing signal) were measured in bioluminescence positive and negative infarcted and border, and non-ischemic myocardial areas 1-day post cell transfer. At 7-day follow-up, myocardial homing (cadherin, CXCR4, and stromal derived factor-1alpha) and angiogenic [fibroblast growth factor 2 (FGF2) and VEGF] were quantified by ELISA of homogenized myocardial tissues from the bioluminescence positive and negative infarcted and border, and non-ischemic myocardium. Biodistribution of the implanted cells was quantified by using Luciferase assay and confirmed by fluorescence immunochemistry. Global left ventricular ejection fraction (LVEF) was measured at baseline and 1-month post cell therapy using magnet resonance image. Results AMF decreased immediately after IC cell delivery, while no change in tissue perfusion was found in the IM group (42.6 ± 11.7 vs. 56.9 ± 16.7 ml/min, p = 0.018). IC delivery led to a significant increase in myocardial MMP-2 64 kD expression (448 ± 88 vs. 315 ± 54 intensity × mm2, p = 0.021), and decreased expression of CXCR4 (592 ± 50 vs. 714 ± 54 pg/tissue/ml, p = 0.006), with significant exponential decay between MMP-2 and CXCR4 (r = 0.679, p < 0.001). FGF2 and VEGF of the bioluminescence infarcted and border zone of homogenized tissues were significantly elevated in the IM goups as compared to IC group. LVEF increase was significantly higher in IM group (0.8 ± 8.4 vs 5.3 ± 5.2%, p = 0.046) at the 1-month follow up. Conclusion Intracoronary stem cell delivery decreased AMF, with consequent increase in myocardial expression of MMP-2 and reduced CXCR4 expression with lower level of myocardial homing and angiogenic factor release as compared to IM cell delivery.
Collapse
Affiliation(s)
- Katrin Zlabinger
- Department of Cardiology, Medical University of Vienna, Vienna, Austria
| | - Dominika Lukovic
- Department of Cardiology, Medical University of Vienna, Vienna, Austria
| | | | - Alfred Gugerell
- Department of Cardiology, Medical University of Vienna, Vienna, Austria
| | - Johannes Winkler
- Department of Cardiology, Medical University of Vienna, Vienna, Austria
| | - Ljubica Mandic
- Department of Cardiology, Medical University of Vienna, Vienna, Austria
| | - Denise Traxler
- Department of Cardiology, Medical University of Vienna, Vienna, Austria
| | | | - Susanne Wolbank
- Ludwig Boltzmann Institute for Clinical and Experimental Traumatology/AUVA Research Center Austrian Cluster for Tissue Regeneration, Vienna, Austria
| | - Gerald Zanoni
- Ludwig Boltzmann Institute for Clinical and Experimental Traumatology/AUVA Research Center Austrian Cluster for Tissue Regeneration, Vienna, Austria
| | - Christoph Kaun
- Department of Cardiology, Medical University of Vienna, Vienna, Austria
| | - Aniko Posa
- Institute of Biophysics, Biological Research Center, Szeged, Hungary
| | - Andrea Gyenes
- Institute of Biophysics, Biological Research Center, Szeged, Hungary
| | - Zsolt Petrasi
- Institute of Diagnostics and Radiation Oncology, University of Kaposvar, Kaposvar, Hungary
| | - Örs Petnehazy
- Institute of Diagnostics and Radiation Oncology, University of Kaposvar, Kaposvar, Hungary
| | - Imre Repa
- Institute of Diagnostics and Radiation Oncology, University of Kaposvar, Kaposvar, Hungary
| | - Renate Hofer-Warbinek
- Department of Biomolecular Medicine and Pharmacology, Institute of Vascular Biology and Thrombosis Research, Medical University of Vienna, Vienna, Austria
| | - Rainer de Martin
- Department of Biomolecular Medicine and Pharmacology, Institute of Vascular Biology and Thrombosis Research, Medical University of Vienna, Vienna, Austria
| | - Florian Gruber
- Department of Dermatology, Medical University of Vienna, Vienna, Austria
| | - Silvia Charwat
- Department of Cardiology, Medical University of Vienna, Vienna, Austria
| | - Kurt Huber
- 3rd Department of Medicine (Cardiology and Emergency Medicine), Wilhelminenhospital, Vienna, Austria
| | - Noemi Pavo
- Department of Cardiology, Medical University of Vienna, Vienna, Austria
| | - Imre J Pavo
- Department of Cardiology, Medical University of Vienna, Vienna, Austria
| | - Noemi Nyolczas
- Department of Cardiology, Medical University of Vienna, Vienna, Austria
| | - Dara L Kraitchman
- Russell H. Morgan Department of Radiology and Radiological Science, School of Medicine, The Johns Hopkins University, Baltimore, MD, United States
| | - Mariann Gyöngyösi
- Department of Cardiology, Medical University of Vienna, Vienna, Austria
| |
Collapse
|
17
|
Santoso MR, Yang PC. Molecular Imaging of Stem Cells and Exosomes for Myocardial Regeneration. CURRENT CARDIOVASCULAR IMAGING REPORTS 2017. [DOI: 10.1007/s12410-017-9433-1] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
|