1
|
Tang Y, Wang C, Li Q, Liu G, Song D, Quan Z, Yan Y, Qing H. Neural Network Excitation/Inhibition: A Key to Empathy and Empathy Impairment. Neuroscientist 2024; 30:644-665. [PMID: 38347700 DOI: 10.1177/10738584231223119] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2024]
Abstract
Empathy is an ability to fully understand and feel the mental states of others. We emphasize that empathy is elicited by the transmission of pain, fear, and sensory information. In clinical studies, impaired empathy has been observed in most psychiatric conditions. However, the precise impairment mechanism of the network systems on the pathogenesis of empathy impairment in psychiatric disorders is still unclear. Multiple lines of evidence suggest that disturbances in the excitatory/inhibitory balance in neurologic disorders are key to empathetic impairment in psychiatric disorders. Therefore, we here describe the roles played by the anterior cingulate cortex- and medial prefrontal cortex-dependent neural circuits and their impairments in psychiatric disorders, including anxiety, depression, and autism. In addition, we review recent studies on the role of microglia in neural network excitation/inhibition imbalance, which contributes to a better understanding of the neural network excitation/inhibition imbalance and may open up innovative psychiatric therapies.
Collapse
Affiliation(s)
- Yuanhong Tang
- Key Laboratory of Molecular Medicine and Biotherapy, School of Life Science, Beijing Institute of Technology, Beijing, China
| | - Chunjian Wang
- Key Laboratory of Molecular Medicine and Biotherapy, School of Life Science, Beijing Institute of Technology, Beijing, China
| | - Qingquan Li
- Department of Cardiology, The First Hospital of Hebei Medical University, Shijiazhuang, China
| | - Gang Liu
- Department of Cardiology, The First Hospital of Hebei Medical University, Shijiazhuang, China
| | - Da Song
- Key Laboratory of Molecular Medicine and Biotherapy, School of Life Science, Beijing Institute of Technology, Beijing, China
| | - Zhenzhen Quan
- Key Laboratory of Molecular Medicine and Biotherapy, School of Life Science, Beijing Institute of Technology, Beijing, China
| | - Yan Yan
- Department of Cardiology, The First Hospital of Hebei Medical University, Shijiazhuang, China
| | - Hong Qing
- Key Laboratory of Molecular Medicine and Biotherapy, School of Life Science, Beijing Institute of Technology, Beijing, China
- Department of Biology, Shenzhen MSU-BIT University, Shenzhen, China
| |
Collapse
|
2
|
Singewald N, Sartori SB, Reif A, Holmes A. Alleviating anxiety and taming trauma: Novel pharmacotherapeutics for anxiety disorders and posttraumatic stress disorder. Neuropharmacology 2023; 226:109418. [PMID: 36623804 PMCID: PMC10372846 DOI: 10.1016/j.neuropharm.2023.109418] [Citation(s) in RCA: 19] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2022] [Revised: 11/30/2022] [Accepted: 01/03/2023] [Indexed: 01/09/2023]
Abstract
Psychiatric disorders associated with psychological trauma, stress and anxiety are a highly prevalent and increasing cause of morbidity worldwide. Current therapeutic approaches, including medication, are effective in alleviating symptoms of anxiety disorders and posttraumatic stress disorder (PTSD), at least in some individuals, but have unwanted side-effects and do not resolve underlying pathophysiology. After a period of stagnation, there is renewed enthusiasm from public, academic and commercial parties in designing and developing drug treatments for these disorders. Here, we aim to provide a snapshot of the current state of this field that is written for neuropharmacologists, but also practicing clinicians and the interested lay-reader. After introducing currently available drug treatments, we summarize recent/ongoing clinical assessment of novel medicines for anxiety and PTSD, grouped according to primary neurochemical targets and their potential to produce acute and/or enduring therapeutic effects. The evaluation of putative treatments targeting monoamine (including psychedelics), GABA, glutamate, cannabinoid, cholinergic and neuropeptide systems, amongst others, are discussed. We emphasize the importance of designing and clinically assessing new medications based on a firm understanding of the underlying neurobiology stemming from the rapid advances being made in neuroscience. This includes harnessing neuroplasticity to bring about lasting beneficial changes in the brain rather than - as many current medications do - produce a transient attenuation of symptoms, as exemplified by combining psychotropic/cognitive enhancing drugs with psychotherapeutic approaches. We conclude by noting some of the other emerging trends in this promising new phase of drug development.
Collapse
Affiliation(s)
- Nicolas Singewald
- Institute of Pharmacy, Department of Pharmacology and Toxicology, Center for Molecular Biosciences Innsbruck (CMBI), Leopold Franzens University Innsbruck, Innsbruck, Austria.
| | - Simone B Sartori
- Institute of Pharmacy, Department of Pharmacology and Toxicology, Center for Molecular Biosciences Innsbruck (CMBI), Leopold Franzens University Innsbruck, Innsbruck, Austria
| | - Andreas Reif
- Department of Psychiatry, Psychosomatic Medicine and Psychotherapy, University Hospital, Goethe University Frankfurt, Frankfurt am Main, Germany
| | - Andrew Holmes
- Laboratory of Behavioral and Genomic Neuroscience, National Institute on Alcohol Abuse and Alcoholism, NIH, Bethesda, MD, USA
| |
Collapse
|
3
|
Dandekar MP, Yin X, Peng T, Devaraj S, Morales R, McPherson DD, Huang SL. Repetitive xenon treatment improves post-stroke sensorimotor and neuropsychiatric dysfunction. J Affect Disord 2022; 301:315-330. [PMID: 34990636 DOI: 10.1016/j.jad.2022.01.025] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/23/2021] [Revised: 07/21/2021] [Accepted: 01/02/2022] [Indexed: 12/20/2022]
Abstract
Stroke is a life-changing event as stroke survivors experience changes in personality, emotions and mood. We investigated the effect of xenon gas encapsulated in liposomes on stroke-generated sensorimotor impairments, and anxiety- and depression-like phenotypes. Ischemic stroke was created by the intraluminal middle cerebral artery occlusion (MCAO) for 6 h followed by reperfusion in rats. Xenon-liposome (6 mg/kg, intravenous) treatment was given multiple times starting at 2 h post-ischemia through 6 h (5X), and once-daily for next 3 days. Rats underwent ischemic injury displayed sensorimotor deficits in the adhesive removal, vibrissae-evoked forelimb placement and rotarod tests. These animals also made lesser entries and spent less time on open arms of the elevated-plus maze and swam more in passive mode in the forced swimming test, indicating anxiety- and depression-like behaviors at 28- and 35-days post-injury, respectively. Repeated intravenous treatment with xenon-liposomes ameliorated these behavioral aberrations (p < 0.05). Gut microbiome analysis (16S ribosomal-RNA gene sequencing) showed a decrease in the Clostridium clusters XI, XIVa, XVIII and Lactobacillus bacterium, and increase of the Prevotella in the xenon-liposome group. No microbiota communities were majorly affected across the treatments. Moreover, xenon treatment group showed augmented plasma levels of IL-6 cytokines (∼5 fold) on day-35 post-ischemia, while no change was noticed in the IL-1β, IL-4, IL-10, IL-13 and MCP-1 levels. Our data highlights the safety, behavioral recovery and reversal of post-stroke brain injury following xenon-liposome treatment in an extended ischemic model. These results show the potential for this treatment strategy to be translated to patients with stroke.
Collapse
Affiliation(s)
- Manoj P Dandekar
- Department of Internal Medicine, Division of Cardiology, The University of Texas Health Science Center at Houston (UTHealth) McGovern Medical School, Houston, TX, USA; presently Manoj P. Dandekar is affiliated with Department of Pharmacology & Toxicology, National Institute of Pharmaceutical Education and Research (NIPER), Balanagar, Hyderabad, Telangana, India
| | - Xing Yin
- Department of Internal Medicine, Division of Cardiology, The University of Texas Health Science Center at Houston (UTHealth) McGovern Medical School, Houston, TX, USA
| | - Tao Peng
- Department of Internal Medicine, Division of Cardiology, The University of Texas Health Science Center at Houston (UTHealth) McGovern Medical School, Houston, TX, USA
| | - Sridevi Devaraj
- Department of Pathology & Immunology, Baylor College of Medicine and Texas Children's Hospital, Houston, TX, USA
| | - Rodrigo Morales
- Department of Neurology, The University of Texas Health Science Center at Houston (UTHealth) McGovern Medical School, Houston, TX, USA; CIBQA, Universidad Bernardo O'Higgins. Santiago, Chile
| | - David D McPherson
- Department of Internal Medicine, Division of Cardiology, The University of Texas Health Science Center at Houston (UTHealth) McGovern Medical School, Houston, TX, USA; Center for Clinical and Translational Sciences at The University of Texas Health Science Center at Houston, TX, USA
| | - Shao-Ling Huang
- Department of Internal Medicine, Division of Cardiology, The University of Texas Health Science Center at Houston (UTHealth) McGovern Medical School, Houston, TX, USA.
| |
Collapse
|
4
|
Udut VV, Naumov SA, Evtushenko DN, Udut EV, Naumov SS, Zyuz'kov GN. A case of xenon inhalation therapy for respiratory failure and neuropsychiatric disorders associated with COVID-19. EXCLI JOURNAL 2021; 20:1517-1525. [PMID: 34924901 PMCID: PMC8678062 DOI: 10.17179/excli2021-4316] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/16/2021] [Accepted: 10/25/2021] [Indexed: 11/28/2022]
Abstract
Acute respiratory distress syndrome (ARDS) is the main danger to the life of patients with pneumonia caused by SARS-CoV-2. At the same time, respiratory failure (RF) after ARDS can persist for a long time despite intensive therapy. Therefore, it is important to develop new effective approaches for restoring the ventilation function of the lungs after COVID-19. Here, we present a case report of effective application of short-term inhalations of xenon-oxygen (Xe/O2) gas mixture for treatment of RF and neuropsychiatric disorders (NPD) associated with COVID-19. The patient inhaled a gas mixture of 70 % Xe and 30 % O2. We used multispiral computed tomography, evaluated psychometry, studied hematological and biochemical blood parameters, and applied some other methods of clinical studies to assess the therapeutic effectiveness of Xe inhalation. Also, we studied the mechanism of action of xenon with computer modeling. The clinical case showed the high efficacy of Xe/O2 mixture for treating severe RF and NPD after SARS-CoV-2 infection. Xenon inhalations dramatically increased oxygen saturation and the degree of pneumatization of the lungs. We found out that in coronavirus pneumonia, saturated phospholipids of surfactant are transferred to the solid-ordered phase, which disrupts the surface tension of the alveoli and alveolar gas exchange. Using molecular modeling methods, we demonstrated that the xenon atom increases the distance between the acyl chains of phospholipids due to the van der Waals dispersion interaction. These changes allow for the phase transition of phospholipids from the solid-ordered phase to the liquid phase and restore the functional activity of the surfactant. The findings suggest the feasibility of conducting studies on the effectiveness of Xe/O2 inhalations for treating ARDS in SARS-CoV-2 infection.
Collapse
Affiliation(s)
- Vladimir Vasil'evich Udut
- Tomsk National Research Medical Center, Russian Academy of Sciences, Goldberg Research Institute of Pharmacology and Regenerative Medicine, Tomsk, Russia
| | - Sergei Alexandrovich Naumov
- Tomsk National Research Medical Center, Russian Academy of Sciences, Goldberg Research Institute of Pharmacology and Regenerative Medicine, Tomsk, Russia
| | | | - Elena Vladimirovna Udut
- Tomsk National Research Medical Center, Russian Academy of Sciences, Goldberg Research Institute of Pharmacology and Regenerative Medicine, Tomsk, Russia,Siberian State Medical University, Tomsk, Russia
| | | | - Gleb Nikolaevich Zyuz'kov
- Tomsk National Research Medical Center, Russian Academy of Sciences, Goldberg Research Institute of Pharmacology and Regenerative Medicine, Tomsk, Russia,*To whom correspondence should be addressed: Gleb Nikolaevich Zyuz'kov, Tomsk National Research Medical Center, Russian Academy of Sciences, Goldberg Research Institute of Pharmacology and Regenerative Medicine, 634028, Lenin avenue, 3, Tomsk, Russia; Telephone: +73822418372, E-mail:
| |
Collapse
|
5
|
Nazarov EI, Khlusov IA, Noda M. Homeostatic and endocrine responses as the basis for systemic therapy with medical gases: ozone, xenon and molecular hydrogen. Med Gas Res 2021; 11:174-186. [PMID: 34213500 PMCID: PMC8374457 DOI: 10.4103/2045-9912.318863] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2020] [Revised: 11/10/2020] [Accepted: 01/05/2021] [Indexed: 11/22/2022] Open
Abstract
Among medical gases, including gases used therapeutically, this review discusses the comparative physiological activity of three gases - ozone (O3), xenon (Xe) and molecular hydrogen (H2), which together form representatives of three types of substances - typical oxidizing, inert, and typical reducing agents. Upon analysis of published and proprietary data, we concluded that these three medical gases can manipulate the neuroendocrine system, by modulating the production or release of hormones via the hypothalamic-pituitary-adrenal, hypothalamic-pituitary-thyroid, hypothalamic-pituitary-gonadal axes, or the gastrointestinal pathway. With repeated administration of the gases over time, these modulations become a predictable consequence of conditioned homeostatic reflexes, resulting in regulation of physiological activity. For example, the regular activation of the unconditioned defense reflex in response to repeated intoxication by ozone leads to the formation of an anticipatory stable conditioned response, which counteracts the toxic action of O3. The concept of a Pavlovian conditioned reflex (or hormoligosis) is a brief metaphor for the understanding the therapeutic effect of systemic ozone therapy.
Collapse
Affiliation(s)
- Eugene Iv. Nazarov
- Scientific Department of the International Association of Therapists Using Medical Gases, Odessa, Ukraine
| | - Igor Alb. Khlusov
- Department of Morphology and General Pathology, Siberian State Medical University, Tomsk, Russia
| | - Mami Noda
- Laboratory of Pathophysiology, Graduate School of Pharmaceutical Sciences, Kyushu University, Fukuoka, Japan
| |
Collapse
|
6
|
Caldirola D, Alciati A, Cuniberti F, Perna G. Experimental Drugs for Panic Disorder: An Updated Systematic Review. J Exp Pharmacol 2021; 13:441-459. [PMID: 33889031 PMCID: PMC8055642 DOI: 10.2147/jep.s261403] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2021] [Accepted: 03/25/2021] [Indexed: 01/02/2023] Open
Abstract
Several effective pharmacological therapies for panic disorder (PD) are available, but they have some drawbacks, and unsatisfactory outcomes can occur. Expanding the variety of anti-panic medications may allow for improving PD treatment. The authors performed an updated systematic review of preclinical and clinical (Phase I–III) pharmacological studies to look for advances made in the last six years concerning novel-mechanism-based anti-panic compounds or using medications approved for nonpsychiatric medical conditions to treat PD. The study included seven published articles presenting a series of preclinical studies, two Phase I clinical studies with orexin receptor (OXR) antagonists, and two clinical studies investigating the effects of D-cycloserine (DCS) and xenon gas in individuals with PD. The latest preclinical findings confirmed and expanded previous promising indications of OXR1 antagonists as novel-mechanism-based anti-panic compounds. Translating preclinical research into clinical applications remains in the early stages. However, limited clinical findings suggested the selective OXR1 antagonist JNJ-61393115 may exert anti-panic effects in humans. Overall, OXR1 antagonists displayed a favorable profile of short-term safety and tolerability. Very preliminary suggestions of possible anti-panic effects of xenon gas emerged but need confirmation with more rigorous methodology. DCS did not seem promising as an enhancer of cognitive-behavioral therapy in PD. Future studies, including objective panic-related physiological parameters, such as respiratory measures, and expanding the use of panic vulnerability biomarkers, such as hypersensitivity to CO2 panic provocation, may allow for more reliable conclusions about the anti-panic properties of new compounds.
Collapse
Affiliation(s)
- Daniela Caldirola
- Department of Biomedical Sciences, Humanitas University, Milan, 20090, Italy.,Department of Clinical Neurosciences, Villa San Benedetto Menni Hospital, Hermanas Hospitalarias, Como, 22032, Italy
| | - Alessandra Alciati
- Department of Biomedical Sciences, Humanitas University, Milan, 20090, Italy.,Department of Clinical Neurosciences, Villa San Benedetto Menni Hospital, Hermanas Hospitalarias, Como, 22032, Italy.,Humanitas Clinical and Research Center, IRCCS, Milan, Rozzano, 20089, Italy
| | - Francesco Cuniberti
- Department of Biomedical Sciences, Humanitas University, Milan, 20090, Italy.,Department of Clinical Neurosciences, Villa San Benedetto Menni Hospital, Hermanas Hospitalarias, Como, 22032, Italy
| | - Giampaolo Perna
- Department of Biomedical Sciences, Humanitas University, Milan, 20090, Italy.,Department of Clinical Neurosciences, Villa San Benedetto Menni Hospital, Hermanas Hospitalarias, Como, 22032, Italy
| |
Collapse
|
7
|
Gupta PR, Prabhavalkar K. Combination therapy with neuropeptides for the treatment of anxiety disorder. Neuropeptides 2021; 86:102127. [PMID: 33607407 DOI: 10.1016/j.npep.2021.102127] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/18/2020] [Revised: 12/29/2020] [Accepted: 01/26/2021] [Indexed: 11/29/2022]
Abstract
Anxiety is a neurological disorder that is characterized by excessive, persistent, and unreasonable worry about everyday things like family, work, money, and relationships. The current therapy used for the treatment has many disadvantages like higher cost, severe adverse reactions, and has suboptimal efficiency. There is a need to look for more innovative approaches for the treatment of anxiety disorder which overcomes the disadvantages of conventional treatment. Recent findings suggest a strong correlation of glutamate with anxiety. Some promising drugs which have a novel mechanism for anxiolytic action are currently under clinical development for generalized anxiety disorder, social anxiety disorder, panic disorder, obsessive-compulsive disorder, or post-traumatic stress disorder. Similarly, an interrelation of oxytocin with neuropeptide S or glutamate or vasopressin can also be considered for further evaluation for the development of new drugs for anxiety treatment. Anxiolytic drug development is a multi-target approach, with the idea of more efficiently equilibrating perturbed circuits. This review focuses on targeting unconventional targets like the glutamate system, voltage-gated ion channels, and neuropeptides system either alone or in combination for the treatment of anxiety disorder.
Collapse
Affiliation(s)
- Priti Ramakant Gupta
- Department of Pharmacology, SVKM'S Dr. Bhanuben Nanavati College of Pharmacy, Mumbai 400 056, India
| | - Kedar Prabhavalkar
- Department of Pharmacology, SVKM'S Dr. Bhanuben Nanavati College of Pharmacy, Mumbai 400 056, India.
| |
Collapse
|
8
|
Stamenkovic DM, Selvaraj S, Venkatraman S, Arshad A, Rancic NK, Dragojevic-Simic VM, Miljkovic MN, Cattano D. Anesthesia for patients with psychiatric illnesses: a narrative review with emphasis on preoperative assessment and postoperative recovery and pain. Minerva Anestesiol 2020; 86:1089-1102. [DOI: 10.23736/s0375-9393.20.14259-7] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
|
9
|
Xenon produces rapid antidepressant- and anxiolytic-like effects in lipopolysaccharide-induced depression mice model. Neuroreport 2020; 31:387-393. [PMID: 32106142 DOI: 10.1097/wnr.0000000000001415] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
Abstract
Onset delay of current antidepressants is always the most significant limitation for the treatment of depression. More attention has been given to the glutamate acid system for developing fast-onset antidepressants. Xenon, acting as a well-known N-methyl-D-aspartate receptors antagonist, has been widely used clinically as anesthetics and was reported to exert antidepressant-like effects in rats under normal condition. The robust and rapid-acting antidepressant- and anxiolytic-like activities of xenon through the use of depression rodent model are still elusive. By using lipopolysaccharide-induced depression mice models, the present study aimed to evaluate the fast-acting antidepressant-like effects of xenon pretreatment. Behavioral tests, mainly including open-field test, novelty-suppressed feeding test, sucrose preference test, tail suspension test, and forced swimming test, were conducted respectively. Our results showed that both xenon gas and xenon-rich saline pretreatment intraperitoneally produced significant antidepressant- and anxiolytic-like activities in mice under normal condition. Further, xenon gas pretreatment (intraperitoneally) rapidly blocked lipopolysaccharide-induced depression- and anxiety-like behaviors of mice. These findings provide direct evidence that xenon could produce fast-onset antidepressant- and anxiolytic-like activities, which highlights the possibility to develop xenon as a promising fast-acting drug for treatment of depression, anxiety, and even other stress-related diseases.
Collapse
|
10
|
Dobrovolsky AP, Gedzun VR, Bogin VI, Ma D, Ichim TE, Sukhanova IA, Malyshev AV, Dubynin VA. Beneficial effects of xenon inhalation on behavioral changes in a valproic acid-induced model of autism in rats. J Transl Med 2019; 17:400. [PMID: 31796043 PMCID: PMC6891980 DOI: 10.1186/s12967-019-02161-6] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2019] [Accepted: 11/27/2019] [Indexed: 12/28/2022] Open
Abstract
BACKGROUND Xenon (Xe) is a noble gas that has been used for the last several decades as an anesthetic during surgery. Its antagonistic effect on glutamate subtype of NMDA (N-methyl-D-aspartate) receptors resulted in evaluation of this gas for treatment of CNS pathologies, including psychoemotional disorders. The aim of this study was to assess the behavioral effects of acute inhalation of subanesthetic concentrations of Xe and to study the outcomes of Xe exposure in valproic acid (VPA)-induced rodent model of autism. METHODS We have conducted two series of experiments with a battery of behavioral tests aimed to evaluate locomotion, anxiety- and depression-like behavior, and social behavior in healthy, VPA-treated and Xe-exposed young rats. RESULTS We have shown that in healthy animals Xe exposure resulted in acute and delayed decrease of exploratory motivation, partial decrease in risk-taking and depressive-like behavior as well as improved sensorimotor integration during the negative geotaxis test. Acute inhalations of Xe in VPA-exposed animals led to improvement in social behavior, decrease in exploratory motivation, and normalization of behavior in forced-swim test. CONCLUSION Behavioral modulatory effects of Xe are probably related to its generalized action on excitatory/inhibitory balance within the CNS. Our data suggest that subanesthetic short-term exposures to Xe have beneficial effect on several behavioral modalities and deserves further investigation.
Collapse
Affiliation(s)
- A P Dobrovolsky
- Pirogov Russian National Research Medical University, Ostrovitianov str. 1, Moscow, 117997, Russia.
| | - V R Gedzun
- Department of Biology, Lomonosov Moscow State University, Moscow, Russia
| | - V I Bogin
- Nobilis Therapeutics Inc, Portland, OR, USA
| | - D Ma
- Anaesthetics, Pain Medicine & Intensive Care, Department of Surgery & Cancer, Imperial College London, London, UK
| | - T E Ichim
- Nobilis Therapeutics Inc, Portland, OR, USA
| | - Iu A Sukhanova
- Department of Biology, Lomonosov Moscow State University, Moscow, Russia
| | - A V Malyshev
- Department of Biology, Lomonosov Moscow State University, Moscow, Russia
| | - V A Dubynin
- Department of Biology, Lomonosov Moscow State University, Moscow, Russia
| |
Collapse
|
11
|
Sartori SB, Singewald N. Novel pharmacological targets in drug development for the treatment of anxiety and anxiety-related disorders. Pharmacol Ther 2019; 204:107402. [PMID: 31470029 DOI: 10.1016/j.pharmthera.2019.107402] [Citation(s) in RCA: 121] [Impact Index Per Article: 20.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2019] [Accepted: 08/19/2019] [Indexed: 12/24/2022]
Abstract
Current medication for anxiety disorders is suboptimal in terms of efficiency and tolerability, highlighting the need for improved drug treatments. In this review an overview of drugs being studied in different phases of clinical trials for their potential in the treatment of fear-, anxiety- and trauma-related disorders is presented. One strategy followed in drug development is refining and improving compounds interacting with existing anxiolytic drug targets, such as serotonergic and prototypical GABAergic benzodiazepines. A more innovative approach involves the search for compounds with novel mechanisms of anxiolytic action using the growing knowledge base concerning the relevant neurocircuitries and neurobiological mechanisms underlying pathological fear and anxiety. The target systems evaluated in clinical trials include glutamate, endocannabinoid and neuropeptide systems, as well as ion channels and targets derived from phytochemicals. Examples of promising novel candidates currently in clinical development for generalised anxiety disorder, social anxiety disorder, panic disorder, obsessive compulsive disorder or post-traumatic stress disorder include ketamine, riluzole, xenon with one common pharmacological action of modulation of glutamatergic neurotransmission, as well as the neurosteroid aloradine. Finally, compounds such as D-cycloserine, MDMA, L-DOPA and cannabinoids have shown efficacy in enhancing fear-extinction learning in humans. They are thus investigated in clinical trials as an augmentative strategy for speeding up and enhancing the long-term effectiveness of exposure-based psychotherapy, which could render chronic anxiolytic drug treatment dispensable for many patients. These efforts are indicative of a rekindled interest and renewed optimism in the anxiety drug discovery field, after decades of relative stagnation.
Collapse
Affiliation(s)
- Simone B Sartori
- Institute of Pharmacy, Department of Pharmacology and Toxicology, Center for Molecular Biosciences Innsbruck (CMBI), Leopold Franzens University Innsbruck, Innsbruck, Austria
| | - Nicolas Singewald
- Institute of Pharmacy, Department of Pharmacology and Toxicology, Center for Molecular Biosciences Innsbruck (CMBI), Leopold Franzens University Innsbruck, Innsbruck, Austria.
| |
Collapse
|
12
|
Sabinina TS, Bagaev VG, Alekseev IF. Prospects for Applying Xenon Curative Properties in Pediatrics. PEDIATRIC PHARMACOLOGY 2018. [DOI: 10.15690/pf.v15i5.1961] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Abstract
The review discusses experimental and clinical trials on applying noble gas Xenon to treat therapeutic conditions in adults, as well as the prospects for its applying in children. Xenon therapeutic effects on the body are based on the healing properties of a noble gas. Xenon is close to the ‘ideal anesthetic’ by its anesthetic properties; but in addition, it possesses organoand neuroprotective as well as anti-stress properties which have been proved in experiment and clinically. Xenon in pediatric practice is an attractive agent because it is non-toxic, effective for the treatment of posthypoxic and traumatic impairments of the central nervous system, pain syndromes and stress conditions at its therapeutic concentration up to 30%.
Collapse
Affiliation(s)
| | | | - Ilia F. Alekseev
- Research Institute of Emergency Pediatric Surgery and Traumatology
| |
Collapse
|
13
|
Dandekar MP, Peng T, McPherson DD, Quevedo J, Soares JC, Huang SL. Intravenous infusion of xenon-containing liposomes generates rapid antidepressant-like effects. Prog Neuropsychopharmacol Biol Psychiatry 2018; 86:140-149. [PMID: 29559371 DOI: 10.1016/j.pnpbp.2018.03.011] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/21/2017] [Revised: 02/26/2018] [Accepted: 03/09/2018] [Indexed: 02/07/2023]
Abstract
AIM Similar to ketamine, xenon gas acts as a glutamatergic N-methyl-d-aspartate receptor antagonist, but devoid of propensity to cause untoward effects. Herein, we loaded xenon gas into a liposomal carrier called xenon-containing liposomes (Xe-liposome) for systemic delivery, and investigated its effect as an antidepressant and also analyzed synaptic biomarkers including brain-derived neurotrophic factor (BDNF), protein kinase B (AKT), mammalian target of rapamycin (mTOR), protein kinase C (PKC) and extracellular signal-regulated kinase-1/2 (ERK1/2) in blood and brain. METHODS Xe-liposomes (15 μl/mg) were prepared by a pressurized freeze-thaw method, and injected via the lateral tail vein (0.6 mL/rat) in male Wistar rats. The uncaging of xenon gas from circulating Xe-liposome was facilitated by continuous ultrasound application externally on the neck over the internal common carotid artery. One-hour after Xe-liposome infusion, animals were assessed for depression-like behaviors using a forced swimming test (FST), and spontaneous locomotor activity. Blood, as well as frontal cortex and hippocampal samples were obtained for immunoblotting and/or enzyme-linked immune sorbent assays. RESULTS Acute intravenous infusion of Xe-liposome, at 6 mg/kg, showed an increase in swimming time in the FST (p < 0.006), indicating antidepressant-like phenotypes. Higher doses of Xe-liposomes (9 mg/kg) failed to improve swimming duration. This behavioral discrepancy was not associated with locomotion aberrations, as gross activity of rats remained similar for both doses. In biochemical analyses of frontal cortex, protein levels of BDNF increased by 64%, and enhanced phosphorylation of AKT (43%) and mTOR (93%) was observed at the 6 mg/kg dose level of Xe-liposomes, while these biomarkers and phosphorylated PKC and ERK1/2 levels remained unchanged at the higher dose. Moreover, Xe-liposomal treatment did not change the plasma and protein levels of BDNF, and phosphorylated AKT, mTOR, PKC and ERK1/2 hippocampal expressions. CONCLUSION Xe-liposomes mediate a rapid antidepressant-like effect through activation of AKT/mTOR/BDNF signaling pathway.
Collapse
Affiliation(s)
- Manoj P Dandekar
- Department of Internal Medicine, Division of Cardiology, The University of Texas Health Science Center at Houston (UTHealth), McGovern Medical School, Houston, TX, USA
| | - Tao Peng
- Department of Internal Medicine, Division of Cardiology, The University of Texas Health Science Center at Houston (UTHealth), McGovern Medical School, Houston, TX, USA; Center for Clinical and Translational Sciences, The University of Texas Health Science Center at Houston, USA
| | - David D McPherson
- Department of Internal Medicine, Division of Cardiology, The University of Texas Health Science Center at Houston (UTHealth), McGovern Medical School, Houston, TX, USA; Center for Clinical and Translational Sciences, The University of Texas Health Science Center at Houston, USA; Department of Biomedical Sciences, The University of Texas Medical School at Houston, USA; Memorial Hermann Heart and Vascular Institute-Texas Medical Center, USA
| | - Joao Quevedo
- Translational Psychiatry Program, Department of Psychiatry and Behavioral Sciences, McGovern Medical School, The University of Texas Health Science Center at Houston (UTHealth), Houston, TX, USA; Center of Excellence on Mood Disorders, Department of Psychiatry and Behavioral Sciences, McGovern Medical School, The University of Texas Health Science Center at Houston (UTHealth), Houston, TX, USA; Neuroscience Graduate Program, The University of Texas MD Anderson Cancer Center UTHealth Graduate School of Biomedical Sciences, Houston, TX, USA.; Laboratory of Neurosciences, Graduate Program in Health Sciences, Health Sciences Unit, University of Southern Santa Catarina (UNESC), Criciúma, SC, Brazil
| | - Jair C Soares
- Center of Excellence on Mood Disorders, Department of Psychiatry and Behavioral Sciences, The University of Texas Health Science Center at Houston (UTHealth), McGovern Medical School, Houston, TX, USA
| | - Shao-Ling Huang
- Department of Internal Medicine, Division of Cardiology, The University of Texas Health Science Center at Houston (UTHealth), McGovern Medical School, Houston, TX, USA; Center for Clinical and Translational Sciences, The University of Texas Health Science Center at Houston, USA.
| |
Collapse
|
14
|
Caldirola D, Alciati A, Riva A, Perna G. Are there advances in pharmacotherapy for panic disorder? A systematic review of the past five years. Expert Opin Pharmacother 2018; 19:1357-1368. [PMID: 30063164 DOI: 10.1080/14656566.2018.1504921] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023]
Abstract
INTRODUCTION Several effective medications are available for treating panic disorder (PD). However, outcomes are unsatisfactory in a number of patients, suggesting the usefulness of expanding the array of antipanic drugs and improving the quality of response to current recommended treatments. AREAS COVERED The authors have performed an updated systematic review of pharmacological studies (phase III onwards) to examine whether advances have been made in the last five years. Only four studies were included. D-cycloserine no longer seemed promising as a cognitive-behavioral therapy (CBT) enhancer. Some preliminary findings concerning the optimization of recommended medications deserved consideration, including: the possibility that SSRIs are more effective than CBT alone in treating panic attacks, combined therapy is preferable when agoraphobia is present, and clonazepam is more potent than paroxetine in decreasing panic relapse. EXPERT OPINION Given the lack of novel treatments, expanding a personalized approach to the existing medications seems to be the most feasible strategy to improve pharmacotherapy outcomes regarding PD. Recent technological progress, including wearable devices collecting real-time data, 'big data' platforms, and application of machine learning techniques might help make outcome prediction more reliable. Further research on previously promising novel treatments is also recommended.
Collapse
Affiliation(s)
- Daniela Caldirola
- a Department of Clinical Neurosciences , Hermanas Hospitalarias, Villa San Benedetto Menni Hospital, FoRiPsi , Albese con Cassano, Como , Italy
| | - Alessandra Alciati
- a Department of Clinical Neurosciences , Hermanas Hospitalarias, Villa San Benedetto Menni Hospital, FoRiPsi , Albese con Cassano, Como , Italy
- b Humanitas Clinical and Research Center , Milan , Italy
| | - Alice Riva
- a Department of Clinical Neurosciences , Hermanas Hospitalarias, Villa San Benedetto Menni Hospital, FoRiPsi , Albese con Cassano, Como , Italy
| | - Giampaolo Perna
- a Department of Clinical Neurosciences , Hermanas Hospitalarias, Villa San Benedetto Menni Hospital, FoRiPsi , Albese con Cassano, Como , Italy
- c Department of Biomedical Sciences , Humanitas University , Rozzano, Milan , Italy
- d Department of Psychiatry and Neuropsychology, Faculty of Health , Medicine and Life Sciences, Maastricht University , Maastricht , The Netherlands
- e Department of Psychiatry and Behavioral Sciences , Leonard Miller School of Medicine, Miami University , Miami , FL , USA
| |
Collapse
|