1
|
Silva RCMC. The dichotomic role of cytokines in aging. Biogerontology 2024; 26:17. [PMID: 39621124 DOI: 10.1007/s10522-024-10152-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2024] [Accepted: 10/30/2024] [Indexed: 12/11/2024]
Abstract
The chronic inflammation present in aged individuals is generally depicted as a detrimental player for longevity. Here, it is discussed several beneficial effects associated with the cytokines that are chronically elevated in inflammaging. These cytokines, such as IL-1β, type I interferons, IL-6 and TNF positively regulate macroautophagy, mitochondrial function, anti-tumor immune responses and skeletal muscle biogenesis, possibly contributing to longevity. On the other side, the detrimental and antagonistic role of these cytokines including the induction of sarcopenia, tissue damage and promotion of tumorigenesis are also discussed, underscoring the dichotomy associated with inflammaging and its players. In addition, it is discussed the role of the anti-inflammatory cytokine IL-10 and other cytokines that affect aging in a more linear way, such as IL-11, which promotes senescence, and IL-4 and IL-15, which promotes longevity. It is also discussed more specific regulators of aging that are downstream cytokines-mediated signaling.
Collapse
|
2
|
Lian X, Tang X. Immune infiltration analysis based on pyroptosis-related gene in metabolic dysfunction-associated fatty liver disease. Heliyon 2024; 10:e34348. [PMID: 39145004 PMCID: PMC11320144 DOI: 10.1016/j.heliyon.2024.e34348] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2023] [Revised: 07/06/2024] [Accepted: 07/08/2024] [Indexed: 08/16/2024] Open
Abstract
Introduction Metabolic dysfunction-associated fatty liver disease (MAFLD) is a prevalent chronic disease that can involve pyroptosis. The primary objective of this study was to conduct a thorough and comprehensive analysis the pyroptosis-related genes in MAFLD. Methods We identified pyroptosis-related differentially expressed genes (PRDEGs) in both healthy individuals and MAFLD patients. Using various bioinformatic approaches, we conducted an immune infiltration analysis from multiple perspectives. Results A total of 20 pyroptosis-related LASSO genes were obtained, and 10 hub genes were used to do immune infiltration analysis. The hub genes were utilized in the construction of interaction networks between mRNA-miRNA and mRNA-TF. Immune characteristics analysis revealed multiple immune cell types significantly related to PRDEG expression, particularly genes HSP90AA1, TSLP, CDK9, and BRD4. Conclusion Pyroptosis-related immune infiltration might be a mechanism of MAFLD progression and offers a research direction for potential treatment techniques.
Collapse
Affiliation(s)
- Xin Lian
- The First Clinical Medical College of Lanzhou University, Lanzhou, Gansu, 730000, China
| | - Xulei Tang
- The First Clinical Medical College of Lanzhou University, Lanzhou, Gansu, 730000, China
| |
Collapse
|
3
|
Yamanishi K, Hata M, Gamachi N, Watanabe Y, Yamanishi C, Okamura H, Matsunaga H. Molecular Mechanisms of IL18 in Disease. Int J Mol Sci 2023; 24:17170. [PMID: 38139000 PMCID: PMC10743479 DOI: 10.3390/ijms242417170] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2023] [Revised: 11/30/2023] [Accepted: 12/03/2023] [Indexed: 12/24/2023] Open
Abstract
Interleukin 18 (IL18) was originally identified as an inflammation-induced cytokine that is secreted by immune cells. An increasing number of studies have focused on its non-immunological functions, with demonstrated functions for IL18 in energy homeostasis and neural stability. IL18 is reportedly required for lipid metabolism in the liver and brown adipose tissue. Furthermore, IL18 (Il18) deficiency in mice leads to mitochondrial dysfunction in hippocampal cells, resulting in depressive-like symptoms and cognitive impairment. Microarray analyses of Il18-/- mice have revealed a set of genes with differential expression in liver, brown adipose tissue, and brain; however, the impact of IL18 deficiency in these tissues remains uncertain. In this review article, we discuss these genes, with a focus on their relationships with the phenotypic disease traits of Il18-/- mice.
Collapse
Affiliation(s)
- Kyosuke Yamanishi
- Department of Neuropsychiatry, Hyogo Medical University, 1-1 Mukogawa, Nishinomiya 663-8501, Hyogo, Japan
- Department of Psychoimmunology, Hyogo Medical University, 1-1 Mukogawa, Nishinomiya 663-8501, Hyogo, Japan
| | - Masaki Hata
- Department of Psychoimmunology, Hyogo Medical University, 1-1 Mukogawa, Nishinomiya 663-8501, Hyogo, Japan
| | - Naomi Gamachi
- Department of Psychoimmunology, Hyogo Medical University, 1-1 Mukogawa, Nishinomiya 663-8501, Hyogo, Japan
| | - Yuko Watanabe
- Hirakata General Hospital for Developmental Disorders, Hirakata 573-0122, Osaka, Japan; (Y.W.); (C.Y.)
| | - Chiaki Yamanishi
- Hirakata General Hospital for Developmental Disorders, Hirakata 573-0122, Osaka, Japan; (Y.W.); (C.Y.)
| | - Haruki Okamura
- Department of Psychoimmunology, Hyogo Medical University, 1-1 Mukogawa, Nishinomiya 663-8501, Hyogo, Japan
| | - Hisato Matsunaga
- Department of Neuropsychiatry, Hyogo Medical University, 1-1 Mukogawa, Nishinomiya 663-8501, Hyogo, Japan
- Department of Psychoimmunology, Hyogo Medical University, 1-1 Mukogawa, Nishinomiya 663-8501, Hyogo, Japan
| |
Collapse
|
4
|
Somm E, Jornayvaz FR. Interleukin-18 in metabolism: From mice physiology to human diseases. Front Endocrinol (Lausanne) 2022; 13:971745. [PMID: 36313762 PMCID: PMC9596921 DOI: 10.3389/fendo.2022.971745] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/17/2022] [Accepted: 09/23/2022] [Indexed: 11/13/2022] Open
Abstract
Interleukin-18 (IL-18) is a classical member of the IL-1 superfamily of cytokines. As IL-1β, IL-18 precursor is processed by inflammasome/caspase-1 into a mature and biologically active form. IL-18 binds to its specific receptor composed of two chains (IL-18Rα and IL-18Rβ) to trigger a similar intracellular signaling pathway as IL-1, ultimately leading to activation of NF-κB and inflammatory processes. Independently of this IL-1-like signaling, IL-18 also specifically induces IFN-γ production, driving the Th1 immune response. In circulation, IL-18 binds to the IL-18 binding protein (IL-18BP) with high affinity, letting only a small fraction of free IL-18 able to trigger receptor-mediated signaling. In contrast to other IL-1 family members, IL-18 is produced constitutively by different cell types, suggesting implications in normal physiology. If the roles of IL-18 in inflammatory processes and infectious diseases are well described, recent experimental studies in mice have highlighted the action of IL-18 signaling in the control of energy homeostasis, pancreatic islet immunity and liver integrity during nutritional stress. At the same time, clinical observations implicate IL-18 in various metabolic diseases including obesity, type 1 and 2 diabetes and nonalcoholic fatty liver disease (NAFLD)/nonalcoholic steatohepatitis (NASH). In the present review, we summarize and discuss both the physiological actions of IL-18 in metabolism and its potential roles in pathophysiological mechanisms leading to the most common human metabolic disorders, such as obesity, diabetes and NAFLD/NASH.
Collapse
Affiliation(s)
- Emmanuel Somm
- Service of Endocrinology, Diabetes, Nutrition and Therapeutic Patient Education, Department of Internal Medicine, Geneva University Hospitals, Geneva, Switzerland
- Department of Cell Physiology and Metabolism, University of Geneva, Geneva, Switzerland
- Diabetes Center, Faculty of Medicine, University of Geneva, Geneva, Switzerland
| | - François R. Jornayvaz
- Service of Endocrinology, Diabetes, Nutrition and Therapeutic Patient Education, Department of Internal Medicine, Geneva University Hospitals, Geneva, Switzerland
- Department of Cell Physiology and Metabolism, University of Geneva, Geneva, Switzerland
- Diabetes Center, Faculty of Medicine, University of Geneva, Geneva, Switzerland
| |
Collapse
|
5
|
Acute stress induces severe neural inflammation and overactivation of glucocorticoid signaling in interleukin-18-deficient mice. Transl Psychiatry 2022; 12:404. [PMID: 36151082 PMCID: PMC9508168 DOI: 10.1038/s41398-022-02175-7] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/11/2022] [Revised: 09/06/2022] [Accepted: 09/12/2022] [Indexed: 12/01/2022] Open
Abstract
Interleukin-18 (IL18) is an inflammatory cytokine that is related to psychiatric disorders such as depression and cognitive impairment. We previously found that IL18 deficiency may cause hippocampal impairment, resulting in depression-like behavioral changes. However, the potential role of IL18 in stressful conditions remains uncertain. In the present study, we examined the effect of IL18 on neural inflammation and stress tolerance during acute stress. Littermate Il18+/+ and Il18-/- mice were exposed to a single restraint stress for 6 h, and all assessments were performed 18 h after the mice were released from the restraint. In Il18-/- mice exposed to acute stress, the immobility times in both the forced swim test and tail suspension test were decreased, although no difference was observed in Il18+/+ mice. Il1β, Il6, and Tnfα expression levels in the hippocampus of stressed Il18-/- mice were significantly higher than those in the other groups. Moreover, the numbers of astrocytes and microglia, including those in the active form, were also increased compared with those in other groups. Regarding the molecular mechanism, the HSF5 and TTR genes were specifically expressed in stressed Il18-/- mice. As a potential treatment, intracerebral administration of IL18 to Il18-/- mice resulted in partial recovery of changes in behavioral assessments. Our results revealed that IL18-deficient mice were more sensitive and had a longer response to acute stress than that in normal mice. In addition, neural inflammation and augmentation of glucocorticoid signals caused by stress were more intense and remained longer in Il18-/- mice, resulting in behavioral changes. In conclusion, IL18 might be an indispensable factor that modulates the stress response and maintains balance between neural inflammation and glucocorticoid signaling.
Collapse
|
6
|
Colitti M, Ali U, Wabitsch M, Tews D. Transcriptomic analysis of Simpson Golabi Behmel syndrome cells during differentiation exhibit BAT-like function. Tissue Cell 2022; 77:101822. [DOI: 10.1016/j.tice.2022.101822] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2022] [Revised: 05/13/2022] [Accepted: 05/13/2022] [Indexed: 11/25/2022]
|
7
|
Danielsson H, Tebani A, Zhong W, Fagerberg L, Brusselaers N, Hård AL, Uhlén M, Hellström A. Blood protein profiles related to preterm birth and retinopathy of prematurity. Pediatr Res 2022; 91:937-946. [PMID: 33895781 PMCID: PMC9064798 DOI: 10.1038/s41390-021-01528-0] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/21/2020] [Revised: 02/25/2021] [Accepted: 03/30/2021] [Indexed: 02/02/2023]
Abstract
BACKGROUND Nearly one in ten children is born preterm. The degree of immaturity is a determinant of the infant's health. Extremely preterm infants have higher morbidity and mortality than term infants. One disease affecting extremely preterm infants is retinopathy of prematurity (ROP), a multifactorial neurovascular disease that can lead to retinal detachment and blindness. The advances in omics technology have opened up possibilities to study protein expressions thoroughly with clinical accuracy, here used to increase the understanding of protein expression in relation to immaturity and ROP. METHODS Longitudinal serum protein profiles the first months after birth in 14 extremely preterm infants were integrated with perinatal and ROP data. In total, 448 unique protein targets were analyzed using Proximity Extension Assays. RESULTS We found 20 serum proteins associated with gestational age and/or ROP functioning within mainly angiogenesis, hematopoiesis, bone regulation, immune function, and lipid metabolism. Infants with severe ROP had persistent lower levels of several identified proteins during the first postnatal months. CONCLUSIONS The study contributes to the understanding of the relationship between longitudinal serum protein levels and immaturity and abnormal retinal neurovascular development. This is essential for understanding pathophysiological mechanisms and to optimize diagnosis, treatment and prevention for ROP. IMPACT Longitudinal protein profiles of 14 extremely preterm infants were analyzed using a novel multiplex protein analysis platform combined with perinatal data. Proteins associated with gestational age at birth and the neurovascular disease ROP were identified. Among infants with ROP, longitudinal levels of the identified proteins remained largely unchanged during the first postnatal months. The main functions of the proteins identified were angiogenesis, hematopoiesis, immune function, bone regulation, lipid metabolism, and central nervous system development. The study contributes to the understanding of longitudinal serum protein patterns related to gestational age and their association with abnormal retinal neuro-vascular development.
Collapse
Affiliation(s)
- Hanna Danielsson
- grid.4714.60000 0004 1937 0626Department of Microbiology, Tumor and Cell Biology, Centre for Translational Microbiome Research, Karolinska Institutet, Stockholm, Sweden ,grid.416648.90000 0000 8986 2221Sach’s Children’s and Youth Hospital, Södersjukhuset, Stockholm, Sweden
| | - Abdellah Tebani
- grid.5037.10000000121581746Science for Life Laboratory, Department of Protein Science, KTH—Royal Institute of Technology, Stockholm, Sweden ,grid.41724.340000 0001 2296 5231Department of Metabolic Biochemistry, Rouen University Hospital, Rouen, France ,grid.41724.340000 0001 2296 5231Normandie Univ, UNIROUEN, CHU Rouen, INSERM U1245, Rouen, France
| | - Wen Zhong
- grid.5037.10000000121581746Science for Life Laboratory, Department of Protein Science, KTH—Royal Institute of Technology, Stockholm, Sweden
| | - Linn Fagerberg
- grid.5037.10000000121581746Science for Life Laboratory, Department of Protein Science, KTH—Royal Institute of Technology, Stockholm, Sweden
| | - Nele Brusselaers
- grid.4714.60000 0004 1937 0626Department of Microbiology, Tumor and Cell Biology, Centre for Translational Microbiome Research, Karolinska Institutet, Stockholm, Sweden ,grid.5284.b0000 0001 0790 3681Global Health Institute, Antwerp University, Antwerp, Belgium ,grid.5342.00000 0001 2069 7798Department of Head and Skin, Ghent University, Ghent, Belgium
| | - Anna-Lena Hård
- grid.1649.a000000009445082XThe Institute of Neuroscience and Physiology, Sahlgrenska Academy, University of Gothenburg, Sahlgrenska University Hospital, Gothenburg, Sweden
| | - Mathias Uhlén
- grid.5037.10000000121581746Science for Life Laboratory, Department of Protein Science, KTH—Royal Institute of Technology, Stockholm, Sweden
| | - Ann Hellström
- The Institute of Neuroscience and Physiology, Sahlgrenska Academy, University of Gothenburg, Sahlgrenska University Hospital, Gothenburg, Sweden.
| |
Collapse
|
8
|
Exploring Molecular Mechanisms Involved in the Development of the Depression-Like Phenotype in Interleukin-18-Deficient Mice. BIOMED RESEARCH INTERNATIONAL 2021; 2021:9975865. [PMID: 34708129 PMCID: PMC8545524 DOI: 10.1155/2021/9975865] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/16/2021] [Accepted: 09/18/2021] [Indexed: 11/18/2022]
Abstract
Interleukin-18 (IL-18) is an inflammatory cytokine that has been linked to energy homeostasis and psychiatric symptoms such as depression and cognitive impairment. We previously revealed that deficiency in IL-18 led to hippocampal abnormalities and resulted in depression-like symptoms. However, the impact of IL-18 deficiency on other brain regions remains to be clarified. In this study, we first sought to confirm that IL-18 expression in neural cells can be found in human brain tissue. Subsequently, we examined the expression of genes in the prefrontal cortex of Il18−/− mice and compared it with gene expression in mice subjected to a chronic mild stress model of depression. Extracted genes were further analyzed using Ingenuity® Pathway Analysis, in which 18 genes common to both the chronic mild stressed model and Il18−/− mice were identified. Of those, 16 were significantly differentially expressed between Il18+/+ and Il18−/− mice. We additionally measured protein expression of α-2-HS-glycoprotein (AHSG) and transthyretin (TTR) in serum and the brain. In the prefrontal cortex of Il18−/− mice, TTR but not AHSG was significantly decreased. Conversely, in the serum of Il18−/− mice, AHSG was significantly increased but not TTR. Therefore, our results suggest that in IL-18-deficit conditions, TTR in the brain is one of the mediators causally related to depression, and AHSG in peripheral organs is one of the regulators inducing energy imbalance. Moreover, this study suggests a possible “signpost” to clarify the molecular mechanisms commonly underlying the immune system, energy metabolism, neural function, and depressive disorders.
Collapse
|
9
|
Zhao J, Hu Y, Peng J. Targeting programmed cell death in metabolic dysfunction-associated fatty liver disease (MAFLD): a promising new therapy. Cell Mol Biol Lett 2021; 26:17. [PMID: 33962586 PMCID: PMC8103580 DOI: 10.1186/s11658-021-00254-z] [Citation(s) in RCA: 39] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2020] [Accepted: 03/04/2021] [Indexed: 02/07/2023] Open
Abstract
Most currently recommended therapies for metabolic dysfunction-associated fatty liver disease (MAFLD) involve diet control and exercise therapy. We searched PubMed and compiled the most recent research into possible forms of programmed cell death in MAFLD, including apoptosis, necroptosis, autophagy, pyroptosis and ferroptosis. Here, we summarize the state of knowledge on the signaling mechanisms for each type and, based on their characteristics, discuss how they might be relevant in MAFLD-related pathological mechanisms. Although significant challenges exist in the translation of fundamental science into clinical therapy, this review should provide a theoretical basis for innovative MAFLD clinical treatment plans that target programmed cell death.
Collapse
Affiliation(s)
- Jianan Zhao
- grid.412585.f0000 0004 0604 8558Institute of Liver Diseases, Shuguang Hospital Affiliated to Shanghai University of Traditional Chinese Medicine, 528, Zhangheng Road, Shanghai, China
| | - Yiyang Hu
- grid.412585.f0000 0004 0604 8558Institute of Clinical Pharmacology, Shuguang Hospital affiliated to Shanghai University of Traditional Chinese Medicine, 528, Zhangheng Road, Shanghai, China
- grid.412540.60000 0001 2372 7462Key Laboratory of Liver and Kidney Diseases, Ministry of Education, Shanghai University of Traditional Chinese Medicine, 528 Zhangheng Road, Pudong District, Shanghai, 201203 China
- Shanghai Key Laboratory of Traditional Chinese Clinical Medicine, 528, Zhangheng Road, Shanghai, China
| | - Jinghua Peng
- grid.412585.f0000 0004 0604 8558Institute of Liver Diseases, Shuguang Hospital Affiliated to Shanghai University of Traditional Chinese Medicine, 528, Zhangheng Road, Shanghai, China
- grid.412540.60000 0001 2372 7462Key Laboratory of Liver and Kidney Diseases, Ministry of Education, Shanghai University of Traditional Chinese Medicine, 528 Zhangheng Road, Pudong District, Shanghai, 201203 China
- Shanghai Key Laboratory of Traditional Chinese Clinical Medicine, 528, Zhangheng Road, Shanghai, China
| |
Collapse
|
10
|
Yamanishi K, Hashimoto T, Miyauchi M, Mukai K, Ikubo K, Uwa N, Watanabe Y, Ikawa T, Okuzaki D, Okamura H, Yamanishi H, Matsunaga H. Analysis of genes linked to depressive-like behaviors in interleukin-18-deficient mice: Gene expression profiles in the brain. Biomed Rep 2019; 12:3-10. [PMID: 31839943 DOI: 10.3892/br.2019.1259] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2019] [Accepted: 10/23/2019] [Indexed: 01/21/2023] Open
Abstract
Interleukin (IL)-18 is an interferon γ-inducing inflammatory cytokine associated with function of the immune system and other physiological functions. IL-18-deficient (Il18 -/-) mice exhibit obesity, dyslipidemia, non-alcoholic steatohepatitis and depressive-like behavioral changes. Therefore, IL-18 has a number of important roles associated with immunity, energy homeostasis and psychiatric conditions. In the present study, gene expression in the brains of Il18 -/- mice was analyzed to identify genes associated with the depressive-like behaviors and other impairments displayed by Il18 -/- mice. Using whole genome microarray analysis, gene expression patterns in the brains of Il18 +/+ and Il18 -/- mice at 6 and 12 weeks of age were examined and compared. Subsequently, genes were categorized using Ingenuity® Pathway Analysis (IPA). At 12 weeks of age, 2,805 genes were identified using microarray analysis. Genes related to 'Major depression' and 'Depressive disorders' were identified by IPA core analysis, and 13 genes associated with depression were isolated. Among these genes, fibroblast growth factor receptor 1 (Fgfr1); protein tyrosine phosphatase, non-receptor type 1 (Ptpn1); and urocortin 3 (Ucn3) were classed as depression-inducing and the other genes were considered depression-suppressing genes. Subsequently, the interactions between the microarray results at 6 weeks of age and the above three depression-inducing genes were analyzed to search for effector genes of depression at 12 weeks of age. This analysis identified cyclin D1 (Ccnd1) and NADPH oxidase 4 (Nox4). The microarray analysis results were correlated with the results of reverse transcription-quantitative PCR (RT-qPCR). Overall, the results suggest that Fgfr1, Ptpn1 and Ucn3 may be involved in depression-like changes and Ccnd1 and Nox4 regulate these three genes in IL-18-deficient mice.
Collapse
Affiliation(s)
- Kyosuke Yamanishi
- Department of Psychoimmunology, Hyogo College of Medicine, Nishinomiya, Hyogo 663-8501, Japan.,Department of Neuropsychiatry, Hyogo College of Medicine, Nishinomiya, Hyogo 663-8501, Japan
| | - Takuya Hashimoto
- Department of Neuropsychiatry, Hyogo College of Medicine, Nishinomiya, Hyogo 663-8501, Japan
| | - Masahiro Miyauchi
- Department of Neuropsychiatry, Hyogo College of Medicine, Nishinomiya, Hyogo 663-8501, Japan
| | - Keiichiro Mukai
- Department of Neuropsychiatry, Hyogo College of Medicine, Nishinomiya, Hyogo 663-8501, Japan
| | - Kaoru Ikubo
- Department of Neuropsychiatry, Hyogo College of Medicine, Nishinomiya, Hyogo 663-8501, Japan
| | - Noriko Uwa
- Department of Neuropsychiatry, Hyogo College of Medicine, Nishinomiya, Hyogo 663-8501, Japan
| | - Yuko Watanabe
- Hirakata General Hospital for Developmental Disorders, Hirakata, Osaka 573-0122, Japan
| | - Takashi Ikawa
- Hirakata General Hospital for Developmental Disorders, Hirakata, Osaka 573-0122, Japan
| | - Daisuke Okuzaki
- Genome Information Research Center, Research Institute for Microbial Diseases, Osaka University, Suita, Osaka 565-0871, Japan
| | - Haruki Okamura
- Department of Psychoimmunology, Hyogo College of Medicine, Nishinomiya, Hyogo 663-8501, Japan.,Hirakata General Hospital for Developmental Disorders, Hirakata, Osaka 573-0122, Japan
| | - Hiromichi Yamanishi
- Hirakata General Hospital for Developmental Disorders, Hirakata, Osaka 573-0122, Japan
| | - Hisato Matsunaga
- Department of Psychoimmunology, Hyogo College of Medicine, Nishinomiya, Hyogo 663-8501, Japan.,Department of Neuropsychiatry, Hyogo College of Medicine, Nishinomiya, Hyogo 663-8501, Japan
| |
Collapse
|
11
|
Mitochondrial Uncoupling: A Key Controller of Biological Processes in Physiology and Diseases. Cells 2019; 8:cells8080795. [PMID: 31366145 PMCID: PMC6721602 DOI: 10.3390/cells8080795] [Citation(s) in RCA: 274] [Impact Index Per Article: 45.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2019] [Revised: 07/26/2019] [Accepted: 07/28/2019] [Indexed: 12/27/2022] Open
Abstract
Mitochondrial uncoupling can be defined as a dissociation between mitochondrial membrane potential generation and its use for mitochondria-dependent ATP synthesis. Although this process was originally considered a mitochondrial dysfunction, the identification of UCP-1 as an endogenous physiological uncoupling protein suggests that the process could be involved in many other biological processes. In this review, we first compare the mitochondrial uncoupling agents available in term of mechanistic and non-specific effects. Proteins regulating mitochondrial uncoupling, as well as chemical compounds with uncoupling properties are discussed. Second, we summarize the most recent findings linking mitochondrial uncoupling and other cellular or biological processes, such as bulk and specific autophagy, reactive oxygen species production, protein secretion, cell death, physical exercise, metabolic adaptations in adipose tissue, and cell signaling. Finally, we show how mitochondrial uncoupling could be used to treat several human diseases, such as obesity, cardiovascular diseases, or neurological disorders.
Collapse
|