1
|
Yu W, Lv Y, Xuan R, Han P, Xu H, Ma X. Human placental mesenchymal stem cells transplantation repairs the alveolar epithelial barrier to alleviate lipopolysaccharides-induced acute lung injury. Biochem Pharmacol 2024; 229:116547. [PMID: 39306309 DOI: 10.1016/j.bcp.2024.116547] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2024] [Revised: 08/18/2024] [Accepted: 09/17/2024] [Indexed: 09/28/2024]
Abstract
Acute lung injury (ALI) and acute respiratory distress syndrome (ARDS) are accompanied by high mortality rates and few effective treatments. Transplantation of human placental mesenchymal stem cells (hPMSCs) may attenuate ALI and the mechanism is still unclear. Our study aimed to elucidate the potential protective effect and therapeutic mechanism of hPMSCs against lipopolysaccharide (LPS)-induced ALI, An ALI model was induced by tracheal instillation of LPS into wild-type (WT) and angiotensin-converting enzyme 2 (ACE2) knockout (KO) male mice, followed by injection of hPMSCs by tail vein. Treatment with hPMSCs improved pulmonary histopathological injury, reduced pulmonary injury scores, decreased leukocyte count and protein levels in bronchoalveolar lavage fluid(BALF), protected the damaged alveolar epithelial barrier, and reversed LPS-induced upregulation of pro-inflammatory factors Interleukin-6 (IL-6) and Tumor necrosis factor-α(TNF-α) and downregulation of anti-inflammatory factor Interleukin-6(IL-10) in BALF. Moreover, administration of hPMSCs inhibited Angiotensin (Ang)II activation and promoted the expression levels of ACE2 and Ang (1-7) in ALI mice. Pathological damage, inflammation levels, and disruption of alveolar epithelial barrier in ALI mice were elevated after the deletion of ACE2 gene, and the Renin angiotensin system (RAS) imbalance was exacerbated. The therapeutic effect of hPMSCs was significantly reduced in ACE2 KO mice. Our findings suggest that ACE2 plays a key role in hPMSCs repairing the alveolar epithelial barrier to protect against ALI, laying a new foundation for the clinical treatment of ALI.
Collapse
Affiliation(s)
- Wenqin Yu
- Clinical Medical College of Ningxia Medical University, Yinchuan Province 750004, China; Ningxia Institute of Human Stem Cells, Yinchuan Province 750004, China; Intensive Care Unit, Cardiocerebral Vascular Disease Hospital of General Hospital of Ningxia Medical University, Yinchuan Province 750002, China
| | - Yuzhen Lv
- Clinical Medical College of Ningxia Medical University, Yinchuan Province 750004, China; Ningxia Institute of Human Stem Cells, Yinchuan Province 750004, China; Intensive Care Unit, Cardiocerebral Vascular Disease Hospital of General Hospital of Ningxia Medical University, Yinchuan Province 750002, China
| | - Ruirui Xuan
- Clinical Medical College of Ningxia Medical University, Yinchuan Province 750004, China; Intensive Care Unit, Cardiocerebral Vascular Disease Hospital of General Hospital of Ningxia Medical University, Yinchuan Province 750002, China
| | - Peipei Han
- Clinical Medical College of Ningxia Medical University, Yinchuan Province 750004, China; Intensive Care Unit, Cardiocerebral Vascular Disease Hospital of General Hospital of Ningxia Medical University, Yinchuan Province 750002, China
| | - Haihuan Xu
- Clinical Medical College of Ningxia Medical University, Yinchuan Province 750004, China; Ningxia Institute of Human Stem Cells, Yinchuan Province 750004, China; Intensive Care Unit, Cardiocerebral Vascular Disease Hospital of General Hospital of Ningxia Medical University, Yinchuan Province 750002, China
| | - Xiaowei Ma
- Clinical Medical College of Ningxia Medical University, Yinchuan Province 750004, China; Intensive Care Unit, Cardiocerebral Vascular Disease Hospital of General Hospital of Ningxia Medical University, Yinchuan Province 750002, China.
| |
Collapse
|
2
|
Wang F, Li R, Xu JY, Bai X, Wang Y, Chen XR, Pan C, Chen S, Zhou K, Heng BC, Wu X, Guo W, Song Z, Jin SC, Zhou J, Zou XH, Ouyang HW, Liu H. Downregulating human leucocyte antigens on mesenchymal stromal cells by epigenetically repressing a β 2-microglobulin super-enhancer. Nat Biomed Eng 2024:10.1038/s41551-024-01264-w. [PMID: 39433971 DOI: 10.1038/s41551-024-01264-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2022] [Accepted: 09/13/2024] [Indexed: 10/23/2024]
Abstract
Immune rejection caused by mismatches in human leucocyte antigens (HLAs) remains a major obstacle to the success of allogeneic cell therapies. Current strategies for the generation of 'universal' immune-compatible cells, particularly the editing of HLA class I (HLA-I) genes or the modulation of proteins that inhibit natural killer cells, often result in genomic instability or cellular cytotoxicity. Here we show that a β2-microglobulin super-enhancer (B2M-SE) that is responsive to interferon-γ is a critical regulator of the expression of HLA-I on mesenchymal stromal cells (MSCs). Targeted epigenetic repression of B2M-SE in MSCs reduced the surface expression of HLA-I below the threshold required to activate allogenic T cells while maintaining levels sufficient to evade cytotoxicity mediated by natural killer cells. In a humanized mouse model, the epigenetically edited MSCs demonstrated improved survival by evading the immune system, allowing them to exert enhanced therapeutic effects on LPS-induced acute lung injury. Targeted epigenetic repression of B2M-SE may facilitate the development of off-the-shelf cell sources for allogeneic cell therapy.
Collapse
Affiliation(s)
- Fei Wang
- Department of Sports Medicine of the Second Affiliated Hospital, and Liangzhu Laboratory, Zhejiang University School of Medicine, Hangzhou, China
- Dr. Li Dak Sum & Yip Yio Chin Center for Stem Cells and Regenerative Medicine, Zhejiang University School of Medicine, Hangzhou, China
| | - Ran Li
- Key Laboratory of Novel Targets and Drug Study for Neural Repair of Zhejiang Province, Hangzhou City University School of Medicine, Hangzhou, China
| | - Jing Yi Xu
- Dr. Li Dak Sum & Yip Yio Chin Center for Stem Cells and Regenerative Medicine, Zhejiang University School of Medicine, Hangzhou, China
| | - Xiaoxia Bai
- The Women's Hospital, Zhejiang University School of Medicine and Key Laboratory of Women's Reproduction Health of Zhejiang Province, Hangzhou, China
| | - Ying Wang
- Dr. Li Dak Sum & Yip Yio Chin Center for Stem Cells and Regenerative Medicine, Zhejiang University School of Medicine, Hangzhou, China
| | - Xu Ri Chen
- Dr. Li Dak Sum & Yip Yio Chin Center for Stem Cells and Regenerative Medicine, Zhejiang University School of Medicine, Hangzhou, China
| | - Chen Pan
- Key Laboratory of Novel Targets and Drug Study for Neural Repair of Zhejiang Province, Hangzhou City University School of Medicine, Hangzhou, China
| | - Shen Chen
- Department of Toxicology, School of Public Health, Sun Yat-sen University, Guangzhou, China
| | - Ke Zhou
- Dr. Li Dak Sum & Yip Yio Chin Center for Stem Cells and Regenerative Medicine, Zhejiang University School of Medicine, Hangzhou, China
| | - Boon Chin Heng
- Central Laboratories, Peking University School of Stomatology, Beijing, China
| | - Xuewei Wu
- Zhejiang University-University of Edinburgh Institute, Zhejiang University School of Medicine, Haining, China
| | - Wei Guo
- Zhejiang University-University of Edinburgh Institute, Zhejiang University School of Medicine, Haining, China
| | - Zhe Song
- Dr. Li Dak Sum & Yip Yio Chin Center for Stem Cells and Regenerative Medicine, Zhejiang University School of Medicine, Hangzhou, China
| | - Shu Cheng Jin
- Dr. Li Dak Sum & Yip Yio Chin Center for Stem Cells and Regenerative Medicine, Zhejiang University School of Medicine, Hangzhou, China
| | - Jing Zhou
- Department of Sports Medicine of the Second Affiliated Hospital, and Liangzhu Laboratory, Zhejiang University School of Medicine, Hangzhou, China
- Dr. Li Dak Sum & Yip Yio Chin Center for Stem Cells and Regenerative Medicine, Zhejiang University School of Medicine, Hangzhou, China
| | - Xiao Hui Zou
- Central laboratory, The First Affiliated Hospital School of Medicine, Zhejiang University, Hangzhou, China.
| | - Hong Wei Ouyang
- Department of Sports Medicine of the Second Affiliated Hospital, and Liangzhu Laboratory, Zhejiang University School of Medicine, Hangzhou, China.
- Dr. Li Dak Sum & Yip Yio Chin Center for Stem Cells and Regenerative Medicine, Zhejiang University School of Medicine, Hangzhou, China.
- Zhejiang University-University of Edinburgh Institute, Zhejiang University School of Medicine, Haining, China.
- China Orthopedic Regenerative Medicine Group (CORMed), Hangzhou, China.
| | - Hua Liu
- Department of Sports Medicine of the Second Affiliated Hospital, and Liangzhu Laboratory, Zhejiang University School of Medicine, Hangzhou, China.
- Dr. Li Dak Sum & Yip Yio Chin Center for Stem Cells and Regenerative Medicine, Zhejiang University School of Medicine, Hangzhou, China.
| |
Collapse
|
3
|
Wen F, Yang G, Yu S, Liu H, Liao N, Liu Z. Mesenchymal stem cell therapy for liver transplantation: clinical progress and immunomodulatory properties. Stem Cell Res Ther 2024; 15:320. [PMID: 39334441 PMCID: PMC11438256 DOI: 10.1186/s13287-024-03943-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2024] [Accepted: 09/16/2024] [Indexed: 09/30/2024] Open
Abstract
Although liver transplantation (LT) is an effective strategy for end-stage liver diseases, the shortage of donor organs and the immune rejection hinder its widespread implementation in clinical practice. Mesenchymal stem cells (MSCs) transplantation offers a promising approach for patients undergoing liver transplantation due to their immune regulatory capabilities, hepatic protection properties, and multidirectional differentiation potential. In this review, we summarize the potential applications of MSCs transplantation in various LT scenarios. MSCs transplantation has demonstrated effectiveness in alleviating hepatic ischemia-reperfusion injury, enhancing the viability of liver grafts, preventing acute graft-versus-host disease, and promoting liver regeneration in split LT therapy. We also discuss the clinical progress, and explore the immunomodulatory functions of MSCs in response to both adaptive and innate immune responses. Furthermore, we emphasize the interactions between MSCs and different immune cells, including T cells, B cells, plasma cells, natural killer cells, dendritic cells, Kupffer cells, and neutrophils, to provide new insights into the immunomodulatory properties of MSCs in adoptive cell therapy.
Collapse
Affiliation(s)
- Fuli Wen
- Fujian Provincial Hospital, Shengli Clinical Medical College of Fujian Medical University, Fuzhou University Affiliated Provincial Hospital, Fuzhou, 350001, China
| | - Guokai Yang
- Department of Nephrology, Fujian Provincial Hospital, Shengli Clinical Medical College of Fujian Medical University, Fuzhou, 350001, P. R. China
| | - Saihua Yu
- The United Innovation of Mengchao Hepatobiliary Technology Key Laboratory of Fujian Province, Mengchao Hepatobiliary Hospital of Fujian Medical University, Fuzhou, 350028, P. R. China
| | - Haiyan Liu
- The United Innovation of Mengchao Hepatobiliary Technology Key Laboratory of Fujian Province, Mengchao Hepatobiliary Hospital of Fujian Medical University, Fuzhou, 350028, P. R. China
| | - Naishun Liao
- The United Innovation of Mengchao Hepatobiliary Technology Key Laboratory of Fujian Province, Mengchao Hepatobiliary Hospital of Fujian Medical University, Fuzhou, 350028, P. R. China.
| | - Zhengfang Liu
- Department of Traditional Chinese Medicine, Mengchao Hepatobiliary Hospital of Fujian Medical University, Fuzhou, 350028, P. R. China.
| |
Collapse
|
4
|
Feehan J, Tripodi N, Kondrikov D, Wijeratne T, Gimble J, Hill W, Apostolopoulos V, Duque G. Differential Responses to Aging Among the Transcriptome and Proteome of Mesenchymal Progenitor Populations. J Gerontol A Biol Sci Med Sci 2024; 79:glae147. [PMID: 38837176 PMCID: PMC11369222 DOI: 10.1093/gerona/glae147] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2023] [Indexed: 06/06/2024] Open
Abstract
The biological aging of stem cells (exhaustion) is proposed to contribute to the development of a variety of age-related conditions. Despite this, little is understood about the specific mechanisms which drive this process. In this study, we assess the transcriptomic and proteomic changes in 3 different populations of mesenchymal progenitor cells from older (50-70 years) and younger (20-40 years) individuals to uncover potential mechanisms driving stem cell exhaustion in mesenchymal tissues. To do this, we harvested primary bone marrow mesenchymal stem and progenitor cells (MPCs), circulating osteoprogenitors (COP), and adipose-derived stem cells (ADSCs) from younger and older donors, with an equal number of samples from men and women. These samples underwent RNA sequencing and label-free proteomic analysis, comparing the younger samples to the older ones. There was a distinct transcriptomic phenotype in the analysis of pooled older stem cells, suggestive of suppressed proliferation and differentiation; however, these changes were not reflected in the proteome of the cells. Analyzed independently, older MPCs had a distinct phenotype in both the transcriptome and proteome consistent with altered differentiation and proliferation with a proinflammatory immune shift in older adults. COP cells showed a transcriptomic shift to proinflammatory signaling but no consistent proteomic phenotype. Similarly, ADSCs displayed transcriptomic shifts in physiologies associated with cell migration, adherence, and immune activation but no proteomic change with age. These results show that there are underlying transcriptomic changes with stem cell aging that may contribute to a decline in tissue regeneration. However, the proteome of the cells was inconsistently regulated.
Collapse
Affiliation(s)
- Jack Feehan
- Department of Medicine—Western Health, University of Melbourne, Melbourne, Victoria, Australia
- Institute for Health and Sport, Victoria University, Melbourne, Victoria, Australia
| | - Nicholas Tripodi
- Institute for Health and Sport, Victoria University, Melbourne, Victoria, Australia
- Australian Institute for Musculoskeletal Science (AIMSS), Western Health, Victoria University and University of Melbourne, Melbourne, Victoria, Australia
| | - Dmitry Kondrikov
- Department of Pathology and Laboratory Medicine, Medical University of South Carolina, Charleston, South Carolina, USA
| | - Tissa Wijeratne
- Department of Medicine—Western Health, University of Melbourne, Melbourne, Victoria, Australia
- Australian Institute for Musculoskeletal Science (AIMSS), Western Health, Victoria University and University of Melbourne, Melbourne, Victoria, Australia
| | - Jeffrey Gimble
- Center for Stem Cell Research and Regenerative Medicine, Tulane University School of Medicine, New Orleans, Louisiana, USA
| | - William Hill
- Department of Veterans Affairs, Ralph H Johnson VA Medical Center, Charleston, South Carolina, USA
- Center for Healthy Aging, Medical University of South Carolina, Charleston, South Carolina, USA
| | - Vasso Apostolopoulos
- Institute for Health and Sport, Victoria University, Melbourne, Victoria, Australia
- Australian Institute for Musculoskeletal Science (AIMSS), Western Health, Victoria University and University of Melbourne, Melbourne, Victoria, Australia
| | - Gustavo Duque
- Bone, Muscle & Geroscience Research Group, Research Institute of the McGill University Health Centre, Montreal, Quebec, Canada
- Department of Medicine, McGill University, Montreal, Quebec, Canada
| |
Collapse
|
5
|
Wang YC, Chen RF, Liu KF, Chen WY, Lee CC, Kuo YR. Adipose-derived stem cell modulate tolerogenic dendritic cell-induced T cell regulation is correlated with activation of Notch-NFκB signaling. Cytotherapy 2024; 26:890-898. [PMID: 38625070 DOI: 10.1016/j.jcyt.2024.03.482] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2023] [Revised: 03/01/2024] [Accepted: 03/22/2024] [Indexed: 04/17/2024]
Abstract
BACKGROUND Adipose-derived stem cells (ASCs) are recognized for their potential immunomodulatory properties. In the immune system, tolerogenic dendritic cells (DCs), characterized by an immature phenotype, play a crucial role in inducing regulatory T cells (Tregs) and promoting immune tolerance. Notch1 signaling has been identified as a key regulator in the development and function of DCs. However, the precise involvement of Notch1 pathway in ASC-mediated modulation of tolerogenic DCs and its impact on immune modulation remain to be fully elucidated. This study aims to investigate the interplay between ASCs and DCs, focusing the role of Notch1 signaling and downstream pathways in ASC-modulated tolerogenic DCs. METHODS Rat bone marrow-derived myeloid DCs were directly co-cultured with ASCs to generate ASC-treated DCs (ASC-DCs). Notch signaling was inhibited using DAPT, while NFκB pathways were inhibited by NEMO binding domain peptide and si-NIK. Flow cytometry assessed DC phenotypes. Real-time quantitative PCR, Western blotting and immunofluorescence determined the expression of Notch1, Jagged1 and the p52/RelB complex in ASC- DCs. RESULTS Notch1 and Jagged1 were highly expressed on both DCs and ASCs. ASC-DCs displayed significantly reduced levels of CD80, CD86 and MHC II compared to mature DCs. Inhibiting the Notch pathway with DAPT reversed the dedifferentiation effects. The percentage of induced CD25+/FOXP3+/CD4+ Tregs decreased when ASC-DCs were treated with DAPT (inhibition of the Notch pathway) and si-NIK (inhibition of the non-canonical NFκB pathway). CONCLUSIONS ASCs induce DC tolerogenicity by inhibiting maturation and promoting downstream Treg generation, involving the Notch and NFκB pathways. ASC-induced tolerogenic DCs can be a potential immunomodulatory tool for clinical application.
Collapse
Affiliation(s)
- Yu-Chi Wang
- Division of Plastic and Reconstruction Surgery, Department of Surgery, Kaohsiung Medical University Hospital, Kaohsiung, Taiwan
| | - Rong-Fu Chen
- Division of Plastic and Reconstruction Surgery, Department of Surgery, Kaohsiung Medical University Hospital, Kaohsiung, Taiwan
| | - Keng-Fan Liu
- Division of Plastic and Reconstruction Surgery, Department of Surgery, Kaohsiung Medical University Hospital, Kaohsiung, Taiwan
| | - Wei-Yu Chen
- Division of Plastic and Reconstruction Surgery, Department of Surgery, Kaohsiung Medical University Hospital, Kaohsiung, Taiwan
| | - Chia-Chun Lee
- Division of Plastic and Reconstruction Surgery, Department of Surgery, Kaohsiung Medical University Hospital, Kaohsiung, Taiwan
| | - Yur-Ren Kuo
- Division of Plastic and Reconstruction Surgery, Department of Surgery, Kaohsiung Medical University Hospital, Kaohsiung, Taiwan; Faculty of Medicine, College of Medicine, Orthopaedic Research Center, Regenerative Medicine, and Cell Therapy Research Center; Department of Surgery, Kaohsiung Ta-Tong Municipal Hospital, Kaohsiung Medical University, Kaohsiung, Taiwan; Department of Biological Sciences, National Sun Yat-Sen University, Kaohsiung, Taiwan; SingHealth Duke-NUS Musculoskeletal Sciences Academic Clinical Programme, Singapore.
| |
Collapse
|
6
|
Zhang S, Zhao X, Xue Y, Wang X, Chen XL. Advances in nanomaterial-targeted treatment of acute lung injury after burns. J Nanobiotechnology 2024; 22:342. [PMID: 38890721 PMCID: PMC11184898 DOI: 10.1186/s12951-024-02615-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2024] [Accepted: 06/04/2024] [Indexed: 06/20/2024] Open
Abstract
Acute lung injury (ALI) is a common complication in patients with severe burns and has a complex pathogenesis and high morbidity and mortality rates. A variety of drugs have been identified in the clinic for the treatment of ALI, but they have toxic side effects caused by easy degradation in the body and distribution throughout the body. In recent years, as the understanding of the mechanism underlying ALI has improved, scholars have developed a variety of new nanomaterials that can be safely and effectively targeted for the treatment of ALI. Most of these methods involve nanomaterials such as lipids, organic polymers, peptides, extracellular vesicles or cell membranes, inorganic nanoparticles and other nanomaterials, which are targeted to reach lung tissues to perform their functions through active targeting or passive targeting, a process that involves a variety of cells or organelles. In this review, first, the mechanisms and pathophysiological features of ALI occurrence after burn injury are reviewed, potential therapeutic targets for ALI are summarized, existing nanomaterials for the targeted treatment of ALI are classified, and possible problems and challenges of nanomaterials in the targeted treatment of ALI are discussed to provide a reference for the development of nanomaterials for the targeted treatment of ALI.
Collapse
Affiliation(s)
- Shuo Zhang
- Department of Burns, The First Affiliated Hospital of Anhui Medical University, Hefei, 230022, P. R. China
| | - Xinyu Zhao
- Department of Burns, The First Affiliated Hospital of Anhui Medical University, Hefei, 230022, P. R. China
| | - Yuhao Xue
- School of Biomedical Engineering, Anhui Medical University, Hefei, 230022, P. R. China
| | - Xianwen Wang
- School of Biomedical Engineering, Anhui Medical University, Hefei, 230022, P. R. China.
| | - Xu-Lin Chen
- Department of Burns, The First Affiliated Hospital of Anhui Medical University, Hefei, 230022, P. R. China.
| |
Collapse
|
7
|
Zhang S, Liu Y, Zhang XL, Sun Y, Lu ZH. ANKRD22 aggravates sepsis-induced ARDS and promotes pulmonary M1 macrophage polarization. J Transl Autoimmun 2024; 8:100228. [PMID: 38225946 PMCID: PMC10788270 DOI: 10.1016/j.jtauto.2023.100228] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2023] [Revised: 12/11/2023] [Accepted: 12/13/2023] [Indexed: 01/17/2024] Open
Abstract
Acute respiratory distress syndrome (ARDS) is independently associated with a poor prognosis in patients with sepsis. Macrophage M1 polarization plays an instrumental role in this process. Therefore, the exploration of key molecules affecting acute lung injury and macrophage M1 polarization may provide therapeutic targets for the treatment of septic ARDS. Here, we identified that elevated levels of Ankyrin repeat domain-containing protein 22 (ANKRD22) were associated with poor prognosis and more pronounced M1 macrophage polarization in septic patients by analyzing high-throughput data. ANKRD22 expression was also significantly upregulated in the alveolar lavage fluid, peripheral blood, and lung tissue of septic ARDS model mice. Knockdown of ANKRD22 significantly attenuated acute lung injury in mice with sepsis-induced ARDS and reduced the M1 polarization of lung macrophages. Furthermore, deletion of ANKRD22 in macrophages inhibited M1 macrophage polarization and reduced levels of phosphorylated IRF3 and intracellular interferon regulatory factor 3 (IRF3) expression, while re-expression of ANKRD22 reversed these changes. Further experiments revealed that ANKRD22 promotes IRF3 activation by binding to mitochondrial antiviral-signaling protein (MAVS). In conclusion, these findings suggest that ANKRD22 promotes the M1 polarization of lung macrophages and exacerbates sepsis-induced ARDS.
Collapse
Affiliation(s)
- Shi Zhang
- Jiangsu Provincial Key Laboratory of Critical Care Medicine, Department of Critical Care Medicine, ZhongdaHospital, Southeast University, Nanjing, Jiangsu, China
- Department of Pulmonary and Critical Care Medicine, Jinan Central Hospital Affiliated to Shandong First Medical University, Jinan, China
| | - Yao Liu
- Emergency Department of Drum Tower Hospital, The Affiliated Hospital of Nanjing University Medical School, No. 321 Zhongshan Road, Gulou District, Nanjing, China
| | - Xiao-Long Zhang
- Department of Ultrasound, Jinan Central Hospital Affiliated to Shandong First Medical University, Jinan, China
| | - Yun Sun
- The First Department of Critical Care Medicine, The Second Affiliated Hospital of Anhui Medical University, 678 Furong Road, Hefei, Anhui Province, 230601, China
| | - Zhong-Hua Lu
- The First Department of Critical Care Medicine, The Second Affiliated Hospital of Anhui Medical University, 678 Furong Road, Hefei, Anhui Province, 230601, China
| |
Collapse
|
8
|
Li W, Wang Y, Cheng F, Qi X, An Y, Zhao C. [Research advances of mesenchymal stem cell in allergic rhinitis]. LIN CHUANG ER BI YAN HOU TOU JING WAI KE ZA ZHI = JOURNAL OF CLINICAL OTORHINOLARYNGOLOGY, HEAD, AND NECK SURGERY 2024; 38:442-447;452. [PMID: 38686485 PMCID: PMC11387317 DOI: 10.13201/j.issn.2096-7993.2024.05.018] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Subscribe] [Scholar Register] [Received: 02/01/2023] [Indexed: 05/02/2024]
Abstract
Allergic rhinitis is a chronic nasal mucosal inflammation characterized by upper airway hyperresponsiveness, involving a variety of immune cells and inflammatory mediators. Drugs, immunotherapy, and surgical operation are the principal treatments at present. The study found that mesenchymal stem cells have the ability of immune regulation and have a promising clinical application in the treatment of allergic rhinitis. In this review, the action mechanism of mesenchymal stem cells, the immunomodulatory effect of mesenchymal stem cells on the key cells of allergic rhinitis, and the challenges of clinical application are reviewed, to provide new directions for the treatment of allergic rhinitis.
Collapse
Affiliation(s)
- Wenjin Li
- Second School of Clinical Medicine,Shanxi Medical University,Taiyuan,030001,China
- Department of Otorhinolaryngology Head Neck Surgery,the Second Hospital,Shanxi Medical University,Key Research Laboratory of Airway Neuroimmunology
| | - Yanjie Wang
- Department of Otorhinolaryngology Head Neck Surgery,the Second Hospital,Shanxi Medical University,Key Research Laboratory of Airway Neuroimmunology
| | - Fengli Cheng
- Department of Otorhinolaryngology Head Neck Surgery,the Second Hospital,Shanxi Medical University,Key Research Laboratory of Airway Neuroimmunology
| | - Xueping Qi
- Department of Otorhinolaryngology Head Neck Surgery,the Second Hospital,Shanxi Medical University,Key Research Laboratory of Airway Neuroimmunology
| | - Yunfang An
- Department of Otorhinolaryngology Head Neck Surgery,the Second Hospital,Shanxi Medical University,Key Research Laboratory of Airway Neuroimmunology
| | - Changqing Zhao
- Department of Otorhinolaryngology Head Neck Surgery,the Second Hospital,Shanxi Medical University,Key Research Laboratory of Airway Neuroimmunology
| |
Collapse
|
9
|
Yuan D, Bao Y, El-Hashash A. Mesenchymal stromal cell-based therapy in lung diseases; from research to clinic. AMERICAN JOURNAL OF STEM CELLS 2024; 13:37-58. [PMID: 38765802 PMCID: PMC11101986 DOI: 10.62347/jawm2040] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/10/2023] [Accepted: 03/02/2024] [Indexed: 05/22/2024]
Abstract
Recent studies demonstrated that mesenchymal stem cells (MSCs) are important for the cell-based therapy of diseased or injured lung due to their immunomodulatory and regenerative properties as well as limited side effects in experimental animal models. Preclinical studies have shown that MSCs have also a remarkable effect on the immune cells, which play major roles in the pathogenesis of multiple lung diseases, by modulating their activity, proliferation, and functions. In addition, MSCs can inhibit both the infiltrated immune cells and detrimental immune responses in the lung and can be used in treating lung diseases caused by a virus infection such as Tuberculosis and SARS-COV-2. Moreover, MSCs are a source for alveolar epithelial cells such as type 2 (AT2) cells. These MSC-derived functional AT2-like cells can be used to treat and diminish serious lung disorders, including acute lung injury, asthma, chronic obstructive pulmonary disease (COPD), and pulmonary fibrosis in animal models. As an alternative MSC-based therapy, extracellular vesicles that are derived from MSC-derived can be employed in regenerative medicine. Herein, we discussed the key research findings from recent clinical and preclinical studies on the functions of MSCs in treating some common and well-studied lung diseases. We also discussed the mechanisms underlying MSC-based therapy of well-studied lung diseases, and the recent employment of MSCs in both the attenuation of lung injury/inflammation and promotion of the regeneration of lung alveolar cells after injury. Finally, we described the role of MSC-based therapy in treating major pulmonary diseases such as pneumonia, COPD, asthma, and idiopathic pulmonary fibrosis (IPF).
Collapse
Affiliation(s)
- Dailin Yuan
- Zhejiang UniversityHangzhou 310058, Zhejiang, PR China
| | - Yufei Bao
- School of Biomedical Engineering, University of SydneyDarlington, NSW 2008, Australia
| | - Ahmed El-Hashash
- Texas A&M University, 3258 TAMU, College StationTX 77843-3258, USA
| |
Collapse
|
10
|
Huang X, Tan X, Xie X, Jiang T, Xiao Y, Liu Z. Successful salvage of a severe COVID-19 patient previously with lung cancer and radiation pneumonitis by mesenchymal stem cells: a case report and literature review. Front Immunol 2024; 15:1321236. [PMID: 38380312 PMCID: PMC10876893 DOI: 10.3389/fimmu.2024.1321236] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2023] [Accepted: 01/04/2024] [Indexed: 02/22/2024] Open
Abstract
During the COVID-19 pandemic, elderly patients with underlying condition, such as tumors, had poor prognoses after progressing to severe pneumonia and often had poor response to standard treatment. Mesenchymal stem cells (MSCs) may be a promising treatment for patients with severe pneumonia, but MSCs are rarely used for patients with carcinoma. Here, we reported a 67-year-old female patient with lung adenocarcinoma who underwent osimertinib and radiotherapy and suffered from radiation pneumonitis. Unfortunately, she contracted COVID-19 and that rapidly progressed to severe pneumonia. She responded poorly to frontline treatment and was in danger. Subsequently, she received a salvage treatment with four doses of MSCs, and her symptoms surprisingly improved quickly. After a lung CT scan that presented with a significantly improved infection, she was discharged eventually. Her primary disease was stable after 6 months of follow-up, and no tumor recurrence or progression was observed. MSCs may be an effective treatment for hyperactive inflammation due to their ability related to immunomodulation and tissue repair. Our case suggests a potential value of MSCs for severe pneumonia that is unresponsive to conventional therapy after a COVID-19 infection. However, unless the situation is urgent, it needs to be considered with caution for patients with tumors. The safety in tumor patients still needs to be observed.
Collapse
Affiliation(s)
- Xiaohua Huang
- Department of Hematology, The First Affiliated Hospital of Guangzhou University of Chinese Medicine, Guangzhou, China
- Department of Hematology, Dongzhimen Hospital of Beijing University of Chinese Medicine, Beijing, China
| | - Xin Tan
- Department of Rehabilitation Medicine, Southern Theater General Hospital, Guangzhou, China
| | - Xiuwen Xie
- The First Clinical Medical College, Guangzhou University of Chinese Medicine, Guangzhou, China
| | - Tingshu Jiang
- Department of Respiratory and Critical Care Medicine, Yantai Yuhuangding Hospital, Yantai, China
| | - Yang Xiao
- Department of Hematology, Shenzhen Qianhai Shekou Pilot Free Trade Zone Hospital, Shenzhen, China
| | - Zenghui Liu
- Department of Hematology, The First Affiliated Hospital of Guangzhou University of Chinese Medicine, Guangzhou, China
| |
Collapse
|
11
|
Huang Q, Le Y, Li S, Bian Y. Signaling pathways and potential therapeutic targets in acute respiratory distress syndrome (ARDS). Respir Res 2024; 25:30. [PMID: 38218783 PMCID: PMC10788036 DOI: 10.1186/s12931-024-02678-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2023] [Accepted: 01/03/2024] [Indexed: 01/15/2024] Open
Abstract
Acute respiratory distress syndrome (ARDS) is a common condition associated with critically ill patients, characterized by bilateral chest radiographical opacities with refractory hypoxemia due to noncardiogenic pulmonary edema. Despite significant advances, the mortality of ARDS remains unacceptably high, and there are still no effective targeted pharmacotherapeutic agents. With the outbreak of coronavirus disease 19 worldwide, the mortality of ARDS has increased correspondingly. Comprehending the pathophysiology and the underlying molecular mechanisms of ARDS may thus be essential to developing effective therapeutic strategies and reducing mortality. To facilitate further understanding of its pathogenesis and exploring novel therapeutics, this review provides comprehensive information of ARDS from pathophysiology to molecular mechanisms and presents targeted therapeutics. We first describe the pathogenesis and pathophysiology of ARDS that involve dysregulated inflammation, alveolar-capillary barrier dysfunction, impaired alveolar fluid clearance and oxidative stress. Next, we summarize the molecular mechanisms and signaling pathways related to the above four aspects of ARDS pathophysiology, along with the latest research progress. Finally, we discuss the emerging therapeutic strategies that show exciting promise in ARDS, including several pharmacologic therapies, microRNA-based therapies and mesenchymal stromal cell therapies, highlighting the pathophysiological basis and the influences on signal transduction pathways for their use.
Collapse
Affiliation(s)
- Qianrui Huang
- Department of Critical Care Medicine, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, No.1095, Jie Fang Avenue, Wuhan, 430030, China
- Department of Emergency Medicine, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, No. 1095, Jie Fang Avenue, Wuhan, 430030, China
| | - Yue Le
- Department of Critical Care Medicine, Zhongda Hospital, School of Medicine, Southeast University, 87 Dingjia Bridge, Hunan Road, Gu Lou District, Nanjing, 210009, China
| | - Shusheng Li
- Department of Critical Care Medicine, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, No.1095, Jie Fang Avenue, Wuhan, 430030, China.
- Department of Emergency Medicine, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, No. 1095, Jie Fang Avenue, Wuhan, 430030, China.
| | - Yi Bian
- Department of Critical Care Medicine, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, No.1095, Jie Fang Avenue, Wuhan, 430030, China.
- Department of Emergency Medicine, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, No. 1095, Jie Fang Avenue, Wuhan, 430030, China.
| |
Collapse
|
12
|
Duque G, Feehan J, Tripodi N, Kondrikov D, Wijeratne T, Gimble J, Hill W, Apostolopoulos V. Differential responses to aging amongst the transcriptome and proteome of mesenchymal progenitor populations. RESEARCH SQUARE 2023:rs.3.rs-3755129. [PMID: 38168272 PMCID: PMC10760299 DOI: 10.21203/rs.3.rs-3755129/v1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/05/2024]
Abstract
The biological aging of mesenchymal stem cells is proposed to contribute to the development of a range of musculoskeletal and systemic diseases associated with older adults, such as osteoporosis, sarcopenia, and frailty. Despite this, little is understood about the specific mechanisms which drive this stem cell exhaustion, with most studies evaluating indirect effects of other aging changes, such as DNA damage, senescence, and inflammaging. In this study, we assess the transcriptomic and proteomic changes in three different populations of mesenchymal progenitor cells from older (50-70 years) and younger (20-40 years) individuals to uncover potential mechanisms driving stem cell exhaustion in mesenchymal tissues. To do this, we harvested primary bone marrow mesenchymal stem and progenitor cells (MPCs), circulating osteoprogenitors (COP), and adipose-derived stem cells (ADSCs) from younger and older donors, with an equal number of samples from males and females. These samples underwent RNA sequencing and label-free proteomic analysis, comparing the younger samples to the older ones. There was a distinct transcriptomic phenotype associated with the pooled older stem cells, indicative of suppressed proliferation and differentiation; however, there was no consistent change in the proteome of the cells. Older MPCs had a distinct phenotype in both the transcriptome and proteome, again consistent with altered differentiation and proliferation, but also a pro-inflammatory immune shift in older adults. COP cells showed a strong transcriptomic shift to pro-inflammatory signaling but no consistent proteomic phenotype. Similarly, ADSCs displayed transcriptomic shift in physiologies associated with cell migration, adherence, and immune activation, but no consistent proteomic change with age. These results show that there are underlying transcriptomic changes with stem cell aging that likely contribute to a decline in tissue regeneration; however, contextual factors such as the microenvironment and general health status also have a strong role in this.
Collapse
|
13
|
Liu Q, Chen C, He Y, Mai W, Ruan S, Ning Y, Li Y. Notch Signaling Regulates the Function and Phenotype of Dendritic Cells in Helicobacter pylori Infection. Microorganisms 2023; 11:2818. [PMID: 38004829 PMCID: PMC10673485 DOI: 10.3390/microorganisms11112818] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2023] [Revised: 11/13/2023] [Accepted: 11/14/2023] [Indexed: 11/26/2023] Open
Abstract
Notch signaling manipulates the function and phenotype of dendritic cells (DCs), as well as the interaction between DCs and CD4+ T cells. However, the role of Notch signaling in Helicobacter pylori (H. pylori) infection remains elusive. Murine bone marrow-derived dendritic cells (BMDCs) were pretreated in the absence or presence of Notch signaling inhibitor DAPT prior to H. pylori stimulation and the levels of Notch components, cytokines and surface markers as well as the differentiation of CD4+ T cells in co-culture were measured using quantitative real-time PCR (qRT-PCR), Western blot, enzyme-linked immunosorbent assay (ELISA) and flow cytometry. Compared with the control, the mRNA expression of all Notch receptors and Notch ligands Dll4 and Jagged1 was up-regulated in H. pylori-stimulated BMDCs. The blockade of Notch signaling by DAPT influenced the production of IL-1β and IL-10 in H. pylori-pulsed BMDCs, and reduced the expression of Notch1, Notch3, Notch4, Dll1, Dll3 and Jagged2. In addition, DAPT pretreatment decreased the expression of maturation markers CD80, CD83, CD86, and major histocompatibility complex class II (MHC-II) of BMDCs, and further skewed Th17/Treg balance toward Treg. Notch signaling regulates the function and phenotype of DCs, thus mediating the differentiation of CD4+ T cells during H. pylori infection.
Collapse
Affiliation(s)
| | | | | | | | | | - Yunshan Ning
- School of Laboratory Medicine and Biotechnology, Southern Medical University, No. 1023, South Shatai Road, Baiyun District, Guangzhou 510515, China (W.M.)
| | - Yan Li
- School of Laboratory Medicine and Biotechnology, Southern Medical University, No. 1023, South Shatai Road, Baiyun District, Guangzhou 510515, China (W.M.)
| |
Collapse
|
14
|
Wu J, Huang QM, Liu Y, Zhou J, Tang WR, Wang XY, Wang LF, Zhang ZH, Tan HL, Guan XH, Deng KY, Xin HB. Long-term hypoxic hUCMSCs-derived extracellular vesicles alleviates allergic rhinitis through triggering immunotolerance of their VEGF-mediated inhibition of dendritic cells maturation. Int Immunopharmacol 2023; 124:110875. [PMID: 37742368 DOI: 10.1016/j.intimp.2023.110875] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2023] [Revised: 08/18/2023] [Accepted: 08/27/2023] [Indexed: 09/26/2023]
Abstract
BACKGROUND Extensions of mesenchymal stem cells (MSCs) in vitro may lead to the loss of their biological functions. However, hypoxic culturation has been shown to enhance the proliferation, survival, and immunomodulatory capacity of MSCs. OBJECTIVE We aimed to investigate the effects of long-term hypoxic cultivation on the properties of human umbilical cord-derived MSCs (hUCMSCs) and the therapeutic effects of their extracellular vesicles (EVs) in allergic rhinitis (AR). METHODS Proliferation, senescence, telomerase activity and multipotent properties of hUCMSCs were analyzed under long-term culturation of hypoxia (1%) or normoxia (21%), and the therapeutic effects of their conditional medium (CM) and EVs were evaluated in OVA-induced AR mice. Effects of hypoxia-EVs (Hy-EVs) or normoxia-EVs (No-EVs) on human monocyte-derived dendritic cells (DCs) were investigated, and the possible mechanisms of Hy-EVs in induction of immunotolerance were further explored. RESULTS Long-term hypoxia significantly promoted the proliferation, inhibited cell senescence, maintained the multipotent status of hUCMSCs. Hy-CM and Hy-EVs showed better therapeutic effects in AR mice compared to No-EVs, seen as improvement of AR-related behaviors such as rubbing and sneezing, and attenuation of inflammation in nasal tissues. In addition, Hy-EVs significantly reduced the expressions of HLA-DR, CD80, CD40, and CD83 induced by OVA plus LPS in DCs, inhibiting the maturation of DCs. Furthermore, we observed that VEGF was remarkably enriched in Hy-EVs, but not in No-EVs, and the inhibition of DCs maturation was markedly neutralized by VEGF antibodies, suggesting that VEGF derived from Hy-EVs was responsible for the inhibition of DCs maturation. CONCLUSION Our results demonstrated that long-term hypoxia significantly promoted the proliferation, inhibited cell senescence, maintained the multipotent status of hUCMSCs, and hypoxia treated hUCMSCs-derived EVs enhanced their therapeutic effects in AR mice through VEGF-mediated inhibition of DCs maturation.
Collapse
Affiliation(s)
- Jie Wu
- The National Engineering Research Center for Bioengineering Drugs and the Technologies, Institute of Translational Medicine, Nanchang University, Nanchang 330031, China; College of Life Science, Nanchang University, Nanchang 330031, China; Department of Respiratory and Critical Care Medicine, The First Affiliated Hospital of Nanchang University, Nanchang 330052, China
| | - Qi-Ming Huang
- The National Engineering Research Center for Bioengineering Drugs and the Technologies, Institute of Translational Medicine, Nanchang University, Nanchang 330031, China; College of Life Science, Nanchang University, Nanchang 330031, China
| | - Yu Liu
- The National Engineering Research Center for Bioengineering Drugs and the Technologies, Institute of Translational Medicine, Nanchang University, Nanchang 330031, China; Department of Respiratory and Critical Care Medicine, The First Affiliated Hospital of Nanchang University, Nanchang 330052, China
| | - Juan Zhou
- Department of Gynecology and Obstetrics, The First Affiliated Hospital of Nanchang University, Nanchang 330052, China
| | - Wen-Rong Tang
- The National Engineering Research Center for Bioengineering Drugs and the Technologies, Institute of Translational Medicine, Nanchang University, Nanchang 330031, China
| | - Xiao-Yu Wang
- The National Engineering Research Center for Bioengineering Drugs and the Technologies, Institute of Translational Medicine, Nanchang University, Nanchang 330031, China
| | - Lin-Fang Wang
- The National Engineering Research Center for Bioengineering Drugs and the Technologies, Institute of Translational Medicine, Nanchang University, Nanchang 330031, China
| | - Zhou-Hang Zhang
- The National Engineering Research Center for Bioengineering Drugs and the Technologies, Institute of Translational Medicine, Nanchang University, Nanchang 330031, China
| | - Hui-Lan Tan
- The National Engineering Research Center for Bioengineering Drugs and the Technologies, Institute of Translational Medicine, Nanchang University, Nanchang 330031, China
| | - Xiao-Hui Guan
- The National Engineering Research Center for Bioengineering Drugs and the Technologies, Institute of Translational Medicine, Nanchang University, Nanchang 330031, China.
| | - Ke-Yu Deng
- The National Engineering Research Center for Bioengineering Drugs and the Technologies, Institute of Translational Medicine, Nanchang University, Nanchang 330031, China; College of Life Science, Nanchang University, Nanchang 330031, China.
| | - Hong-Bo Xin
- The National Engineering Research Center for Bioengineering Drugs and the Technologies, Institute of Translational Medicine, Nanchang University, Nanchang 330031, China; College of Life Science, Nanchang University, Nanchang 330031, China.
| |
Collapse
|
15
|
Ortiz GGR, Zaidi NH, Saini RS, Ramirez Coronel AA, Alsandook T, Hadi Lafta M, Arias-Gonzáles JL, Amin AH, Maaliw Iii RR. The developing role of extracellular vesicles in autoimmune diseases: special attention to mesenchymal stem cell-derived extracellular vesicles. Int Immunopharmacol 2023; 122:110531. [PMID: 37437434 DOI: 10.1016/j.intimp.2023.110531] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2023] [Revised: 06/10/2023] [Accepted: 06/16/2023] [Indexed: 07/14/2023]
Abstract
Autoimmune diseases are complex, chronic inflammatory conditions initiated by the loss of immunological tolerance to self-antigens. Nowadays, there is no effective and useful therapy for autoimmune diseases, and the existing medications have some limitations due to their nonspecific targets and side effects. During the last few decades, it has been established that mesenchymal stem cells (MSCs) have immunomodulatory functions. It is proposed that MSCs can exert an important therapeutic effect on autoimmune disorders. In parallel with these findings, several investigations have shown that MSCs alleviate autoimmune diseases. Intriguingly, the results of studies have demonstrated that the effective roles of MSCs in autoimmune diseases do not depend on direct intercellular communication but on their ability to release a wide spectrum of paracrine mediators such as growth factors, cytokines and extracellular vehicles (EVs). EVs that range from 50 to 5,000 nm were produced by almost any cell type, and these nanoparticles participate in homeostasis and intercellular communication via the transfer of a broad range of biomolecules such as modulatory proteins, nucleic acids (DNA and RNA), lipids, cytokines, and metabolites. EVs derived from MSCs display the exact properties of MSCs and can be safer and more beneficial than their parent cells. In this review, we will discuss the features of MSCs and their EVs, EVs biogenesis, and their cargos, and then we will highlight the existing discoveries on the impacts of EVs from MSCs on autoimmune diseases such as multiple sclerosis, arthritis rheumatic, inflammatory bowel disease, Type 1 diabetes mellitus, systemic lupus erythematosus, autoimmune liver diseases, Sjögren syndrome, and osteoarthritis, suggesting a potential alternative for autoimmune conditions therapy.
Collapse
Affiliation(s)
- Geovanny Genaro Reivan Ortiz
- Laboratory of Basic Psychology, Behavioral Analysis and Programmatic Development (PAD-LAB), Catholic University of Cuenca, Cuenca, Ecuador
| | - Neelam Hazoor Zaidi
- Umanand Prasad School of Medicine and Health Science, The University of Fiji, Saweni Campus, Lautoka, Fiji
| | | | | | - Tahani Alsandook
- Dentistry Department, Al-Turath University College, Baghdad, Iraq
| | | | | | - Ali H Amin
- Zoology Department, Faculty of Science, Mansoura University, Mansoura 35516, Egypt
| | - Renato R Maaliw Iii
- College of Engineering, Southern Luzon State University, Lucban, Quezon, Philippines.
| |
Collapse
|
16
|
Wang J, Yang H, Zheng D, Sun Y, An L, Li G, Zhao Z. Integrating network pharmacology and pharmacological evaluation to reveal the therapeutic effects and potential mechanism of S-allylmercapto-N-acetylcysteine on acute respiratory distress syndrome. Int Immunopharmacol 2023; 121:110516. [PMID: 37369159 DOI: 10.1016/j.intimp.2023.110516] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2022] [Revised: 06/12/2023] [Accepted: 06/13/2023] [Indexed: 06/29/2023]
Abstract
In this research, we sought to examine the effectiveness of S-allylmercapto-N-acetylcysteine (ASSNAC) on LPS-provoked acute respiratory distress syndrome (ARDS) and its potential mechanism based on network pharmacology. To incorporate the effective targets of ASSNAC against ARDS, we firstly searched DisGeNET, TTD, GeneCards and OMIM databases. Then we used String database and Cytoscape program to create the protein-protein interaction network. Gene Ontology (GO) enrichment analysis and Kyoto Encyclopedia of Genes and Genomes (KEGG) pathway analysis both identified the potential pathways connected to genes. Cytoscape software was used to build the network of drug-targets-pathways and the SwissDock platform was applied to dock the molecule of ASSNAC with the key disease targets. Correspondingly, an ARDS model was established by instillation of LPS in mice to confirm the underlying action mechanism of ASSNAC on ARDS as indicated by the network pharmacology analysis. Results exhibited that 27 overlapping targets, including TLR4, ICAM1, HIF1A, MAPK1, NFKB1, and others, were filtered out. The in vivo experiments showed that ASSNAC alleviated LPS-induced lung injury by downregulating levels of pro-inflammatory mediators and lung dry-wet ratio. Also, ASSNAC attenuated oxidative stress evoked by LPS via diminishing MDA production and SOD consumption as well as upregulating HO-1 level through Nrf2 activation. Results from western blot, quantitative real-time PCR and immunohistochemistry suggested that ASSNAC developed its therapeutic effects by regulating TLR4/MyD88/NF-κB signaling pathway. In conclusion, our research presented the efficacy of ASSNAC against ARDS. Furthermore, the mechanism of ASSNAC on ARDS was clarified by combining network pharmacology prediction with experimental confirmation.
Collapse
Affiliation(s)
- Jinglong Wang
- College of Food Sciences and Pharmaceutical Engineering, Zaozhuang University, Zaozhuang 277160, PR China; Department of Pharmaceutics, Key Laboratory of Chemical Biology of Ministry of Education, School of Pharmaceutical Sciences, Cheeloo College of Medicine, Shandong University, 44 West Wenhua Road, Jinan, Shandong 250012, PR China
| | - Huatian Yang
- Department of Pharmaceutics, Key Laboratory of Chemical Biology of Ministry of Education, School of Pharmaceutical Sciences, Cheeloo College of Medicine, Shandong University, 44 West Wenhua Road, Jinan, Shandong 250012, PR China
| | - Dandan Zheng
- College of Food Sciences and Pharmaceutical Engineering, Zaozhuang University, Zaozhuang 277160, PR China; Department of Pharmaceutics, Key Laboratory of Chemical Biology of Ministry of Education, School of Pharmaceutical Sciences, Cheeloo College of Medicine, Shandong University, 44 West Wenhua Road, Jinan, Shandong 250012, PR China
| | - Yueyue Sun
- Department of Pharmaceutics, Key Laboratory of Chemical Biology of Ministry of Education, School of Pharmaceutical Sciences, Cheeloo College of Medicine, Shandong University, 44 West Wenhua Road, Jinan, Shandong 250012, PR China
| | - Lulu An
- Department of Pharmaceutics, Key Laboratory of Chemical Biology of Ministry of Education, School of Pharmaceutical Sciences, Cheeloo College of Medicine, Shandong University, 44 West Wenhua Road, Jinan, Shandong 250012, PR China
| | - Genju Li
- Department of Pharmaceutics, Key Laboratory of Chemical Biology of Ministry of Education, School of Pharmaceutical Sciences, Cheeloo College of Medicine, Shandong University, 44 West Wenhua Road, Jinan, Shandong 250012, PR China
| | - Zhongxi Zhao
- Department of Pharmaceutics, Key Laboratory of Chemical Biology of Ministry of Education, School of Pharmaceutical Sciences, Cheeloo College of Medicine, Shandong University, 44 West Wenhua Road, Jinan, Shandong 250012, PR China; Key University Laboratory of Pharmaceutics & Drug Delivery Systems of Shandong Province, School of Pharmaceutical Sciences, Cheeloo College of Medicine, Shandong University, 44 West Wenhua Road, Jinan, Shandong 250012, PR China; Pediatric Pharmaceutical Engineering Laboratory of Shandong Province, Shandong Dyne Marine Biopharmaceutical Company Limited, Rongcheng, Shandong 264300, PR China; Chemical Immunopharmaceutical Engineering Laboratory of Shandong Province, Shandong Xili Pharmaceutical Company Limited, Heze, Shandong 274300, PR China.
| |
Collapse
|
17
|
Liang TY, Lu LH, Tang SY, Zheng ZH, Shi K, Liu JQ. Current status and prospects of basic research and clinical application of mesenchymal stem cells in acute respiratory distress syndrome. World J Stem Cells 2023; 15:150-164. [PMID: 37180997 PMCID: PMC10173811 DOI: 10.4252/wjsc.v15.i4.150] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/20/2022] [Revised: 01/20/2023] [Accepted: 03/20/2023] [Indexed: 04/26/2023] Open
Abstract
Acute respiratory distress syndrome (ARDS) is a common and clinically devastating disease that causes respiratory failure. Morbidity and mortality of patients in intensive care units are stubbornly high, and various complications severely affect the quality of life of survivors. The pathophysiology of ARDS includes increased alveolar-capillary membrane permeability, an influx of protein-rich pulmonary edema fluid, and surfactant dysfunction leading to severe hypoxemia. At present, the main treatment for ARDS is mechanical treatment combined with diuretics to reduce pulmonary edema, which primarily improves symptoms, but the prognosis of patients with ARDS is still very poor. Mesenchymal stem cells (MSCs) are stromal cells that possess the capacity to self-renew and also exhibit multilineage differentiation. MSCs can be isolated from a variety of tissues, such as the umbilical cord, endometrial polyps, menstrual blood, bone marrow, and adipose tissues. Studies have confirmed the critical healing and immunomodulatory properties of MSCs in the treatment of a variety of diseases. Recently, the potential of stem cells in treating ARDS has been explored via basic research and clinical trials. The efficacy of MSCs has been shown in a variety of in vivo models of ARDS, reducing bacterial pneumonia and ischemia-reperfusion injury while promoting the repair of ventilator-induced lung injury. This article reviews the current basic research findings and clinical applications of MSCs in the treatment of ARDS in order to emphasize the clinical prospects of MSCs.
Collapse
Affiliation(s)
- Tian-Yu Liang
- Emergency and Critical Care Center, Intensive Care Unit, Zhejiang Provincial People's Hospital (Affiliated People's Hospital, Hangzhou Medical College), Hangzhou 310014, Zhejiang Province, China
| | - Li-Hai Lu
- Fourth School of Clinical Medicine, Zhejiang Chinese Medical University, Hangzhou 310053, Zhejiang Province, China
| | - Si-Yu Tang
- The Second School of Clinical Medicine, Zhejiang Chinese Medical University, Hangzhou 310053, Zhejiang Province, China
| | - Zi-Hao Zheng
- Fourth School of Clinical Medicine, Zhejiang Chinese Medical University, Hangzhou 310053, Zhejiang Province, China
| | - Kai Shi
- Department of Respiratory Medicine, The Affiliated Hospital of Hangzhou Normal University, Hangzhou 310015, Zhejiang Province, China
| | - Jing-Quan Liu
- Emergency and Critical Care Center, Intensive Care Unit, Zhejiang Provincial People's Hospital (Affiliated People's Hospital, Hangzhou Medical College), Hangzhou 310014, Zhejiang Province, China.
| |
Collapse
|
18
|
Abdolmohammadi K, Mahmoudi T, Alimohammadi M, Tahmasebi S, Zavvar M, Hashemi SM. Mesenchymal stem cell-based therapy as a new therapeutic approach for acute inflammation. Life Sci 2022; 312:121206. [PMID: 36403645 DOI: 10.1016/j.lfs.2022.121206] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2022] [Revised: 11/12/2022] [Accepted: 11/15/2022] [Indexed: 11/19/2022]
Abstract
Acute inflammatory diseases such as acute colitis, kidney injury, liver failure, lung injury, myocardial infarction, pancreatitis, septic shock, and spinal cord injury are significant causes of death worldwide. Despite advances in the understanding of its pathophysiology, there are many restrictions in the treatment of these diseases, and new therapeutic approaches are required. Mesenchymal stem cell-based therapy due to immunomodulatory and regenerative properties is a promising candidate for acute inflammatory disease management. Based on preclinical results, mesenchymal stem cells and their-derived secretome improved immunological and clinical parameters. Furthermore, many clinical trials of acute kidney, liver, lung, myocardial, and spinal cord injury have yielded promising results. In this review, we try to provide a comprehensive view of mesenchymal stem cell-based therapy in acute inflammatory diseases as a new treatment approach.
Collapse
Affiliation(s)
- Kamal Abdolmohammadi
- Department of Immunology, School of Medicine, Iranshahr University of Medical Sciences, Iranshahr, Iran
| | - Tayebeh Mahmoudi
- 17 Shahrivar Hospital, Mazandaran University of Medical Sciences, Sari, Iran
| | - Mina Alimohammadi
- Department of Immunology, School of Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Safa Tahmasebi
- Department of Immunology, School of Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Mahdi Zavvar
- Department of Medical Laboratory Sciences, School of Allied Medical Sciences, Tehran University of Medical Sciences, Tehran, Iran
| | - Seyed Mahmoud Hashemi
- Department of Immunology, School of Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran; Medical Nanothechnology and Tissue Engineering Research Center, Shahid Beheshti University of Medical Sciences, Tehran, Iran.
| |
Collapse
|
19
|
Li W, Li D, Chen Y, Abudou H, Wang H, Cai J, Wang Y, Liu Z, Liu Y, Fan H. Classic Signaling Pathways in Alveolar Injury and Repair Involved in Sepsis-Induced ALI/ARDS: New Research Progress and Prospect. DISEASE MARKERS 2022; 2022:6362344. [PMID: 35726235 PMCID: PMC9206211 DOI: 10.1155/2022/6362344] [Citation(s) in RCA: 30] [Impact Index Per Article: 15.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/29/2022] [Accepted: 05/23/2022] [Indexed: 11/18/2022]
Abstract
Sepsis is a common critical clinical disease with high mortality that can cause approximately 10 million deaths worldwide each year. Acute lung injury (ALI) or acute respiratory distress syndrome (ARDS) is a common clinical complication of sepsis, which occurs primarily as diffuse alveolar injury, hypoxemia, and respiratory distress. The mortality rate of ALI/ARDS is as high as 30%-40%, which greatly endangers human health. Due to the unclear pathogenesis of ALI/ARDS, its treatment is still a worldwide problem. At present, clinical treatment mainly relies on lung-protective ventilation, prone position ventilation, and fluid management. However, there is a lack of effective and specific treatment measures. In recent years, domestic and foreign scholars have committed to basic research on ALI/ARDS, trying to further clarify its pathogenesis and find new targets and methods for the treatment of ALI/ARDS. In this review, we summarize the signaling pathways related to alveolar injury and repair in sepsis-induced ALI/ARDS and their latest research progress. They include the NF-κB, JAK2/STAT3, mitogen-activated protein kinase (MAPK), mTOR, and Notch signaling pathways. Understanding the molecular mechanisms of these signaling pathways in sepsis-induced ALI/ARDS may provide new targets and ideas for the clinical treatment of this disease.
Collapse
Affiliation(s)
- Wenli Li
- Institute of Disaster and Emergency Medicine, Tianjin University, Tianjin, China
- Wenzhou Safety (Emergency) Institute, Tianjin University, Wenzhou, China
| | - Duo Li
- Institute of Disaster and Emergency Medicine, Tianjin University, Tianjin, China
- Wenzhou Safety (Emergency) Institute, Tianjin University, Wenzhou, China
| | - Yuansen Chen
- Institute of Disaster and Emergency Medicine, Tianjin University, Tianjin, China
- Wenzhou Safety (Emergency) Institute, Tianjin University, Wenzhou, China
| | - Halidan Abudou
- Institute of Disaster and Emergency Medicine, Tianjin University, Tianjin, China
- Wenzhou Safety (Emergency) Institute, Tianjin University, Wenzhou, China
| | - Haiwang Wang
- Institute of Disaster and Emergency Medicine, Tianjin University, Tianjin, China
- Wenzhou Safety (Emergency) Institute, Tianjin University, Wenzhou, China
| | - Jinxia Cai
- Institute of Disaster and Emergency Medicine, Tianjin University, Tianjin, China
- Wenzhou Safety (Emergency) Institute, Tianjin University, Wenzhou, China
| | - Yiping Wang
- Institute of Disaster and Emergency Medicine, Tianjin University, Tianjin, China
- Wenzhou Safety (Emergency) Institute, Tianjin University, Wenzhou, China
| | - Ziquan Liu
- Institute of Disaster and Emergency Medicine, Tianjin University, Tianjin, China
- Wenzhou Safety (Emergency) Institute, Tianjin University, Wenzhou, China
| | - Yanqing Liu
- Institute of Disaster and Emergency Medicine, Tianjin University, Tianjin, China
- Wenzhou Safety (Emergency) Institute, Tianjin University, Wenzhou, China
| | - Haojun Fan
- Institute of Disaster and Emergency Medicine, Tianjin University, Tianjin, China
- Wenzhou Safety (Emergency) Institute, Tianjin University, Wenzhou, China
| |
Collapse
|
20
|
Tang Y, Wu P, Li L, Xu W, Jiang J. Mesenchymal Stem Cells and Their Small Extracellular Vesicles as Crucial Immunological Efficacy for Hepatic Diseases. Front Immunol 2022; 13:880523. [PMID: 35603168 PMCID: PMC9121380 DOI: 10.3389/fimmu.2022.880523] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2022] [Accepted: 04/11/2022] [Indexed: 12/11/2022] Open
Abstract
Mesenchymal stem cell small extracellular vesicles (MSC-sEVs) are a priority for researchers because of their role in tissue regeneration. sEVs act as paracrine factors and carry various cargos, revealing the state of the parent cells and contributing to cell–cell communication during both physiological and pathological circumstances. Hepatic diseases are mainly characterized by inflammatory cell infiltration and hepatocyte necrosis and fibrosis, bringing the focus onto immune regulation and other regulatory mechanisms of MSCs/MSC-sEVs. Increasing evidence suggests that MSCs and their sEVs protect against acute and chronic liver injury by inducing macrophages (MΦ) to transform into the M2 subtype, accelerating regulatory T/B (Treg/Breg) cell activation and promoting immunosuppression. MSCs/MSC-sEVs also prevent the proliferation and differentiation of T cells, B cells, dendritic cells (DCs), and natural killer (NK) cells. This review summarizes the potential roles for MSCs/MSC-sEVs, including immunomodulation and tissue regeneration, in various liver diseases. There is also a specific focus on the use of MSC-sEVs for targeted drug delivery to treat hepatitis.
Collapse
Affiliation(s)
- Yuting Tang
- Aoyang Institute of Cancer, Affiliated Aoyang Hospital of Jiangsu University, Suzhou, China
- Zhenjiang Key Laboratory of High Technology Research on Exosome Foundation and Transformation Application, School of Medicine, Jiangsu University, Zhenjiang, China
| | - Peipei Wu
- Aoyang Institute of Cancer, Affiliated Aoyang Hospital of Jiangsu University, Suzhou, China
- Zhenjiang Key Laboratory of High Technology Research on Exosome Foundation and Transformation Application, School of Medicine, Jiangsu University, Zhenjiang, China
| | - Linli Li
- Aoyang Institute of Cancer, Affiliated Aoyang Hospital of Jiangsu University, Suzhou, China
- Zhenjiang Key Laboratory of High Technology Research on Exosome Foundation and Transformation Application, School of Medicine, Jiangsu University, Zhenjiang, China
| | - Wenrong Xu
- Aoyang Institute of Cancer, Affiliated Aoyang Hospital of Jiangsu University, Suzhou, China
- Zhenjiang Key Laboratory of High Technology Research on Exosome Foundation and Transformation Application, School of Medicine, Jiangsu University, Zhenjiang, China
- *Correspondence: Wenrong Xu, ; Jiajia Jiang,
| | - Jiajia Jiang
- Aoyang Institute of Cancer, Affiliated Aoyang Hospital of Jiangsu University, Suzhou, China
- Zhenjiang Key Laboratory of High Technology Research on Exosome Foundation and Transformation Application, School of Medicine, Jiangsu University, Zhenjiang, China
- *Correspondence: Wenrong Xu, ; Jiajia Jiang,
| |
Collapse
|
21
|
Martinez-Arroyo O, Ortega A, Forner MJ, Cortes R. Mesenchymal Stem Cell-Derived Extracellular Vesicles as Non-Coding RNA Therapeutic Vehicles in Autoimmune Diseases. Pharmaceutics 2022; 14:pharmaceutics14040733. [PMID: 35456567 PMCID: PMC9028692 DOI: 10.3390/pharmaceutics14040733] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2022] [Revised: 03/17/2022] [Accepted: 03/26/2022] [Indexed: 02/07/2023] Open
Abstract
Autoimmune diseases (ADs) are characterized by the activation of the immune system against self-antigens. More common in women than in men and with an early onset, their incidence is increasing worldwide, and this, combined with their chronic nature, is contributing to an enlarged medical and economic burden. Conventional immunosuppressive agents are designed to alleviate symptoms but do not constitute an effective therapy, highlighting a need to develop new alternatives. In this regard, mesenchymal stem cells (MSCs) have demonstrated powerful immunosuppressive and regenerative effects. MSC-derived extracellular vesicles (MSC-EVs) have shown some advantages, such as less immunogenicity, and are proposed as novel therapies for ADs. In this review, we summarize current perspectives on therapeutic options for ADs based on MSCs and MSC-EVs, focusing particularly on their mechanism of action exerted through their non-coding RNA (ncRNA) cargo. A complete state-of-the-art review was performed, centralized on some of the most severe ADs (rheumatoid arthritis, autoimmune type 1 diabetes mellitus, and systemic lupus erythematosus), giving evidence that a promising field is evolving to overcome the current knowledge and provide new therapeutic possibilities centered on MSC-EVs and their role as ncRNA delivery vehicles for AD gene therapy.
Collapse
Affiliation(s)
- Olga Martinez-Arroyo
- Cardiometabolic and Renal Risk Research Group, INCLIVA Biomedical Research Institute, 46010 Valencia, Spain; (O.M.-A.); (M.J.F.)
| | - Ana Ortega
- Cardiometabolic and Renal Risk Research Group, INCLIVA Biomedical Research Institute, 46010 Valencia, Spain; (O.M.-A.); (M.J.F.)
- Correspondence: (A.O.); (R.C.); Tel.: +34-96398-3916 (R.C.); Fax: +34-96398-7860 (R.C.)
| | - Maria J. Forner
- Cardiometabolic and Renal Risk Research Group, INCLIVA Biomedical Research Institute, 46010 Valencia, Spain; (O.M.-A.); (M.J.F.)
- Internal Medicine Unit, Hospital Clinico Universitario, 46010 Valencia, Spain
| | - Raquel Cortes
- Cardiometabolic and Renal Risk Research Group, INCLIVA Biomedical Research Institute, 46010 Valencia, Spain; (O.M.-A.); (M.J.F.)
- Correspondence: (A.O.); (R.C.); Tel.: +34-96398-3916 (R.C.); Fax: +34-96398-7860 (R.C.)
| |
Collapse
|
22
|
Chen JM, Huang QY, Zhao YX, Chen WH, Lin S, Shi QY. The Latest Developments in Immunomodulation of Mesenchymal Stem Cells in the Treatment of Intrauterine Adhesions, Both Allogeneic and Autologous. Front Immunol 2021; 12:785717. [PMID: 34868069 PMCID: PMC8634714 DOI: 10.3389/fimmu.2021.785717] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2021] [Accepted: 11/01/2021] [Indexed: 12/12/2022] Open
Abstract
Intrauterine adhesion (IUA) is an endometrial fibrosis disease caused by repeated operations of the uterus and is a common cause of female infertility. In recent years, treatment using mesenchymal stem cells (MSCs) has been proposed by many researchers and is now widely used in clinics because of the low immunogenicity of MSCs. It is believed that allogeneic MSCs can be used to treat IUA because MSCs express only low levels of MHC class I molecules and no MHC class II or co-stimulatory molecules. However, many scholars still believe that the use of allogeneic MSCs to treat IUA may lead to immune rejection. Compared with allogeneic MSCs, autologous MSCs are safer, more ethical, and can better adapt to the body. Here, we review recently published articles on the immunomodulation of allogeneic and autologous MSCs in IUA therapy, with the aim of proving that the use of autologous MSCs can reduce the possibility of immune rejection in the treatment of IUAs.
Collapse
Affiliation(s)
- Jia-Ming Chen
- Department of Gynaecology and Obstetrics, The Second Affiliated Hospital of Fujian Medical University, Quanzhou, China
| | - Qiao-Yi Huang
- Department of Gynaecology and Obstetrics, The Second Affiliated Hospital of Fujian Medical University, Quanzhou, China
| | - Yun-Xia Zhao
- Department of Gynaecology and Obstetrics, Shenzhen Hospital of University of Hong Kong, Shenzhen, China
| | - Wei-Hong Chen
- Department of Gynaecology and Obstetrics, The Second Affiliated Hospital of Fujian Medical University, Quanzhou, China
| | - Shu Lin
- Centre of Neurological and Metabolic Research, The Second Affiliated Hospital of Fujian Medical University, Quanzhou, China.,Diabetes and Metabolism Division, Garvan Institute of Medical Research, Sydney, NSW, Australia
| | - Qi-Yang Shi
- Department of Gynaecology and Obstetrics, The Second Affiliated Hospital of Fujian Medical University, Quanzhou, China
| |
Collapse
|
23
|
Protective role of (5R)-5-hydroxytriptolide in lipopolysaccharide-induced acute lung injury by suppressing dendritic cell activation. Int Immunopharmacol 2021; 102:108410. [PMID: 34865994 DOI: 10.1016/j.intimp.2021.108410] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2021] [Revised: 11/24/2021] [Accepted: 11/24/2021] [Indexed: 12/14/2022]
Abstract
(5R)-5-hydroxytriptolide (LLDT-8) is a triptolide derivative with potent immunosuppressive property. This study aimed to investigate whether LLDT-8 manifests anti-inflammatory effects and influences dendritic cell function in early phase of lipopolysaccharide (LPS)-induced acute lung injury (ALI). C57BL/6 mice were administrated with LPS (6 mg/kg) to induce ALI and LLDT-8 were administrated at different doses (0.125 mg, 0.25 mg, 0.5 mg/kg). Histological changes were demonstrated by hematoxylin and eosin staining. Activation of dendritic cells were measured by flow cytometry. The concentrations of cytokines were measured by enzyme-linked immunosorbent assay. Bone marrow-derived dendritic cells (BMDCs) were acquired to explore immunosuppressive effects of LLDT-8 in vitro. Expression of Toll-like receptor 4 (TLR4), phosphorylation of inhibitor kappa B alpha (IκBα) and nuclear translocation of nuclear factor kappa B (NF-κB) were explored by immunoblot. Immunosuppressive property of LLDT-8-treated BMDCs were measured by adoptive transfer. The survival rate of ALI mice was significantly improved by LLDT-8 at the dose of 0.25 mg/kg. Moreover, systemic inflammatory response was suppressed and lung injury was relieved. LLDT-8 inhibited the activation of dendritic cells in vivo and influenced maturation, apoptosis and cytokine secretion capacity of BMDCs in vitro. Additionally, LLDT-8-treated BMDCs manifested reduced expression of TLR4, phosphorylation of IκBα and nuclear translocation of NF-κB. Adoptive transfer of LLDT-8-treated BMDCs alleviated LPS-induced lung injury. LLDT-8 also had protective effects on Pseudomonas aeruginosa-induced ALI. In conclusion, LLDT-8 played a protective role against ALI and suppressed dendritic cell activation potentially through affecting TLR4 expression and NF-κB signaling.
Collapse
|
24
|
Wang Z, Xu H, Cheng F, Zhang J, Feng Y, Liu D, Shang W, Feng G. Donor BMSC-derived small extracellular vesicles relieve acute rejection post-renal allograft through transmitting Loc108349490 to dendritic cells. Aging Cell 2021; 20:e13461. [PMID: 34499402 PMCID: PMC8520728 DOI: 10.1111/acel.13461] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2021] [Revised: 07/19/2021] [Accepted: 08/06/2021] [Indexed: 12/24/2022] Open
Abstract
Bone marrow-derived mesenchymal stem cell (BMSC)-derived small extracellular vesicles (sEVs) are potent candidates for the suppression of acute rejection post-renal allograft and have been reported to halt dendritic cells (DCs) maturation. However, whether BMSC-derived sEVs mitigate acute rejection post-renal allograft by targeting DCs is still unclear. In this study, donor BMSC-derived sEVs (sEVs) relieved the inflammatory response and suppressed mature DCs (mDCs) location in kidney grafts, and increased regulatory T (Treg) cell population in the spleens of the rats that underwent kidney allograft. In lipopolysaccharide (LPS)-stimulated immature DCs (imDCs), sEVs suppressed the maturation and migration of DCs and inactivated toll-like receptor 4 (TLR4) signaling. Compared with LPS-treated imDCs, imDCs treated with LPS+sEVs promoted CD4+ T cells differentiated toward Treg cells. Subsequently, we found that Loc108349490, a long non-coding RNA (lncRNA) abundant in sEVs, mediated the inhibitory effect of sEVs on DC maturation and migration by promoting TLR4 ubiquitination. In rats that underwent an allograft, Loc108349490 deficiency weakened the therapeutic effect of sEVs on acute rejection. The present study firstly found that sEVs alleviated acute rejection post-renal allograft by transferring lncRNA to DCs and screened out the functional lncRNA loaded in sEVs was Loc108349490.
Collapse
Affiliation(s)
- Zhi‐gang Wang
- Department of Kidney TransplantationThe First Affiliated Hospital of Zhengzhou UniversityZhengzhouChina
| | - Hong‐en Xu
- Precision Medicine Center of Zhengzhou UniversityAcademy of Medical SciencesZhengzhou UniversityZhengzhouChina
| | - Fu‐min Cheng
- Department of Kidney TransplantationThe First Affiliated Hospital of Zhengzhou UniversityZhengzhouChina
| | - Jie Zhang
- Department of Kidney TransplantationThe First Affiliated Hospital of Zhengzhou UniversityZhengzhouChina
| | - Yong‐hua Feng
- Department of Kidney TransplantationThe First Affiliated Hospital of Zhengzhou UniversityZhengzhouChina
| | - Dan‐hua Liu
- Precision Medicine Center of Zhengzhou UniversityAcademy of Medical SciencesZhengzhou UniversityZhengzhouChina
| | - Wen‐jun Shang
- Department of Kidney TransplantationThe First Affiliated Hospital of Zhengzhou UniversityZhengzhouChina
| | - Gui‐wen Feng
- Department of Kidney TransplantationThe First Affiliated Hospital of Zhengzhou UniversityZhengzhouChina
| |
Collapse
|
25
|
Guo B, Peng Y, Gu Y, Zhong Y, Su C, Liu L, Chai D, Song T, Zhao N, Yan X, Xu T. Resveratrol pretreatment mitigates LPS-induced acute lung injury by regulating conventional dendritic cells' maturation and function. Open Life Sci 2021; 16:1064-1081. [PMID: 34676301 PMCID: PMC8483064 DOI: 10.1515/biol-2021-0110] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2021] [Revised: 08/10/2021] [Accepted: 08/16/2021] [Indexed: 11/20/2022] Open
Abstract
Acute lung injury (ALI)/acute respiratory distress syndrome (ARDS) is a severe syndrome lacking efficient therapy and resulting in high morbidity and mortality. Although resveratrol (RES), a natural phytoalexin, has been reported to protect the ALI by suppressing the inflammatory response, the detailed mechanism of how RES affected the immune system is poorly studied. Pulmonary conventional dendritic cells (cDCs) are critically involved in the pathogenesis of inflammatory lung diseases including ALI. In this study, we aimed to investigate the protective role of RES via pulmonary cDCs in lipopolysaccharide (LPS)-induced ALI mice. Murine ALI model was established by intratracheally challenging with 5 mg/kg LPS. We found that RES pretreatment could mitigate LPS-induced ALI. Additionally, proinflammatory-skewed cytokines decreased whereas anti-inflammatory-related cytokines increased in bronchoalveolar lavage fluid by RES pretreatment. Mechanistically, RES regulated pulmonary cDCs' maturation and function, exhibiting lower level of CD80, CD86, major histocompatibility complex (MHC) II expression, and IL-10 secretion in ALI mice. Furthermore, RES modulated the balance between proinflammation and anti-inflammation of cDCs. Moreover, in vitro RES pretreatment regulated the maturation and function of bone marrow derived dendritic cells (BMDCs). Finally, the adoptive transfer of RES-pretreated BMDCs enhanced recovery of ALI. Thus, these data might further extend our understanding of a protective role of RES in regulating pulmonary cDCs against ALI.
Collapse
Affiliation(s)
- Bingnan Guo
- Jiangsu Institute of Health Emergency, Xuzhou Medical University, Xuzhou, Jiangsu 221004, China
- Department of Emergency Medicine, The Affiliated Hospital of Xuzhou Medical University, Xuzhou, Jiangsu 221000, China
| | - Yigen Peng
- Department of Emergency Medicine, The Affiliated Jiangning Hospital of Nanjing Medical University, Nanjing, Jiangsu 211100, China
| | - Yuting Gu
- Jiangsu Institute of Health Emergency, Xuzhou Medical University, Xuzhou, Jiangsu 221004, China
- Department of Emergency Medicine, The Affiliated Hospital of Xuzhou Medical University, Xuzhou, Jiangsu 221000, China
| | - Yi Zhong
- Jiangsu Institute of Health Emergency, Xuzhou Medical University, Xuzhou, Jiangsu 221004, China
- Department of Emergency Medicine, The Affiliated Hospital of Xuzhou Medical University, Xuzhou, Jiangsu 221000, China
| | - Chenglei Su
- Jiangsu Institute of Health Emergency, Xuzhou Medical University, Xuzhou, Jiangsu 221004, China
- Department of Emergency Medicine, The Affiliated Hospital of Xuzhou Medical University, Xuzhou, Jiangsu 221000, China
| | - Lin Liu
- Jiangsu Institute of Health Emergency, Xuzhou Medical University, Xuzhou, Jiangsu 221004, China
- Department of Emergency Medicine, The Affiliated Hospital of Xuzhou Medical University, Xuzhou, Jiangsu 221000, China
| | - Dafei Chai
- Cancer Institute, Xuzhou Medical University, Xuzhou, Jiangsu 221004, China
| | - Tengfei Song
- The Feinstein Institute for Medical Research, Manhasset, NY 11030, New York, United States
| | - Ningjun Zhao
- Jiangsu Institute of Health Emergency, Xuzhou Medical University, Xuzhou, Jiangsu 221004, China
- Department of Emergency Medicine, The Affiliated Hospital of Xuzhou Medical University, Xuzhou, Jiangsu 221000, China
| | - Xianliang Yan
- Jiangsu Institute of Health Emergency, Xuzhou Medical University, Xuzhou, Jiangsu 221004, China
- Department of Emergency Medicine, The Affiliated Hospital of Xuzhou Medical University, Xuzhou, Jiangsu 221000, China
| | - Tie Xu
- Jiangsu Institute of Health Emergency, Xuzhou Medical University, Xuzhou, Jiangsu 221004, China
- Department of Emergency Medicine, The Affiliated Hospital of Xuzhou Medical University, Xuzhou, Jiangsu 221000, China
- Department of Emergency Medicine, The Affiliated Jiangning Hospital of Nanjing Medical University, Nanjing, Jiangsu 211100, China
| |
Collapse
|
26
|
Li SW, Cai Y, Mao XL, He SQ, Chen YH, Yan LL, Zhou JJ, Song YQ, Ye LP, Zhou XB. The Immunomodulatory Properties of Mesenchymal Stem Cells Play a Critical Role in Inducing Immune Tolerance after Liver Transplantation. Stem Cells Int 2021; 2021:6930263. [PMID: 34531915 PMCID: PMC8440082 DOI: 10.1155/2021/6930263] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2021] [Revised: 07/11/2021] [Accepted: 08/17/2021] [Indexed: 12/29/2022] Open
Abstract
Although liver transplantation is considered to be the best choice for patients with end-stage liver diseases, postoperative immune rejection still cannot be overlooked. Patients with liver transplantation have to take immunosuppressive drugs for a long time or even their entire lives, in which heavy economic burden and side effects caused by the drugs have become the major impediment for liver transplantation. There is a growing body of evidences indicating that mesenchymal stem cell (MSC) transplantation, a promising tool in regenerative medicine, can be used as an effective way to induce immune tolerance after liver transplantation based on their huge expansion potential and unique immunomodulatory properties. MSCs have been reported to inhibit innate immunity and adaptive immunity to induce a tolerogenic microenvironment. In in vitro studies, transplanted MSCs show plasticity in immune regulation by altering their viability, migration, differentiation, and secretion in the interactions with the surrounding host microenvironment. In this review, we aim to provide an overview of the current understanding of immunomodulatory properties of MSCs in liver transplantation, to elucidate the potential mechanisms behind MSCs regulating immune response, especially in vivo and the influence of the microenvironment, and ultimately to discuss the feasible strategies to improve the clinical prognosis of liver transplantation. Only after exhaustive understanding of potential mechanisms of the MSC immunomodulation can we improve the safety and effectiveness of MSC treatment and achieve better therapeutic effects.
Collapse
Affiliation(s)
- Shao-wei Li
- Key Laboratory of Minimally Invasive Techniques & Rapid Rehabilitation of Digestive System Tumor of Zhejiang Province, Taizhou Hospital Affiliated to Wenzhou Medical University, Linhai, Zhejiang, China
- Department of Gastroenterology, Taizhou Hospital of Zhejiang Province Affiliated to Wenzhou Medical University, Linhai, Zhejiang, China
- Institute of Digestive Disease, Taizhou Hospital of Zhejiang Province Affiliated to Wenzhou Medical University, Linhai, Zhejiang, China
| | - Yue Cai
- Key Laboratory of Minimally Invasive Techniques & Rapid Rehabilitation of Digestive System Tumor of Zhejiang Province, Taizhou Hospital Affiliated to Wenzhou Medical University, Linhai, Zhejiang, China
- Department of Gastroenterology, Taizhou Hospital of Zhejiang Province Affiliated to Wenzhou Medical University, Linhai, Zhejiang, China
- Institute of Digestive Disease, Taizhou Hospital of Zhejiang Province Affiliated to Wenzhou Medical University, Linhai, Zhejiang, China
| | - Xin-li Mao
- Key Laboratory of Minimally Invasive Techniques & Rapid Rehabilitation of Digestive System Tumor of Zhejiang Province, Taizhou Hospital Affiliated to Wenzhou Medical University, Linhai, Zhejiang, China
- Department of Gastroenterology, Taizhou Hospital of Zhejiang Province Affiliated to Wenzhou Medical University, Linhai, Zhejiang, China
- Institute of Digestive Disease, Taizhou Hospital of Zhejiang Province Affiliated to Wenzhou Medical University, Linhai, Zhejiang, China
| | - Sai-qin He
- Key Laboratory of Minimally Invasive Techniques & Rapid Rehabilitation of Digestive System Tumor of Zhejiang Province, Taizhou Hospital Affiliated to Wenzhou Medical University, Linhai, Zhejiang, China
- Department of Gastroenterology, Taizhou Hospital of Zhejiang Province Affiliated to Wenzhou Medical University, Linhai, Zhejiang, China
- Institute of Digestive Disease, Taizhou Hospital of Zhejiang Province Affiliated to Wenzhou Medical University, Linhai, Zhejiang, China
| | - Ya-hong Chen
- Health Management Center, Taizhou Hospital of Zhejiang Province Affiliated to Wenzhou Medical University, Linhai, Zhejiang, China
| | - Ling-ling Yan
- Key Laboratory of Minimally Invasive Techniques & Rapid Rehabilitation of Digestive System Tumor of Zhejiang Province, Taizhou Hospital Affiliated to Wenzhou Medical University, Linhai, Zhejiang, China
- Department of Gastroenterology, Taizhou Hospital of Zhejiang Province Affiliated to Wenzhou Medical University, Linhai, Zhejiang, China
- Institute of Digestive Disease, Taizhou Hospital of Zhejiang Province Affiliated to Wenzhou Medical University, Linhai, Zhejiang, China
| | - Jing-jing Zhou
- Key Laboratory of Minimally Invasive Techniques & Rapid Rehabilitation of Digestive System Tumor of Zhejiang Province, Taizhou Hospital Affiliated to Wenzhou Medical University, Linhai, Zhejiang, China
- Department of Gastroenterology, Taizhou Hospital of Zhejiang Province Affiliated to Wenzhou Medical University, Linhai, Zhejiang, China
- Institute of Digestive Disease, Taizhou Hospital of Zhejiang Province Affiliated to Wenzhou Medical University, Linhai, Zhejiang, China
| | - Ya-qi Song
- Taizhou Hospital, Zhejiang University, Linhai, Zhejiang, China
| | - Li-ping Ye
- Key Laboratory of Minimally Invasive Techniques & Rapid Rehabilitation of Digestive System Tumor of Zhejiang Province, Taizhou Hospital Affiliated to Wenzhou Medical University, Linhai, Zhejiang, China
- Department of Gastroenterology, Taizhou Hospital of Zhejiang Province Affiliated to Wenzhou Medical University, Linhai, Zhejiang, China
- Institute of Digestive Disease, Taizhou Hospital of Zhejiang Province Affiliated to Wenzhou Medical University, Linhai, Zhejiang, China
| | - Xian-bin Zhou
- Key Laboratory of Minimally Invasive Techniques & Rapid Rehabilitation of Digestive System Tumor of Zhejiang Province, Taizhou Hospital Affiliated to Wenzhou Medical University, Linhai, Zhejiang, China
- Department of Gastroenterology, Taizhou Hospital of Zhejiang Province Affiliated to Wenzhou Medical University, Linhai, Zhejiang, China
- Institute of Digestive Disease, Taizhou Hospital of Zhejiang Province Affiliated to Wenzhou Medical University, Linhai, Zhejiang, China
| |
Collapse
|
27
|
Liu L, Fan S, Lu Z, Chen Z, Chu C, Liu A, Xia F, Meng S, Guo F, Qiu H, Yang Y. An optimized method for the induction and purification of mouse bone marrow dendritic cells. J Immunol Methods 2021; 495:113073. [PMID: 34029621 DOI: 10.1016/j.jim.2021.113073] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2020] [Revised: 05/01/2021] [Accepted: 05/13/2021] [Indexed: 11/25/2022]
Abstract
Dendritic cells (DCs) play an essential role in the initiation of adaptive immune responses, but they are rare in all organs. The traditional methods used to increase the yield and purity of DCs are the early removal of granulocyte culture medium and the isolation of high-purity DCs by magnetic-activated cell sorting (MACS). This study provides a more rapid and economical optimization method to obtain more high-purity DCs. (i) We harvested 18% more bone marrow (BM) cells by using forceps to crack the epiphysis instead of cutting it with scissors during BM cell extraction. (ii) When the cells in the culture medium that is discarded on day 3 in the traditional method were centrifuged and then added back to the petri dish, the DC yield on day 5 increased by 61%. (iii) On the third day, the addition of fresh medium and the retention of the original medium rather than discarding it increased the number of DCs harvested on the fifth day by 137%. (i-iii) The improved method cost an average of 74% less than the conventional method and yielded the same number and function of cells. (iv) The initial number of BM cells was increased by 15% in 4-week-old mice compared with 8-week-old mice. (v) The Percoll density centrifugation (PDS) method was used to purify DCs on day 6 after induction, and the purity of the DCs was greater than 90%, which showed no significant difference from the MACS method. However, the yield of the PDS method increased by 21%. In addition, the PDS method has a lower cost, with an average purification cost of 4 CNY ($0.58) compared with 648 CNY ($93.25) for MACS, reducing the cost by 99%. Therefore, high-purity and high-yield DCs can be rapidly obtained through a five-step improvement in the process of BM cell extraction, induction and purification.
Collapse
Affiliation(s)
- Ling Liu
- Jiangsu Provincial Key Laboratory of Critical Care Medicine, Department of Critical Care Medicine, Zhongda Hospital, School of Medicine, Southeast University, Nanjing, China
| | - Shanwen Fan
- Jiangsu Provincial Key Laboratory of Critical Care Medicine, Department of Critical Care Medicine, Zhongda Hospital, School of Medicine, Southeast University, Nanjing, China
| | - Zhonghua Lu
- Jiangsu Provincial Key Laboratory of Critical Care Medicine, Department of Critical Care Medicine, Zhongda Hospital, School of Medicine, Southeast University, Nanjing, China
| | - Zhenxing Chen
- Department of Gastroenterology, Zhongda Hospital, Southeast University School of Medicine, Nanjing, China
| | - Cuilin Chu
- Jiangsu Provincial Key Laboratory of Critical Care Medicine, Department of Critical Care Medicine, Zhongda Hospital, School of Medicine, Southeast University, Nanjing, China
| | - Airan Liu
- Jiangsu Provincial Key Laboratory of Critical Care Medicine, Department of Critical Care Medicine, Zhongda Hospital, School of Medicine, Southeast University, Nanjing, China
| | - Feiping Xia
- Jiangsu Provincial Key Laboratory of Critical Care Medicine, Department of Critical Care Medicine, Zhongda Hospital, School of Medicine, Southeast University, Nanjing, China
| | - Shanshan Meng
- Jiangsu Provincial Key Laboratory of Critical Care Medicine, Department of Critical Care Medicine, Zhongda Hospital, School of Medicine, Southeast University, Nanjing, China
| | - Fengmei Guo
- Jiangsu Provincial Key Laboratory of Critical Care Medicine, Department of Critical Care Medicine, Zhongda Hospital, School of Medicine, Southeast University, Nanjing, China
| | - Haibo Qiu
- Jiangsu Provincial Key Laboratory of Critical Care Medicine, Department of Critical Care Medicine, Zhongda Hospital, School of Medicine, Southeast University, Nanjing, China
| | - Yi Yang
- Jiangsu Provincial Key Laboratory of Critical Care Medicine, Department of Critical Care Medicine, Zhongda Hospital, School of Medicine, Southeast University, Nanjing, China.
| |
Collapse
|
28
|
Mázló A, Kovács R, Miltner N, Tóth M, Veréb Z, Szabó K, Bacskai I, Pázmándi K, Apáti Á, Bíró T, Bene K, Rajnavölgyi É, Bácsi A. MSC-like cells increase ability of monocyte-derived dendritic cells to polarize IL-17-/IL-10-producing T cells via CTLA-4. iScience 2021; 24:102312. [PMID: 33855282 PMCID: PMC8027231 DOI: 10.1016/j.isci.2021.102312] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2020] [Revised: 01/17/2021] [Accepted: 03/11/2021] [Indexed: 11/30/2022] Open
Abstract
Mesenchymal stromal cell-like (MSCl) cells generated from human embryonic stem cells are considered to be an eligible cell line to model the immunomodulatory behavior of mesenchymal stromal cells (MSCs) in vitro. Dendritic cells (DCs) are essential players in the maintenance and restoration of the sensitive balance between tolerance and immunity. Here, the effects of MSCl cells on the in vitro differentiation of human monocytes into DCs were investigated. MSCl cells promote the differentiation of CTLA-4 expressing DCs via the production of all-trans retinoic acid (ATRA) functioning as a ligand of RARα, a key nuclear receptor in DC development. These semi-matured DCs exhibit an ability to activate allogeneic, naive T cells and polarize them into IL-10 + IL-17 + double-positive T helper cells in a CTLA-4-dependent manner. Mapping the molecular mechanisms of MSC-mediated indirect modulation of DC differentiation may help to expand MSCs' clinical application in cell-free therapies. Mesenchymal stromal cell-like cells alter moDC differentiation via RARα activation Mesenchymal stromal cell-like cells express genes known to play role in ATRA synthesis MoDCs, differentiated in the presence of MSCl-derived factors, express CTLA-4 CTLA-4+ moDCs are able to induce polarization of IL-10- and IL-17-producing helper T cells
Collapse
Affiliation(s)
- Anett Mázló
- Department of Immunology, Faculty of Medicine, University of Debrecen, Debrecen, Hajdú-Bihar County 4032, Hungary.,Doctoral School of Molecular Cellular and Immune Biology, University of Debrecen, Debrecen, Hajdú-Bihar County 4032, Hungary.,MTA-DE Cell Biology and Signaling Research Group of the Hungarian Academy of Sciences, Debrecen, Hajdú-Bihar County 4032, Hungary
| | - Ramóna Kovács
- Department of Immunology, Faculty of Medicine, University of Debrecen, Debrecen, Hajdú-Bihar County 4032, Hungary.,Doctoral School of Molecular Cellular and Immune Biology, University of Debrecen, Debrecen, Hajdú-Bihar County 4032, Hungary
| | - Noémi Miltner
- Department of Immunology, Faculty of Medicine, University of Debrecen, Debrecen, Hajdú-Bihar County 4032, Hungary
| | - Márta Tóth
- Department of Immunology, Faculty of Medicine, University of Debrecen, Debrecen, Hajdú-Bihar County 4032, Hungary.,Doctoral School of Molecular Cellular and Immune Biology, University of Debrecen, Debrecen, Hajdú-Bihar County 4032, Hungary
| | - Zoltán Veréb
- Regenerative Medicine and Cellular Pharmacology Research Laboratory, Department of Dermatology and Allergology, University of Szeged, Szeged, Csongrád-Csanád County 6720, Hungary.,Research Institute of Translational Biomedicine, Department of Dermatology and Allergology, University of Szeged, Szeged, Csongrád-Csanád County 6720, Hungary
| | - Krisztina Szabó
- Division of Clinical Immunology, Faculty of Medicine, University of Debrecen, Debrecen, Hajdú-Bihar County 4032, Hungary
| | - Ildikó Bacskai
- Department of Immunology, Faculty of Medicine, University of Debrecen, Debrecen, Hajdú-Bihar County 4032, Hungary
| | - Kitti Pázmándi
- Department of Immunology, Faculty of Medicine, University of Debrecen, Debrecen, Hajdú-Bihar County 4032, Hungary
| | - Ágota Apáti
- Institute of Enzymology, Research Centre for Natural Sciences, Budapest 1117 Hungary
| | - Tamás Bíró
- Department of Immunology, Faculty of Medicine, University of Debrecen, Debrecen, Hajdú-Bihar County 4032, Hungary
| | - Krisztián Bene
- Department of Immunology, Faculty of Medicine, University of Debrecen, Debrecen, Hajdú-Bihar County 4032, Hungary.,Department of Biochemistry and Molecular Biology, Faculty of Medicine, University of Debrecen, Debrecen, Hajdú-Bihar County 4032, Hungary
| | - Éva Rajnavölgyi
- Department of Immunology, Faculty of Medicine, University of Debrecen, Debrecen, Hajdú-Bihar County 4032, Hungary
| | - Attila Bácsi
- Department of Immunology, Faculty of Medicine, University of Debrecen, Debrecen, Hajdú-Bihar County 4032, Hungary
| |
Collapse
|
29
|
Müller L, Tunger A, Wobus M, von Bonin M, Towers R, Bornhäuser M, Dazzi F, Wehner R, Schmitz M. Immunomodulatory Properties of Mesenchymal Stromal Cells: An Update. Front Cell Dev Biol 2021; 9:637725. [PMID: 33634139 PMCID: PMC7900158 DOI: 10.3389/fcell.2021.637725] [Citation(s) in RCA: 70] [Impact Index Per Article: 23.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2020] [Accepted: 01/19/2021] [Indexed: 12/29/2022] Open
Abstract
Mesenchymal stromal cells (MSCs) are characterized by an extraordinary capacity to modulate the phenotype and functional properties of various immune cells that play an essential role in the pathogenesis of inflammatory disorders. Thus, MSCs efficiently impair the phagocytic and antigen-presenting capacity of monocytes/macrophages and promote the expression of immunosuppressive molecules such as interleukin (IL)-10 and programmed cell death 1 ligand 1 by these cells. They also effectively inhibit the maturation of dendritic cells and their ability to produce proinflammatory cytokines and to stimulate potent T-cell responses. Furthermore, MSCs inhibit the generation and proinflammatory properties of CD4+ T helper (Th)1 and Th17 cells, while they promote the proliferation of regulatory T cells and their inhibitory capabilities. MSCs also impair the expansion, cytokine secretion, and cytotoxic activity of proinflammatory CD8+ T cells. Moreover, MSCs inhibit the differentiation, proliferation, and antibody secretion of B cells, and foster the generation of IL-10-producing regulatory B cells. Various cell membrane-associated and soluble molecules essentially contribute to these MSC-mediated effects on important cellular components of innate and adaptive immunity. Due to their immunosuppressive properties, MSCs have emerged as promising tools for the treatment of inflammatory disorders such as acute graft-versus-host disease, graft rejection in patients undergoing organ/cell transplantation, and autoimmune diseases.
Collapse
Affiliation(s)
- Luise Müller
- Institute of Immunology, Faculty of Medicine Carl Gustav Carus, TU Dresden, Dresden, Germany
| | - Antje Tunger
- Institute of Immunology, Faculty of Medicine Carl Gustav Carus, TU Dresden, Dresden, Germany.,National Center for Tumor Diseases (NCT), Partner Site Dresden, Dresden, Germany
| | - Manja Wobus
- Department of Medicine I, University Hospital Carl Gustav Carus, TU Dresden, Dresden, Germany
| | - Malte von Bonin
- National Center for Tumor Diseases (NCT), Partner Site Dresden, Dresden, Germany.,Department of Medicine I, University Hospital Carl Gustav Carus, TU Dresden, Dresden, Germany.,German Cancer Consortium (DKTK), Partner Site Dresden, and German Cancer Research Center (DKFZ), Heidelberg, Germany
| | - Russell Towers
- Department of Medicine I, University Hospital Carl Gustav Carus, TU Dresden, Dresden, Germany
| | - Martin Bornhäuser
- National Center for Tumor Diseases (NCT), Partner Site Dresden, Dresden, Germany.,Department of Medicine I, University Hospital Carl Gustav Carus, TU Dresden, Dresden, Germany.,German Cancer Consortium (DKTK), Partner Site Dresden, and German Cancer Research Center (DKFZ), Heidelberg, Germany.,Center for Regenerative Therapies Dresden (CRTD), TU Dresden, Dresden, Germany
| | - Francesco Dazzi
- School of Cancer and Pharmacological Sciences and KHP Cancer Research UK Centre, King's College London, London, United Kingdom
| | - Rebekka Wehner
- Institute of Immunology, Faculty of Medicine Carl Gustav Carus, TU Dresden, Dresden, Germany.,National Center for Tumor Diseases (NCT), Partner Site Dresden, Dresden, Germany.,German Cancer Consortium (DKTK), Partner Site Dresden, and German Cancer Research Center (DKFZ), Heidelberg, Germany
| | - Marc Schmitz
- Institute of Immunology, Faculty of Medicine Carl Gustav Carus, TU Dresden, Dresden, Germany.,National Center for Tumor Diseases (NCT), Partner Site Dresden, Dresden, Germany.,German Cancer Consortium (DKTK), Partner Site Dresden, and German Cancer Research Center (DKFZ), Heidelberg, Germany.,Center for Regenerative Therapies Dresden (CRTD), TU Dresden, Dresden, Germany
| |
Collapse
|
30
|
Alahdal M, Zhang H, Huang R, Sun W, Deng Z, Duan L, Ouyang H, Wang D. Potential efficacy of dendritic cell immunomodulation in the treatment of osteoarthritis. Rheumatology (Oxford) 2021; 60:507-517. [PMID: 33249512 DOI: 10.1093/rheumatology/keaa745] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2020] [Revised: 08/13/2020] [Accepted: 09/02/2020] [Indexed: 12/25/2022] Open
Abstract
Dendritic cells (DCs) are a cluster of heterogeneous antigen-presenting cells that play a pivotal role in both innate and adaptive immune responses. Rare reports have discussed their role in OA immunopathogenesis. Recently, DCs derived from the synovial fluid of OA mice were shown to have increased expression of toll-like receptors. Moreover, from in vitro studies it was concluded that DCs derived from OA patients had secreted high levels of inflammatory cytokines. Likewise, a significant increase in CD123+BDCA-2 plasmacytoid DCs has been observed in the synovial fluid of OA patients. Furthermore, DCs have a peripheral tolerance potential and can become regulatory under specific circumstances. This could be exploited as a promising tool to eliminate immunoinflammatory manifestations in OA disease. In this review, the potential roles DCs could play in OA pathogenesis have been described. In addition, suggestions for the development of new immunotherapeutic strategies involving intra-articular injections of tolerogenic plasmacytoid DCs for treating OA inflammations have been made.
Collapse
Affiliation(s)
- Murad Alahdal
- Shenzhen Key Laboratory of Tissue Engineering, Shenzhen Laboratory of Digital Orthopedic Engineering, Shenzhen Second People's Hospital, Shenzhen, China.,Dr. Li Dak Sum & Yip Yio Chin Center for Stem Cells and Regenerative Medicine, Zhejiang University School of Medicine, Hangzhou, China.,Hand and Foot Surgery Department, Guangdong Provincial Research Center for Artificial Intelligence and Digital Orthopedic Technology, Shenzhen Second People's Hospital, Shenzhen, China
| | - Hui Zhang
- Shenzhen Key Laboratory of Tissue Engineering, Shenzhen Laboratory of Digital Orthopedic Engineering, Shenzhen Second People's Hospital, Shenzhen, China.,Hand and Foot Surgery Department, Guangdong Provincial Research Center for Artificial Intelligence and Digital Orthopedic Technology, Shenzhen Second People's Hospital, Shenzhen, China.,School of Medicine, University of South China, Hengyang, China
| | - Rongxiang Huang
- Shenzhen Key Laboratory of Tissue Engineering, Shenzhen Laboratory of Digital Orthopedic Engineering, Shenzhen Second People's Hospital, Shenzhen, China.,Hand and Foot Surgery Department, Guangdong Provincial Research Center for Artificial Intelligence and Digital Orthopedic Technology, Shenzhen Second People's Hospital, Shenzhen, China.,School of Medicine, University of South China, Hengyang, China
| | - Wei Sun
- Dr. Li Dak Sum & Yip Yio Chin Center for Stem Cells and Regenerative Medicine, Zhejiang University School of Medicine, Hangzhou, China.,Hand and Foot Surgery Department, Guangdong Provincial Research Center for Artificial Intelligence and Digital Orthopedic Technology, Shenzhen Second People's Hospital, Shenzhen, China
| | - Zhiqin Deng
- Shenzhen Key Laboratory of Tissue Engineering, Shenzhen Laboratory of Digital Orthopedic Engineering, Shenzhen Second People's Hospital, Shenzhen, China.,Hand and Foot Surgery Department, Guangdong Provincial Research Center for Artificial Intelligence and Digital Orthopedic Technology, Shenzhen Second People's Hospital, Shenzhen, China
| | - Li Duan
- Shenzhen Key Laboratory of Tissue Engineering, Shenzhen Laboratory of Digital Orthopedic Engineering, Shenzhen Second People's Hospital, Shenzhen, China.,Hand and Foot Surgery Department, Guangdong Provincial Research Center for Artificial Intelligence and Digital Orthopedic Technology, Shenzhen Second People's Hospital, Shenzhen, China
| | - Hongwei Ouyang
- Dr. Li Dak Sum & Yip Yio Chin Center for Stem Cells and Regenerative Medicine, Zhejiang University School of Medicine, Hangzhou, China
| | - Daping Wang
- Shenzhen Key Laboratory of Tissue Engineering, Shenzhen Laboratory of Digital Orthopedic Engineering, Shenzhen Second People's Hospital, Shenzhen, China.,Hand and Foot Surgery Department, Guangdong Provincial Research Center for Artificial Intelligence and Digital Orthopedic Technology, Shenzhen Second People's Hospital, Shenzhen, China.,Department of Biomedical Engineering, Southern University of Science and Technology, Shenzhen, China
| |
Collapse
|