1
|
Rusak A, Wiatrak B, Krawczyńska K, Górnicki T, Zagórski K, Zadka Ł, Fortuna W. Starting points for the development of new targeted therapies for glioblastoma multiforme. Transl Oncol 2025; 51:102187. [PMID: 39531784 PMCID: PMC11585793 DOI: 10.1016/j.tranon.2024.102187] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2024] [Revised: 09/30/2024] [Accepted: 11/05/2024] [Indexed: 11/16/2024] Open
Abstract
Glioblastoma multiforme (GBM) is one of the most aggressive and lethal brain tumors, characterized by rapid growth, invasiveness, and resistance to standard therapies, including surgery, chemotherapy, and radiotherapy. Despite advances in treatment, GBM remains highly resistant due to its complex molecular mechanisms, including angiogenesis, invasion, immune modulation, and lipid metabolism dysregulation. This review explores recent breakthroughs in targeted therapies, focusing on innovative drug carriers such as nanoparticles and liposomes, and their potential to overcome GBM's chemo- and radioresistant phenotypes. We also discuss the molecular pathways involved in GBM progression and the latest therapeutic strategies, including immunotherapy and precision medicine approaches, which hold promise for improving clinical outcomes. The review highlights the importance of understanding GBM's genetic and molecular heterogeneity to develop more effective, personalized treatment protocols aimed at increasing survival rates and enhancing the quality of life for GBM patients.
Collapse
Affiliation(s)
- Agnieszka Rusak
- Division of Histology and Embryology, Department of Human Morphology and Embryology, Faculty of Medicine, Wroclaw Medical University, T. Chalubinskiego 6a St., Wroclaw 50-368, Poland.
| | - Benita Wiatrak
- Department of Pharmacology, Faculty of Medicine, J. Mikulicza-Radeckiego 2 Street, Wroclaw 50-345, Poland.
| | - Klaudia Krawczyńska
- Division of Histology and Embryology, Department of Human Morphology and Embryology, Faculty of Medicine, Wroclaw Medical University, T. Chalubinskiego 6a St., Wroclaw 50-368, Poland.
| | - Tomasz Górnicki
- Division of Histology and Embryology, Department of Human Morphology and Embryology, Faculty of Medicine, Wroclaw Medical University, T. Chalubinskiego 6a St., Wroclaw 50-368, Poland
| | - Karol Zagórski
- Division of Histology and Embryology, Department of Human Morphology and Embryology, Faculty of Medicine, Wroclaw Medical University, T. Chalubinskiego 6a St., Wroclaw 50-368, Poland
| | - Łukasz Zadka
- Division of Ultrastructural Research, Wroclaw Medical University, T. Chalubinskiego 6a St., Wroclaw 50-368, Poland; Department of Clinical Pharmacology, Wroclaw Medical University, Borowska 211a, Wroclaw 50-556, Poland.
| | - Wojciech Fortuna
- Department of Neurosurgery, Wroclaw Medical University, Borowska 213St, Wroclaw 50-556, Poland.
| |
Collapse
|
2
|
Khaliulin M, Valiullina A, Petukhov A, Yuan Y, Spada S, Bulatov E. Breaking the shield of solid tumors: a combined approach for enhanced efficacy of CAR-T cells. Cancer Immunol Immunother 2024; 74:3. [PMID: 39487875 PMCID: PMC11531461 DOI: 10.1007/s00262-024-03817-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2024] [Accepted: 08/22/2024] [Indexed: 11/04/2024]
Abstract
The use of chimeric antigen receptor (CAR)-T cells has enhanced the range of available therapeutic modalities in the context of cancer treatment. CAR-T cells have demonstrated considerable efficacy in the targeted eradication of blood cancer cells, thereby stimulating substantial interest in the advancement of such therapeutic approaches. However, the efficacy of CAR-T cells against solid tumor cells has been limited due to the presence of various obstacles. Solid tumors exhibit antigenic diversity and an immunosuppressive microenvironment, which presents a challenge for immune cells attempting to penetrate the tumor. CAR-T cells also demonstrate decreased proliferative activity and cytotoxicity. Furthermore, concerns exist regarding tumor antigen loss and therapy-associated toxicity. Currently, scientists are working to enhance the structure of the CAR and improve the survival and efficiency of CAR-T cells in recognizing tumor antigens in solid tumors. Chemotherapy drugs are frequently employed in the treatment of malignant neoplasms and can also be used prior to cell therapy to enhance CAR-T cell engraftment. Recent studies have demonstrated that chemotherapy drugs can mitigate the suppressive impact of TME, eliminate the physical barrier by destroying the tumor stroma, and facilitate greater penetration of immune cells and CAR-T cells into the tumor. This, in turn, increases their survival, persistence, and cytotoxicity, as well as affects the metabolism of immune cells inside the tumor. However, the effectiveness of the combined approach against solid tumors depends on several factors, including the type of tumor, dosage, population of CAR-T cells, and individual characteristics of the body. This review examines the principal obstacles to the utilization of CAR-T cells against solid tumors, proposes solutions to these issues, and assesses the potential advantages of a combined approach to radiation exposure, which has the potential to enhance the sensitivity of the tumor to other agents.
Collapse
Affiliation(s)
- Marat Khaliulin
- Institute of Fundamental Medicine and Biology, Kazan Federal University, Kazan, Russia, 420008
| | - Aygul Valiullina
- Institute of Fundamental Medicine and Biology, Kazan Federal University, Kazan, Russia, 420008
| | - Alexey Petukhov
- Nazarbaev University, Qabanbay Batyr Ave 53, 010000, Astana, Kazakhstan
| | - Youyong Yuan
- School of Biomedical Sciences and Engineering, Guangzhou International Campus, South China University of Technology, Guangzhou, 511442, People's Republic of China
| | - Sheila Spada
- Tumor Immunology and Immunotherapy Unit, IRCCS-Regina Elena National Cancer Institute, Via E. Chianesi 53, 00144, Rome, Italy
| | - Emil Bulatov
- Institute of Fundamental Medicine and Biology, Kazan Federal University, Kazan, Russia, 420008.
- Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry, Russian Academy of Sciences, Moscow, Russia, 117997.
- Federal State Autonomous Educational Institution of Higher Education I.M. Sechenov First Moscow State Medical University of the Ministry of Health of the Russian Federation (Sechenov University), Moscow, Russia, 119048.
| |
Collapse
|
3
|
Karimi-Sani I, Molavi Z, Naderi S, Mirmajidi SH, Zare I, Naeimzadeh Y, Mansouri A, Tajbakhsh A, Savardashtaki A, Sahebkar A. Personalized mRNA vaccines in glioblastoma therapy: from rational design to clinical trials. J Nanobiotechnology 2024; 22:601. [PMID: 39367418 PMCID: PMC11453023 DOI: 10.1186/s12951-024-02882-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2024] [Accepted: 09/26/2024] [Indexed: 10/06/2024] Open
Abstract
Glioblastomas (GBMs) are the most common and aggressive malignant brain tumors, presenting significant challenges for treatment due to their invasive nature and localization in critical brain regions. Standard treatment includes surgical resection followed by radiation and adjuvant chemotherapy with temozolomide (TMZ). Recent advances in immunotherapy, including the use of mRNA vaccines, offer promising alternatives. This review focuses on the emerging use of mRNA vaccines for GBM treatment. We summarize recent advancements, evaluate current obstacles, and discuss notable successes in this field. Our analysis highlights that while mRNA vaccines have shown potential, their use in GBM treatment is still experimental. Ongoing research and clinical trials are essential to fully understand their therapeutic potential. Future developments in mRNA vaccine technology and insights into GBM-specific immune responses may lead to more targeted and effective treatments. Despite the promise, further research is crucial to validate and optimize the effectiveness of mRNA vaccines in combating GBM.
Collapse
Affiliation(s)
- Iman Karimi-Sani
- Department of Medical Biotechnology, School of Advanced Medical Sciences and Technologies, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Zahra Molavi
- Proteomics Research Center, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Samaneh Naderi
- Department of Medical Biotechnology, School of Advanced Medical Sciences and Technologies, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Seyedeh-Habibeh Mirmajidi
- Department of Medical Biotechnology, School of Advanced Medical Sciences and Technologies, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Iman Zare
- Research and Development Department, Sina Medical Biochemistry Technologies Co. Ltd., Shiraz, 7178795844, Iran
| | - Yasaman Naeimzadeh
- Department of Molecular Medicine, School of Advanced Medical Sciences and Technologies, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Atena Mansouri
- Cellular and Molecular Research Center, Birjand University of Medical Sciences, Birjand, Iran
| | - Amir Tajbakhsh
- Pharmaceutical Sciences Research Center, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Amir Savardashtaki
- Department of Medical Biotechnology, School of Advanced Medical Sciences and Technologies, Shiraz University of Medical Sciences, Shiraz, Iran.
- Infertility Research Center, Shiraz University of Medical Sciences, Shiraz, Iran.
| | - Amirhossein Sahebkar
- Biotechnology Research Center, Pharmaceutical Technology Institute, Mashhad University of Medical Sciences, Mashhad, Iran.
- Applied Biomedical Research Center, Mashhad University of Medical Sciences, Mashhad, Iran.
- Department of Biotechnology, School of Pharmacy, Mashhad University of Medical Sciences, Mashhad, Iran.
| |
Collapse
|
4
|
Anurogo D, Liu CL, Chang YC, Chang YH, Qiu JT. Discovery of differentially expressed proteins for CAR-T therapy of ovarian cancers with a bioinformatics analysis. Aging (Albany NY) 2024; 16:11409-11433. [PMID: 39033780 PMCID: PMC11315388 DOI: 10.18632/aging.206024] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2023] [Accepted: 03/07/2024] [Indexed: 07/23/2024]
Abstract
Target antigens are crucial for developing chimeric antigen receptor (CAR)-T cells, but their application to ovarian cancers is limited. This study aimed to identify potential genes as CAR-T-cell antigen candidates for ovarian cancers. A differential gene expression analysis was performed on ovarian cancer samples from four datasets obtained from the GEO datasets. Functional annotation, pathway analysis, protein localization, and gene expression analysis were conducted using various datasets and tools. An oncogenicity analysis and network analysis were also performed. In total, 153 differentially expressed genes were identified in ovarian cancer samples, with 60 differentially expressed genes expressing plasma membrane proteins suitable for CAR-T-cell antigens. Among them, 21 plasma membrane proteins were predicted to be oncogenes in ovarian cancers, with nine proteins playing crucial roles in the network. Key genes identified in the oncogenic pathways of ovarian cancers included MUC1, CXCR4, EPCAM, RACGAP1, UBE2C, PRAME, SORT1, JUP, and CLDN3, suggesting them as recommended antigens for CAR-T-cell therapy for ovarian cancers. This study sheds light on potential targets for immunotherapy in ovarian cancers.
Collapse
Affiliation(s)
- Dito Anurogo
- International Ph.D. Program in Cell Therapy and Regenerative Medicine, College of Medicine, Taipei Medical University, Taipei 11031, Taiwan
- Faculty of Medicine and Health Sciences, Universitas Muhammadiyah Makassar, Makassar 90221, Indonesia
| | - Chao-Lien Liu
- School of Medical Laboratory Science and Biotechnology, College of Medical Science and Technology, Taipei Medical University, Taipei 11031, Taiwan
- PhD Program in Medical Biotechnology, College of Medical Science and Technology, Taipei Medical University, Taipei 11031, Taiwan
| | - Yu-Chu Chang
- International Ph.D. Program in Cell Therapy and Regenerative Medicine, College of Medicine, Taipei Medical University, Taipei 11031, Taiwan
| | - Yu-Hsiang Chang
- International Ph.D. Program in Cell Therapy and Regenerative Medicine, College of Medicine, Taipei Medical University, Taipei 11031, Taiwan
| | - J. Timothy Qiu
- International Ph.D. Program in Cell Therapy and Regenerative Medicine, College of Medicine, Taipei Medical University, Taipei 11031, Taiwan
- Department of Obstetrics and Gynecology, Taipei Medical University Hospital, Taipei 11031, Taiwan
- Department of Obstetrics and Gynecology, School of Medicine, College of Medicine, Taipei Medical University, Taipei 110301, Taiwan
| |
Collapse
|
5
|
Bugakova AS, Chudakova DA, Myzina MS, Yanysheva EP, Ozerskaya IV, Soboleva AV, Baklaushev VP, Yusubalieva GM. Non-Tumor Cells within the Tumor Microenvironment-The "Eminence Grise" of the Glioblastoma Pathogenesis and Potential Targets for Therapy. Cells 2024; 13:808. [PMID: 38786032 PMCID: PMC11119139 DOI: 10.3390/cells13100808] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2024] [Revised: 04/26/2024] [Accepted: 04/30/2024] [Indexed: 05/25/2024] Open
Abstract
Glioblastoma (GBM) is the most common malignancy of the central nervous system in adults. GBM has high levels of therapy failure and its prognosis is usually dismal. The phenotypic heterogeneity of the tumor cells, dynamic complexity of non-tumor cell populations within the GBM tumor microenvironment (TME), and their bi-directional cross-talk contribute to the challenges of current therapeutic approaches. Herein, we discuss the etiology of GBM, and describe several major types of non-tumor cells within its TME, their impact on GBM pathogenesis, and molecular mechanisms of such an impact. We also discuss their value as potential therapeutic targets or prognostic biomarkers, with reference to the most recent works on this subject. We conclude that unless all "key player" populations of non-tumor cells within the TME are considered, no breakthrough in developing treatment for GBM can be achieved.
Collapse
Affiliation(s)
- Aleksandra S. Bugakova
- Federal Center for Brain and Neurotechnologies, Federal Medical and Biological Agency of Russia, 117513 Moscow, Russia
| | - Daria A. Chudakova
- Federal Center for Brain and Neurotechnologies, Federal Medical and Biological Agency of Russia, 117513 Moscow, Russia
| | - Maria S. Myzina
- Federal Center for Brain and Neurotechnologies, Federal Medical and Biological Agency of Russia, 117513 Moscow, Russia
| | - Elvira P. Yanysheva
- Federal Research and Clinical Center of Specialized Medical Care and Medical Technologies Federal Medical and Biological Agency of Russia, 115682 Moscow, Russia
| | - Iuliia V. Ozerskaya
- Pulmonology Research Institute, Federal Medical and Biological Agency of Russia, 115682 Moscow, Russia
| | - Alesya V. Soboleva
- Federal Center for Brain and Neurotechnologies, Federal Medical and Biological Agency of Russia, 117513 Moscow, Russia
- Engelhardt Institute of Molecular Biology, Russian Academy of Sciences, 119991 Moscow, Russia
| | - Vladimir P. Baklaushev
- Federal Center for Brain and Neurotechnologies, Federal Medical and Biological Agency of Russia, 117513 Moscow, Russia
- Federal Research and Clinical Center of Specialized Medical Care and Medical Technologies Federal Medical and Biological Agency of Russia, 115682 Moscow, Russia
- Pulmonology Research Institute, Federal Medical and Biological Agency of Russia, 115682 Moscow, Russia
- Engelhardt Institute of Molecular Biology, Russian Academy of Sciences, 119991 Moscow, Russia
- Department of Medical Nanobiotechnology of Medical and Biological Faculty, Pirogov Russian National Research Medical University, Ministry of Health of the Russian Federation, 117997 Moscow, Russia
| | - Gaukhar M. Yusubalieva
- Federal Center for Brain and Neurotechnologies, Federal Medical and Biological Agency of Russia, 117513 Moscow, Russia
- Federal Research and Clinical Center of Specialized Medical Care and Medical Technologies Federal Medical and Biological Agency of Russia, 115682 Moscow, Russia
- Engelhardt Institute of Molecular Biology, Russian Academy of Sciences, 119991 Moscow, Russia
| |
Collapse
|
6
|
Rojas-Quintero J, Díaz MP, Palmar J, Galan-Freyle NJ, Morillo V, Escalona D, González-Torres HJ, Torres W, Navarro-Quiroz E, Rivera-Porras D, Bermúdez V. Car T Cells in Solid Tumors: Overcoming Obstacles. Int J Mol Sci 2024; 25:4170. [PMID: 38673757 PMCID: PMC11050550 DOI: 10.3390/ijms25084170] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2023] [Revised: 03/12/2024] [Accepted: 03/13/2024] [Indexed: 04/28/2024] Open
Abstract
Chimeric antigen receptor T cell (CAR T cell) therapy has emerged as a prominent adoptive cell therapy and a therapeutic approach of great interest in the fight against cancer. This approach has shown notorious efficacy in refractory hematological neoplasm, which has bolstered its exploration in the field of solid cancers. However, successfully managing solid tumors presents considerable intrinsic challenges, which include the necessity of guiding the modified cells toward the tumoral region, assuring their penetration and survival in adverse microenvironments, and addressing the complexity of identifying the specific antigens for each type of cancer. This review focuses on outlining the challenges faced by CAR T cell therapy when used in the treatment of solid tumors, as well as presenting optimizations and emergent approaches directed at improving its efficacy in this particular context. From precise localization to the modulation of the tumoral microenvironment and the adaptation of antigen recognition strategies, diverse pathways will be examined to overcome the current limitations and buttress the therapeutic potential of CAR T cells in the fight against solid tumors.
Collapse
Affiliation(s)
- Joselyn Rojas-Quintero
- Medicine, Pulmonary, Critical Care, and Sleep Medicine Department, Baylor College of Medicine, Houston, TX 77030, USA;
| | - María P. Díaz
- Facultad de Medicina, Centro de Investigaciones Endocrino—Metabólicas, Universidad del Zulia, Maracaibo 4001, Venezuela (J.P.); (V.M.); (D.E.); (W.T.)
| | - Jim Palmar
- Facultad de Medicina, Centro de Investigaciones Endocrino—Metabólicas, Universidad del Zulia, Maracaibo 4001, Venezuela (J.P.); (V.M.); (D.E.); (W.T.)
| | - Nataly J. Galan-Freyle
- Centro de Investigaciones en Ciencias de la Vida, Universidad Simón Bolívar, Barranquilla 080002, Colombia; (N.J.G.-F.); (E.N.-Q.)
| | - Valery Morillo
- Facultad de Medicina, Centro de Investigaciones Endocrino—Metabólicas, Universidad del Zulia, Maracaibo 4001, Venezuela (J.P.); (V.M.); (D.E.); (W.T.)
| | - Daniel Escalona
- Facultad de Medicina, Centro de Investigaciones Endocrino—Metabólicas, Universidad del Zulia, Maracaibo 4001, Venezuela (J.P.); (V.M.); (D.E.); (W.T.)
| | | | - Wheeler Torres
- Facultad de Medicina, Centro de Investigaciones Endocrino—Metabólicas, Universidad del Zulia, Maracaibo 4001, Venezuela (J.P.); (V.M.); (D.E.); (W.T.)
| | - Elkin Navarro-Quiroz
- Centro de Investigaciones en Ciencias de la Vida, Universidad Simón Bolívar, Barranquilla 080002, Colombia; (N.J.G.-F.); (E.N.-Q.)
- Facultad de Ciencias Básicas y Biomédicas, Barranquilla 080002, Colombia
| | - Diego Rivera-Porras
- Facultad de Ciencias Jurídicas y Sociales, Universidad Simón Bolívar, Cúcuta 540001, Colombia;
| | - Valmore Bermúdez
- Centro de Investigaciones en Ciencias de la Vida, Universidad Simón Bolívar, Barranquilla 080002, Colombia; (N.J.G.-F.); (E.N.-Q.)
- Facultad de Ciencias de la Salud, Universidad Simón Bolívar, Barranquilla 080002, Colombia;
| |
Collapse
|
7
|
Obrador E, Moreno-Murciano P, Oriol-Caballo M, López-Blanch R, Pineda B, Gutiérrez-Arroyo JL, Loras A, Gonzalez-Bonet LG, Martinez-Cadenas C, Estrela JM, Marqués-Torrejón MÁ. Glioblastoma Therapy: Past, Present and Future. Int J Mol Sci 2024; 25:2529. [PMID: 38473776 PMCID: PMC10931797 DOI: 10.3390/ijms25052529] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2023] [Revised: 02/10/2024] [Accepted: 02/16/2024] [Indexed: 03/14/2024] Open
Abstract
Glioblastoma (GB) stands out as the most prevalent and lethal form of brain cancer. Although great efforts have been made by clinicians and researchers, no significant improvement in survival has been achieved since the Stupp protocol became the standard of care (SOC) in 2005. Despite multimodality treatments, recurrence is almost universal with survival rates under 2 years after diagnosis. Here, we discuss the recent progress in our understanding of GB pathophysiology, in particular, the importance of glioma stem cells (GSCs), the tumor microenvironment conditions, and epigenetic mechanisms involved in GB growth, aggressiveness and recurrence. The discussion on therapeutic strategies first covers the SOC treatment and targeted therapies that have been shown to interfere with different signaling pathways (pRB/CDK4/RB1/P16ink4, TP53/MDM2/P14arf, PI3k/Akt-PTEN, RAS/RAF/MEK, PARP) involved in GB tumorigenesis, pathophysiology, and treatment resistance acquisition. Below, we analyze several immunotherapeutic approaches (i.e., checkpoint inhibitors, vaccines, CAR-modified NK or T cells, oncolytic virotherapy) that have been used in an attempt to enhance the immune response against GB, and thereby avoid recidivism or increase survival of GB patients. Finally, we present treatment attempts made using nanotherapies (nanometric structures having active anti-GB agents such as antibodies, chemotherapeutic/anti-angiogenic drugs or sensitizers, radionuclides, and molecules that target GB cellular receptors or open the blood-brain barrier) and non-ionizing energies (laser interstitial thermal therapy, high/low intensity focused ultrasounds, photodynamic/sonodynamic therapies and electroporation). The aim of this review is to discuss the advances and limitations of the current therapies and to present novel approaches that are under development or following clinical trials.
Collapse
Affiliation(s)
- Elena Obrador
- Scientia BioTech S.L., 46002 Valencia, Spain; (P.M.-M.); (M.O.-C.); (R.L.-B.); (J.M.E.)
- Department of Physiology, Faculty of Medicine and Odontology, University of Valencia, 46010 Valencia, Spain;
| | - Paz Moreno-Murciano
- Scientia BioTech S.L., 46002 Valencia, Spain; (P.M.-M.); (M.O.-C.); (R.L.-B.); (J.M.E.)
| | - María Oriol-Caballo
- Scientia BioTech S.L., 46002 Valencia, Spain; (P.M.-M.); (M.O.-C.); (R.L.-B.); (J.M.E.)
- Department of Physiology, Faculty of Medicine and Odontology, University of Valencia, 46010 Valencia, Spain;
| | - Rafael López-Blanch
- Scientia BioTech S.L., 46002 Valencia, Spain; (P.M.-M.); (M.O.-C.); (R.L.-B.); (J.M.E.)
- Department of Physiology, Faculty of Medicine and Odontology, University of Valencia, 46010 Valencia, Spain;
| | - Begoña Pineda
- Department of Physiology, Faculty of Medicine and Odontology, University of Valencia, 46010 Valencia, Spain;
| | - Julia Lara Gutiérrez-Arroyo
- Department of Medicine, Jaume I University of Castellon, 12071 Castellon, Spain; (J.L.G.-A.); (A.L.); (C.M.-C.)
| | - Alba Loras
- Department of Medicine, Jaume I University of Castellon, 12071 Castellon, Spain; (J.L.G.-A.); (A.L.); (C.M.-C.)
| | - Luis G. Gonzalez-Bonet
- Department of Neurosurgery, Castellon General University Hospital, 12004 Castellon, Spain;
| | - Conrado Martinez-Cadenas
- Department of Medicine, Jaume I University of Castellon, 12071 Castellon, Spain; (J.L.G.-A.); (A.L.); (C.M.-C.)
| | - José M. Estrela
- Scientia BioTech S.L., 46002 Valencia, Spain; (P.M.-M.); (M.O.-C.); (R.L.-B.); (J.M.E.)
- Department of Physiology, Faculty of Medicine and Odontology, University of Valencia, 46010 Valencia, Spain;
- Department of Physiology, Faculty of Pharmacy, University of Valencia, 46100 Burjassot, Spain
| | | |
Collapse
|
8
|
Huang S, Bai Y, An Z, Xu C, Zhang C, Wang F, Zhong C, Zhong X. Gastrodin synergistically increases migration of interleukin-13 receptor α2 chimeric antigen receptor T cell to the brain against glioblastoma multiforme: A preclinical study. Phytother Res 2023; 37:5947-5957. [PMID: 37748098 DOI: 10.1002/ptr.8007] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2022] [Revised: 08/17/2023] [Accepted: 08/20/2023] [Indexed: 09/27/2023]
Abstract
Therapy with chimeric antigen receptor T (CAR-T) cells involves using reformative T lymphocytes that have three domains, antigen recognition, transmembrane, and costimulating to achieve the therapeutic purpose. CAR-T therapy on malignant hematologic has been successful; however, its effectiveness in patients with solid tumors is still limited. Few studies exist confirming the efficacy of natural products on the function of CAR-T cells. The purpose of this study is to assess the effect of gastrodin (GAS) on CAR-T cells that target interleukin-13 receptor α2 antigen (IL-13Rα2 CAR-T) in the brain against glioblastoma multiforme. Migration of IL-13Rα2 CAR-T was evaluated using the Transwell assay. The effects of GAS on IL-13Rα2 CAR-T cells were assessed both in vitro and situ glioblastoma models. The cytoskeleton was stained with Fluorescein 5-isothiocyanate (FITC)-phalloidin. Cytokines expression in cells was determined by flow cytometry and ELISA assay. Western blotting was used to detect the S1P1 expression, and quantitative PCR assay was used to determine the IL-13Rα2 gene level. GAS increased the migratory and destructive capacity of IL-13Rα2 CAR-T cells with no effect on cytokine release. By increasing the expression of S1P1, GAS encouraged the entry of CAR-T cells into the brain and bone marrow. Transcriptomic analysis revealed that genes related to skeletal migration such as add2 and gng8 showed increased expression in GAS-treated CAR-T cells. We found that GAS synergistically improves the mobility of IL-13Rα2 CAR-T, enhancing their ability to recognize the tumor antigen of glioblastoma, which could be advantageous for the application of CAR-T for the treatment of solid tumors.
Collapse
Affiliation(s)
- Shuai Huang
- Department of the Clinical Center of Gene and Cell Engineering, Beijing Shijitan Hospital, Capital Medical University, Beijing, China
| | - Yue Bai
- Department of the Clinical Center of Gene and Cell Engineering, Beijing Shijitan Hospital, Capital Medical University, Beijing, China
| | - Zhijing An
- Department of the Clinical Center of Gene and Cell Engineering, Beijing Shijitan Hospital, Capital Medical University, Beijing, China
| | - Chang Xu
- Department of the Clinical Center of Gene and Cell Engineering, Beijing Shijitan Hospital, Capital Medical University, Beijing, China
| | - Can Zhang
- Department of the Clinical Center of Gene and Cell Engineering, Beijing Shijitan Hospital, Capital Medical University, Beijing, China
| | - Fang Wang
- Department of the Clinical Center of Gene and Cell Engineering, Beijing Shijitan Hospital, Capital Medical University, Beijing, China
| | - Chunlong Zhong
- Department of Neurosurgery, Shanghai East Hospital, School of Medicine, Tongji University, Shanghai, China
| | - Xiaosong Zhong
- Department of the Clinical Center of Gene and Cell Engineering, Beijing Shijitan Hospital, Capital Medical University, Beijing, China
| |
Collapse
|
9
|
Batchu S, Hanafy KA, Redjal N, Godil SS, Thomas AJ. Single-cell analysis reveals diversity of tumor-associated macrophages and their interactions with T lymphocytes in glioblastoma. Sci Rep 2023; 13:20874. [PMID: 38012322 PMCID: PMC10682178 DOI: 10.1038/s41598-023-48116-2] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2023] [Accepted: 11/22/2023] [Indexed: 11/29/2023] Open
Abstract
Glioblastoma (GBM) is an aggressive primary CNS malignancy and clinical outcomes have remained stagnant despite introduction of new treatments. Understanding the tumor microenvironment (TME) in which tumor associated macrophages (TAMs) interact with T cells has been of great interest. Although previous studies examining TAMs in GBM have shown that certain TAMs are associated with specific clinical and/or pathologic features, these studies used an outdated M1/M2 paradigm of macrophage polarization and failed to include the continuum of TAM states in GBM. Perhaps most significantly, the interactions of TAMs with T cells have yet to be fully explored. Our study uses single-cell RNA sequencing data from adult IDH-wildtype GBM, with the primary aim of deciphering the cellular interactions of the 7 TAM subtypes with T cells in the GBM TME. Furthermore, the interactions discovered herein are compared to IDH-mutant astrocytoma, allowing for focus on the cellular ecosystem unique to GBM. The resulting ligand-receptor interactions, signaling sources, and global communication patterns discovered provide a framework for future studies to explore methods of leveraging the immune system for treating GBM.
Collapse
Affiliation(s)
- Sai Batchu
- Cooper Medical School of Rowan University, Camden, NJ, 08103, USA
| | - Khalid A Hanafy
- Cooper Medical School of Rowan University, Camden, NJ, 08103, USA
- Department of Neurology, Cooper University Health Care, Camden, NJ, USA
| | - Navid Redjal
- Cooper Medical School of Rowan University, Camden, NJ, 08103, USA
- Department of Neurosurgery, Cooper University Health Care, Camden, NJ, USA
| | - Saniya S Godil
- Cooper Medical School of Rowan University, Camden, NJ, 08103, USA
- Department of Neurosurgery, Cooper University Health Care, Camden, NJ, USA
| | - Ajith J Thomas
- Cooper Medical School of Rowan University, Camden, NJ, 08103, USA.
- Department of Neurosurgery, Cooper University Health Care, Camden, NJ, USA.
| |
Collapse
|
10
|
Okonechnikov K, Joshi P, Sepp M, Leiss K, Sarropoulos I, Murat F, Sill M, Beck P, Chan KCH, Korshunov A, Sah F, Deng MY, Sturm D, DeSisto J, Donson AM, Foreman NK, Green AL, Robinson G, Orr BA, Gao Q, Darrow E, Hadley JL, Northcott PA, Gojo J, Kawauchi D, Hovestadt V, Filbin MG, von Deimling A, Zuckermann M, Pajtler KW, Kool M, Jones DTW, Jäger N, Kutscher LM, Kaessmann H, Pfister SM. Mapping pediatric brain tumors to their origins in the developing cerebellum. Neuro Oncol 2023; 25:1895-1909. [PMID: 37534924 PMCID: PMC10547518 DOI: 10.1093/neuonc/noad124] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2023] [Indexed: 08/04/2023] Open
Abstract
BACKGROUND Distinguishing the cellular origins of childhood brain tumors is key for understanding tumor initiation and identifying lineage-restricted, tumor-specific therapeutic targets. Previous strategies to map the cell-of-origin typically involved comparing human tumors to murine embryonal tissues, which is potentially limited due to species-specific differences. The aim of this study was to unravel the cellular origins of the 3 most common pediatric brain tumors, ependymoma, pilocytic astrocytoma, and medulloblastoma, using a developing human cerebellar atlas. METHODS We used a single-nucleus atlas of the normal developing human cerebellum consisting of 176 645 cells as a reference for an in-depth comparison to 4416 bulk and single-cell transcriptome tumor datasets, using gene set variation analysis, correlation, and single-cell matching techniques. RESULTS We find that the astroglial cerebellar lineage is potentially the origin for posterior fossa ependymomas. We propose that infratentorial pilocytic astrocytomas originate from the oligodendrocyte lineage and MHC II genes are specifically enriched in these tumors. We confirm that SHH and Group 3/4 medulloblastomas originate from the granule cell and unipolar brush cell lineages. Radiation-induced gliomas stem from cerebellar glial lineages and demonstrate distinct origins from the primary medulloblastoma. We identify tumor genes that are expressed in the cerebellar lineage of origin, and genes that are tumor specific; both gene sets represent promising therapeutic targets for future study. CONCLUSION Based on our results, individual cells within a tumor may resemble different cell types along a restricted developmental lineage. Therefore, we suggest that tumors can arise from multiple cellular states along the cerebellar "lineage of origin."
Collapse
Affiliation(s)
- Konstantin Okonechnikov
- Hopp Children’s Cancer Center (KiTZ), Heidelberg, Germany
- Division of Pediatric Neurooncology, German Cancer Research Center (DKFZ) and German Cancer Consortium (DKTK), Heidelberg, Germany
| | - Piyush Joshi
- Hopp Children’s Cancer Center (KiTZ), Heidelberg, Germany
- Division of Pediatric Neurooncology, German Cancer Research Center (DKFZ) and German Cancer Consortium (DKTK), Heidelberg, Germany
- Developmental Origins of Pediatric Cancer Junior Research Group, German Cancer Research Center (DKFZ), Heidelberg, Germany
| | - Mari Sepp
- Hopp Children’s Cancer Center (KiTZ), Heidelberg, Germany
- Division of Pediatric Neurooncology, German Cancer Research Center (DKFZ) and German Cancer Consortium (DKTK), Heidelberg, Germany
- Center for Molecular Biology of Heidelberg University (ZMBH), DKFZ-ZMBH Alliance, Heidelberg, Germany
| | - Kevin Leiss
- Center for Molecular Biology of Heidelberg University (ZMBH), DKFZ-ZMBH Alliance, Heidelberg, Germany
| | - Ioannis Sarropoulos
- Center for Molecular Biology of Heidelberg University (ZMBH), DKFZ-ZMBH Alliance, Heidelberg, Germany
| | - Florent Murat
- Center for Molecular Biology of Heidelberg University (ZMBH), DKFZ-ZMBH Alliance, Heidelberg, Germany
- INRAE, LPGP, Rennes, France
| | | | - Pengbo Beck
- Hopp Children’s Cancer Center (KiTZ), Heidelberg, Germany
- Division of Pediatric Neurooncology, German Cancer Research Center (DKFZ) and German Cancer Consortium (DKTK), Heidelberg, Germany
| | - Kenneth Chun-Ho Chan
- Hopp Children’s Cancer Center (KiTZ), Heidelberg, Germany
- Division of Pediatric Neurooncology, German Cancer Research Center (DKFZ) and German Cancer Consortium (DKTK), Heidelberg, Germany
| | - Andrey Korshunov
- Hopp Children’s Cancer Center (KiTZ), Heidelberg, Germany
- Clinical Cooperation Unit Neuropathology, German Cancer Research Center (DKFZ), Heidelberg, Germany
- Department of Neuropathology, Institute of Pathology, Heidelberg University Hospital, Heidelberg, Germany
| | - Felix Sah
- Hopp Children’s Cancer Center (KiTZ), Heidelberg, Germany
- Clinical Cooperation Unit Neuropathology, German Cancer Research Center (DKFZ), Heidelberg, Germany
- Department of Neuropathology, Institute of Pathology, Heidelberg University Hospital, Heidelberg, Germany
| | - Maximilian Y Deng
- Hopp Children’s Cancer Center (KiTZ), Heidelberg, Germany
- Division of Pediatric Glioma Research, German Cancer Research Center (DKFZ), Heidelberg, Germany
| | - Dominik Sturm
- Hopp Children’s Cancer Center (KiTZ), Heidelberg, Germany
- Division of Pediatric Glioma Research, German Cancer Research Center (DKFZ), Heidelberg, Germany
- Department of Pediatric Hematology and Oncology, Heidelberg University Hospital, Heidelberg, Germany
| | - John DeSisto
- Morgan Adams Foundation Pediatric Brain Tumor Research Program, University of Colorado School of Medicine, Aurora, CO, USA
| | - Andrew M Donson
- Morgan Adams Foundation Pediatric Brain Tumor Research Program, University of Colorado School of Medicine, Aurora, CO, USA
| | - Nicholas K Foreman
- Morgan Adams Foundation Pediatric Brain Tumor Research Program, University of Colorado School of Medicine, Aurora, CO, USA
- Children’s Hospital Colorado, Aurora, CO, USA
| | - Adam L Green
- Morgan Adams Foundation Pediatric Brain Tumor Research Program, University of Colorado School of Medicine, Aurora, CO, USA
- Children’s Hospital Colorado, Aurora, CO, USA
| | - Giles Robinson
- Department of Oncology, St Jude Children’s Research Hospital, Memphis, TN, USA
| | - Brent A Orr
- Department of Pathology, St Jude Children’s Research Hospital, Memphis, TN, USA
| | - Qingsong Gao
- Department of Pathology, St Jude Children’s Research Hospital, Memphis, TN, USA
- Department of Developmental Neurobiology, St Jude Children’s Research Hospital, Memphis, TN, USA
| | - Emily Darrow
- Department of Developmental Neurobiology, St Jude Children’s Research Hospital, Memphis, TN, USA
| | - Jennifer L Hadley
- Department of Developmental Neurobiology, St Jude Children’s Research Hospital, Memphis, TN, USA
| | - Paul A Northcott
- Department of Developmental Neurobiology, St Jude Children’s Research Hospital, Memphis, TN, USA
| | - Johannes Gojo
- Hopp Children’s Cancer Center (KiTZ), Heidelberg, Germany
- Division of Pediatric Neurooncology, German Cancer Research Center (DKFZ) and German Cancer Consortium (DKTK), Heidelberg, Germany
- Department of Pediatrics and Adolescent Medicine, Comprehensive Center for Pediatrics and Comprehensive Cancer Center, Medical University of Vienna, 1090 Vienna, Austria
- Department of Neuropathology, NN Burdenko Neurosurgical Institute, Moscow, Russia
| | - Daisuke Kawauchi
- Department of Biochemistry and Cellular Biology, National Institute of Neuroscience, NCNP, Tokyo, Japan
| | - Volker Hovestadt
- Department of Pediatric Oncology, Dana-Farber Boston Children’s Cancer and Blood Disorders Center, Boston, USA
- Broad Institute of Harvard and MIT, Cambridge, USA
| | - Mariella G Filbin
- Department of Pediatric Oncology, Dana-Farber Boston Children’s Cancer and Blood Disorders Center, Boston, USA
- Broad Institute of Harvard and MIT, Cambridge, USA
| | - Andreas von Deimling
- Hopp Children’s Cancer Center (KiTZ), Heidelberg, Germany
- Clinical Cooperation Unit Neuropathology, German Cancer Research Center (DKFZ), Heidelberg, Germany
- Department of Neuropathology, Institute of Pathology, Heidelberg University Hospital, Heidelberg, Germany
| | - Marc Zuckermann
- Hopp Children’s Cancer Center (KiTZ), Heidelberg, Germany
- Division of Pediatric Neurooncology, German Cancer Research Center (DKFZ) and German Cancer Consortium (DKTK), Heidelberg, Germany
| | - Kristian W Pajtler
- Hopp Children’s Cancer Center (KiTZ), Heidelberg, Germany
- Division of Pediatric Neurooncology, German Cancer Research Center (DKFZ) and German Cancer Consortium (DKTK), Heidelberg, Germany
- Clinical Cooperation Unit Neuropathology, German Cancer Research Center (DKFZ), Heidelberg, Germany
| | - Marcel Kool
- Hopp Children’s Cancer Center (KiTZ), Heidelberg, Germany
- Division of Pediatric Neurooncology, German Cancer Research Center (DKFZ) and German Cancer Consortium (DKTK), Heidelberg, Germany
- Princess Máxima Center for Pediatric Oncology, 3584 CS Utrecht, the Netherlands
| | - David T W Jones
- Hopp Children’s Cancer Center (KiTZ), Heidelberg, Germany
- Division of Pediatric Glioma Research, German Cancer Research Center (DKFZ), Heidelberg, Germany
| | - Natalie Jäger
- Hopp Children’s Cancer Center (KiTZ), Heidelberg, Germany
- Division of Pediatric Neurooncology, German Cancer Research Center (DKFZ) and German Cancer Consortium (DKTK), Heidelberg, Germany
| | - Lena M Kutscher
- Hopp Children’s Cancer Center (KiTZ), Heidelberg, Germany
- Developmental Origins of Pediatric Cancer Junior Research Group, German Cancer Research Center (DKFZ), Heidelberg, Germany
| | - Henrik Kaessmann
- Center for Molecular Biology of Heidelberg University (ZMBH), DKFZ-ZMBH Alliance, Heidelberg, Germany
| | - Stefan M Pfister
- Hopp Children’s Cancer Center (KiTZ), Heidelberg, Germany
- Division of Pediatric Neurooncology, German Cancer Research Center (DKFZ) and German Cancer Consortium (DKTK), Heidelberg, Germany
- Division of Pediatric Glioma Research, German Cancer Research Center (DKFZ), Heidelberg, Germany
| |
Collapse
|
11
|
Shahabifard H, Zarei M, Kookli K, Esmalian Afyouni N, Soltani N, Maghsoodi S, Adili A, Mahmoudi J, Shomali N, Sandoghchian Shotorbani S. An updated overview of the application of CAR-T cell therapy in neurological diseases. Biotechnol Prog 2023; 39:e3356. [PMID: 37198722 DOI: 10.1002/btpr.3356] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2023] [Revised: 04/29/2023] [Accepted: 05/03/2023] [Indexed: 05/19/2023]
Abstract
Genetically modified immune cells, especially CAR-T cells, have captured the attention of scientists over the past 10 years. In the fight against cancer, these cells have a special place. Treatment for hematological cancers, autoimmune disorders, and cancers must include CAR-T cell therapy. Determining the therapeutic targets, side effects, and use of CAR-T cells in neurological disorders, including cancer and neurodegenerative diseases, is the goal of this study. Due to advancements in genetic engineering, CAR-T cells have become crucial in treating some neurological disorders. CAR-T cells have demonstrated a positive role in treating neurological cancers like Glioblastoma and Neuroblastoma due to their ability to cross the blood-brain barrier and use diverse targets. However, CAR-T cell therapy for MS diseases is being researched and could be a potential treatment option. This study aimed to access the most recent studies and scientific articles in the field of CAR-T cells in neurological diseases and/or disorders.
Collapse
Affiliation(s)
- Hesam Shahabifard
- Neurosciences Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Mahdi Zarei
- Student Research Committee, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Keihan Kookli
- International Campus, Iran University of Medical Sciences, Tehran, Iran
| | - Nazgol Esmalian Afyouni
- Isfahan Neurosciences Research Center, Alzahra Research Institute, Isfahan University of Medical Sciences, Isfahan, Iran
| | - Narges Soltani
- School of Allied Medical Sciences, Tehran University of Medical Sciences, Tehran, Iran
| | - Sairan Maghsoodi
- Department of Laboratory Sciences, Faculty of Paramedical Sciences, Kurdistan University of Medical Sciences (MUK), Sanandaj, Iran
| | - Ali Adili
- Department of Oncology, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Javad Mahmoudi
- Neurosciences Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Navid Shomali
- Immunology Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
| | | |
Collapse
|
12
|
Agnihotri TG, Salave S, Shinde T, Srikanth I, Gyanani V, Haley JC, Jain A. Understanding the role of endothelial cells in brain tumor formation and metastasis: a proposition to be explored for better therapy. JOURNAL OF THE NATIONAL CANCER CENTER 2023; 3:222-235. [PMID: 39035200 PMCID: PMC11256543 DOI: 10.1016/j.jncc.2023.08.001] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2023] [Revised: 07/31/2023] [Accepted: 08/02/2023] [Indexed: 07/23/2024] Open
Abstract
Glioblastoma is one of the most devastating central nervous system disorders. Being a highly vascular brain tumor, it is distinguished by aberrant vessel architecture. This lends credence to the idea that endothelial cells (ECs) linked with glioblastoma vary fundamentally from ECs seen in the healthy human brain. To effectively design an antiangiogenic treatment, it is crucial to identify the functional and phenotypic characteristics of tumor-associated ECs. The ECs associated with glioblastoma are less prone to apoptosis than control cells and are resistant to cytotoxic treatments. Additionally, ECs associated with glioblastoma migrate more quickly than control ECs and naturally produce large amounts of growth factors such as endothelin-1, interleukin-8, and vascular endothelial growth factor (VEGF). For designing innovative antiangiogenic drugs that particularly target tumor-related ECs in gliomas, it is critical to comprehend these distinctive features of ECs associated with gliomas. This review discusses the process of angiogenesis, other factors involved in the genesis of tumors, and the possibility of ECs as a potential target in combating glioblastoma. It also sheds light on the association of tumor microenvironment and ECs with immunotherapy. This review, thus gives us the hope that neuro endothelial targeting with growth factors and angiogenesis regulators combined with gene therapy would open up new doorways and change our traditional perspective of treating cancer.
Collapse
Affiliation(s)
- Tejas Girish Agnihotri
- Department of Pharmaceutics, National Institute of Pharmaceutical Education and Research (NIPER)-Ahmedabad, Palaj, India
| | - Sagar Salave
- Department of Pharmaceutics, National Institute of Pharmaceutical Education and Research (NIPER)-Ahmedabad, Palaj, India
| | - Tanuja Shinde
- Department of Pharmaceutics, National Institute of Pharmaceutical Education and Research (NIPER)-Ahmedabad, Palaj, India
| | - Induri Srikanth
- Department of Pharmaceutics, National Institute of Pharmaceutical Education and Research (NIPER)-Ahmedabad, Palaj, India
| | - Vijay Gyanani
- Long Acting Drug Delivery, Celanese Corporation, Irving, United States
| | - Jeffrey C. Haley
- Long Acting Drug Delivery, Celanese Corporation, Irving, United States
| | - Aakanchha Jain
- Department of Pharmaceutics, National Institute of Pharmaceutical Education and Research (NIPER)-Ahmedabad, Palaj, India
| |
Collapse
|
13
|
Kringel R, Lamszus K, Mohme M. Chimeric Antigen Receptor T Cells in Glioblastoma-Current Concepts and Promising Future. Cells 2023; 12:1770. [PMID: 37443804 PMCID: PMC10340625 DOI: 10.3390/cells12131770] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2023] [Revised: 06/20/2023] [Accepted: 06/27/2023] [Indexed: 07/15/2023] Open
Abstract
Glioblastoma (GBM) is a highly aggressive primary brain tumor that is largely refractory to treatment and, therefore, invariably relapses. GBM patients have a median overall survival of 15 months and, given this devastating prognosis, there is a high need for therapy improvement. One of the therapeutic approaches currently tested in GBM is chimeric antigen receptor (CAR)-T cell therapy. CAR-T cells are genetically altered T cells that are redirected to eliminate tumor cells in a highly specific manner. There are several challenges to CAR-T cell therapy in solid tumors such as GBM, including restricted trafficking and penetration of tumor tissue, a highly immunosuppressive tumor microenvironment (TME), as well as heterogeneous antigen expression and antigen loss. In addition, CAR-T cells have limitations concerning safety, toxicity, and the manufacturing process. To date, CAR-T cells directed against several target antigens in GBM including interleukin-13 receptor alpha 2 (IL-13Rα2), epidermal growth factor receptor variant III (EGFRvIII), human epidermal growth factor receptor 2 (HER2), and ephrin type-A receptor 2 (EphA2) have been tested in preclinical and clinical studies. These studies demonstrated that CAR-T cell therapy is a feasible option in GBM with at least transient responses and acceptable adverse effects. Further improvements in CAR-T cells regarding their efficacy, flexibility, and safety could render them a promising therapy option in GBM.
Collapse
Affiliation(s)
| | | | - Malte Mohme
- Department of Neurosurgery, University Medical Center Hamburg-Eppendorf, 20246 Hamburg, Germany; (R.K.); (K.L.)
| |
Collapse
|
14
|
Luo H, Zhang H, Mao J, Cao H, Tao Y, Zhao G, Zhang Z, Zhang N, Liu Z, Zhang J, Luo P, Xia Y, Cheng Y, Xie Z, Cheng Q, Liu G. Exosome-based nanoimmunotherapy targeting TAMs, a promising strategy for glioma. Cell Death Dis 2023; 14:235. [PMID: 37012233 PMCID: PMC10070666 DOI: 10.1038/s41419-023-05753-9] [Citation(s) in RCA: 27] [Impact Index Per Article: 13.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2022] [Revised: 03/08/2023] [Accepted: 03/16/2023] [Indexed: 04/05/2023]
Abstract
Exosomes, the cell-derived small extracellular vehicles, play a vital role in intracellular communication by reciprocally transporting DNA, RNA, bioactive protein, chains of glucose, and metabolites. With great potential to be developed as targeted drug carriers, cancer vaccines and noninvasive biomarkers for diagnosis, treatment response evaluation, prognosis prediction, exosomes show extensive advantages of relatively high drug loading capacity, adjustable therapeutic agents release, enhanced permeation and retention effect, striking biodegradability, excellent biocompatibility, low toxicity, etc. With the rapid progression of basic exosome research, exosome-based therapeutics are gaining increasing attention in recent years. Glioma, the standard primary central nervous system (CNS) tumor, is still up against significant challenges as current traditional therapies of surgery resection combined with radiotherapy and chemotherapy and numerous efforts into new drugs showed little clinical curative effect. The emerging immunotherapy strategy presents convincing results in many tumors and is driving researchers to exert its potential in glioma. As the crucial component of the glioma microenvironment, tumor-associated macrophages (TAMs) significantly contribute to the immunosuppressive microenvironment and strongly influence glioma progression via various signaling molecules, simultaneously providing new insight into therapeutic strategies. Exosomes would substantially assist the TAMs-centered treatment as drug delivery vehicles and liquid biopsy biomarkers. Here we review the current potential exosome-mediated immunotherapeutics targeting TAMs in glioma and conclude the recent investigation on the fundamental mechanisms of diversiform molecular signaling events by TAMs that promote glioma progression.
Collapse
Affiliation(s)
- Hong Luo
- Department of Neurosurgery, The Second Affiliated Hospital, Chongqing Medical University, Chongqing, China
| | - Hao Zhang
- Department of Neurosurgery, The Second Affiliated Hospital, Chongqing Medical University, Chongqing, China
| | - Jinning Mao
- Health management center, The Second Affiliated Hospital, Chongqing Medical University, Chongqing, China
| | - Hui Cao
- Brain Hospital of Hunan Province, The Second People's Hospital of Hunan Province, Changsha, China
- The School of Clinical Medicine, Hunan University of Chinese Medicine, Changsha, China
| | - Yihao Tao
- Department of Neurosurgery, The Second Affiliated Hospital, Chongqing Medical University, Chongqing, China
| | - Guanjian Zhao
- Department of Neurosurgery, The Second Affiliated Hospital, Chongqing Medical University, Chongqing, China
| | - Zhiwen Zhang
- School of Pharmacy, Fudan University, Shanghai, China
| | - Nan Zhang
- College of Life Science and Technology, Huazhong University of Science and Technology, Wuhan, China
| | - Zaoqu Liu
- Department of Interventional Radiology, The First Affiliated Hospital of Zhengzhou, Zhengzhou, China
| | - Jian Zhang
- Department of Oncology, Zhujiang Hospital, Southern Medical University, Guangzhou, China
| | - Peng Luo
- Department of Neurosurgery, Xiangya Hospital, Central South University, Changsha, China
| | - Yuguo Xia
- Department of Neurosurgery, Xiangya Hospital, Central South University, Changsha, China
| | - Yuan Cheng
- Department of Neurosurgery, The Second Affiliated Hospital, Chongqing Medical University, Chongqing, China
| | - Zongyi Xie
- Department of Neurosurgery, The Second Affiliated Hospital, Chongqing Medical University, Chongqing, China
| | - Quan Cheng
- Department of Neurosurgery, Xiangya Hospital, Central South University, Changsha, China.
- National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, China.
| | - Guodong Liu
- Department of Neurosurgery, The Second Affiliated Hospital, Chongqing Medical University, Chongqing, China.
| |
Collapse
|
15
|
Watowich MB, Gilbert MR, Larion M. T cell exhaustion in malignant gliomas. Trends Cancer 2023; 9:270-292. [PMID: 36681605 PMCID: PMC10038906 DOI: 10.1016/j.trecan.2022.12.008] [Citation(s) in RCA: 38] [Impact Index Per Article: 19.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2022] [Revised: 12/20/2022] [Accepted: 12/22/2022] [Indexed: 01/21/2023]
Abstract
Despite advances in understanding tumor biology, malignant gliomas remain incurable. While immunotherapy has improved outcomes in other cancer types, comparable efficacy has not yet been demonstrated for primary cancers of the central nervous system (CNS). T cell exhaustion, defined as a progressive decrease in effector function, sustained expression of inhibitory receptors, metabolic dysfunction, and distinct epigenetic and transcriptional alterations, contributes to the failure of immunotherapy in the CNS. Herein, we describe recent advances in understanding the drivers of T cell exhaustion in the glioma microenvironment. We discuss the extrinsic and intrinsic factors that contribute to exhaustion and highlight potential avenues for reversing this phenotype. Our ability to directly target specific immunosuppressive drivers in brain cancers would be a major advance in immunotherapy.
Collapse
Affiliation(s)
- Matthew B Watowich
- Neuro-Oncology Branch, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, MD, USA
| | - Mark R Gilbert
- Neuro-Oncology Branch, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, MD, USA
| | - Mioara Larion
- Neuro-Oncology Branch, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, MD, USA.
| |
Collapse
|
16
|
Arifianto MR, Meizikri R, Haq IBI, Susilo RI, Wahyuhadi J, Hermanto Y, Faried A. Emerging hallmark of gliomas microenvironment in evading immunity: a basic concept. THE EGYPTIAN JOURNAL OF NEUROLOGY, PSYCHIATRY AND NEUROSURGERY 2023. [DOI: 10.1186/s41983-023-00635-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/07/2023] Open
Abstract
Abstract
Background
Over the last decade, since clinical trials examining targeted therapeutics for gliomas have failed to demonstrate a meaningful increase in survival, the emphasis has recently been switched toward innovative techniques for modulating the immune response against tumors and their microenvironments (TME). Cancerous cells have eleven hallmarks which make it distinct from normal ones, among which is immune evasion. Immune evasion in glioblastoma helps it evade various treatment modalities.
Summary
Glioblastoma’s TME is composed of various array of cellular actors, ranging from peripherally derived immune cells to a variety of organ-resident specialized cell types. For example, the blood–brain barrier (BBB) serves as a selective barrier between the systemic circulation and the brain, which effectively separates it from other tissues. It is capable of blocking around 98% of molecules that transport different medications to the target tumor.
Objectives
The purpose of this paper is to offer a concise overview of fundamental immunology and how ‘clever’ gliomas avoid the immune system despite the discovery of immunotherapy for glioma.
Conclusions
Herein, we highlight the complex interplay of the tumor, the TME, and the nearby normal structures makes it difficult to grasp how to approach the tumor itself. Numerous researchers have found that the brain TME is a critical regulator of glioma growth and treatment efficacy.
Collapse
|
17
|
Liang J, Fang D, Gumin J, Najem H, Sooreshjani M, Song R, Sabbagh A, Kong LY, Duffy J, Balyasnikova IV, Pollack SM, Puduvalli VK, Heimberger AB. A Case Study of Chimeric Antigen Receptor T Cell Function: Donor Therapeutic Differences in Activity and Modulation with Verteporfin. Cancers (Basel) 2023; 15:1085. [PMID: 36831427 PMCID: PMC9953964 DOI: 10.3390/cancers15041085] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2022] [Revised: 01/20/2023] [Accepted: 02/03/2023] [Indexed: 02/10/2023] Open
Abstract
BACKGROUND Chimeric antigen receptor (CAR) T cells have recently been demonstrated to extract and express cognate tumor antigens through trogocytosis. This process may contribute to tumor antigen escape, T cell exhaustion, and fratricide, which plays a central role in CAR dysfunction. We sought to evaluate the importance of this effect in epidermal growth factor receptor variant III (EGFRvIII) specific CAR T cells targeting glioma. METHODS EGFRvIII-specific CAR T cells were generated from various donors and analyzed for cytotoxicity, trogocytosis, and in vivo therapeutic activity against intracranial glioma. Tumor autophagy resulting from CAR T cell activity was evaluated in combination with an autophagy inducer (verteporfin) or inhibitor (bafilomycin A1). RESULTS CAR T cell products derived from different donors induced markedly divergent levels of trogocytosis of tumor antigen as well as PD-L1 upon engaging target tumor cells correlating with variability in efficacy in mice. Pharmacological facilitation of CAR induced-autophagy with verteporfin inhibits trogocytic expression of tumor antigen on CARs and increases CAR persistence and efficacy in mice. CONCLUSION These data propose CAR-induced autophagy as a mechanism counteracting CAR-induced trogocytosis and provide a new strategy to innovate high-performance CARs through pharmacological facilitation of T cell-induced tumor death.
Collapse
Affiliation(s)
- Jiyong Liang
- Department of Neurosurgery, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA
- Department of Neuro-Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA
| | - Dexing Fang
- Department of Neurosurgery, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA
| | - Joy Gumin
- Department of Neurosurgery, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA
| | - Hinda Najem
- Department of Neurological Surgery, Feinberg School of Medicine, Northwestern University, Chicago, IL 60611, USA
- Malnati Brain Tumor Institute of the Lurie Comprehensive Cancer Center, Feinberg School of Medicine, Northwestern University, Chicago, IL 60611, USA
| | - Moloud Sooreshjani
- Department of Neurological Surgery, Feinberg School of Medicine, Northwestern University, Chicago, IL 60611, USA
- Malnati Brain Tumor Institute of the Lurie Comprehensive Cancer Center, Feinberg School of Medicine, Northwestern University, Chicago, IL 60611, USA
| | - Renduo Song
- Department of Neurosurgery, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA
| | - Aria Sabbagh
- Department of Neurosurgery, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA
| | - Ling-Yuan Kong
- Department of Neurosurgery, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA
| | - Joseph Duffy
- Department of Neurological Surgery, Feinberg School of Medicine, Northwestern University, Chicago, IL 60611, USA
- Malnati Brain Tumor Institute of the Lurie Comprehensive Cancer Center, Feinberg School of Medicine, Northwestern University, Chicago, IL 60611, USA
| | - Irina V. Balyasnikova
- Department of Neurological Surgery, Feinberg School of Medicine, Northwestern University, Chicago, IL 60611, USA
- Malnati Brain Tumor Institute of the Lurie Comprehensive Cancer Center, Feinberg School of Medicine, Northwestern University, Chicago, IL 60611, USA
| | - Seth M. Pollack
- Department of Cancer Biology, Feinberg School of Medicine, Northwestern University, Chicago, IL 60611, USA
| | - Vinay K. Puduvalli
- Department of Neuro-Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA
| | - Amy B. Heimberger
- Department of Neurological Surgery, Feinberg School of Medicine, Northwestern University, Chicago, IL 60611, USA
- Malnati Brain Tumor Institute of the Lurie Comprehensive Cancer Center, Feinberg School of Medicine, Northwestern University, Chicago, IL 60611, USA
- Department of Neurosurgery, Northwestern University, Simpson Querrey Biomedical Research Center, 303 E. Superior Street, 6-516, Chicago, IL 60611, USA
| |
Collapse
|
18
|
Swan SL, Mehta N, Ilich E, Shen SH, Wilkinson DS, Anderson AR, Segura T, Sanchez-Perez L, Sampson JH, Bellamkonda RV. IL7 and IL7 Flt3L co-expressing CAR T cells improve therapeutic efficacy in mouse EGFRvIII heterogeneous glioblastoma. Front Immunol 2023; 14:1085547. [PMID: 36817432 PMCID: PMC9936235 DOI: 10.3389/fimmu.2023.1085547] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2022] [Accepted: 01/04/2023] [Indexed: 02/05/2023] Open
Abstract
Chimeric antigen receptor (CAR) T cell therapy in glioblastoma faces many challenges including insufficient CAR T cell abundance and antigen-negative tumor cells evading targeting. Unfortunately, preclinical studies evaluating CAR T cells in glioblastoma focus on tumor models that express a single antigen, use immunocompromised animals, and/or pre-treat with lymphodepleting agents. While lymphodepletion enhances CAR T cell efficacy, it diminishes the endogenous immune system that has the potential for tumor eradication. Here, we engineered CAR T cells to express IL7 and/or Flt3L in 50% EGFRvIII-positive and -negative orthotopic tumors pre-conditioned with non-lymphodepleting irradiation. IL7 and IL7 Flt3L CAR T cells increased intratumoral CAR T cell abundance seven days after treatment. IL7 co-expression with Flt3L modestly increased conventional dendritic cells as well as the CD103+XCR1+ population known to have migratory and antigen cross-presenting capabilities. Treatment with IL7 or IL7 Flt3L CAR T cells improved overall survival to 67% and 50%, respectively, compared to 9% survival with conventional or Flt3L CAR T cells. We concluded that CAR T cells modified to express IL7 enhanced CAR T cell abundance and improved overall survival in EGFRvIII heterogeneous tumors pre-conditioned with non-lymphodepleting irradiation. Potentially IL7 or IL7 Flt3L CAR T cells can provide new opportunities to combine CAR T cells with other immunotherapies for the treatment of glioblastoma.
Collapse
Affiliation(s)
- Sheridan L Swan
- Department of Biomedical Engineering, Pratt School of Engineering, Duke University, Durham, NC, United States
| | - Nalini Mehta
- Department of Biomedical Engineering, Pratt School of Engineering, Duke University, Durham, NC, United States
| | - Ekaterina Ilich
- Department of Biomedical Engineering, Pratt School of Engineering, Duke University, Durham, NC, United States
| | - Steven H Shen
- Duke Brain Tumor Immunotherapy Program, Department of Neurosurgery, Duke University Medical Center, Durham, NC, United States.,The Preston Robert Tisch Brain Tumor Center, Duke University Medical Center, Durham, NC, United States.,Department of Pathology, Duke University Medical Center, Durham, NC, United States
| | - Daniel S Wilkinson
- Duke Brain Tumor Immunotherapy Program, Department of Neurosurgery, Duke University Medical Center, Durham, NC, United States
| | - Alexa R Anderson
- Department of Biomedical Engineering, Pratt School of Engineering, Duke University, Durham, NC, United States
| | - Tatiana Segura
- Department of Biomedical Engineering, Pratt School of Engineering, Duke University, Durham, NC, United States.,Clinical Science Departments of Neurology and Dermatology, Duke University, Durham, NC, United States
| | - Luis Sanchez-Perez
- Duke Brain Tumor Immunotherapy Program, Department of Neurosurgery, Duke University Medical Center, Durham, NC, United States.,The Preston Robert Tisch Brain Tumor Center, Duke University Medical Center, Durham, NC, United States.,Department of Neurosurgery, Duke University Medical Center, Durham, NC, United States
| | - John H Sampson
- Duke Brain Tumor Immunotherapy Program, Department of Neurosurgery, Duke University Medical Center, Durham, NC, United States.,The Preston Robert Tisch Brain Tumor Center, Duke University Medical Center, Durham, NC, United States.,Department of Pathology, Duke University Medical Center, Durham, NC, United States.,Department of Neurosurgery, Duke University Medical Center, Durham, NC, United States
| | - Ravi V Bellamkonda
- Department of Biology, Emory University, Atlanta, GA, United States.,Wallace H. Coulter Department of Biomedical Engineering, Emory University, Atlanta, GA, United States
| |
Collapse
|
19
|
Saleh HA, Mitwasi N, Ullrich M, Kubeil M, Toussaint M, Deuther-Conrad W, Neuber C, Arndt C, R. Loureiro L, Kegler A, González Soto KE, Belter B, Rössig C, Pietzsch J, Frenz M, Bachmann M, Feldmann A. Specific and safe targeting of glioblastoma using switchable and logic-gated RevCAR T cells. Front Immunol 2023; 14:1166169. [PMID: 37122703 PMCID: PMC10145173 DOI: 10.3389/fimmu.2023.1166169] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2023] [Accepted: 03/30/2023] [Indexed: 05/02/2023] Open
Abstract
Glioblastoma (GBM) is still an incurable tumor that is associated with high recurrence rate and poor survival despite the current treatment regimes. With the urgent need for novel therapeutic strategies, immunotherapies, especially chimeric antigen receptor (CAR)-expressing T cells, represent a promising approach for specific and effective targeting of GBM. However, CAR T cells can be associated with serious side effects. To overcome such limitation, we applied our switchable RevCAR system to target both the epidermal growth factor receptor (EGFR) and the disialoganglioside GD2, which are expressed in GBM. The RevCAR system is a modular platform that enables controllability, improves safety, specificity and flexibility. Briefly, it consists of RevCAR T cells having a peptide epitope as extracellular domain, and a bispecific target module (RevTM). The RevTM acts as a switch key that recognizes the RevCAR epitope and the tumor-associated antigen, and thereby activating the RevCAR T cells to kill the tumor cells. However, in the absence of the RevTM, the RevCAR T cells are switched off. In this study, we show that the novel EGFR/GD2-specific RevTMs can selectively activate RevCAR T cells to kill GBM cells. Moreover, we show that gated targeting of GBM is possible with our Dual-RevCAR T cells, which have their internal activation and co-stimulatory domains separated into two receptors. Therefore, a full activation of Dual-RevCAR T cells can only be achieved when both receptors recognize EGFR and GD2 simultaneously via RevTMs, leading to a significant killing of GBM cells both in vitro and in vivo.
Collapse
Affiliation(s)
- Haidy A. Saleh
- Helmholtz-Zentrum Dresden-Rossendorf, Institute of Radiopharmaceutical Cancer Research, Dresden, Germany
| | - Nicola Mitwasi
- Helmholtz-Zentrum Dresden-Rossendorf, Institute of Radiopharmaceutical Cancer Research, Dresden, Germany
| | - Martin Ullrich
- Helmholtz-Zentrum Dresden-Rossendorf, Institute of Radiopharmaceutical Cancer Research, Dresden, Germany
| | - Manja Kubeil
- Helmholtz-Zentrum Dresden-Rossendorf, Institute of Radiopharmaceutical Cancer Research, Dresden, Germany
| | - Magali Toussaint
- Helmholtz-Zentrum Dresden-Rossendorf, Institute of Radiopharmaceutical Cancer Research, Dresden, Germany
| | - Winnie Deuther-Conrad
- Helmholtz-Zentrum Dresden-Rossendorf, Institute of Radiopharmaceutical Cancer Research, Dresden, Germany
| | - Christin Neuber
- Helmholtz-Zentrum Dresden-Rossendorf, Institute of Radiopharmaceutical Cancer Research, Dresden, Germany
| | - Claudia Arndt
- Helmholtz-Zentrum Dresden-Rossendorf, Institute of Radiopharmaceutical Cancer Research, Dresden, Germany
- Faculty of Medicine Carl Gustav Carus, Mildred Scheel Early Career Center, Technische Universität Dresden, Dresden, Germany
| | - Liliana R. Loureiro
- Helmholtz-Zentrum Dresden-Rossendorf, Institute of Radiopharmaceutical Cancer Research, Dresden, Germany
| | - Alexandra Kegler
- Helmholtz-Zentrum Dresden-Rossendorf, Institute of Radiopharmaceutical Cancer Research, Dresden, Germany
| | | | - Birgit Belter
- Helmholtz-Zentrum Dresden-Rossendorf, Institute of Radiopharmaceutical Cancer Research, Dresden, Germany
| | - Claudia Rössig
- Department of Pediatric Hematology and Oncology, University Children’s Hospital Münster, Münster, Germany
| | - Jens Pietzsch
- Helmholtz-Zentrum Dresden-Rossendorf, Institute of Radiopharmaceutical Cancer Research, Dresden, Germany
- Faculty of Chemistry and Food Chemistry, School of Science, Technische Universität Dresden, Dresden, Germany
| | - Marcus Frenz
- Faculty Informatik and Wirtschaftsinformatik, Provadis School of International Management and Technology AG, Frankfurt, Germany
| | - Michael Bachmann
- Helmholtz-Zentrum Dresden-Rossendorf, Institute of Radiopharmaceutical Cancer Research, Dresden, Germany
- National Center for Tumor Diseases Dresden (NCT/UCC), German Cancer Research Center (DKFZ), Faculty of Medicine and University Hospital Carl Gustav Carus, Technische Universität Dresden, Helmholtz-Zentrum Dresden-Rossendorf (HZDR), Dresden, Germany
- German Cancer Consortium (DKTK), Partner Site, Dresden, Germany
- *Correspondence: Michael Bachmann,
| | - Anja Feldmann
- Helmholtz-Zentrum Dresden-Rossendorf, Institute of Radiopharmaceutical Cancer Research, Dresden, Germany
- National Center for Tumor Diseases Dresden (NCT/UCC), German Cancer Research Center (DKFZ), Faculty of Medicine and University Hospital Carl Gustav Carus, Technische Universität Dresden, Helmholtz-Zentrum Dresden-Rossendorf (HZDR), Dresden, Germany
- German Cancer Consortium (DKTK), Partner Site, Dresden, Germany
| |
Collapse
|
20
|
Cordell EC, Alghamri MS, Castro MG, Gutmann DH. T lymphocytes as dynamic regulators of glioma pathobiology. Neuro Oncol 2022; 24:1647-1657. [PMID: 35325210 PMCID: PMC9527522 DOI: 10.1093/neuonc/noac055] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Abstract
The brain tumor microenvironment contains numerous distinct types of nonneoplastic cells, which each serve a diverse set of roles relevant to the formation, maintenance, and progression of these central nervous system cancers. While varying in frequencies, monocytes (macrophages, microglia, and myeloid-derived suppressor cells), dendritic cells, natural killer cells, and T lymphocytes represent the most common nonneoplastic cellular constituents in low- and high-grade gliomas (astrocytomas). Although T cells are conventionally thought to target and eliminate neoplastic cells, T cells also exist in other states, characterized by tolerance, ignorance, anergy, and exhaustion. In addition, T cells can function as drivers of brain cancer growth, especially in low-grade gliomas. Since T cells originate in the blood and bone marrow sinuses, their capacity to function as both positive and negative regulators of glioma growth has ignited renewed interest in their deployment as immunotherapeutic agents. In this review, we discuss the roles of T cells in low- and high-grade glioma formation and progression, as well as the potential uses of modified T lymphocytes for brain cancer therapeutics.
Collapse
Affiliation(s)
| | | | - Maria G Castro
- Department of Neurosurgery, University of Michigan, Ann Arbor, Michigan, USA
- Department of Cell and Developmental Biology, University of Michigan, Ann Arbor, Michigan, USA
| | - David H Gutmann
- Corresponding Author: David H. Gutmann, MD, PhD, Department of Neurology, Washington University School of Medicine, Box 8111, 660 South Euclid Avenue, St. Louis, MO 63110, USA ()
| |
Collapse
|
21
|
Chatterjee A, Asija S, Yadav S, Purwar R, Goda JS. Clinical utility of CAR T cell therapy in brain tumors: Lessons learned from the past, current evidence and the future stakes. Int Rev Immunol 2022; 41:606-624. [PMID: 36191126 DOI: 10.1080/08830185.2022.2125963] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/10/2022]
Abstract
The unprecedented clinical success of Chimeric Antigen Receptor (CAR) T cell therapy in hematological malignancies has led researchers to study its role in solid tumors. Although, its utility in solid tumors especially in neuroblastoma has begun to emerge, preclinical studies of its efficacy in other solid tumors like osteosarcomas or gliomas has caught the attention of oncologist to be tried in clinical trials. Malignant high-grade brain tumors like glioblastomas or midline gliomas in children represent some of the most difficult malignancies to be managed with conventionally available therapeutics, while relapsed gliomas continue to have the most dismal prognosis due to limited therapeutic options. Innovative therapies such as CAR T cells could give an additional leverage to the treating oncologists by potentially improving outcomes and ameliorating the toxicity of the currently available therapies. Moreover, CAR T cell therapy has the potential to be integrated into the therapeutic paradigm for aggressive gliomas in the near future. In this review we discuss the challenges in using CAR T cell therapy in brain tumors, enumerate the completed and ongoing clinical trials of different types of CAR T cell therapy for different brain tumors with special emphasis on glioblastoma and also discuss the future role of CAR T cells in Brain tumors.
Collapse
Affiliation(s)
- Abhishek Chatterjee
- Department of Radiation Oncology, ACTREC, Tata Memorial Centre, Navi Mumbai, India.,Homi Bhabha National Institute, Mumbai, India
| | - Sweety Asija
- Department of Biosciences & Bioengineering, Indian Institute of Technology, Mumbai, India
| | - Sandhya Yadav
- Department of Radiation Oncology, ACTREC, Tata Memorial Centre, Navi Mumbai, India.,Homi Bhabha National Institute, Mumbai, India
| | - Rahul Purwar
- Department of Biosciences & Bioengineering, Indian Institute of Technology, Mumbai, India
| | - Jayant S Goda
- Department of Radiation Oncology, ACTREC, Tata Memorial Centre, Navi Mumbai, India.,Homi Bhabha National Institute, Mumbai, India
| |
Collapse
|
22
|
Cao TQ, Wainwright DA, Lee-Chang C, Miska J, Sonabend AM, Heimberger AB, Lukas RV. Next Steps for Immunotherapy in Glioblastoma. Cancers (Basel) 2022; 14:4023. [PMID: 36011015 PMCID: PMC9406905 DOI: 10.3390/cancers14164023] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2022] [Revised: 08/12/2022] [Accepted: 08/17/2022] [Indexed: 11/16/2022] Open
Abstract
Outcomes for glioblastoma (GBM) patients undergoing standard of care treatment remain poor. Here we discuss the portfolio of previously investigated immunotherapies for glioblastoma, including vaccine therapy and checkpoint inhibitors, as well as novel emerging therapeutic approaches. In addition, we explore the factors that potentially influence response to immunotherapy, which should be considered in future research aimed at improving immunotherapy efficacy.
Collapse
Affiliation(s)
- Toni Q. Cao
- Department of Neurology, Northwestern University, Chicago, IL 60611, USA
| | - Derek A. Wainwright
- Department of Neurological Surgery, Northwestern University, Chicago, IL 60611, USA
- Lou & Jean Malnati Brain Tumor Institute, Chicago, IL 60611, USA
- Department of Medicine, Division of Hematology/Oncology, Northwestern University, Chicago, IL 60611, USA
- Department of Neuroscience, Northwestern University, Chicago, IL 60611, USA
- Department of Microbiology-Immunology, Northwestern University, Chicago, IL 60611, USA
| | - Catalina Lee-Chang
- Department of Neurological Surgery, Northwestern University, Chicago, IL 60611, USA
- Lou & Jean Malnati Brain Tumor Institute, Chicago, IL 60611, USA
| | - Jason Miska
- Department of Neurological Surgery, Northwestern University, Chicago, IL 60611, USA
- Lou & Jean Malnati Brain Tumor Institute, Chicago, IL 60611, USA
| | - Adam M. Sonabend
- Department of Neurological Surgery, Northwestern University, Chicago, IL 60611, USA
- Lou & Jean Malnati Brain Tumor Institute, Chicago, IL 60611, USA
| | - Amy B. Heimberger
- Department of Neurological Surgery, Northwestern University, Chicago, IL 60611, USA
- Lou & Jean Malnati Brain Tumor Institute, Chicago, IL 60611, USA
| | - Rimas V. Lukas
- Department of Neurology, Northwestern University, Chicago, IL 60611, USA
- Lou & Jean Malnati Brain Tumor Institute, Chicago, IL 60611, USA
| |
Collapse
|
23
|
Wang G, Wang W. Advanced Cell Therapies for Glioblastoma. Front Immunol 2022; 13:904133. [PMID: 36052072 PMCID: PMC9425637 DOI: 10.3389/fimmu.2022.904133] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2022] [Accepted: 06/23/2022] [Indexed: 11/13/2022] Open
Abstract
The sheer ubiquity of Gioblastoma (GBM) cases would lead you to believe that there should have been many opportunities for the discovery of treatments to successfully render it into remission. Unfortunately, its persistent commonality is due in large part to the fact that it is the most treatment-resistant tumors in adults. That completely changes the treatment plan of attack. Long established and accepted treatment therapies such as surgical resection, radiation, and aggressive chemotherapy, (and any combination thereof) have only confirmed that the disease lives up to its treatment-resistant reputation. To add to the seemingly insurmountable task of finding a cure, GBM has also proven to be a very stubborn and formidable opponent to newer immunotherapies. Across the board, regardless of the therapy combination, the five-year survival rate of GBM patients is still very poor at a heartbreaking 5.6%. Obviously, the present situation cannot be tolerated or deemed acceptable. The grave situation calls for researchers to be more innovative and find more efficient strategies to discover new and successful strategies to treat GBM. Inspired by researchers worldwide attempting to control GBM, we provide in this review a comprehensive overview of the many diverse cell therapies currently being used to treat GBM. An overview of the treatments include: CAR T cells, CAR NK cells, gamma-delta T cells, NKT cells, dendritic cells, macrophages, as well stem cell-based strategies. To give you the complete picture, we will discuss the efficacy, safety, and developmental stages, the mechanisms of action and the challenges of each of these therapies and detail their potential to be the next-generation immunotherapeutic to eliminate this dreadful disease.
Collapse
Affiliation(s)
- Guangwen Wang
- BlueRock Therapeutics, Department of Process Development, Cambridge, MA, United States
- *Correspondence: Wenshi Wang, ; Guangwen Wang,
| | - Wenshi Wang
- Metagenomi Inc., Department of Cell Therapy, Emeryville, CA, United States
- *Correspondence: Wenshi Wang, ; Guangwen Wang,
| |
Collapse
|
24
|
Asija S, Chatterjee A, Yadav S, Chekuri G, Karulkar A, Jaiswal AK, Goda JS, Purwar R. Combinatorial approaches to effective therapy in glioblastoma (GBM): Current status and what the future holds. Int Rev Immunol 2022; 41:582-605. [PMID: 35938932 DOI: 10.1080/08830185.2022.2101647] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/15/2022]
Abstract
The aggressive and recurrent nature of glioblastoma is multifactorial and has been attributed to its biological heterogeneity, dysfunctional metabolic signaling pathways, rigid blood-brain barrier, inherent resistance to standard therapy due to the stemness property of the gliomas cells, immunosuppressive tumor microenvironment, hypoxia and neoangiogenesis which are very well orchestrated and create the tumor's own highly pro-tumorigenic milieu. Once the relay of events starts amongst these components, eventually it becomes difficult to control the cascade using only the balanced contemporary care of treatment consisting of maximal resection, radiotherapy and chemotherapy with temozolamide. Over the past few decades, implementation of contemporary treatment modalities has shown benefit to some extent, but no significant overall survival benefit is achieved. Therefore, there is an unmet need for advanced multifaceted combinatorial strategies. Recent advances in molecular biology, development of innovative therapeutics and novel delivery platforms over the years has resulted in a paradigm shift in gliomas therapeutics. Decades of research has led to emergence of several treatment molecules, including immunotherapies such as immune checkpoint blockade, oncolytic virotherapy, adoptive cell therapy, nanoparticles, CED and BNCT, each with the unique proficiency to overcome the mentioned challenges, present research. Recent years are seeing innovative combinatorial strategies to overcome the multifactorial resistance put forth by the GBM cell and its TME. This review discusses the contemporary and the investigational combinatorial strategies being employed to treat GBM and summarizes the evidence accumulated till date.
Collapse
Affiliation(s)
- Sweety Asija
- Department of Biosciences & Bioengineering, Indian Institute of Technology, Mumbai, India
| | - Abhishek Chatterjee
- Department of Radiation Oncology, Tata Memorial Center, Mumbai, Maharashtra, India.,Homi Bhabha National Institute, Mumbai, Maharashtra, India
| | - Sandhya Yadav
- Department of Radiation Oncology, Tata Memorial Center, Mumbai, Maharashtra, India.,Homi Bhabha National Institute, Mumbai, Maharashtra, India
| | - Godhanjali Chekuri
- Department of Radiation Oncology, Tata Memorial Center, Mumbai, Maharashtra, India.,Homi Bhabha National Institute, Mumbai, Maharashtra, India
| | - Atharva Karulkar
- Department of Biosciences & Bioengineering, Indian Institute of Technology, Mumbai, India
| | - Ankesh Kumar Jaiswal
- Department of Biosciences & Bioengineering, Indian Institute of Technology, Mumbai, India
| | - Jayant S Goda
- Department of Radiation Oncology, Tata Memorial Center, Mumbai, Maharashtra, India.,Homi Bhabha National Institute, Mumbai, Maharashtra, India
| | - Rahul Purwar
- Department of Biosciences & Bioengineering, Indian Institute of Technology, Mumbai, India
| |
Collapse
|
25
|
Huang J, Li YB, Charlebois C, Nguyen T, Liu Z, Bloemberg D, Zafer A, Baumann E, Sodja C, Leclerc S, Fewell G, Liu Q, Prabhakarpandian B, McComb S, Stanimirovic DB, Jezierski A. Application of blood brain barrier models in pre-clinical assessment of glioblastoma-targeting CAR-T based immunotherapies. Fluids Barriers CNS 2022; 19:38. [PMID: 35650594 PMCID: PMC9161615 DOI: 10.1186/s12987-022-00342-y] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2022] [Accepted: 05/11/2022] [Indexed: 11/30/2022] Open
Abstract
Human blood brain barrier (BBB) models derived from induced pluripotent stem cells (iPSCs) have become an important tool for the discovery and preclinical evaluation of central nervous system (CNS) targeting cell and gene-based therapies. Chimeric antigen receptor (CAR)-T cell therapy is a revolutionary form of gene-modified cell-based immunotherapy with potential for targeting solid tumors, such as glioblastomas. Crossing the BBB is an important step in the systemic application of CAR-T therapy for the treatment of glioblastomas and other CNS malignancies. In addition, even CAR-T therapies targeting non-CNS antigens, such as the well-known CD19-CAR-T therapies, are known to trigger CNS side-effects including brain swelling due to BBB disruption. In this study, we used iPSC-derived brain endothelial-like cell (iBEC) transwell co-culture model to assess BBB extravasation of CAR-T based immunotherapies targeting U87MG human glioblastoma (GBM) cells overexpressing the tumor-specific mutated protein EGFRvIII (U87vIII). Two types of anti-EGFRvIII targeting CAR-T cells, with varying tonic signaling profiles (CAR-F263 and CAR-F269), and control Mock T cells were applied on the luminal side of BBB model in vitro. CAR-F263 and CAR-F269 T cells triggered a decrease in transendothelial electrical resistance (TEER) and an increase in BBB permeability. CAR-T cell extravasation and U87vIII cytotoxicity were assessed from the abluminal compartment using flow cytometry and Incucyte real-time viability imaging, respectively. A significant decrease in U87vIII cell viability was observed over 48 h, with the most robust cytotoxicity response observed for the constitutively activated CAR-F263. CAR-F269 T cells showed a similar cytotoxic profile but were approximately four fold less efficient at killing the U87vIII cells compared to CAR-F263, despite similar transmigration rates. Visualization of CAR-T cell extravasation across the BBB was further confirmed using BBTB-on-CHIP models. The described BBB assay was able to discriminate the cytotoxic efficacies of different EGFRvIII-CARs and provide a measure of potential alterations to BBB integrity. Collectively, we illustrate how BBB models in vitro can be a valuable tool in deciphering the mechanisms of CAR-T–induced BBB disruption, accompanying toxicity and effector function on post-barrier target cells.
Collapse
Affiliation(s)
- Jez Huang
- Human Health Therapeutics Research Centre, National Research Council of Canada, Building M-54, Montreal Road, ON, K1A 0R6, Ottawa, Canada
| | - Ying Betty Li
- Human Health Therapeutics Research Centre, National Research Council of Canada, Building M-54, Montreal Road, ON, K1A 0R6, Ottawa, Canada
| | - Claudie Charlebois
- Human Health Therapeutics Research Centre, National Research Council of Canada, Building M-54, Montreal Road, ON, K1A 0R6, Ottawa, Canada
| | - Tina Nguyen
- Human Health Therapeutics Research Centre, National Research Council of Canada, Building M-54, Montreal Road, ON, K1A 0R6, Ottawa, Canada
| | - Ziying Liu
- Human Health Therapeutics Research Centre, National Research Council of Canada, Building M-54, Montreal Road, ON, K1A 0R6, Ottawa, Canada
| | - Darin Bloemberg
- Human Health Therapeutics Research Centre, National Research Council of Canada, Building M-54, Montreal Road, ON, K1A 0R6, Ottawa, Canada
| | - Ahmed Zafer
- Human Health Therapeutics Research Centre, National Research Council of Canada, Building M-54, Montreal Road, ON, K1A 0R6, Ottawa, Canada
| | - Ewa Baumann
- Human Health Therapeutics Research Centre, National Research Council of Canada, Building M-54, Montreal Road, ON, K1A 0R6, Ottawa, Canada
| | - Caroline Sodja
- Human Health Therapeutics Research Centre, National Research Council of Canada, Building M-54, Montreal Road, ON, K1A 0R6, Ottawa, Canada
| | - Sonia Leclerc
- Human Health Therapeutics Research Centre, National Research Council of Canada, Building M-54, Montreal Road, ON, K1A 0R6, Ottawa, Canada
| | - Gwen Fewell
- SynVivo Inc, Huntsville, AL, USA, 35806, 701 McMillian Way NW
| | - Qing Liu
- Human Health Therapeutics Research Centre, National Research Council of Canada, Building M-54, Montreal Road, ON, K1A 0R6, Ottawa, Canada
| | | | - Scott McComb
- Human Health Therapeutics Research Centre, National Research Council of Canada, Building M-54, Montreal Road, ON, K1A 0R6, Ottawa, Canada.,Department of Biochemistry, Microbiology and Immunology, Faculty of Medicine, University of Ottawa, Ottawa, ON, Canada, 451 Smyth Rd, K1H 8M5
| | - Danica B Stanimirovic
- Human Health Therapeutics Research Centre, National Research Council of Canada, Building M-54, Montreal Road, ON, K1A 0R6, Ottawa, Canada
| | - Anna Jezierski
- Human Health Therapeutics Research Centre, National Research Council of Canada, Building M-54, Montreal Road, ON, K1A 0R6, Ottawa, Canada. .,Department of Biochemistry, Microbiology and Immunology, Faculty of Medicine, University of Ottawa, Ottawa, ON, Canada, 451 Smyth Rd, K1H 8M5.
| |
Collapse
|
26
|
Antonucci L, Canciani G, Mastronuzzi A, Carai A, Del Baldo G, Del Bufalo F. CAR-T Therapy for Pediatric High-Grade Gliomas: Peculiarities, Current Investigations and Future Strategies. Front Immunol 2022; 13:867154. [PMID: 35603195 PMCID: PMC9115105 DOI: 10.3389/fimmu.2022.867154] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2022] [Accepted: 04/11/2022] [Indexed: 12/15/2022] Open
Abstract
High-Grade Gliomas (HGG) are among the deadliest malignant tumors of central nervous system (CNS) in pediatrics. Despite aggressive multimodal treatment - including surgical resection, radiotherapy and chemotherapy - long-term prognosis of patients remains dismal with a 5-year survival rate less than 20%. Increased understanding of genetic and epigenetic features of pediatric HGGs (pHGGs) revealed important differences with adult gliomas, which need to be considered in order to identify innovative and more effective therapeutic approaches. Immunotherapy is based on different techniques aimed to redirect the patient own immune system to fight specifically cancer cells. In particular, T-lymphocytes can be genetically modified to express chimeric proteins, known as chimeric antigen receptors (CARs), targeting selected tumor-associated antigens (TAA). Disialoganglioside GD2 (GD-2) and B7-H3 are highly expressed on pHGGs and have been evaluated as possible targets in pediatric clinical trials, in addition to the antigens common to adult glioblastoma – such as interleukin-13 receptor alpha 2 (IL-13α2), human epidermal growth factor receptor 2 (HER-2) and erythropoietin-producing human hepatocellular carcinoma A2 receptor (EphA2). CAR-T therapy has shown promise in preclinical model of pHGGs but failed to achieve the same success obtained for hematological malignancies. Several limitations, including the immunosuppressive tumor microenvironment (TME), the heterogeneity in target antigen expression and the difficulty of accessing the tumor site, impair the efficacy of T-cells. pHGGs display an immunologically cold TME with poor T-cell infiltration and scarce immune surveillance. The secretion of immunosuppressive cytokines (TGF-β, IL-10) and the presence of immune-suppressive cells – like tumor-associated macrophages/microglia (TAMs) and myeloid-derived suppressor cells (MDSCs) - limit the effectiveness of immune system to eradicate tumor cells. Innovative immunotherapeutic strategies are necessary to overcome these hurdles and improve ability of T-cells to eradicate tumor. In this review we describe the distinguishing features of HGGs of the pediatric population and of their TME, with a focus on the most promising CAR-T therapies overcoming these hurdles.
Collapse
Affiliation(s)
- Laura Antonucci
- Department of Paediatric Haematology and Oncology, Cell and Gene Therapy, Bambino Gesù Children's Hospital, IRCCS, Rome, Italy
| | - Gabriele Canciani
- Department of Paediatric Haematology and Oncology, Cell and Gene Therapy, Bambino Gesù Children's Hospital, IRCCS, Rome, Italy
| | - Angela Mastronuzzi
- Department of Paediatric Haematology and Oncology, Cell and Gene Therapy, Bambino Gesù Children's Hospital, IRCCS, Rome, Italy
| | - Andrea Carai
- Neurosurgery Unit, Department of Neuroscience and Neurorehabilitation, Bambino Gesù Children's Hospital, IRCCS, Rome, Italy
| | - Giada Del Baldo
- Department of Paediatric Haematology and Oncology, Cell and Gene Therapy, Bambino Gesù Children's Hospital, IRCCS, Rome, Italy
| | - Francesca Del Bufalo
- Department of Paediatric Haematology and Oncology, Cell and Gene Therapy, Bambino Gesù Children's Hospital, IRCCS, Rome, Italy
| |
Collapse
|
27
|
The anti-angiogenic effect of atorvastatin loaded exosomes on glioblastoma tumor cells: An in vitro 3D culture model. Microvasc Res 2022; 143:104385. [DOI: 10.1016/j.mvr.2022.104385] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2021] [Revised: 05/03/2022] [Accepted: 05/18/2022] [Indexed: 01/10/2023]
|
28
|
Wei L, Zou C, Chen L, Lin Y, Liang L, Hu B, Mao Y, Zou D. Molecular Insights and Prognosis Associated With RBM8A in Glioblastoma. Front Mol Biosci 2022; 9:876603. [PMID: 35573726 PMCID: PMC9098818 DOI: 10.3389/fmolb.2022.876603] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2022] [Accepted: 04/04/2022] [Indexed: 12/31/2022] Open
Abstract
Background: Glioblastoma (GBM) is the most invasive brain tumors, and it is associated with high rates of recurrence and mortality. The purpose of this study was to investigate the expression of RBM8A in GBM and the potential influence of its expression on the disease. Methods: Levels of RBM8A mRNA in GBM patients and controls were examined in The Cancer Genome Atlas (TCGA), GSE16011 and GSE90604 databases. GBM samples in TCGA were divided into RBM8Ahigh and RBM8Alow groups. Differentially expressed genes (DEGs) between GBM patients and controls were identified, as were DEGs between RBM8Ahigh and RBM8Alow groups. DEGs common to both of these comparisons were analyzed for coexpression and regression analyses. In addition, we identified potential effects of RBM8A on competing endogenous RNAs, immune cell infiltration, methylation modifications, and somatic mutations. Results: RBM8A is expressed at significantly higher levels in GBM than control samples, and its level correlates with tumor purity. We identified a total of 488 mRNAs that differed between GBM and controls as well as between RBM8Ahigh and RBM8Alow groups, which enrichment analysis revealed to be associated mainly with neuroblast proliferation, and T cell immune responses. We identified 174 mRNAs that gave areas under the receiver operating characteristic curve >0.7 among coexpression module genes, of which 13 were significantly associated with overall survival of GBM patients. We integrated 11 candidate mRNAs through LASSO algorithm, then nomogram, risk score, and decision curve analyses were analyzed. We found that RBM8A may compete with DLEU1 for binding to miR-128-1-5p, and aberrant RBM8A expression was associations with tumor infiltration by immune cells. Some mRNAs associated with GBM prognosis also appear to be methylated or mutated. Conclusions: Our study strongly links RBM8A expression to GBM pathobiology and patient prognosis. The candidate mRNAs identified here may lead to therapeutic targets against the disease.
Collapse
Affiliation(s)
- Lei Wei
- Department of Neurology, The Fifth Affiliated Hospital of Guangxi Medical University, Nanning, China
| | - Chun Zou
- Department of Neurology, The Second Affiliated Hospital of Guangxi Medical University, Nanning, China
| | - Liechun Chen
- Department of Neurology, The Second Affiliated Hospital of Guangxi Medical University, Nanning, China
| | - Yan Lin
- Department of Medical Oncology, Guangxi Medical University Cancer Hospital, Nanning, China
| | - Lucong Liang
- Department of Neurology, The Second Affiliated Hospital of Guangxi Medical University, Nanning, China
| | - Beiquan Hu
- Department of Neurosurgery, The Fifth Affiliated Hospital of Guangxi Medical University, Nanning, China
| | - Yingwei Mao
- Department of Biology, Pennsylvania State University, University Park, PA, United States
- *Correspondence: Donghua Zou, ; Yingwei Mao,
| | - Donghua Zou
- Department of Neurology, The Second Affiliated Hospital of Guangxi Medical University, Nanning, China
- *Correspondence: Donghua Zou, ; Yingwei Mao,
| |
Collapse
|
29
|
Hussain A. Therapeutic applications of engineered chimeric antigen receptors-T cell for cancer therapy. BENI-SUEF UNIVERSITY JOURNAL OF BASIC AND APPLIED SCIENCES 2022. [DOI: 10.1186/s43088-022-00238-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022] Open
Abstract
Abstract
Background
Findings of new targeted treatments with adequate safety evaluations are essential for better cancer cures and mortality rates. Immunotherapy holds promise for patients with relapsed disease, with the ability to elicit long-term remissions. Emerging promising clinical results in B-cell malignancy using gene-altered T-lymphocytes uttering chimeric antigen receptors have sparked a lot of interest. This treatment could open the path for a major difference in the way we treat tumors that are resistant or recurring.
Main body
Genetically altered T cells used to produce tumor-specific chimeric antigen receptors are resurrected fields of adoptive cell therapy by demonstrating remarkable success in the treatment of malignant tumors. Because of the molecular complexity of chimeric antigen receptors-T cells, a variety of engineering approaches to improve safety and effectiveness are necessary to realize larger therapeutic uses. In this study, we investigate new strategies for enhancing chimeric antigen receptors-T cell therapy by altering chimeric antigen receptors proteins, T lymphocytes, and their relations with another solid tumor microenvironment (TME) aspects. Furthermore, examine the potential region of chimeric antigen receptors-T cells therapy to become a most effective treatment modality, taking into account the basic and clinical and practical aspect.
Short conclusions
Chimeric antigen receptors-T cells have shown promise in the therapy of hematological cancers. Recent advancements in protein and cell editing, as well as genome-editing technologies, have paved the way for multilayered T cell therapy techniques that can address numerous important demands. At around the same time, there is crosstalk between various intended aspects within the chimeric antigen receptors-T cell diverse biological complexity and possibilities. These breakthroughs substantially improve the ability to comprehend these complex interactions in future solid tumor chimeric antigen receptor-T cell treatment and open up new treatment options for patients that are currently incurable.
Collapse
|
30
|
Gatto L, Di Nunno V, Franceschi E, Tosoni A, Bartolini S, Brandes AA. Pharmacotherapeutic Treatment of Glioblastoma: Where Are We to Date? Drugs 2022; 82:491-510. [PMID: 35397073 DOI: 10.1007/s40265-022-01702-6] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 03/08/2022] [Indexed: 12/30/2022]
Abstract
The clinical management of glioblastoma (GBM) is still bereft of treatments able to significantly improve the poor prognosis of the disease. Despite the extreme clinical need for novel therapeutic drugs, only a small percentage of patients with GBM benefit from inclusion in a clinical trial. Moreover, often clinical studies do not lead to final interpretable conclusions. From the mistakes and negative results obtained in the last years, we are now able to plan a novel generation of clinical studies for patients with GBM, allowing the testing of multiple anticancer agents at the same time. This assumes critical importance, considering that, thanks to improved knowledge of altered molecular mechanisms related to the disease, we are now able to propose several potential effective compounds in patients with both newly diagnosed and recurrent GBM. Among the novel compounds assessed, the initially great enthusiasm toward trials employing immune checkpoint inhibitors (ICIs) was disappointing due to the negative results that emerged in three randomized phase III trials. However, novel biological insights into the disease suggest that immunotherapy can be a convincing and effective treatment in GBM even if ICIs failed to prolong the survival of these patients. In this regard, the most promising approach consists of engineered immune cells such as chimeric antigen receptor (CAR) T, CAR M, and CAR NK alone or in combination with other treatments. In this review, we discuss several issues related to systemic treatments in GBM patients. First, we assess critical issues toward the planning of clinical trials and the strategies employed to overcome these obstacles. We then move on to the most relevant interventional studies carried out on patients with previously untreated (newly diagnosed) GBM and those with recurrent and pretreated disease. Finally, we investigate novel immunotherapeutic approaches with special emphasis on preclinical and clinical data related to the administration of engineered immune cells in GBM.
Collapse
Affiliation(s)
- Lidia Gatto
- Department of Oncology, AUSL Bologna, Bologna, Italy
| | | | - Enrico Franceschi
- Nervous System Medical Oncology Department, IRCCS Istituto delle Scienze Neurologiche di Bologna, Via Altura 3, Bologna, Italy.
| | - Alicia Tosoni
- Nervous System Medical Oncology Department, IRCCS Istituto delle Scienze Neurologiche di Bologna, Via Altura 3, Bologna, Italy
| | - Stefania Bartolini
- Nervous System Medical Oncology Department, IRCCS Istituto delle Scienze Neurologiche di Bologna, Via Altura 3, Bologna, Italy
| | - Alba Ariela Brandes
- Nervous System Medical Oncology Department, IRCCS Istituto delle Scienze Neurologiche di Bologna, Via Altura 3, Bologna, Italy
| |
Collapse
|
31
|
Tumor-Associated Macrophages in Gliomas—Basic Insights and Treatment Opportunities. Cancers (Basel) 2022; 14:cancers14051319. [PMID: 35267626 PMCID: PMC8909866 DOI: 10.3390/cancers14051319] [Citation(s) in RCA: 33] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2022] [Revised: 02/22/2022] [Accepted: 02/25/2022] [Indexed: 02/04/2023] Open
Abstract
Simple Summary Macrophages are a specialized immune cell type found in both invertebrates and vertebrates. Versatile in functionality, macrophages carry out important tasks such as cleaning cellular debris in healthy tissues and mounting immune responses during infection. In many cancer types, macrophages make up a significant portion of tumor tissue, and these are aptly called tumor-associated macrophages. In gliomas, a group of primary brain tumors, these macrophages are found in very high frequency. Tumor-associated macrophages can promote glioma development and influence the outcome of various therapeutic regimens. At the same time, these cells provide various potential points of intervention for therapeutic approaches in glioma patients. The significance of tumor-associated macrophages in the glioma microenvironment and potential therapeutic targets are the focus of this review. Abstract Glioma refers to a group of primary brain tumors which includes glioblastoma (GBM), astrocytoma and oligodendroglioma as major entities. Among these, GBM is the most frequent and most malignant one. The highly infiltrative nature of gliomas, and their intrinsic intra- and intertumoral heterogeneity, pose challenges towards developing effective treatments. The glioma microenvironment, in addition, is also thought to play a critical role during tumor development and treatment course. Unlike most other solid tumors, the glioma microenvironment is dominated by macrophages and microglia—collectively known as tumor-associated macrophages (TAMs). TAMs, like their homeostatic counterparts, are plastic in nature and can polarize to either pro-inflammatory or immunosuppressive states. Many lines of evidence suggest that immunosuppressive TAMs dominate the glioma microenvironment, which fosters tumor development, contributes to tumor aggressiveness and recurrence and, very importantly, impedes the therapeutic effect of various treatment regimens. However, through the development of new therapeutic strategies, TAMs can potentially be shifted towards a proinflammatory state which is of great therapeutic interest. In this review, we will discuss various aspects of TAMs in the context of glioma. The focus will be on the basic biology of TAMs in the central nervous system (CNS), potential biomarkers, critical evaluation of model systems for studying TAMs and finally, special attention will be given to the potential targeted therapeutic options that involve the TAM compartment in gliomas.
Collapse
|
32
|
Bryukhovetskiy I. Cell‑based immunotherapy of glioblastoma multiforme (Review). Oncol Lett 2022; 23:133. [PMID: 35251352 PMCID: PMC8895466 DOI: 10.3892/ol.2022.13253] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2021] [Accepted: 02/10/2022] [Indexed: 12/02/2022] Open
Abstract
Glioblastoma multiforme (GBM) is the most aggressive and lethal primary glial brain tumor. It has an unfavorable prognosis and relatively ineffective treatment protocols, with the median survival of patients being ~15 months. Tumor resistance to treatment is associated with its cancer stem cells (CSCs). At present, there is no medication or technologies that have the ability to completely eradicate CSCs, and immunotherapy (IT) is only able to prolong the patient's life. The present review aimed to investigate systemic solutions for issues associated with immunosuppression, such as ineffective IT and the creation of optimal conditions for CSCs to fulfill their lethal potential. The present review also investigated the main methods involved in local immunosuppression treatment, and highlighted the associated disadvantages. In addition, novel treatment options and targets for the elimination and regulation of CSCs with adaptive and active IT are discussed. Antagonists of TGF-β inhibitors, immune checkpoints and other targeted medication are also summarized. The role of normal hematopoietic stem cells (HSCs) in the mechanisms underlying systemic immune suppression development in cases of GBM is analyzed, and the potential reprogramming of HSCs during their interaction with cancer cells is discussed. Moreover, the present review emphasizes the importance of the aforementioned interactions in the development of immune tolerance and the inactivation of the immune system in neoplastic processes. The possibility of solving the problem of systemic immunosuppression during transplantation of donor HSCs is discussed.
Collapse
Affiliation(s)
- Igor Bryukhovetskiy
- Medical Center, School of Medicine, Far Eastern Federal University, Vladivostok 690091, Russia
| |
Collapse
|
33
|
Immunotherapeutic Approaches for Glioblastoma Treatment. Biomedicines 2022; 10:biomedicines10020427. [PMID: 35203636 PMCID: PMC8962267 DOI: 10.3390/biomedicines10020427] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/01/2022] [Revised: 02/05/2022] [Accepted: 02/08/2022] [Indexed: 11/17/2022] Open
Abstract
Glioblastoma remains a challenging disease to treat, despite well-established standard-of-care treatments, with a median survival consistently of less than 2 years. In this review, we delineate the unique disease-specific challenges for immunotherapies, both brain-related and non-brain-related, which will need to be adequately overcome for the development of effective treatments. We also review current immunotherapy treatments, with a focus on clinical applications, and propose future directions for the field of GBM immunotherapy.
Collapse
|
34
|
Han MH, Kim CH. Current Immunotherapeutic Approaches for Malignant Gliomas. Brain Tumor Res Treat 2022; 10:1-11. [PMID: 35118842 PMCID: PMC8819466 DOI: 10.14791/btrt.2022.10.e25] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2021] [Revised: 12/24/2021] [Accepted: 01/17/2022] [Indexed: 11/20/2022] Open
Abstract
Glioblastoma is the most common malignant central nervous system (CNS) tumor (48.3%), with a median survival of only about 14.6 months. Although the CNS is an immune-privileged site, activated T cells can cross the blood-brain barrier. The recent successes of several immunotherapies for various cancers have drawn interest in immunotherapy for treatment of malignant glioma. There have been extensive attempts to evaluate the efficiency of immunotherapy against malignant glioma. Passive immunotherapy for malignant glioma includes monoclonal antibody-mediated immunotherapy, cytokine-mediated therapy, and adoptive cell transfer, also known as chimeric antigen receptor T cell treatment. On the other hand, active immunotherapy, which stimulates the patient’s adaptive immune system against specific tumor-associated antigens, includes cancer vaccines that are divided into peptide vaccines and cell-based vaccines. In addition, there is immune checkpoint blockade therapy, which increases the efficiency of immunotherapy by reducing the resistance of malignant glioma to immunotherapy. Despite centuries of efforts, immunotherapeutic successes for malignant glioma remain limited. However, many clinical trials of adoptive cell transfer immunotherapy on malignant glioma are ongoing, and the outcomes are eagerly awaited. In addition, although there are still several obstacles, current clinical trials using personalized neoantigen-based dendritic cell vaccines offer new hope to glioblastoma patients. Furthermore, immune checkpoint targeted therapy is expected to decipher the mechanism of immunotherapy resistance in malignant glioma in the near future. More studies are needed to increase the efficacy of immunotherapy in malignant glioma. We hope that immunotherapy will become a new treatment of malignant glioma.
Collapse
Affiliation(s)
- Myung-Hoon Han
- Department of Neurosurgery, Hanyang University Guri Hospital, Guri, Korea
| | - Choong Hyun Kim
- Department of Neurosurgery, Hanyang University Guri Hospital, Guri, Korea.
| |
Collapse
|
35
|
Piña Y, Yadugiri S, Yeboa DN, Ferguson SD, Forsyth PA, Oliva ICG. Advances in Diagnosis and Treatment for Leptomeningeal Disease in Melanoma. Curr Oncol Rep 2022; 24:43-54. [DOI: 10.1007/s11912-021-01162-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 09/28/2021] [Indexed: 11/24/2022]
|
36
|
Abdoli Shadbad M, Hemmat N, Khaze Shahgoli V, Derakhshani A, Baradaran F, Brunetti O, Fasano R, Bernardini R, Silvestris N, Baradaran B. A Systematic Review on PD-1 Blockade and PD-1 Gene-Editing of CAR-T Cells for Glioma Therapy: From Deciphering to Personalized Medicine. Front Immunol 2022; 12:788211. [PMID: 35126356 PMCID: PMC8807490 DOI: 10.3389/fimmu.2021.788211] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2021] [Accepted: 12/30/2021] [Indexed: 12/17/2022] Open
Abstract
Background Programmed cell death protein 1 (PD-1) can attenuate chimeric antigen receptor-T (CAR-T) cell-mediated anti-tumoral immune responses. In this regard, co-administration of anti-PD-1 with CAR-T cells and PD-1 gene-editing of CAR-T cells have been suggested to disrupt this inhibitory axis. Herein, we aim to investigate the advantages and disadvantages of these two approaches and propose a novel strategy to ameliorate the prognosis of glioma patients. Methods Scopus, Embase, and Web of Science were systematically searched to obtain relevant peer-reviewed studies published before March 7, 2021. Then, the current study was conducted based on the preferred reporting items for systematic reviews and meta-analyses (PRISMA) statements. The random-effect model was applied to evaluate the effect size of administrated agents on the survival of animal models bearing gliomas using RevMan version 5.4. The Cochran Q test and I2 were performed to assess the possible between-study heterogeneity. Egger's and Begg and Mazumdar's tests were performed to objectively assess potential asymmetry and publication bias using CMA version 2. Results Anti-PD-1 can substantially increase the survival of animal models on second-generation CAR-T cells. Also, PD-1 knockdown can remarkably prolong the survival of animal models on third-generation CAR-T cells. Regardless of the CAR-T generations, PD-1 gene-edited CAR-T cells can considerably enhance the survival of animal-bearing gliomas compared to the conventional CAR-T cells. Conclusions The single-cell sequencing of tumoral cells and cells residing in the tumor microenvironment can provide valuable insights into the patient-derived neoantigens and the expression profile of inhibitory immune checkpoint molecules in tumor bulk. Thus, single-cell sequencing-guided fourth-generation CAR-T cells can cover patient-derived neoantigens expressed in various subpopulations of tumoral cells and inhibit related inhibitory immune checkpoint molecules. The proposed approach can improve anti-tumoral immune responses, decrease the risk of immune-related adverse events, reduce the risk of glioma relapse, and address the vast inter-and intra-heterogeneity of gliomas.
Collapse
Affiliation(s)
- Mahdi Abdoli Shadbad
- Student Research Committee, Tabriz University of Medical Sciences, Tabriz, Iran
- Immunology Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
- Research Center for Evidence-Based Medicine, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Nima Hemmat
- Immunology Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Vahid Khaze Shahgoli
- Immunology Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
- Cancer and Inflammation Research, Department of Molecular Medicine, University of Southern Denmark, Odense, Denmark
| | - Afshin Derakhshani
- Laboratory of Experimental Pharmacology, IRCCS Istituto Tumori Giovanni Paolo II, Bari, Italy
| | - Farzad Baradaran
- Department of Computer (Computer engineering–Artificial Intelligence), Shabestar Branch, Islamic Azad University, Shabestar, Iran
| | - Oronzo Brunetti
- Medical Oncology Unit, IRCCS Istituto Tumori “Giovanni Paolo II” of Bari, Bari, Italy
| | - Rossella Fasano
- Medical Oncology Unit, IRCCS Istituto Tumori “Giovanni Paolo II” of Bari, Bari, Italy
| | - Renato Bernardini
- Department of Biomedical and Biotechnological Sciences, University of Catania, Catania, Italy
| | - Nicola Silvestris
- Medical Oncology Unit, IRCCS Istituto Tumori “Giovanni Paolo II” of Bari, Bari, Italy
- Department of Biomedical Sciences and Human Oncology (DIMO), University of Bari, Bari, Italy
| | - Behzad Baradaran
- Immunology Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
- Department of Immunology, Tabriz University of Medical Sciences, Tabriz, Iran
- Pharmaceutical Analysis Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
| |
Collapse
|
37
|
Pediatric glioblastoma: mechanisms of immune evasion and potential therapeutic opportunities. Cancer Immunol Immunother 2022; 71:1813-1822. [PMID: 35020009 DOI: 10.1007/s00262-021-03131-y] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2021] [Accepted: 12/09/2021] [Indexed: 12/13/2022]
Abstract
Pediatric glioblastoma is relatively rare compared with its adult counterpart but is associated with a similarly grim prognosis. Available data indicate that pediatric glioblastomas are molecularly distinct from adult tumors, and relatively little is known about the pediatric glioblastoma tumor microenvironment (TME). Cancer immunotherapy has emerged as a new pillar of cancer treatment and is revolutionizing the care of patients with many advanced solid tumors, including melanoma, non-small cell lung cancer, head and neck cancer, and renal cell carcinoma. Unfortunately, attempts to treat adult glioblastoma with current immunotherapies have had limited success to date. Nevertheless, the immune milieu in pediatric glioblastoma is distinct from that found in adult tumors, and evidence suggests that pediatric tumors are less immunosuppressive. As a result, immunotherapies should be specifically evaluated in the pediatric context. The purpose of this review is to explore known and emerging mechanisms of immune evasion in pediatric glioblastoma and highlight potential opportunities for implementing immunotherapy in the treatment of these devastating pediatric brain tumors.
Collapse
|
38
|
Zhang M, Choi J, Lim M. Advances in Immunotherapies for Gliomas. Curr Neurol Neurosci Rep 2022; 22:1-10. [PMID: 35107784 PMCID: PMC9186001 DOI: 10.1007/s11910-022-01176-9] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 11/24/2021] [Indexed: 02/04/2023]
Abstract
PURPOSE OF REVIEW Immunotherapy-based treatment of glioblastoma has been challenging because of the tumor's limited neoantigen profile and weakly immunogenic composition. This article summarizes the current clinical trials underway by evaluating the leading immunotherapy paradigms, the encountered barriers, and the future directions needed to overcome such tumor evasion. RECENT FINDINGS A limited number of phase III trials have been completed for checkpoint inhibitor, vaccine, as well as gene therapies, and have been unable to show improvement in survival outcomes. Nevertheless, these trials have also shown these strategies to be safe and promising with further adaptations. Further large-scale studies for chimeric antigen receptors T cell therapies and viral therapies are anticipated. Many current trials are broadening the number of antigens targeted and modulating the microtumor environment to abrogate early mechanisms of resistance. Future GBM treatment will also likely require synergistic effects by combination regimens.
Collapse
Affiliation(s)
- Michael Zhang
- Department of Neurosurgery, Stanford University, Stanford, CA 94305, USA
| | - John Choi
- Department of Neurosurgery, Stanford University, Stanford, CA 94305, USA
| | - Michael Lim
- Department of Neurosurgery, Stanford University, Stanford, CA 94305, USA,Department of Neurosurgery, Departments of Oncology, Otolaryngology, and Radiation Oncology, 453 Quarry Road, Neurosurgery 5327, Palo Alto, CA 94304, USA
| |
Collapse
|
39
|
Chowdhury S, Bappy MH, Clocchiatti-Tuozzo S, Cheeti S, Chowdhury S, Patel V. Current Advances in Immunotherapy for Glioblastoma Multiforme and Future Prospects. Cureus 2021; 13:e20604. [PMID: 35103180 PMCID: PMC8782638 DOI: 10.7759/cureus.20604] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 12/22/2021] [Indexed: 11/05/2022] Open
Abstract
Glioblastoma is the most frequent and malignant type of brain tumor. It has a reputation for being resistant to current treatments, and the prognosis is still bleak. Immunotherapies have transformed the treatment of a variety of cancers, and they provide great hope for glioblastoma, although they have yet to be successful. The justification for immune targeting of glioblastoma and the obstacles that come with treating these immunosuppressive tumors are reviewed in this paper. Cancer vaccines, oncolytic viruses (OVs), checkpoint blockade medications, adoptive cell transfer (ACT), chimeric antigen receptor (CAR) T-cells, and nanomedicine-based immunotherapies are among the novel immune-targeting therapies researched in glioblastoma. Key clinical trial outcomes and current trials for each method are presented from a clinical standpoint. Finally, constraints, whether biological or due to trial design, are discussed, along with solutions for overcoming them. In glioblastoma, proof of efficacy for immunotherapy approaches has yet to be demonstrated, but our rapidly growing understanding of the disease’s biology and immune microenvironment, as well as the emergence of novel promising combinatorial approaches, may allow researchers to finally meet the medical need for patients with glioblastoma multiforme (GBM).
Collapse
|
40
|
Ding Y, Shusta EV, Palecek SP. Integrating in vitro disease models of the neurovascular unit into discovery and development of neurotherapeutics. CURRENT OPINION IN BIOMEDICAL ENGINEERING 2021; 20:100341. [PMID: 34693102 PMCID: PMC8530278 DOI: 10.1016/j.cobme.2021.100341] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023]
Abstract
The blood-brain barrier (BBB) regulates the transport of small molecules, proteins, and cells between the bloodstream and the central nervous system (CNS). Brain microvascular endothelial cells work with other resident brain cell types, including pericytes, astrocytes, neurons, and microglia, to form the neurovascular unit (NVU) and maintain BBB integrity. The restrictive barrier influences the pathogenesis of many CNS diseases, and impedes the delivery of neurotherapeutics into the CNS. In vitro NVU models enable the discovery of complex cell-cell interactions involved in human BBB pathophysiology in diseases including Alzheimer's Disease (AD), Parkinson's Disease (PD) and viral infections of the brain. In vitro NVU models have also been deployed to study the delivery of neurotherapeutics across the BBB, including small molecule drugs, monoclonal antibodies, gene therapy vectors and immune cells. The high scalability, accessibility, and phenotype fidelity of in vitro NVU models can facilitate the discovery and development of effective neurotherapeutics.
Collapse
Affiliation(s)
- Yunfeng Ding
- Department of Chemical and Biological Engineering, University of Wisconsin-Madison, Madison, WI, USA
| | - Eric V Shusta
- Department of Chemical and Biological Engineering, University of Wisconsin-Madison, Madison, WI, USA
- Department of Neurological Surgery, University of Wisconsin-Madison, Madison, WI, USA
| | - Sean P Palecek
- Department of Chemical and Biological Engineering, University of Wisconsin-Madison, Madison, WI, USA
| |
Collapse
|
41
|
Using chimeric antigen receptor T-cell therapy to fight glioblastoma multiforme: past, present and future developments. J Neurooncol 2021; 156:81-96. [PMID: 34825292 PMCID: PMC8714623 DOI: 10.1007/s11060-021-03902-8] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2021] [Accepted: 11/12/2021] [Indexed: 12/19/2022]
Abstract
Introduction Glioblastoma multiforme (GBM) constitutes one of the deadliest tumors to afflict humans, although it is still considered an orphan disease. Despite testing multiple new and innovative therapies in ongoing clinical trials, the median survival for this type of malignancy is less than two years after initial diagnosis, regardless of therapy. One class of promising new therapies are chimeric antigen receptor T cells or CAR-T which have been shown to be very effective at treating refractory liquid tumors such as B-cell malignancies. However, CAR-T effectivity against solid tumors such as GBM has been limited thus far. Methods A Pubmed, Google Scholar, Directory of Open Access Journals, and Web of Science literature search using the terms chimeric antigen receptor or CAR-T, GBM, solid tumor immunotherapy, immunotherapy, and CAR-T combination was performed for publication dates between January 1987 and November 2021. Results In the current review, we present a comprehensive list of CAR-T cells developed to treat GBM, we describe new possible T-cell engineering strategies against GBM while presenting a short introductory history to the reader regarding the origin(s) of this cutting-edge therapy. We have also compiled a unique list of anti-GBM CAR-Ts with their specific protein sequences and their functions as well as an inventory of clinical trials involving CAR-T and GBM. Conclusions The aim of this review is to introduce the reader to the field of T-cell engineering using CAR-Ts to treat GBM and describe the obstacles that may need to be addressed in order to significantly delay the relentless growth of GBM. Supplementary Information The online version contains supplementary material available at 10.1007/s11060-021-03902-8.
Collapse
|
42
|
Chung H, Jung H, Noh JY. Emerging Approaches for Solid Tumor Treatment Using CAR-T Cell Therapy. Int J Mol Sci 2021; 22:ijms222212126. [PMID: 34830003 PMCID: PMC8621681 DOI: 10.3390/ijms222212126] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2021] [Revised: 10/08/2021] [Accepted: 11/08/2021] [Indexed: 12/11/2022] Open
Abstract
Cancer immunotherapy is becoming more important in the clinical setting, especially for cancers resistant to conventional chemotherapy, including targeted therapy. Chimeric antigen receptor (CAR)-T cell therapy, which uses patient’s autologous T cells, combined with engineered T cell receptors, has shown remarkable results, with five US Food and Drug Administration (FDA) approvals to date. CAR-T cells have been very effective in hematologic malignancies, such as diffuse large B cell lymphoma (DLBCL), B cell acute lymphoblastic leukemia (B-ALL), and multiple myeloma (MM); however, its effectiveness in treating solid tumors has not been evaluated clearly. Therefore, many studies and clinical investigations are emerging to improve the CAR-T cell efficacy in solid tumors. The novel therapeutic approaches include modifying CARs in multiple ways or developing a combination therapy with immune checkpoint inhibitors and chemotherapies. In this review, we focus on the challenges and recent advancements in CAR-T cell therapy for solid tumors.
Collapse
Affiliation(s)
- Hyunmin Chung
- Immunotherapy Research Center, Korea Research Institute of Bioscience and Biotechnology (KRIBB), 125 Gwahak-ro, Daejeon 34141, Korea;
- College of Pharmacy, Chungnam National University, Yuseong-gu, Daejeon 34134, Korea
| | - Haiyoung Jung
- Immunotherapy Research Center, Korea Research Institute of Bioscience and Biotechnology (KRIBB), 125 Gwahak-ro, Daejeon 34141, Korea;
- Department of Functional Genomics, Korea University of Science and Technology (UST), 113 Gwahak-ro, Yuseong-gu, Daejeon 34113, Korea
- Correspondence: (H.J.); (J.-Y.N.)
| | - Ji-Yoon Noh
- Immunotherapy Research Center, Korea Research Institute of Bioscience and Biotechnology (KRIBB), 125 Gwahak-ro, Daejeon 34141, Korea;
- Correspondence: (H.J.); (J.-Y.N.)
| |
Collapse
|
43
|
Gatto L, Franceschi E, Di Nunno V, Maggio I, Lodi R, Brandes AA. Engineered CAR-T and novel CAR-based therapies to fight the immune evasion of glioblastoma: gutta cavat lapidem. Expert Rev Anticancer Ther 2021; 21:1333-1353. [PMID: 34734551 DOI: 10.1080/14737140.2021.1997599] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
INTRODUCTION The field of cancer immunotherapy has achieved great advancements through the application of genetically engineered T cells with chimeric antigen receptors (CAR), that have shown exciting success in eradicating hematologic malignancies and have proved to be safe with promising early signs of antitumoral activity in the treatment of glioblastoma (GBM). AREAS COVERED We discuss the use of CAR T cells in GBM, focusing on limitations and obstacles to advancement, mostly related to toxicities, hostile tumor microenvironment, limited CAR T cells infiltration and persistence, target antigen loss/heterogeneity and inadequate trafficking. Furthermore, we introduce the refined strategies aimed at strengthening CAR T activity and offer insights in to novel immunotherapeutic approaches, such as the potential use of CAR NK or CAR M to optimize anti-tumor effects for GBM management. EXPERT OPINION With the progressive wide use of CAR T cell therapy, significant challenges in treating solid tumors, including central nervous system (CNS) tumors, are emerging, highlighting early disease relapse and cancer cell resistance issues, owing to hostile immunosuppressive microenvironment and tumor antigen heterogeneity. In addition to CAR T cells, there is great interest in utilizing other types of CAR-based therapies, such as CAR natural killer (CAR NK) or CAR macrophages (CAR M) cells for CNS tumors.
Collapse
Affiliation(s)
- Lidia Gatto
- Medical Oncology Department, Azienda USL, Bologna, Italy
| | - Enrico Franceschi
- IRCCS Istituto delle Scienze Neurologiche di Bologna, UOC Oncologia Medica del Sistema Nervoso, Bologna, Italy
| | | | - Ilaria Maggio
- Medical Oncology Department, Azienda USL, Bologna, Italy
| | - Raffaele Lodi
- IrcssIstituto di Scienze Neurologiche di Bologna, Bologna, Italy.,Department of Biomedical and Neuromotor Sciences, University of Bologna, Bologna, Italy
| | - Alba Ariela Brandes
- IRCCS Istituto delle Scienze Neurologiche di Bologna, UOC Oncologia Medica del Sistema Nervoso, Bologna, Italy
| |
Collapse
|
44
|
Haydar D, Ibañez-Vega J, Krenciute G. T-Cell Immunotherapy for Pediatric High-Grade Gliomas: New Insights to Overcoming Therapeutic Challenges. Front Oncol 2021; 11:718030. [PMID: 34760690 PMCID: PMC8573171 DOI: 10.3389/fonc.2021.718030] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2021] [Accepted: 10/08/2021] [Indexed: 01/06/2023] Open
Abstract
Despite decades of research, pediatric central nervous system (CNS) tumors remain the most debilitating, difficult to treat, and deadliest cancers. Current therapies, including radiation, chemotherapy, and/or surgery, are unable to cure these diseases and are associated with serious adverse effects and long-term impairments. Immunotherapy using chimeric antigen receptor (CAR) T cells has the potential to elucidate therapeutic antitumor immune responses that improve survival without the devastating adverse effects associated with other therapies. Yet, despite the outstanding performance of CAR T cells against hematologic malignancies, they have shown little success targeting brain tumors. This lack of efficacy is due to a scarcity of targetable antigens, interactions with the immune microenvironment, and physical and biological barriers limiting the homing and trafficking of CAR T cells to brain tumors. In this review, we summarize experiences with CAR T-cell therapy for pediatric CNS tumors in preclinical and clinical settings and focus on the current roadblocks and novel strategies to potentially overcome those therapeutic challenges.
Collapse
Affiliation(s)
| | | | - Giedre Krenciute
- Department of Bone Marrow Transplantation & Cellular Therapy, St. Jude Children’s Research Hospital, Memphis, TN, United States
| |
Collapse
|
45
|
Raj D, Agrawal P, Gaitsch H, Wicks E, Tyler B. Pharmacological strategies for improving the prognosis of glioblastoma. Expert Opin Pharmacother 2021; 22:2019-2031. [PMID: 34605345 PMCID: PMC8603465 DOI: 10.1080/14656566.2021.1948013] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2021] [Accepted: 06/22/2021] [Indexed: 12/13/2022]
Abstract
Introduction: Treatments for brain cancer have radically evolved in the past decade due to a better understanding of the interplay between the immune system and tumors of the central nervous system (CNS). However, glioblastoma multiforme (GBM) remains the most common and lethal CNS malignancy affecting adults.Areas covered: The authors review the literature on glioblastoma pharmacologic therapies with a focus on trials of combination chemo-/immunotherapies and drug delivery platforms from 2015 to 2021.Expert opinion: Few therapeutic advances in GBM treatment have been made since the Food and Drug Administration (FDA) approval of the BCNU-eluting wafer, Gliadel, in 1996 and oral temozolomide (TMZ) in 2005. Recent advances in our understanding of GBM have promoted a wide assortment of new therapeutic approaches including combination therapy, immunotherapy, vaccines, and Car T-cell therapy along with developments in drug delivery. Given promising preclinical data, these novel pharmacotherapies for the treatment of GBM are currently being evaluated in various stages of clinical trials.
Collapse
Affiliation(s)
- Divyaansh Raj
- Hunterian Neurosurgical Research Laboratory, Department of Neurosurgery, Johns Hopkins School of Medicine, Johns Hopkins University, Baltimore, Maryland
| | - Pranjal Agrawal
- Hunterian Neurosurgical Research Laboratory, Department of Neurosurgery, Johns Hopkins School of Medicine, Johns Hopkins University, Baltimore, Maryland
| | - Hallie Gaitsch
- Hunterian Neurosurgical Research Laboratory, Department of Neurosurgery, Johns Hopkins School of Medicine, Johns Hopkins University, Baltimore, Maryland
| | - Elizabeth Wicks
- Hunterian Neurosurgical Research Laboratory, Department of Neurosurgery, Johns Hopkins School of Medicine, Johns Hopkins University, Baltimore, Maryland
| | - Betty Tyler
- Department of Neurosurgery, Johns Hopkins University, Baltimore, Maryland
| |
Collapse
|
46
|
The Interplay between Glioblastoma and Its Microenvironment. Cells 2021; 10:cells10092257. [PMID: 34571905 PMCID: PMC8469987 DOI: 10.3390/cells10092257] [Citation(s) in RCA: 67] [Impact Index Per Article: 16.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2021] [Revised: 08/26/2021] [Accepted: 08/27/2021] [Indexed: 01/05/2023] Open
Abstract
GBM is the most common primary brain tumor in adults, and the aggressive nature of this tumor contributes to its extremely poor prognosis. Over the years, the heterogeneous and adaptive nature of GBM has been highlighted as a major contributor to the poor efficacy of many treatments including various immunotherapies. The major challenge lies in understanding and manipulating the complex interplay among the different components within the tumor microenvironment (TME). This interplay varies not only by the type of cells interacting but also by their spatial distribution with the TME. This review highlights the various immune and non-immune components of the tumor microenvironment and their consequences f the efficacy of immunotherapies. Understanding the independent and interdependent aspects of the various sub-populations encapsulated by the immune and non-immune components will allow for more targeted therapies. Meanwhile, understanding how the TME creates and responds to different environmental pressures such as hypoxia may allow for other multimodal approaches in the treatment of GBM. Ultimately, a better understanding of the GBM TME will aid in the development and advancement of more effective treatments and in improving patient outcomes.
Collapse
|
47
|
Karachi A, Dastmalchi F, Nazarian S, Huang J, Sayour EJ, Jin L, Yang C, Mitchell DA, Rahman M. Optimizing T Cell-Based Therapy for Glioblastoma. Front Immunol 2021; 12:705580. [PMID: 34421912 PMCID: PMC8374079 DOI: 10.3389/fimmu.2021.705580] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2021] [Accepted: 07/20/2021] [Indexed: 11/30/2022] Open
Abstract
Evading T cell surveillance is a hallmark of cancer. Patients with solid tissue malignancy, such as glioblastoma (GBM), have multiple forms of immune dysfunction, including defective T cell function. T cell dysfunction is exacerbated by standard treatment strategies such as steroids, chemotherapy, and radiation. Reinvigoration of T cell responses can be achieved by utilizing adoptively transferred T cells, including CAR T cells. However, these cells are at risk for depletion and dysfunction as well. This review will discuss adoptive T cell transfer strategies and methods to avoid T cell dysfunction for the treatment of brain cancer.
Collapse
Affiliation(s)
- Aida Karachi
- Lillian S. Wells Department of Neurosurgery, University of Florida (UF) Brain Tumor Immunotherapy Program, University of Florida, Gainesville, FL, United States
| | - Farhad Dastmalchi
- Lillian S. Wells Department of Neurosurgery, University of Florida (UF) Brain Tumor Immunotherapy Program, University of Florida, Gainesville, FL, United States
| | - Saina Nazarian
- Lillian S. Wells Department of Neurosurgery, University of Florida (UF) Brain Tumor Immunotherapy Program, University of Florida, Gainesville, FL, United States
| | - Jianping Huang
- Lillian S. Wells Department of Neurosurgery, University of Florida (UF) Brain Tumor Immunotherapy Program, University of Florida, Gainesville, FL, United States
| | - Elias J Sayour
- Lillian S. Wells Department of Neurosurgery, University of Florida (UF) Brain Tumor Immunotherapy Program, University of Florida, Gainesville, FL, United States
| | - Linchun Jin
- Lillian S. Wells Department of Neurosurgery, University of Florida (UF) Brain Tumor Immunotherapy Program, University of Florida, Gainesville, FL, United States
| | - Changlin Yang
- Lillian S. Wells Department of Neurosurgery, University of Florida (UF) Brain Tumor Immunotherapy Program, University of Florida, Gainesville, FL, United States
| | - Duane A Mitchell
- Lillian S. Wells Department of Neurosurgery, University of Florida (UF) Brain Tumor Immunotherapy Program, University of Florida, Gainesville, FL, United States
| | - Maryam Rahman
- Lillian S. Wells Department of Neurosurgery, University of Florida (UF) Brain Tumor Immunotherapy Program, University of Florida, Gainesville, FL, United States
| |
Collapse
|
48
|
Globerson Levin A, Rivière I, Eshhar Z, Sadelain M. CAR T cells: Building on the CD19 paradigm. Eur J Immunol 2021; 51:2151-2163. [PMID: 34196410 DOI: 10.1002/eji.202049064] [Citation(s) in RCA: 34] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2021] [Accepted: 06/28/2021] [Indexed: 12/11/2022]
Abstract
Spearheaded by the therapeutic use of chimeric antigen receptors (CARs) targeting CD19, synthetic immunology has entered the clinical arena. CARs are recombinant receptors for antigen that engage cell surface molecules through the variable region of an antibody and signal through arrayed T-cell activating and costimulatory domains. CARs allow redirection of T-cell cytotoxicity against any antigen of choice, independent of MHC expression. Patient T cells engineered to express CARs specific for CD19 have yielded remarkable outcomes in subjects with relapsed/refractory B- cell malignancies, setting off unprecedented interest in T-cell engineering and cell-based cancer immunotherapy. In this review, we present the challenges to extend the use of CAR T cells to solid tumors and other pathologies. We further highlight progress in CAR design, cell manufacturing, and genome editing, which in aggregate hold the promise of generating safer and more effective genetically instructed immunity. Novel engineered cell types, including innate T-cell types, natural killer (NK) cells, macrophages, and induced pluripotent stem cell-derived immune cells, are on the horizon, as are applications of CAR T cells to treat autoimmunity, severe infections, and senescence-associated pathologies.
Collapse
Affiliation(s)
| | - Isabelle Rivière
- Center for Cell Engineering, Memorial Sloan Kettering Cancer Center, New York, NY, USA
| | - Zelig Eshhar
- Immunology Lab, Tel Aviv Sourasky Medical Center, Tel Aviv, Israel
| | - Michel Sadelain
- Center for Cell Engineering, Memorial Sloan Kettering Cancer Center, New York, NY, USA
| |
Collapse
|
49
|
Targeting Immune Modulators in Glioma While Avoiding Autoimmune Conditions. Cancers (Basel) 2021; 13:cancers13143524. [PMID: 34298735 PMCID: PMC8306848 DOI: 10.3390/cancers13143524] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2021] [Revised: 07/02/2021] [Accepted: 07/10/2021] [Indexed: 02/06/2023] Open
Abstract
Communication signals and signaling pathways are often studied in different physiological systems. However, it has become abundantly clear that the immune system is not self-regulated, but functions in close association with the nervous system. The neural-immune interface is complex; its balance determines cancer progression, as well as autoimmune disorders. Immunotherapy remains a promising approach in the context of glioblastoma multiforme (GBM). The primary obstacle to finding effective therapies is the potent immunosuppression induced by GBM. Anti-inflammatory cytokines, induction of regulatory T cells, and the expression of immune checkpoint molecules are the key mediators for immunosuppression in the tumor microenvironment. Immune checkpoint molecules are ligand-receptor pairs that exert inhibitory or stimulatory effects on immune responses. In the past decade, they have been extensively studied in preclinical and clinical trials in diseases such as cancer or autoimmune diseases in which the immune system has failed to maintain homeostasis. In this review, we will discuss promising immune-modulatory targets that are in the focus of current clinical research in glioblastoma, but are also in the precarious position of potentially becoming starting points for the development of autoimmune diseases like multiple sclerosis.
Collapse
|
50
|
Lyu Y, Yang H, Chen L. Metabolic regulation on the immune environment of glioma through gut microbiota. Semin Cancer Biol 2021; 86:990-997. [PMID: 33971263 DOI: 10.1016/j.semcancer.2021.05.005] [Citation(s) in RCA: 30] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2021] [Revised: 04/08/2021] [Accepted: 05/04/2021] [Indexed: 12/12/2022]
Abstract
The gut-brain axis has paved our way in understanding varieties of disease. The gut microbiota especially the bacterial population plays critical roles in immune system development and function. Glioma comprises 80 percent of malignant brain cancer and glioblastoma (GBM) is the most malignant kind. GBM has a reputation for its suppressive immune environment and poor patient prognosis. Moreover, altered metabolites from gut microbiota affect both systemic immune and central nervous system (CNS) immunity. Here we will focus on the crosstalk between gut microbiota and GBM, and further explore how this communication contributes to glioma initiation and development. Finally, we highlight the latest insights on the metabolic regulation of immunity through gut microbiota, which provides a promising therapeutic strategy for GBM.
Collapse
Affiliation(s)
- Yingying Lyu
- Department of Neurosurgery, Huashan Hospital, Fudan University, Shanghai, PR China
| | - Hui Yang
- Department of Neurosurgery, Huashan Hospital, Fudan University, Shanghai, PR China; Institute for Translational Brain Research, Shanghai Medical College, Fudan University, Shanghai, PR China; Shanghai Key Laboratory of Brain Function Restoration and Neural Regeneration, Shanghai Clinical Medical Center of Neurosurgery, MOE Frontiers Center for Brain Science, Shanghai Medical College, Fudan University, Shanghai, PR China.
| | - Liang Chen
- Department of Neurosurgery, Huashan Hospital, Fudan University, Shanghai, PR China; Shanghai Key Laboratory of Brain Function Restoration and Neural Regeneration, Shanghai Clinical Medical Center of Neurosurgery, MOE Frontiers Center for Brain Science, Shanghai Medical College, Fudan University, Shanghai, PR China.
| |
Collapse
|