1
|
Mirzakhani H. From womb to wellness: early environmental exposures, cord blood DNA methylation and disease origins. Epigenomics 2024; 16:1175-1183. [PMID: 39263926 PMCID: PMC11457657 DOI: 10.1080/17501911.2024.2390823] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2024] [Accepted: 08/06/2024] [Indexed: 09/13/2024] Open
Abstract
Fetal exposures can induce epigenetic modifications, particularly DNA methylation, potentially predisposing individuals to later health issues. Cord blood (CB) DNA methylation provides a unique window into the fetal epigenome, reflecting the intrauterine environment's impact. Maternal factors, including nutrition, smoking and toxin exposure, can alter CB DNA methylation patterns, associated with conditions from obesity to neurodevelopmental disorders. These epigenetic changes underscore prenatal exposures' enduring effects on health trajectories. Technical challenges include tissue specificity issues, limited coverage of current methylation arrays and confounding factors like cell composition variability. Emerging technologies, such as single-cell sequencing, promise to overcome some of these limitations. Longitudinal studies are crucial to elucidate exposure-epigenome interactions and develop prevention strategies. Future research should address these challenges, advance public health initiatives to reduce teratogen exposure and consider ethical implications of epigenetic profiling. Progress in CB epigenetics research promises personalized medicine approaches, potentially transforming our understanding of developmental programming and offering novel interventions to promote lifelong health from the earliest stages of life.
Collapse
Affiliation(s)
- Hooman Mirzakhani
- Channing Division of Network Medicine, Department of Medicine, Brigham & Women’s Hospital, Harvard Medical School, Boston, MA 02115, USA
| |
Collapse
|
2
|
Musci RJ, Raghunathan RS, Johnson SB, Klein L, Ladd-Acosta C, Ansah R, Hassoun R, Voegtline KM. Using Epigenetic Clocks to Characterize Biological Aging in Studies of Children and Childhood Exposures: a Systematic Review. PREVENTION SCIENCE : THE OFFICIAL JOURNAL OF THE SOCIETY FOR PREVENTION RESEARCH 2023; 24:1398-1423. [PMID: 37477807 PMCID: PMC10964791 DOI: 10.1007/s11121-023-01576-4] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 07/10/2023] [Indexed: 07/22/2023]
Abstract
Biological age, measured via epigenetic clocks, offers a unique and useful tool for prevention scientists to explore the short- and long-term implications of age deviations for health, development, and behavior. The use of epigenetic clocks in pediatric research is rapidly increasing, and there is a need to review the landscape of this work to understand the utility of these clocks for prevention scientists. We summarize the current state of the literature on the use of specific epigenetic clocks in childhood. Using systematic review methods, we identified studies published through February 2023 that used one of three epigenetic clocks as a measure of biological aging. These epigenetic clocks could either be used as a predictor of health outcomes or as a health outcome of interest. The database search identified 982 records, 908 of which were included in a title and abstract review. After full-text screening, 68 studies were eligible for inclusion. While findings were somewhat mixed, a majority of included studies found significant associations between the epigenetic clock used and the health outcome of interest or between an exposure and the epigenetic clock used. From these results, we propose the use of epigenetic clocks as a tool to understand how exposures impact biologic aging pathways and development in early life, as well as to monitor the effectiveness of preventive interventions that aim to reduce exposure and associated adverse health outcomes.
Collapse
Affiliation(s)
- Rashelle J Musci
- Department of Mental Health, Johns Hopkins Bloomberg School of Public Health, 624 N. Broadway, Baltimore, MD, 21205, USA.
| | | | - Sara B Johnson
- Department of Mental Health, Johns Hopkins Bloomberg School of Public Health, 624 N. Broadway, Baltimore, MD, 21205, USA
- Department of Pediatrics, Johns Hopkins School of Medicine, Baltimore, USA
- Department of Population, Family and Reproductive Health, Johns Hopkins Bloomberg School of Public Health, Baltimore, USA
| | - Lauren Klein
- Department of Pediatrics, Johns Hopkins School of Medicine, Baltimore, USA
| | - Christine Ladd-Acosta
- Department of Epidemiology, Johns Hopkins Bloomberg School of Public Health, Baltimore, USA
| | - Rosemary Ansah
- Department of Pediatrics, Johns Hopkins School of Medicine, Baltimore, USA
| | - Ronda Hassoun
- Department of Mental Health, Johns Hopkins Bloomberg School of Public Health, 624 N. Broadway, Baltimore, MD, 21205, USA
| | - Kristin M Voegtline
- Department of Pediatrics, Johns Hopkins School of Medicine, Baltimore, USA
- Department of Population, Family and Reproductive Health, Johns Hopkins Bloomberg School of Public Health, Baltimore, USA
| |
Collapse
|
3
|
Moqri M, Herzog C, Poganik JR, Justice J, Belsky DW, Higgins-Chen A, Moskalev A, Fuellen G, Cohen AA, Bautmans I, Widschwendter M, Ding J, Fleming A, Mannick J, Han JDJ, Zhavoronkov A, Barzilai N, Kaeberlein M, Cummings S, Kennedy BK, Ferrucci L, Horvath S, Verdin E, Maier AB, Snyder MP, Sebastiano V, Gladyshev VN. Biomarkers of aging for the identification and evaluation of longevity interventions. Cell 2023; 186:3758-3775. [PMID: 37657418 PMCID: PMC11088934 DOI: 10.1016/j.cell.2023.08.003] [Citation(s) in RCA: 91] [Impact Index Per Article: 91.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2023] [Revised: 08/01/2023] [Accepted: 08/02/2023] [Indexed: 09/03/2023]
Abstract
With the rapid expansion of aging biology research, the identification and evaluation of longevity interventions in humans have become key goals of this field. Biomarkers of aging are critically important tools in achieving these objectives over realistic time frames. However, the current lack of standards and consensus on the properties of a reliable aging biomarker hinders their further development and validation for clinical applications. Here, we advance a framework for the terminology and characterization of biomarkers of aging, including classification and potential clinical use cases. We discuss validation steps and highlight ongoing challenges as potential areas in need of future research. This framework sets the stage for the development of valid biomarkers of aging and their ultimate utilization in clinical trials and practice.
Collapse
Affiliation(s)
- Mahdi Moqri
- Division of Genetics, Department of Medicine, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, USA; Department of Genetics, School of Medicine, Stanford University, Stanford, CA, USA; Department of Obstetrics and Gynecology, School of Medicine, Stanford University, Stanford, CA, USA
| | - Chiara Herzog
- European Translational Oncology Prevention and Screening Institute, Universität Innsbruck, Innsbruck, Austria
| | - Jesse R Poganik
- Division of Genetics, Department of Medicine, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, USA
| | - Jamie Justice
- Department of Internal Medicine, Section on Gerontology and Geriatric Medicine, Wake Forest University School of Medicine, Winston-Salem, NC, USA
| | - Daniel W Belsky
- Department of Epidemiology, Butler Columbia Aging Center, Mailman School of Public Health, Columbia University, New York, NY, USA
| | | | - Alexey Moskalev
- Institute of Biogerontology, Lobachevsky University, Nizhny Novgorod, Russia
| | - Georg Fuellen
- Institute for Biostatistics and Informatics in Medicine and Ageing Research, Rostock University Medical Center, Rostock, Germany; School of Medicine, University College Dublin, Dublin, Ireland
| | - Alan A Cohen
- Department of Environmental Health Sciences, Butler Columbia Aging Center, Mailman School of Public Health, Columbia University, New York, NY, USA
| | - Ivan Bautmans
- Gerontology Department, Vrije Universiteit Brussel, Brussels, Belgium; Frailty in Ageing Research Department, Vrije Universiteit Brussel, Brussels, Belgium
| | - Martin Widschwendter
- European Translational Oncology Prevention and Screening Institute, Universität Innsbruck, Innsbruck, Austria; Department of Women's Cancer, EGA Institute for Women's Health, University College London, London, UK; Department of Women's and Children's Health, Division of Obstetrics and Gynaecology, Karolinska Institutet, Stockholm, Sweden
| | - Jingzhong Ding
- Gerontology and Geriatric Medicine, Wake Forest School of Medicine, Winston-Salem, NC, USA
| | | | | | - Jing-Dong Jackie Han
- Peking-Tsinghua Center for Life Sciences, Academy for Advanced Interdisciplinary Studies, Center for Quantitative Biology, Peking University, Beijing, China
| | - Alex Zhavoronkov
- Insilico Medicine Hong Kong, Pak Shek Kok, New Territories, Hong Kong SAR, China
| | - Nir Barzilai
- Institute for Aging Research, Albert Einstein College of Medicine, Bronx, NY, USA
| | - Matt Kaeberlein
- Department of Laboratory Medicine and Pathology, University of Washington, Seattle, WA, USA
| | - Steven Cummings
- San Francisco Coordinating Center, California Pacific Medical Center Research Institute, San Francisco, CA, USA; Department of Epidemiology and Biostatistics, University of California, San Francisco, San Francisco, CA, USA
| | - Brian K Kennedy
- Healthy Longevity Translational Research Programme, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, Singapore
| | | | | | - Eric Verdin
- Buck Institute for Research on Aging, Novato, CA, USA
| | - Andrea B Maier
- Department of Human Movement Sciences, @AgeAmsterdam, Amsterdam Movement Sciences, Faculty of Behavioural and Movement Sciences, Vrije Universiteit Amsterdam, Amsterdam, the Netherlands; Healthy Longevity Translational Research Program, Yong Loo Lin School of Medicine, National University of Singapore, Centre for Healthy Longevity, @AgeSingapore, National University Health System, Singapore, Singapore
| | - Michael P Snyder
- Department of Genetics, School of Medicine, Stanford University, Stanford, CA, USA.
| | - Vittorio Sebastiano
- Department of Obstetrics and Gynecology, School of Medicine, Stanford University, Stanford, CA, USA.
| | - Vadim N Gladyshev
- Division of Genetics, Department of Medicine, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, USA.
| |
Collapse
|
4
|
Gaylord A, Cohen A, Kupsco A. Biomarkers of aging through the life course: A Recent Literature Update. CURRENT OPINION IN EPIDEMIOLOGY AND PUBLIC HEALTH 2023; 2:7-17. [PMID: 38130910 PMCID: PMC10732539 DOI: 10.1097/pxh.0000000000000018] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/23/2023]
Abstract
Purpose of review The development of biomarkers of aging has greatly advanced epidemiological studies of aging processes. However, much debate remains on the timing of aging onset and the causal relevance of these biomarkers. In this review, we discuss the most recent biomarkers of aging that have been applied across the life course. Recent findings The most recently developed aging biomarkers that have been applied across the life course can be designated into three categories: epigenetic clocks, epigenetic markers of chronic inflammation, and mitochondrial DNA copy number. While these have been applied at different life stages, the development, validation, and application of these markers has been largely centered on populations of older adults. Few studies have examined trajectories of aging biomarkers across the life course. As the wealth of molecular and biochemical data increases, emerging biomarkers may be able to capture complex and system-specific aging processes. Recently developed biomarkers include novel epigenetic clocks; clocks based on ribosomal DNA, transcriptomic profiles, proteomics, metabolomics, and inflammatory markers; clonal hematopoiesis of indeterminate potential gene mutations; and multi-omics approaches. Summary Attention should be placed on aging at early and middle life stages to better understand trajectories of aging biomarkers across the life course. Additionally, novel biomarkers will provide greater insight into aging processes. The specific mechanisms of aging reflected by these biomarkers should be considered when interpreting results.
Collapse
Affiliation(s)
- Abigail Gaylord
- Department of Environmental Health Sciences, Mailman School of Public Health, Columbia University, New York, NY, United States
| | - Alan Cohen
- Department of Environmental Health Sciences, Mailman School of Public Health, Columbia University, New York, NY, United States
- PRIMUS Research Group, Department of Family Medicine, University of Sherbrooke, Sherbrooke, Quebec, Canada
- Research Center on Aging and Research Center of Centre Hospitalier Universitaire de Sherbrooke, Sherbrooke, Quebec, Canada
- Butler Columbia Aging Center, Mailman School of Public Health, Columbia University, New York, NY, United States
| | - Allison Kupsco
- Department of Environmental Health Sciences, Mailman School of Public Health, Columbia University, New York, NY, United States
| |
Collapse
|
5
|
Li Piani L, Vigano' P, Somigliana E. Epigenetic clocks and female fertility timeline: A new approach to an old issue? Front Cell Dev Biol 2023; 11:1121231. [PMID: 37025178 PMCID: PMC10070683 DOI: 10.3389/fcell.2023.1121231] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2022] [Accepted: 03/03/2023] [Indexed: 04/08/2023] Open
Abstract
Worldwide increase in life expectancy has boosted research on aging. Overcoming the concept of chronological age, higher attention has been addressed to biological age, which reflects a person's real health state, and which may be the resulting combination of both intrinsic and environmental factors. As epigenetics may exert a pivotal role in the biological aging, epigenetic clocks were developed. They are based on mathematical models aimed at identifying DNA methylation patterns that can define the biological age and that can be adopted for different clinical scopes (i.e., estimation of the risks of developing age-related disorders or predicting lifespan). Recently, epigenetic clocks have gained a peculiar attention in the fertility research field, in particular in the female counterpart. The insight into the possible relations between epigenetic aging and women's infertility might glean additional information about certain conditions that are still not completely understood. Moreover, they could disclose significant implications for health promotion programs in infertile women. Of relevance here is that the impact of biological age and epigenetics may not be limited to fertility status but could translate into pregnancy issues. Indeed, epigenetic alterations of the mother may transfer into the offspring, and pregnancy itself as well as related complications could contribute to epigenetic modifications in both the mother and newborn. However, even if the growing interest has culminated in the conspicuous production of studies on these topics, a global overview and the availability of validated instruments for diagnosis is still missing. The present narrative review aims to explore the possible bonds between epigenetic aging and fertility timeline. In the "infertility" section, we will discuss the advances on epigenetic clocks focusing on the different tissues examined (endometrium, peripheral blood, ovaries). In the "pregnancy" section, we will discuss the results obtained from placenta, umbilical cord and peripheral blood. The possible role of epigenetic aging on infertility mechanisms and pregnancy outcomes represents a question that may configure epigenetic clock as a bond between two apparently opposite worlds: infertility and pregnancy.
Collapse
Affiliation(s)
- Letizia Li Piani
- Department of Clinical Sciences and Community Health, Università Degli Studi di Milano, Milan, Italy
| | - Paola Vigano'
- Infertility Unit, Fondazione IRCCS Ca’ Granda Ospedale Maggiore Policlinico, Milan, Italy
| | - Edgardo Somigliana
- Department of Clinical Sciences and Community Health, Università Degli Studi di Milano, Milan, Italy
- Infertility Unit, Fondazione IRCCS Ca’ Granda Ospedale Maggiore Policlinico, Milan, Italy
| |
Collapse
|