1
|
Ames SR, Lotoski LC, Rodriguez L, Brodin P, Mandhane PJ, Moraes TJ, Simons E, Turvey SE, Subbarao P, Azad MB. Human milk feeding practices and serum immune profiles of one-year-old infants in the CHILD birth cohort study. Am J Clin Nutr 2024:S0002-9165(24)00867-0. [PMID: 39486685 DOI: 10.1016/j.ajcnut.2024.10.021] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2024] [Revised: 10/08/2024] [Accepted: 10/16/2024] [Indexed: 11/04/2024] Open
Abstract
BACKGROUND Breastfeeding and human milk consumption are associated with immune system development; however, the underlying mechanisms and the impact of different infant feeding practices are unclear. OBJECTIVE This study aimed to investigate how current human milk feeding (HMF) status is related to infant immune biomarker profiles, and explore relationships with HMF history (i.e., duration, exclusivity, and method: directly from the breast, or pumped and bottled). METHODS This observational birth cohort study involved 605 infants from the Canadian CHILD Cohort Study. Infant feeding was captured from hospital birth records and parent questionnaires. Ninety-two biomarkers reflecting immune system activity and development were measured in serum collected at one year (12.6±1.4 months) using the Olink Target 96 Inflammation panel. Associations were determined using multivariable regression (adjusted for sex, time until blood sample centrifugation, and study site). RESULTS Nearly half (42.6%) of infants were still HMF at the time of blood sampling. Compared to non-HMF infants, HMF infants had higher levels of serum Fibroblast Growth Factor 21 (FGF-21, adjusted standardized β-coefficient=0.56; 95%CI=0.41,0.72), Cluster of Differentiation 244 (CD244, β=0.35; 0.19,0.50), Chemokine Ligand 6 (CXCL6, β=0.34; 0.18,0.50), and Chemokine Ligand 20 (CCL20, β=0.26; 0.09,0.42), and lower Extracellular Newly Identified Receptor for Advanced Glycation End-Products Binding Protein (EN-RAGE, β=-0.16; -0.29,-0.03). Among non-HMF infants, serum Interleukin 7 (IL-7) had a marginally positive association with past HMF duration (β=0.05; 0.02,0.08) that persisted for up to five months post-HMF cessation. Exclusive HMF duration and HMF method (at three months of age) were not associated with any biomarkers. CONCLUSIONS Current HMF status and (to a lesser extent) HMF history are associated with several inflammation-associated biomarkers in one-year-old infants. These results provide new evidence that HMF impacts immune activity and development and suggest hypotheses about the underlying mechanisms. They also highlight the importance of including current HMF status in immune-system-focused infant serum proteomic studies.
Collapse
Affiliation(s)
- Spencer R Ames
- Department of Immunology, University of Manitoba, Canada; Manitoba Interdisciplinary Lactation Centre (MILC), Children's Hospital Research Institute of Manitoba, Canada
| | - Larisa C Lotoski
- Manitoba Interdisciplinary Lactation Centre (MILC), Children's Hospital Research Institute of Manitoba, Canada; Department of Pediatrics and Child Health, University of Manitoba, Canada
| | - Lucie Rodriguez
- Department of Women's and Children's Health, Karolinska Institutet, Stockholm, Sweden
| | - Petter Brodin
- Department of Women's and Children's Health, Karolinska Institutet, Stockholm, Sweden; Department of Immunology and Inflammation, Imperial College London, W12 0NN, London, UK
| | | | - Theo J Moraes
- Department of Pediatrics, University of Toronto, Canada
| | - Elinor Simons
- Manitoba Interdisciplinary Lactation Centre (MILC), Children's Hospital Research Institute of Manitoba, Canada; Department of Pediatrics and Child Health, University of Manitoba, Canada
| | - Stuart E Turvey
- Department of Pediatrics, University of British Columbia, Canada
| | - Padmaja Subbarao
- Department of Pediatrics, University of Toronto, Canada; Department of Medicine, McMaster University, Canada
| | - Meghan B Azad
- Department of Immunology, University of Manitoba, Canada; Manitoba Interdisciplinary Lactation Centre (MILC), Children's Hospital Research Institute of Manitoba, Canada; Department of Pediatrics and Child Health, University of Manitoba, Canada.
| |
Collapse
|
2
|
Jiang Y, Luo B, Lu W, Chen Y, Peng Y, Chen L, Lin Y. Association Between the Aggregate Index of Systemic Inflammation and Clinical Outcomes in Patients with Acute Myocardial Infarction: A Retrospective Study. J Inflamm Res 2024; 17:7057-7067. [PMID: 39377046 PMCID: PMC11457786 DOI: 10.2147/jir.s481515] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2024] [Accepted: 09/27/2024] [Indexed: 10/09/2024] Open
Abstract
Purpose The Aggregate Index of Systemic Inflammation (AISI) has emerged as a novel marker for inflammation and prognosis, but its role in patients with acute myocardial infarction has not been studied. Therefore, this study aimed to investigate the impact of different AISI levels on the clinical outcomes of patients with acute myocardial infarction. Patients and Methods This study was a retrospective study, including 1044 patients with acute myocardial infarction (AMI) who were treated at the Fujian Medical University Affiliated Union Hospital, China from May 2017 to December 2022. The patients were divided into high and low AISI groups based on the median value (Q1 Group, ≤ 416.15, n=522; Q2 Group, ≥ 416.16, n=522), and the differences in baseline characteristics and clinical outcomes between the two groups were analyzed. The primary outcome included major adverse cardiovascular and cerebrovascular events (MACCEs), while the secondary outcomes included contrast-induced nephropathy (CIN) risk and all-cause rehospitalization rate. Results The findings of the single-factor analysis suggest that a significant association between high AISI levels and the occurrence of MACCEs in AMI patients. After adjusting for confounding factors, the results indicated that compared to Q1, patients in the Q2 group had a higher risk of all-cause mortality [adjusted odds ratio (aOR) 4.64; 95% CI 1.37-15.72; p=0.032], new-onset atrial fibrillation (aOR 1.75; 95% CI 1.02-3.00; p=0.047), and CIN (aOR 1.75; 95% CI 1.02-3.01; p=0.043), with all differences being statistically significant. Conclusion In the population of AMI patients, an elevated AISI level is significantly associated with an increased risk of cardiovascular death and can serve as an early marker for adverse prognosis.
Collapse
Affiliation(s)
- Yan Jiang
- School of Nursing, Fujian Medical University, Fuzhou, Fujian, People’s Republic of China
| | - Baolin Luo
- Department of Nursing, Fujian Medical University Union Hospital, Fuzhou, Fujian, People’s Republic of China
| | - Wen Lu
- School of Nursing, Fujian Medical University, Fuzhou, Fujian, People’s Republic of China
| | - Yaqin Chen
- School of Nursing, Fujian Medical University, Fuzhou, Fujian, People’s Republic of China
| | - Yanchun Peng
- Department of Nursing, Fujian Medical University Union Hospital, Fuzhou, Fujian, People’s Republic of China
| | - Liangwan Chen
- Department of Cardiovascular Surgery, Fujian Medical University Union Hospital, Fuzhou, Fujian, People’s Republic of China
- Fujian Provincial Special Reserve Talents Laboratory, Fuzhou, Fujian, People’s Republic of China
| | - Yanjuan Lin
- Department of Nursing, Fujian Medical University Union Hospital, Fuzhou, Fujian, People’s Republic of China
- Department of Cardiovascular Surgery, Fujian Medical University Union Hospital, Fuzhou, Fujian, People’s Republic of China
| |
Collapse
|
3
|
Luo H, Petrera A, Hauck SM, Rathmann W, Herder C, Gieger C, Hoyer A, Peters A, Thorand B. Association of plasma proteomics with mortality in individuals with and without type 2 diabetes: Results from two population-based KORA cohort studies. BMC Med 2024; 22:420. [PMID: 39334377 PMCID: PMC11438072 DOI: 10.1186/s12916-024-03636-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/03/2024] [Accepted: 09/13/2024] [Indexed: 09/30/2024] Open
Abstract
BACKGROUND Protein biomarkers may contribute to the identification of vulnerable subgroups for premature mortality. This study aimed to investigate the association of plasma proteins with all-cause and cause-specific mortality among individuals with and without baseline type 2 diabetes (T2D) and evaluate their impact on the prediction of all-cause mortality in two prospective Cooperative Health Research in the Region of Augsburg (KORA) studies. METHODS The discovery cohort comprised 1545 participants (median follow-up 15.6 years; 244 with T2D: 116 total, 62 cardiovascular, 31 cancer-related and 23 other-cause deaths; 1301 without T2D: 321 total, 114 cardiovascular, 120 cancer-related and 87 other-cause deaths). The validation cohort comprised 1031 participants (median follow-up 6.9 years; 203 with T2D: 76 total, 45 cardiovascular, 19 cancer-related and 12 other-cause deaths; 828 without T2D: 169 total, 74 cardiovascular, 39 cancer-related and 56 other-cause deaths). We used Cox regression to examine associations of 233 plasma proteins with all-cause and cause-specific mortality and Lasso regression to construct prediction models for all-cause mortality stratifying by baseline T2D. C-index, category-free net reclassification index (cfNRI), and integrated discrimination improvement (IDI) were conducted to evaluate the predictive performance of built prediction models. RESULTS Thirty-five and 62 proteins, with 29 overlapping, were positively associated with all-cause mortality in the group with and without T2D, respectively. Out of these, in the group with T2D, 35, eight, and 26 were positively associated with cardiovascular, cancer-related, and other-cause mortality, while in the group without T2D, 55, 41, and 47 were positively associated with respective cause-specific outcomes in the pooled analysis of both cohorts. Regulation of insulin-like growth factor (IGF) transport and uptake by IGF-binding proteins emerged as a unique pathway enriched for all-cause and cardiovascular mortality in individuals with T2D. The combined model containing the selected proteins (five and 12 proteins, with four overlapping, in the group with and without T2D, respectively) and clinical risk factors improved the prediction of all-cause mortality by C-index, cfNRI, and IDI. CONCLUSIONS This study uncovered shared and unique mortality-related proteins in persons with and without T2D and emphasized the role of proteins in improving the prediction of mortality in different T2D subgroups.
Collapse
Affiliation(s)
- Hong Luo
- Institute of Epidemiology, Helmholtz Zentrum München, German Research Center for Environmental Health (GmbH), Neuherberg, Germany
- Institute for Medical Information Processing, Biometry and Epidemiology (IBE), Faculty of Medicine, Pettenkofer School of Public Health, LMU Munich, Munich, Germany
| | - Agnese Petrera
- Metabolomics and Proteomics Core, Helmholtz Zentrum München, German Research Center for Environmental Health (GmbH), Neuherberg, Germany
| | - Stefanie M Hauck
- Metabolomics and Proteomics Core, Helmholtz Zentrum München, German Research Center for Environmental Health (GmbH), Neuherberg, Germany
- German Center for Diabetes Research (DZD), Partner München-Neuherberg, Neuherberg, Germany
| | - Wolfgang Rathmann
- Institute for Biometrics and Epidemiology, German Diabetes Center, Leibniz Center for Diabetes Research at Heinrich Heine University, Düsseldorf, Germany
- German Center for Diabetes Research (DZD), Partner Düsseldorf, Neuherberg, Germany
| | - Christian Herder
- German Center for Diabetes Research (DZD), Partner Düsseldorf, Neuherberg, Germany
- Institute for Clinical Diabetology, German Diabetes Center, Leibniz Center for Diabetes Research at Heinrich Heine University, Düsseldorf, Germany
- Department of Endocrinology and Diabetology, Medical Faculty and University Hospital Düsseldorf, Heinrich Heine University, Düsseldorf, Germany
| | - Christian Gieger
- Institute of Epidemiology, Helmholtz Zentrum München, German Research Center for Environmental Health (GmbH), Neuherberg, Germany
- German Center for Diabetes Research (DZD), Partner München-Neuherberg, Neuherberg, Germany
- Research Unit of Molecular Epidemiology, Helmholtz Zentrum München, German Research Center for Environmental Health (GmbH), Neuherberg, Germany
| | - Annika Hoyer
- Biostatistics and Medical Biometry, Medical School OWL, Bielefeld University, Bielefeld, Germany
| | - Annette Peters
- Institute of Epidemiology, Helmholtz Zentrum München, German Research Center for Environmental Health (GmbH), Neuherberg, Germany
- Institute for Medical Information Processing, Biometry and Epidemiology (IBE), Faculty of Medicine, Pettenkofer School of Public Health, LMU Munich, Munich, Germany
- German Center for Diabetes Research (DZD), Partner München-Neuherberg, Neuherberg, Germany
| | - Barbara Thorand
- Institute of Epidemiology, Helmholtz Zentrum München, German Research Center for Environmental Health (GmbH), Neuherberg, Germany.
- Institute for Medical Information Processing, Biometry and Epidemiology (IBE), Faculty of Medicine, Pettenkofer School of Public Health, LMU Munich, Munich, Germany.
- German Center for Diabetes Research (DZD), Partner München-Neuherberg, Neuherberg, Germany.
| |
Collapse
|
4
|
Chen Y, Zhong A. Causal effects of inflammatory cytokines on cardiovascular diseases: Insights from genetic evidence. Heliyon 2024; 10:e35447. [PMID: 39165962 PMCID: PMC11334864 DOI: 10.1016/j.heliyon.2024.e35447] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2024] [Revised: 07/26/2024] [Accepted: 07/29/2024] [Indexed: 08/22/2024] Open
Abstract
Background The causal relationship between inflammatory cytokines and cardiovascular diseases (CVDs) has not been fully elucidated. Exploring this relationship between circulating inflammatory cytokines and CVDs is crucial for early clinical diagnosis and effective treatment. Methods and Results This study investigated the causal relationships between 41 inflammatory cytokines and six CVDs: heart failure (HF), myocardial infarction (MI), unstable angina pectoris (UAP), stable angina pectoris (SAP), valvular heart disease (VHD), and aortic aneurysm (AA), using the Mendelian Randomization (MR) method. The primary analysis employed the inverse-variance weighted (IVW) method within MR. Heterogeneity and pleiotropy were assessed through MR-Egger regression and the Q statistic. Strong evidence supported the effect of macrophage inflammatory protein-1β (MIP-1β) on MI (OR = 1.062, P < 0.001, FDR <0.001). Suggestive evidence showed that the Beta nerve growth factor increased the risk of MI (OR = 1.145, P = 0.025), but the stem cell factor (SCF) demonstrated a potential protective effect against MI (OR = 0.910, P = 0.04). SCF and hepatocyte growth factor (HGF) exhibited potential protective effects against SAP. No inflammatory cytokine was associated with UAP. Monocyte chemotactic protein-1 was linked to an increased risk of VHD (OR = 1.056, P = 0.049). Higher levels of interleukin-13 (IL-13), interferon gamma-induced protein 10 (IP-10), and growth-regulated oncogene-alpha were associated with increased susceptibility to HF. Elevated basic fibroblast growth factor (bFGF) levels exhibited protective effects against AA (OR = 0.751, P = 0.038). Reverse MR analyses revealed that AA significantly decreased circulating TNF-related apoptosis-inducing ligand (TRAIL) levels (OR = 0.907, P < 0.001, FDR = 0.01). MI significantly increased circulating IL-12-p70 levels (OR = 1.146, P < 0.001, FDR = 0.014). Suggestive evidence indicated the Causal effects of six CVDs on 17 circulating inflammatory cytokines. Conclusions This study clarified the causal relationships between specific inflammatory cytokines and six CVDs, providing novel insights and evidence into the genetic involvement of inflammatory cytokines in CVDs. These inflammatory cytokines may be potential biomarkers for early disease diagnosis and treatment evaluation.
Collapse
Affiliation(s)
- Yuxiu Chen
- Department of Emergency Medicine, Guizhou Provincial People's Hospital, Guiyang, 550002, Guizhou, China
| | - Aifang Zhong
- Department of Emergency Medicine, The Second Xiangya Hospital, Central South University, Changsha, 410011, Hunan, China
| |
Collapse
|
5
|
Hu Y, Hao F, An Q, Jiang W. Immune cell signatures and inflammatory mediators: unraveling their genetic impact on chronic kidney disease through Mendelian randomization. Clin Exp Med 2024; 24:94. [PMID: 38703294 PMCID: PMC11069478 DOI: 10.1007/s10238-024-01341-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2023] [Accepted: 03/27/2024] [Indexed: 05/06/2024]
Abstract
Prior research has established associations between immune cells, inflammatory proteins, and chronic kidney disease (CKD). Our Mendelian randomization study aims to elucidate the genetic causal relationships among these factors and CKD. We applied Mendelian randomization using genetic variants associated with CKD from a large genome-wide association study (GWAS) and inflammatory markers from a comprehensive GWAS summary. The causal links between exposures (immune cell subtypes and inflammatory proteins) and CKD were primarily analyzed using the inverse variance-weighted, supplemented by sensitivity analyses, including MR-Egger, weighted median, weighted mode, and MR-PRESSO. Our analysis identified both absolute and relative counts of CD28 + CD45RA + CD8 + T cell (OR = 1.01; 95% CI = 1.01-1.02; p < 0.001, FDR = 0.018) (OR = 1.01; 95% CI = 1.00-1.01; p < 0.001, FDR = 0.002), CD28 on CD39 + CD8 + T cell(OR = 0.97; 95% CI = 0.96-0.99; p < 0.001, FDR = 0.006), CD16 on CD14-CD16 + monocyte (OR = 1.02; 95% CI = 1.01-1.03; p < 0.001, FDR = 0.004) and cytokines, such as IL-17A(OR = 1.11, 95% CI = 1.06-1.16, p < 0.001, FDR = 0.001), and LIF-R(OR = 1.06, 95% CI = 1.02-1.10, p = 0.005, FDR = 0.043) that are genetically predisposed to influence the risk of CKD. Moreover, the study discovered that CKD itself may causatively lead to alterations in certain proteins, including CST5(OR = 1.16, 95% CI = 1.09-1.24, p < 0.001, FDR = 0.001). No evidence of reverse causality was found for any single biomarker and CKD. This comprehensive MR investigation supports a genetic causal nexus between certain immune cell subtypes, inflammatory proteins, and CKD. These findings enhance the understanding of CKD's immunological underpinnings and open avenues for targeted treatments.
Collapse
Affiliation(s)
- Yongzheng Hu
- Department of Nephrology, The Affiliated Hospital of Qingdao University, Qingdao, Shandong, China
| | - Fengyun Hao
- Department of Pathology, The Affiliated Hospital of Qingdao University, Qingdao, Shandong, China
| | - Qian An
- Department of Nephrology, Qingdao Central Hospital, Qingdao, Shandong, China
| | - Wei Jiang
- Department of Nephrology, The Affiliated Hospital of Qingdao University, Qingdao, Shandong, China.
| |
Collapse
|
6
|
Paccalet A, Badawi S, Pillot B, Augeul L, Mechtouff L, Harhous Z, Gouriou Y, Paillard M, Breuilly M, Amaz C, Varillon Y, Leboube S, Brun C, Prieur C, Rioufol G, Mewton N, Ovize M, Bidaux G, Bochaton T, Crola Da Silva C. Deleterious Anti-Inflammatory Macrophage Recruitment in Early Post-Infarction Phase: Unraveling the IL-6/MCP-1/STAT3 Axis. JACC Basic Transl Sci 2024; 9:593-604. [PMID: 38984050 PMCID: PMC11228110 DOI: 10.1016/j.jacbts.2024.01.019] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/01/2023] [Revised: 01/19/2024] [Accepted: 01/19/2024] [Indexed: 07/11/2024]
Abstract
Using a translational approach with an ST-segment myocardial infarction (STEMI) cohort and mouse model of myocardial infarction, we highlighted the role of the secreted IL-6 and MCP-1 cytokines and the STAT3 pathway in heart macrophage recruitment and activation. Cardiac myocytes secrete IL-6 and MCP-1 in response to hypoxic stress, leading to a recruitment and/or polarization of anti-inflammatory macrophages via the STAT3 pathway. In our preclinical model of myocardial infarction, neutralization of IL-6 and MCP-1 or STAT3 pathway reduced infarct size. Together, our data demonstrate that anti-inflammatory macrophages can be deleterious in the acute phase of STEMI.
Collapse
Affiliation(s)
- Alexandre Paccalet
- Laboratoire CarMeN-IRIS Team, INSERM, INRA, Université Claude Bernard Lyon-1, INSA-Lyon, University of Lyon, Bron, France
| | - Sally Badawi
- Laboratoire CarMeN-IRIS Team, INSERM, INRA, Université Claude Bernard Lyon-1, INSA-Lyon, University of Lyon, Bron, France
| | - Bruno Pillot
- Laboratoire CarMeN-IRIS Team, INSERM, INRA, Université Claude Bernard Lyon-1, INSA-Lyon, University of Lyon, Bron, France
| | - Lionel Augeul
- Laboratoire CarMeN-IRIS Team, INSERM, INRA, Université Claude Bernard Lyon-1, INSA-Lyon, University of Lyon, Bron, France
| | - Laura Mechtouff
- Laboratoire CarMeN-IRIS Team, INSERM, INRA, Université Claude Bernard Lyon-1, INSA-Lyon, University of Lyon, Bron, France
| | - Zeina Harhous
- Laboratoire CarMeN-IRIS Team, INSERM, INRA, Université Claude Bernard Lyon-1, INSA-Lyon, University of Lyon, Bron, France
| | - Yves Gouriou
- Laboratoire CarMeN-IRIS Team, INSERM, INRA, Université Claude Bernard Lyon-1, INSA-Lyon, University of Lyon, Bron, France
| | - Mélanie Paillard
- Laboratoire CarMeN-IRIS Team, INSERM, INRA, Université Claude Bernard Lyon-1, INSA-Lyon, University of Lyon, Bron, France
| | - Marine Breuilly
- CIQLE, LyMIC, LABEX CORTEX, Université Claude Bernard Lyon 1, Structure Fédérative de Recherche santé Lyon-Est CNRS UAR3453/Inserm US7, Lyon, France
| | - Camille Amaz
- Centre d'Investigation Clinique de Lyon (CIC 1407 Inserm), Hospices Civils de Lyon, Lyon, France
| | - Yvonne Varillon
- Centre d'Investigation Clinique de Lyon (CIC 1407 Inserm), Hospices Civils de Lyon, Lyon, France
| | - Simon Leboube
- Laboratoire CarMeN-IRIS Team, INSERM, INRA, Université Claude Bernard Lyon-1, INSA-Lyon, University of Lyon, Bron, France
| | - Camille Brun
- Laboratoire CarMeN-IRIS Team, INSERM, INRA, Université Claude Bernard Lyon-1, INSA-Lyon, University of Lyon, Bron, France
| | - Cyril Prieur
- Centre d'Investigation Clinique de Lyon (CIC 1407 Inserm), Hospices Civils de Lyon, Lyon, France
| | - Gilles Rioufol
- Centre d'Investigation Clinique de Lyon (CIC 1407 Inserm), Hospices Civils de Lyon, Lyon, France
| | - Nathan Mewton
- Laboratoire CarMeN-IRIS Team, INSERM, INRA, Université Claude Bernard Lyon-1, INSA-Lyon, University of Lyon, Bron, France
- Centre d'Investigation Clinique de Lyon (CIC 1407 Inserm), Hospices Civils de Lyon, Lyon, France
- Intensive Cardiological Care Division, Louis Pradel Hospital, Hospices Civils de Lyon, Lyon, Bron, France
| | - Michel Ovize
- Laboratoire CarMeN-IRIS Team, INSERM, INRA, Université Claude Bernard Lyon-1, INSA-Lyon, University of Lyon, Bron, France
| | - Gabriel Bidaux
- Laboratoire CarMeN-IRIS Team, INSERM, INRA, Université Claude Bernard Lyon-1, INSA-Lyon, University of Lyon, Bron, France
| | - Thomas Bochaton
- Laboratoire CarMeN-IRIS Team, INSERM, INRA, Université Claude Bernard Lyon-1, INSA-Lyon, University of Lyon, Bron, France
- Centre d'Investigation Clinique de Lyon (CIC 1407 Inserm), Hospices Civils de Lyon, Lyon, France
- University Claude Bernard Lyon 1, Lyon, France
| | - Claire Crola Da Silva
- Laboratoire CarMeN-IRIS Team, INSERM, INRA, Université Claude Bernard Lyon-1, INSA-Lyon, University of Lyon, Bron, France
| |
Collapse
|
7
|
West HW, Dangas K, Antoniades C. Advances in Clinical Imaging of Vascular Inflammation: A State-of-the-Art Review. JACC Basic Transl Sci 2024; 9:710-732. [PMID: 38984055 PMCID: PMC11228120 DOI: 10.1016/j.jacbts.2023.10.007] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/13/2023] [Revised: 10/12/2023] [Accepted: 10/12/2023] [Indexed: 07/11/2024]
Abstract
Vascular inflammation is a major contributor to cardiovascular disease, particularly atherosclerotic disease, and early detection of vascular inflammation may be key to the ultimate reduction of residual cardiovascular morbidity and mortality. This review paper discusses the progress toward the clinical utility of noninvasive imaging techniques for assessing vascular inflammation, with a focus on coronary atherosclerosis. A discussion of multiple modalities is included: computed tomography (CT) imaging (the major focus of the review), cardiac magnetic resonance, ultrasound, and positron emission tomography imaging. The review covers recent progress in new technologies such as the novel CT biomarkers of coronary inflammation (eg, the perivascular fat attenuation index), new inflammation-specific tracers for positron emission tomography-CT imaging, and others. The strengths and limitations of each modality are explored, highlighting the potential for multi-modality imaging and the use of artificial intelligence image interpretation to improve both diagnostic and prognostic potential for common conditions such as coronary artery disease.
Collapse
Affiliation(s)
- Henry W West
- Acute Multidisciplinary Imaging and Interventional Centre, Radcliffe Department of Medicine, University of Oxford, Oxford, United Kingdom
- Central Clinical School, Sydney Medical School, University of Sydney, Sydney, New South Wales, Australia
| | - Katerina Dangas
- Acute Multidisciplinary Imaging and Interventional Centre, Radcliffe Department of Medicine, University of Oxford, Oxford, United Kingdom
| | - Charalambos Antoniades
- Acute Multidisciplinary Imaging and Interventional Centre, Radcliffe Department of Medicine, University of Oxford, Oxford, United Kingdom
| |
Collapse
|
8
|
Elahimanesh M, Shokri N, Mahdinia E, Mohammadi P, Parvaz N, Najafi M. Differential gene expression patterns in ST-elevation Myocardial Infarction and Non-ST-elevation Myocardial Infarction. Sci Rep 2024; 14:3424. [PMID: 38341440 PMCID: PMC10858964 DOI: 10.1038/s41598-024-54086-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2023] [Accepted: 02/08/2024] [Indexed: 02/12/2024] Open
Abstract
The ST-elevation Myocardial Infarction (STEMI) and Non-ST-elevation Myocardial Infarction (NSTEMI) might occur because of coronary artery stenosis. The gene biomarkers apply to the clinical diagnosis and therapeutic decisions in Myocardial Infarction. The aim of this study was to introduce, enrich and estimate timely the blood gene profiles based on the high-throughput data for the molecular distinction of STEMI and NSTEMI. The text mining data (50 genes) annotated with DisGeNET data (144 genes) were merged with the GEO gene expression data (5 datasets) using R software. Then, the STEMI and NSTEMI networks were primarily created using the STRING server, and improved using the Cytoscape software. The high-score genes were enriched using the KEGG signaling pathways and Gene Ontology (GO). Furthermore, the genes were categorized to determine the NSTEMI and STEMI gene profiles. The time cut-off points were identified statistically by monitoring the gene profiles up to 30 days after Myocardial Infarction (MI). The gene heatmaps were clearly created for the STEMI (high-fold genes 69, low-fold genes 45) and NSTEMI (high-fold genes 68, low-fold genes 36). The STEMI and NSTEMI networks suggested the high-score gene profiles. Furthermore, the gene enrichment suggested the different biological conditions for STEMI and NSTEMI. The time cut-off points for the NSTEMI (4 genes) and STEMI (13 genes) gene profiles were established up to three days after Myocardial Infarction. The study showed the different pathophysiologic conditions for STEMI and NSTEMI. Furthermore, the high-score gene profiles are suggested to measure up to 3 days after MI to distinguish the STEMI and NSTEMI.
Collapse
Affiliation(s)
- Mohammad Elahimanesh
- Clinical Biochemistry Department, Faculty of Medical Sciences, Iran University of Medical Sciences, Tehran, Iran
| | - Nafiseh Shokri
- Clinical Biochemistry Department, Faculty of Medical Sciences, Iran University of Medical Sciences, Tehran, Iran
| | - Elmira Mahdinia
- Clinical Biochemistry Department, Faculty of Medical Sciences, Iran University of Medical Sciences, Tehran, Iran
| | - Payam Mohammadi
- Clinical Biochemistry Department, Faculty of Medical Sciences, Iran University of Medical Sciences, Tehran, Iran
| | - Najmeh Parvaz
- Clinical Biochemistry Department, Faculty of Medical Sciences, Iran University of Medical Sciences, Tehran, Iran
| | - Mohammad Najafi
- Clinical Biochemistry Department, Faculty of Medical Sciences, Iran University of Medical Sciences, Tehran, Iran.
- Cellular and Molecular Research Center, Iran University of Medical Sciences, Tehran, Iran.
| |
Collapse
|
9
|
Bao XH, Chen BF, Liu J, Tan YH, Chen S, Zhang F, Lu HS, Li JC. Olink proteomics profiling platform reveals non-invasive inflammatory related protein biomarkers in autism spectrum disorder. Front Mol Neurosci 2023; 16:1185021. [PMID: 37293545 PMCID: PMC10244537 DOI: 10.3389/fnmol.2023.1185021] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2023] [Accepted: 04/28/2023] [Indexed: 06/10/2023] Open
Abstract
Background Owing to the lack of valid biomarkers, the diagnosis of autism spectrum disorder (ASD) diagnosis relies solely on the behavioral phenotypes of children. Several researchers have suggested an association between ASD and inflammation; however, the complex relationship between the two is unelucidated to date. Therefore, the current study aims to comprehensively identify novel circulating ASD inflammatory biomarkers. Methods Olink proteomics was applied to compare the plasma inflammation-related protein changes in a group of the healthy children (HC, n = 33) and another with ASD (n = 31). The areas under the receiver operating characteristic curves (AUCs) of the differentially expressed proteins (DEPs) were calculated. The functional analysis of the DEPs was performed using Gene Ontology and Kyoto Encyclopedia Genes and Genomes. Pearson correlation tests were used employed to analyze the correlation between the DEPs and clinical features. Results A total of 13 DEPs were significantly up-regulated in the ASD group compared with the HC group. The four proteins, namely, STAMBP, ST1A1, SIRT2, and MMP-10 demonstrated good diagnostic accuracy with the corresponding AUCs (95% confidence interval, CI) of 0.7218 (0.5946-0.8489), 0.7107 (0.5827-0.8387), 0.7016 (0.5713-0.8319), and 0.7006 (0.568-0.8332). Each panel of STAMBP and any other differential protein demonstrated a better classification performance [AUC values from 0.7147 (0.5858-0.8436, STAMBP/AXIN1) to 0.7681 (0.6496-0.8867, STAMBP/MMP-10)]. These DEP profiles were enriched in immune and inflammatory response pathways, including TNF and NOD-like receptor signaling pathways. The interaction between STAMBP and SIRT2 (R = 0.97, p = 8.52 × 10-39) was found to be the most significant. In addition, several DEPs related to clinical features in patients with ASD, particularly AXIN1 (R = 0.36, p = 0.006), SIRT2 (R = 0.34, p = 0.010) and STAMBP (R = 0.34, p = 0.010), were positively correlated with age and parity, indicating that older age and higher parity may be the inflammation-related clinical factors in ASD. Conclusion Inflammation plays a crucial role in ASD, and the up-regulated inflammatory proteins may serve as potential early diagnostic biomarkers for ASD.
Collapse
Affiliation(s)
- Xiao-Hong Bao
- Precision Medicine Center and Department of Cardiothoracic Surgery, Taizhou Central Hospital (Taizhou University Hospital), Taizhou University, Taizhou, China
| | - Bao-Fu Chen
- Precision Medicine Center and Department of Cardiothoracic Surgery, Taizhou Central Hospital (Taizhou University Hospital), Taizhou University, Taizhou, China
| | - Jun Liu
- Medical Research Center, Yue Bei People's Hospital, Shantou University Medical College, Shaoguan, China
| | - Yu-Hua Tan
- Department of Children Rehabilitation, Shaoguan Maternal and Child Health Hospital, Shaoguan, China
| | - Shu Chen
- Department of Children Rehabilitation, Shaoguan Maternal and Child Health Hospital, Shaoguan, China
| | - Fan Zhang
- Medical Research Center, Yue Bei People's Hospital, Shantou University Medical College, Shaoguan, China
| | - Hong-Sheng Lu
- Precision Medicine Center and Department of Cardiothoracic Surgery, Taizhou Central Hospital (Taizhou University Hospital), Taizhou University, Taizhou, China
| | - Ji-Cheng Li
- Precision Medicine Center and Department of Cardiothoracic Surgery, Taizhou Central Hospital (Taizhou University Hospital), Taizhou University, Taizhou, China
- Medical Research Center, Yue Bei People's Hospital, Shantou University Medical College, Shaoguan, China
- Department of Histology and Embryology, School of Basic Medical Sciences, Henan University, Kaifeng, China
- Institute of Cell Biology, Zhejiang University Medical School, Hangzhou, China
| |
Collapse
|
10
|
Chaszczewska-Markowska M, Górna K, Bogunia-Kubik K, Brzecka A, Kosacka M. The Influence of Comorbidities on Chemokine and Cytokine Profile in Obstructive Sleep Apnea Patients: Preliminary Results. J Clin Med 2023; 12:jcm12030801. [PMID: 36769452 PMCID: PMC9918226 DOI: 10.3390/jcm12030801] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2022] [Revised: 01/14/2023] [Accepted: 01/16/2023] [Indexed: 01/20/2023] Open
Abstract
INTRODUCTION Obstructive sleep apnea (OSA) is frequently associated with a chronic inflammatory state and cardiovascular/metabolic complications. The aim of this study was to evaluate the influence of certain comorbidities on a panel of 45 chemokines and cytokines in OSA patients with special regard to their possible association with cardiovascular diseases. MATERIAL AND METHODS This cross-sectional study was performed on 61 newly diagnosed OSA patients. For the measurement of the plasma concentration of chemokines and cytokines, the magnetic bead-based multiplex assay for the Luminex® platform was used. RESULTS In the patients with concomitant COPD, there were increased levels of pro-inflammatory cytokines (CCL11, CD-40 ligand) and decreased anti-inflammatory cytokine (IL-10), while in diabetes, there were increased levels of pro-inflammatory cytokines (IL-6, TRIAL). Obesity was associated with increased levels of both pro-inflammatory (IL-13) and anti-inflammatory (IL-1RA) cytokines. Hypertension was associated with increased levels of both pro-inflammatory (CCL3) and anti-inflammatory (IL-10) cytokines. Increased daytime pCO2, low mean nocturnal SaO2, and the oxygen desaturation index were associated with increased levels of pro-inflammatory cytokines (CXCL1, PDGF-AB, TNF-α, and IL-15). CONCLUSIONS In OSA patients with concomitant diabetes and COPD, elevated levels of certain pro-inflammatory and decreased levels of certain anti-inflammatory cytokines may favor the persistence of a chronic inflammatory state with further consequences. Nocturnal hypoxemia, frequent episodes of desaturation, and increased daytime pCO2 are factors contributing to the chronic inflammatory state in OSA patients.
Collapse
Affiliation(s)
- Monika Chaszczewska-Markowska
- Laboratory of Clinical Immunogenetics and Pharmacogenetics, Hirszfeld Institute of Immunology and Experimental Therapy, Polish Academy of Sciences, 50-422 Wroclaw, Poland
| | - Katarzyna Górna
- Laboratory of Clinical Immunogenetics and Pharmacogenetics, Hirszfeld Institute of Immunology and Experimental Therapy, Polish Academy of Sciences, 50-422 Wroclaw, Poland
- Correspondence:
| | - Katarzyna Bogunia-Kubik
- Laboratory of Clinical Immunogenetics and Pharmacogenetics, Hirszfeld Institute of Immunology and Experimental Therapy, Polish Academy of Sciences, 50-422 Wroclaw, Poland
| | - Anna Brzecka
- Department of Pulmonology and Lung Oncology, Wroclaw Medical University, 53-439 Wroclaw, Poland
| | - Monika Kosacka
- Department of Pulmonology and Lung Oncology, Wroclaw Medical University, 53-439 Wroclaw, Poland
| |
Collapse
|