1
|
Weng J, Wu S, Pan Y, Lai Y, Zhu J, Jin W, Lu D, Chen Y, Yu Z, Zan X, Xia J. PH-sensitive adriamycin hydrochloride and oxaliplatin dual-loaded microspheres synergistically enhance local injections effect of hepatocellular carcinoma. Mater Today Bio 2024; 29:101311. [PMID: 39525396 PMCID: PMC11550001 DOI: 10.1016/j.mtbio.2024.101311] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2024] [Revised: 09/22/2024] [Accepted: 10/24/2024] [Indexed: 11/16/2024] Open
Abstract
Chemotherapy is the primary palliative treatment for advanced hepatocellular carcinoma (HCC). However, the systemic delivery is associated with the drawbacks including a high risk of adverse effects and a low efficacy. Therefore, local injection therapy may be beneficial. Nevertheless, the existing local drug-carrying microspheres(DOBM)have the characteristics of low loading and abrupt release, can not simultaneously load two drugs, and may cause unnecessary toxicity. In this study, we created the dual-loaded bovine serum albumin (BSA) microspheres (also known as DOBM), which were hollow and contained both oxaliplatin (OXA) and Adriamycin hydrochloride (DOX). In addition, this pH-sensitive drug delivery method exhibited a high drug loading capacity and was promising in breaking through biological barriers, making it a viable option for the treatment of HCC through local implantation. Based on physiochemical evaluation of BSA microspheres, they had a porous structure which was close to the surface. Adriamycin and oxaliplatin were successfully added to the surface of BSA microspheres. According to in vitro experimental results, the growth of human HCC (HCC-LM3 and PLC/PRF/5) cell lines was significantly inhibited by DOBM. Furthermore, in the subcutaneous PLC/PRF/5 HCC model, DOBM played an essential role in tumor development and change in the tumor microenvironment.
Collapse
Affiliation(s)
- Jialu Weng
- Zhejiang Key Laboratory of Intelligent Cancer Biomarker Discovery and Translation, First Affiliated Hospital, Wenzhou Medical University, Wenzhou 325035, China
| | - Shiyi Wu
- Zhejiang Key Laboratory of Intelligent Cancer Biomarker Discovery and Translation, First Affiliated Hospital, Wenzhou Medical University, Wenzhou 325035, China
| | - Yating Pan
- Zhejiang Key Laboratory of Intelligent Cancer Biomarker Discovery and Translation, First Affiliated Hospital, Wenzhou Medical University, Wenzhou 325035, China
| | - Yifan Lai
- Zhejiang Key Laboratory of Intelligent Cancer Biomarker Discovery and Translation, First Affiliated Hospital, Wenzhou Medical University, Wenzhou 325035, China
| | - Jinrong Zhu
- The Second School of Medicine Wenzhou Medical University, Wenzhou, 325000,China
| | - Wenzhang Jin
- Department of Colorectal Surgery, The Second Affiliated Hospital of Zhejiang Chinese Medical University, Hangzhou 310000, China
| | - Deyu Lu
- Zhejiang Key Laboratory of Intelligent Cancer Biomarker Discovery and Translation, First Affiliated Hospital, Wenzhou Medical University, Wenzhou 325035, China
| | - Yizhang Chen
- School of Pharmaceutical Sciences, Wenzhou Medical University, Wenzhou, Zhejiang, 325000, China
| | - Zhijie Yu
- Wenzhou Key Laboratory of Hematology, The First Afliated Hospital of Wenzhou Medical University, Wenzhou 325000, Zhejiang, China
| | - Xinjie Zan
- Zhejiang Key Laboratory of Intelligent Cancer Biomarker Discovery and Translation, First Affiliated Hospital, Wenzhou Medical University, Wenzhou 325035, China
- Wenzhou Institute, Wenzhou Key Laboratory of Perioperative Medicine, University of Chinese Academy of Sciences, Wenzhou, 325000, China
| | - Jinglin Xia
- Zhejiang Key Laboratory of Intelligent Cancer Biomarker Discovery and Translation, First Affiliated Hospital, Wenzhou Medical University, Wenzhou 325035, China
- Liver Cancer Institute, Zhongshan Hospital of Fudan University, Shanghai, 200032, China
- National Clinical Research Center for Interventional Medicine, Shanghai, 200032, China
| |
Collapse
|
2
|
Wu K, Ma S, Xu X, Liu Y, Tian C, Zhang C, Shan J, Li Z, Ren K, Ren J, Han X, Zhao Y. Celecoxib and cisplatin dual-loaded microspheres synergistically enhance transarterial chemoembolization effect of hepatocellular carcinoma. Mater Today Bio 2024; 24:100927. [PMID: 38234462 PMCID: PMC10792487 DOI: 10.1016/j.mtbio.2023.100927] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2023] [Revised: 12/10/2023] [Accepted: 12/18/2023] [Indexed: 01/19/2024] Open
Abstract
Transarterial chemoembolization (TACE) is a first-line treatment for intermediate to advanced-stage liver cancer, with drug-eluting microspheres commonly used as embolic agents. However, currently available drug-eluting microspheres suffer from low drug-loading capacity and limited drug options. In this work, we developed polydopamine-modified polyvinyl alcohol dual-drug-loaded microspheres encapsulating celecoxib and cisplatin (referred to as PCDMS). Physicochemical characterization revealed that the surface of the microspheres displayed increased roughness after polydopamine modification, and celecoxib and cisplatin were successfully loaded onto the microsphere surface. In vitro cell experiments demonstrated that the PCDMS significantly inhibited the proliferation and migration of highly metastatic human liver cancer cells (MHCC-97H) and human liver cancer cells (SMMC-7721). Furthermore, the dual-loaded microspheres exhibited remarkable tumor growth inhibition and reshaped the tumor microenvironment in both subcutaneous H22 liver cancer model in Balb/c mice and intrahepatic VX2 tumor model in New Zealand rabbits, demonstrating a synergistic antitumor effect where 1 + 1>2. This work provides a potential therapeutic approach for the treatment of refractory liver cancer and holds significant translational potential.
Collapse
Affiliation(s)
- Kunpeng Wu
- Department of Interventional Radiology, Key Laboratory of Interventional Radiology of Henan Province, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, 450052, China
- Interventional Institute of Zhengzhou University, Zhengzhou, 450052, China
- Interventional Treatment and Clinical Research Center of Henan Province, Zhengzhou, 450052, China
| | - Shengnan Ma
- Department of Endocrinology and Metabolism, The First Affiliated Hospital of Zhengzhou University, Zhengzhou University, Zhengzhou, 450052, Henan, China
| | - Xiaohong Xu
- Department of Interventional Radiology, Key Laboratory of Interventional Radiology of Henan Province, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, 450052, China
- Interventional Institute of Zhengzhou University, Zhengzhou, 450052, China
- Interventional Treatment and Clinical Research Center of Henan Province, Zhengzhou, 450052, China
| | - Yiming Liu
- Department of Interventional Radiology, Key Laboratory of Interventional Radiology of Henan Province, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, 450052, China
- Interventional Institute of Zhengzhou University, Zhengzhou, 450052, China
- Interventional Treatment and Clinical Research Center of Henan Province, Zhengzhou, 450052, China
| | - Chuan Tian
- Department of Interventional Medical Center, the Affiliated Hospital of Qingdao University, No. 1677 Wutaishan Road, Shandong, 266000, Qingdao, China
| | - Chengzhi Zhang
- Department of Interventional Radiology, Key Laboratory of Interventional Radiology of Henan Province, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, 450052, China
- Interventional Institute of Zhengzhou University, Zhengzhou, 450052, China
- Interventional Treatment and Clinical Research Center of Henan Province, Zhengzhou, 450052, China
| | - Jiheng Shan
- Department of Interventional Radiology, Key Laboratory of Interventional Radiology of Henan Province, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, 450052, China
- Interventional Institute of Zhengzhou University, Zhengzhou, 450052, China
- Interventional Treatment and Clinical Research Center of Henan Province, Zhengzhou, 450052, China
| | - Zongming Li
- Department of Interventional Radiology, Key Laboratory of Interventional Radiology of Henan Province, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, 450052, China
- Interventional Institute of Zhengzhou University, Zhengzhou, 450052, China
- Interventional Treatment and Clinical Research Center of Henan Province, Zhengzhou, 450052, China
| | - Kewei Ren
- Department of Interventional Radiology, Key Laboratory of Interventional Radiology of Henan Province, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, 450052, China
- Interventional Institute of Zhengzhou University, Zhengzhou, 450052, China
- Interventional Treatment and Clinical Research Center of Henan Province, Zhengzhou, 450052, China
| | - Jianzhuang Ren
- Department of Interventional Radiology, Key Laboratory of Interventional Radiology of Henan Province, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, 450052, China
- Interventional Institute of Zhengzhou University, Zhengzhou, 450052, China
- Interventional Treatment and Clinical Research Center of Henan Province, Zhengzhou, 450052, China
| | - Xinwei Han
- Department of Interventional Radiology, Key Laboratory of Interventional Radiology of Henan Province, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, 450052, China
- Interventional Institute of Zhengzhou University, Zhengzhou, 450052, China
- Interventional Treatment and Clinical Research Center of Henan Province, Zhengzhou, 450052, China
| | - Yanan Zhao
- Department of Interventional Radiology, Key Laboratory of Interventional Radiology of Henan Province, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, 450052, China
- Interventional Institute of Zhengzhou University, Zhengzhou, 450052, China
- Interventional Treatment and Clinical Research Center of Henan Province, Zhengzhou, 450052, China
| |
Collapse
|
3
|
Wang G, Wang W, Chen Z, Hu T, Tu L, Wang X, Hu W, Li S, Wang Z. Photothermal microneedle patch loaded with antimicrobial peptide/MnO2 hybrid nanoparticles for chronic wound healing. CHEMICAL ENGINEERING JOURNAL 2024; 482:148938. [DOI: 10.1016/j.cej.2024.148938] [Citation(s) in RCA: 10] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 08/25/2024]
|
4
|
Narita A, Nakano Y, Okada H, Yamamoto T, Matsunaga N, Ikeda S, Izumi Y, Kitagawa A, Ota T, Suzuki K. In Vitro Characterization of Drug-Loaded Superabsorbent Polymer Microspheres: Absorption and Release Capacity of Contrast Material, Antibiotics and Analgesics. Cardiovasc Intervent Radiol 2023; 46:1632-1640. [PMID: 37759091 DOI: 10.1007/s00270-023-03559-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/25/2023] [Accepted: 09/05/2023] [Indexed: 09/29/2023]
Abstract
PURPOSE To examine the characteristics of drug-loaded superabsorbent polymer microspheres (SAP-MS) such as drug absorption, drug release, diameter, and visibility. MATERIALS AND METHODS SAP-MS (HepaSphere150-200 µm; Merit Medical, South Jordan, UT, USA) were suspended in drug solutions: (a) cefazolin, (b) lidocaine, (c) iopamidol and cefazolin, (d) iopamidol and lidocaine, and (e) iopamidol, cefazolin, and lidocaine. The concentrations of drugs were measured, and the amount of each drug absorbed was calculated. Filtered drug-loaded SAP-MS were mixed with saline, and the drug release rates were calculated. The diameter changes of SAP-MS during absorption were observed. Radiography of drug-loaded SAP-MS was evaluated as radiopacity by contrast-to-noise ratio (CNR). RESULTS The drug concentration did not change during absorption. The release rates increased for 10 min and then came to an equilibrium. The mean amounts of drug absorbed at 180 min and mean release rates at 24 h were (a) cefazolin: 265.4 mg, 64.2%; (b) lidocaine: 19.6 mg, 75.6%; (c) iopamidol: 830.2 mg, 22.5%; cefazolin: 137.6 mg, 21.2%; (d) iopamidol: 1620.6 mg, 78.5%; lidocaine: 13.5 mg, 81.4%; and (e) iopamidol: 643.7 mg, 52.9%; cefazolin: 194.0 mg, 51.6%; lidocaine: 5.3 mg, 58.4%. The diameter of SAP-MS increased for approximately 15 min. Finally, the diameters of SAP-MS were (a) 3.9 times, (b) 5.0 times, (c) 2.2 times, (d) 5.5 times, and (e) 3.6 times larger than the original size. Drug-loaded SAP-MS containing iopamidol were visible under X-ray imaging, with CNRs of (c) 3.0, (d) 9.0, and (e) 4.5. CONCLUSION SAP-MS can absorb and release iopamidol, cefazolin, and lidocaine.
Collapse
Affiliation(s)
- Akiko Narita
- Department of Radiology, Aichi Medical University, 1-1 Yazako Karimata, Nagakute, Aichi, Japan.
| | - Yuta Nakano
- Department of Radiology, Aichi Medical University, 1-1 Yazako Karimata, Nagakute, Aichi, Japan
| | - Hiroaki Okada
- Department of Radiology, Aichi Medical University, 1-1 Yazako Karimata, Nagakute, Aichi, Japan
| | - Takahiro Yamamoto
- Department of Radiology, Aichi Medical University, 1-1 Yazako Karimata, Nagakute, Aichi, Japan
| | - Nozomu Matsunaga
- Department of Radiology, Aichi Medical University, 1-1 Yazako Karimata, Nagakute, Aichi, Japan
| | - Shuji Ikeda
- Department of Radiology, Aichi Medical University, 1-1 Yazako Karimata, Nagakute, Aichi, Japan
| | - Yuichiro Izumi
- Department of Radiology, Aichi Medical University, 1-1 Yazako Karimata, Nagakute, Aichi, Japan
| | - Akira Kitagawa
- Department of Radiology, Aichi Medical University, 1-1 Yazako Karimata, Nagakute, Aichi, Japan
| | - Toyohiro Ota
- Department of Radiology, Aichi Medical University, 1-1 Yazako Karimata, Nagakute, Aichi, Japan
| | - Kojiro Suzuki
- Department of Radiology, Aichi Medical University, 1-1 Yazako Karimata, Nagakute, Aichi, Japan
| |
Collapse
|
5
|
Xiong Z, Yang Y, Li W, Lin Y, Huang W, Zhang S. Exploring Key Biomarkers and Common Pathogenesis of Seven Digestive System Cancers and Their Correlation with COVID-19. Curr Issues Mol Biol 2023; 45:5515-5533. [PMID: 37504265 PMCID: PMC10378662 DOI: 10.3390/cimb45070349] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2023] [Revised: 06/26/2023] [Accepted: 06/27/2023] [Indexed: 07/29/2023] Open
Abstract
Digestive system cancer and COVID-19 significantly affect the digestive system, but the mechanism of interaction between COVID-19 and the digestive system cancers has not been fully elucidated. We downloaded the gene expression of COVID-19 and seven digestive system cancers (oral, esophageal, gastric, colorectal, hepatocellular, bile duct, pancreatic) from GEO and identified hub differentially expressed genes. Multiple verifications, diagnostic efficacy, prognostic analysis, functional enrichment and related transcription factors of hub genes were explored. We identified 23 common DEGs for subsequent analysis. CytoHubba identified nine hub genes (CCNA2, CCNB1, CDKN3, ECT2, KIF14, KIF20A, KIF4A, NEK2, TTK). TCGA and GEO data validated the expression and excellent diagnostic and prognostic ability of hub genes. Functional analysis revealed that the processes of cell division and the cell cycle were essential in COVID-19 and digestive system cancers. Furthermore, six related transcription factors (E2F1, E2F3, E2F4, MYC, TP53, YBX1) were involved in hub gene regulation. Via in vitro experiments, CCNA2, CCNB1, and MYC expression was verified in 25 colorectal cancer tissue pairs. Our study revealed the key biomarks and common pathogenesis of digestive system cancers and COVID-19. These may provide new ideas for further mechanistic research.
Collapse
Affiliation(s)
- Zuming Xiong
- Department of Colorectal and Anal Surgery, The First Affiliated Hospital of Guangxi Medical University, Nanning 530021, China
| | - Yongjun Yang
- Department of Colorectal and Anal Surgery, The First Affiliated Hospital of Guangxi Medical University, Nanning 530021, China
| | - Wenxin Li
- Department of Colorectal and Anal Surgery, The First Affiliated Hospital of Guangxi Medical University, Nanning 530021, China
| | - Yirong Lin
- Department of Colorectal and Anal Surgery, The First Affiliated Hospital of Guangxi Medical University, Nanning 530021, China
| | - Wei Huang
- Department of Colorectal and Anal Surgery, The First Affiliated Hospital of Guangxi Medical University, Nanning 530021, China
| | - Sen Zhang
- Department of Colorectal and Anal Surgery, The First Affiliated Hospital of Guangxi Medical University, Nanning 530021, China
| |
Collapse
|