1
|
Niu Q, Hao J, Li Z, Zhang H. Helper T cells: A potential target for sex hormones to ameliorate rheumatoid arthritis? (Review). Mol Med Rep 2024; 30:215. [PMID: 39370806 PMCID: PMC11450432 DOI: 10.3892/mmr.2024.13339] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2024] [Accepted: 09/06/2024] [Indexed: 10/08/2024] Open
Abstract
Rheumatoid arthritis (RA) is a chronic autoimmune inflammatory disease whose etiology is not fully understood. Defective peripheral immune tolerance and subsequent mis‑differentiation and aberrant infiltration of synovium by various immune cells, especially helper T (Th) cells, play an important role in the development of RA. There are significant sex differences in RA, but the results of studies on the effects of sex hormones on RA have been difficult to standardize and hormone replacement therapy has been limited by the potential for serious side effects. Existing research has amply demonstrated that cellular immune responses are largely determined by sex and that sex hormones play a key role in Th cell responses. Based on the aforementioned background and the plasticity of Th cells, it is reasonable to hypothesize that the action of sex hormones on Th cells will hopefully become a therapeutic target for RA. The present review discussed the role of various Th cell subsets in the pathogenesis of RA and also explored the role of sex hormones on the phenotype and function of these aberrantly regulated immune cells in RA as well as other pathologic effects on RA.
Collapse
Affiliation(s)
- Quanjun Niu
- Department of Orthopedics IV, Handan Hospital of Traditional Chinese Medicine, Handan, Hebei 056001, P.R. China
| | - Junhang Hao
- Department of Orthopedics IV, Handan Hospital of Traditional Chinese Medicine, Handan, Hebei 056001, P.R. China
| | - Zhen Li
- Department of Orthopedics IV, Handan Hospital of Traditional Chinese Medicine, Handan, Hebei 056001, P.R. China
| | - Huiping Zhang
- Department of Orthopedics IV, Handan Hospital of Traditional Chinese Medicine, Handan, Hebei 056001, P.R. China
| |
Collapse
|
2
|
Sang W, Yan X, Wang L, Sun H, Jian Y, Wang F, Tang B, Li Y. CALCOCO2 prevents AngII-induced atrial remodeling by regulating the interaction between mitophagy and mitochondrial stress. Int Immunopharmacol 2024; 140:112841. [PMID: 39094358 DOI: 10.1016/j.intimp.2024.112841] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2024] [Revised: 07/28/2024] [Accepted: 07/28/2024] [Indexed: 08/04/2024]
Abstract
BACKGROUND The biological functions of mitochondrial complexes are closely related to the development of atrial fibrillation (AF). Calcium binding and coiled-coil domain 2 (CALCOCO2) is a novel and specific receptor for mitophagy; however, its function in AF remains unknown. Therefore, this study aimed to investigate the role and molecular mechanisms of CALCOCO2 in AF, especially its regulatory mechanism in mitophagy and mitochondrial stress. METHODS Mice and HL-1 cells were treated with AngII to establish in vitro and in vivo AF models. Additionally, we examined the effect of CALCOCO2 or DAP3 Binding Cell Death Enhancer 1 (DELE1) overexpression on mitophagy and mitochondrial stress in AF models. To investigate the role of mitophagy in the regulatory effects of CALCOCO2 in AF, HL-1 cells were treated with chloroquine, a mitophagy inhibitor. Moreover, mitochondrial parameters were examined using specific fluorescent probes, transmission electron microscopy, western blotting, immunohistochemistry, and confocal microscopy. RESULTS AngII severely impaired the normal morphology and function of mitochondria; inhibited mitophagy; promoted atrial mitochondrial stress, fibrosis, and oxidative stress; and accelerated the progression of atrial remodeling in atrial myocytes. However, CALCOCO2 overexpression reversed/ameliorated these AF-induced changes. Additionally, CALCOCO2 overexpression restored mitochondrial homeostasis in atrial muscle by activating mitophagy and ameliorating mitochondrial stress. Mechanistically, DELE1 overexpression increased mitochondrial reactive oxygen species level and the expression of mitochondrial stress proteins (HRI, eIF2α, and ATF4) even in CALCOCO2-expressing in vitro AF models.. CONCLUSIONS CALCOCO2 may serve as a potential target for AF therapy to prevent or reverse the progression of atrial remodeling by regulating mitophagy and DELE1-mediated mitochondrial stress.
Collapse
Affiliation(s)
- Wanyue Sang
- Cardiac Pacing and Electrophysiology Department, The First Affiliated Hospital of Xinjiang Medical University, Urumqi, Xinjiang, China; Xinjiang Key Laboratory of Cardiac Electrophysiology and Cardiac Remodeling, The First Affiliated Hospital of Xinjiang Medical University, Urumqi, Xinjiang, China
| | - Xiaoji Yan
- Department of Emergency, Sir Run Run Shaw Hospital Affiliated to Zhejiang University School of Medicine, Hangzhou, Zhejiang, China
| | - Lu Wang
- Cardiac Pacing and Electrophysiology Department, The First Affiliated Hospital of Xinjiang Medical University, Urumqi, Xinjiang, China; Xinjiang Key Laboratory of Cardiac Electrophysiology and Cardiac Remodeling, The First Affiliated Hospital of Xinjiang Medical University, Urumqi, Xinjiang, China
| | - Huaxin Sun
- Department of Cardiology, The Third People's Hospital of Chengdu, College of Medicine, Southwest Jiaotong University, Chengdu, Sichuan, 610031, China
| | - Yi Jian
- Cardiac Pacing and Electrophysiology Department, The First Affiliated Hospital of Xinjiang Medical University, Urumqi, Xinjiang, China; Xinjiang Key Laboratory of Cardiac Electrophysiology and Cardiac Remodeling, The First Affiliated Hospital of Xinjiang Medical University, Urumqi, Xinjiang, China
| | - Feifei Wang
- Cardiac Pacing and Electrophysiology Department, The First Affiliated Hospital of Xinjiang Medical University, Urumqi, Xinjiang, China; Xinjiang Key Laboratory of Cardiac Electrophysiology and Cardiac Remodeling, The First Affiliated Hospital of Xinjiang Medical University, Urumqi, Xinjiang, China; Xinjiang Emergency Center, People's Hospital of Xinjiang Uygur Autonomous Region, China
| | - Baopeng Tang
- Cardiac Pacing and Electrophysiology Department, The First Affiliated Hospital of Xinjiang Medical University, Urumqi, Xinjiang, China; Xinjiang Key Laboratory of Cardiac Electrophysiology and Cardiac Remodeling, The First Affiliated Hospital of Xinjiang Medical University, Urumqi, Xinjiang, China.
| | - Yaodong Li
- Cardiac Pacing and Electrophysiology Department, The First Affiliated Hospital of Xinjiang Medical University, Urumqi, Xinjiang, China; Xinjiang Key Laboratory of Cardiac Electrophysiology and Cardiac Remodeling, The First Affiliated Hospital of Xinjiang Medical University, Urumqi, Xinjiang, China.
| |
Collapse
|
3
|
Ren Y, Wang F, Sun R, Zheng X, Liu Y, Lin Y, Hong L, Huang X, Chao Z. The Genetic Selection of HSPD1 and HSPE1 Reduce Inflammation of Liver and Spleen While Restraining the Growth and Development of Skeletal Muscle in Wuzhishan Pigs. Animals (Basel) 2024; 14:174. [PMID: 38200905 PMCID: PMC10777996 DOI: 10.3390/ani14010174] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2023] [Revised: 12/25/2023] [Accepted: 12/29/2023] [Indexed: 01/12/2024] Open
Abstract
Wuzhishan (WZS) pigs, which are minipigs native to Hainan Province in China, are characterized by strong resistance to extreme hot temperatures and humidity. The relationship between their immune response and growth still needs to be clarified. In this study, we used whole genome sequencing (WGS) to detect variations within 37 WZS pigs, 32 Large White (LW) pigs, and 22 Xiangxi black (XXB) pigs, and ~2.49 GB of SNPs were obtained. These data were combined with those of two other pig breeds, and it was found that most of the genes detected (354) were located within the distinct genetic regions between WZS pigs and LW pigs. The network that was constructed using these genes represented a center including 12 hub genes, five of which had structural variations (SVs) within their regulatory regions. Furthermore, RNA-seq and RT-qPCR data for 12 genes were primarily consistent in liver, spleen, and LDM tissues. Notably, the expression of HSPs (HSPD1 and HSPE1) was higher while that of most genes involved in the JAK3-STAT pathway were lower in liver tissue of WZS pigs, compared with LW pigs. This likely not only reduced inflammation-related immune response but also impaired their growth. Our findings demonstrated the role of HSPs in the connection between inflammation and growth rate, while also providing the fundamental genetic selection of the adaptability of WZS pigs.
Collapse
Affiliation(s)
- Yuwei Ren
- Key Laboratory of Tropical Animal Breeding and Disease Research, Institute of Animal Science and Veterinary Medicine, Hainan Academy of Agricultural Sciences, Haikou 571100, China; (Y.R.)
| | - Feng Wang
- Key Laboratory of Tropical Animal Breeding and Disease Research, Institute of Animal Science and Veterinary Medicine, Hainan Academy of Agricultural Sciences, Haikou 571100, China; (Y.R.)
| | - Ruiping Sun
- Key Laboratory of Tropical Animal Breeding and Disease Research, Institute of Animal Science and Veterinary Medicine, Hainan Academy of Agricultural Sciences, Haikou 571100, China; (Y.R.)
| | - Xinli Zheng
- Key Laboratory of Tropical Animal Breeding and Disease Research, Institute of Animal Science and Veterinary Medicine, Hainan Academy of Agricultural Sciences, Haikou 571100, China; (Y.R.)
| | - Yuanyuan Liu
- College of Veterinary Medicine, Xinjiang Agricultural University, Urumqi 830052, China
| | - Yanning Lin
- Key Laboratory of Tropical Animal Breeding and Disease Research, Institute of Animal Science and Veterinary Medicine, Hainan Academy of Agricultural Sciences, Haikou 571100, China; (Y.R.)
| | - Lingling Hong
- Key Laboratory of Tropical Animal Breeding and Disease Research, Institute of Animal Science and Veterinary Medicine, Hainan Academy of Agricultural Sciences, Haikou 571100, China; (Y.R.)
| | - Xiaoxian Huang
- Key Laboratory of Tropical Animal Breeding and Disease Research, Institute of Animal Science and Veterinary Medicine, Hainan Academy of Agricultural Sciences, Haikou 571100, China; (Y.R.)
| | - Zhe Chao
- Key Laboratory of Tropical Animal Breeding and Disease Research, Institute of Animal Science and Veterinary Medicine, Hainan Academy of Agricultural Sciences, Haikou 571100, China; (Y.R.)
| |
Collapse
|
4
|
Dong L, Zhao Y, Sun C, Ou Yang Z, Chen F, Hu W, Zhang H, Wang Y, Zhu R, Cheng Y, Chen Y, Li S, Wang K, Ding C, Zhou R, Hu W. ASIC1a-CMPK2-mediated M1 macrophage polarization exacerbates chondrocyte senescence in osteoarthritis through IL-18. Int Immunopharmacol 2023; 124:110878. [PMID: 37660594 DOI: 10.1016/j.intimp.2023.110878] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2023] [Revised: 08/25/2023] [Accepted: 08/28/2023] [Indexed: 09/05/2023]
Abstract
PURPOSE Identification of a role for, and the mechanism of action of, the acid-sensing ion channel 1a (ASIC1a) in M1 macrophage polarization, which results in osteoarthritis (OA)-associated chondrocyte senescence. METHOD ASIC1a expression in synovial M1 macrophages of OA patients was assessed by immunofluorescence. A role for ASIC1a in M1 macrophage and chondrocyte senescence was assessed in a mouse OA model. RESULTS ASIC1a expression was found to be upregulated in synovial M1 macrophages of OA patients. Extracellular acidification (pH 6.0) promoted M1 polarization of bone marrow derived macrophages (BMDMs), which was reversed by PcTx-1 or ASIC1a-siRNA. RNA-seq transcriptome results demonstrated a downregulation of M1 macrophage-associated genes in BMDMs after PcTx-1 treatment. Mechanistically, a role for the ASIC1a-cytidine/uridine monophosphate kinase 2 (CMPK2) axis in M1 macrophage polarization was demonstrated. The concentration of IL-18 was elevated in synovial fluid and supernatants of acid-activated BMDMs. In vitro, IL-18 stimulation or co-culture with acid-activated macrophages promoted chondrocyte senescence. In vivo, intra-articular administration of PcTx-1 reduced articular cartilage destruction and chondrocytes senescence in OA mice, which related to reduced numbers of M1 macrophages and IL-18 in affected joints. CONCLUSION These results demonstrate a novel pathogenic process that results in OA cartilage damage, in which M1 macrophage derived IL-18 induces articular chondrocytes senescence. Further, the ASIC1a-CMPK2 axis was shown to positively regulate M1 macrophage polarization. Hence, ASIC1a is a promising treatment target for M1 macrophage-mediated diseases, such as OA.
Collapse
Affiliation(s)
- Lei Dong
- Department of Clinical Pharmacology, The Second Affiliated Hospital of Anhui Medical University, Hefei 230601, China; The Key Laboratory of Major Autoimmune Diseases, Anhui Institute of Innovative Drugs, School of Pharmacy, Anhui Medical University, Hefei 230032, China
| | - Yingjie Zhao
- Department of Clinical Pharmacology, The Second Affiliated Hospital of Anhui Medical University, Hefei 230601, China; The Key Laboratory of Anti-inflammatory and Immune Medicine, Anhui Medical University, Ministry of Education, Hefei 230032, China
| | - Cheng Sun
- Department of Clinical Pharmacology, The Second Affiliated Hospital of Anhui Medical University, Hefei 230601, China; The Key Laboratory of Major Autoimmune Diseases, Anhui Institute of Innovative Drugs, School of Pharmacy, Anhui Medical University, Hefei 230032, China
| | - Ziwei Ou Yang
- Department of Clinical Pharmacology, The Second Affiliated Hospital of Anhui Medical University, Hefei 230601, China; The Key Laboratory of Major Autoimmune Diseases, Anhui Institute of Innovative Drugs, School of Pharmacy, Anhui Medical University, Hefei 230032, China
| | - Fan Chen
- Department of Clinical Pharmacology, The Second Affiliated Hospital of Anhui Medical University, Hefei 230601, China; The Key Laboratory of Anti-inflammatory and Immune Medicine, Anhui Medical University, Ministry of Education, Hefei 230032, China
| | - Weirong Hu
- The Key Laboratory of Anti-inflammatory and Immune Medicine, Anhui Medical University, Ministry of Education, Hefei 230032, China
| | - Hailin Zhang
- Department of Clinical Pharmacology, The Second Affiliated Hospital of Anhui Medical University, Hefei 230601, China; The Key Laboratory of Anti-inflammatory and Immune Medicine, Anhui Medical University, Ministry of Education, Hefei 230032, China
| | - Yan Wang
- Department of Clinical Pharmacology, The Second Affiliated Hospital of Anhui Medical University, Hefei 230601, China; The Key Laboratory of Anti-inflammatory and Immune Medicine, Anhui Medical University, Ministry of Education, Hefei 230032, China
| | - Rendi Zhu
- Department of Clinical Pharmacology, The Second Affiliated Hospital of Anhui Medical University, Hefei 230601, China; The Key Laboratory of Major Autoimmune Diseases, Anhui Institute of Innovative Drugs, School of Pharmacy, Anhui Medical University, Hefei 230032, China
| | - Yuanzhi Cheng
- Department of Clinical Pharmacology, The Second Affiliated Hospital of Anhui Medical University, Hefei 230601, China; The Key Laboratory of Major Autoimmune Diseases, Anhui Institute of Innovative Drugs, School of Pharmacy, Anhui Medical University, Hefei 230032, China
| | - Yong Chen
- Department of Clinical Pharmacology, The Second Affiliated Hospital of Anhui Medical University, Hefei 230601, China
| | - Shufang Li
- Department of Clinical Pharmacology, The Second Affiliated Hospital of Anhui Medical University, Hefei 230601, China
| | - Ke Wang
- Department of Clinical Pharmacology, The Second Affiliated Hospital of Anhui Medical University, Hefei 230601, China; The Key Laboratory of Anti-inflammatory and Immune Medicine, Anhui Medical University, Ministry of Education, Hefei 230032, China
| | - Changhai Ding
- Clinical Research Centre, Zhujiang Hospital, Southern Medical University, Guangzhou, Guangdong, China; Menzies Institute for Medical Research, University of Tasmania, Hobart, Tasmania, Australia
| | - Renpeng Zhou
- Department of Clinical Pharmacology, The Second Affiliated Hospital of Anhui Medical University, Hefei 230601, China; The Key Laboratory of Anti-inflammatory and Immune Medicine, Anhui Medical University, Ministry of Education, Hefei 230032, China.
| | - Wei Hu
- Department of Clinical Pharmacology, The Second Affiliated Hospital of Anhui Medical University, Hefei 230601, China; The Key Laboratory of Anti-inflammatory and Immune Medicine, Anhui Medical University, Ministry of Education, Hefei 230032, China; The Key Laboratory of Major Autoimmune Diseases, Anhui Institute of Innovative Drugs, School of Pharmacy, Anhui Medical University, Hefei 230032, China.
| |
Collapse
|
5
|
Chen B, Wang Y, Chen G. New Potentiality of Bioactive Substances: Regulating the NLRP3 Inflammasome in Autoimmune Diseases. Nutrients 2023; 15:4584. [PMID: 37960237 PMCID: PMC10650318 DOI: 10.3390/nu15214584] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2023] [Revised: 10/21/2023] [Accepted: 10/26/2023] [Indexed: 11/15/2023] Open
Abstract
The NOD-like receptor family pyrin domain-containing 3 (NLRP3) inflammasome is an essential component of the human innate immune system, and is closely associated with adaptive immunity. In most cases, the activation of the NLRP3 inflammasome requires priming and activating, which are influenced by various ion flux signals and regulated by various enzymes. Aberrant functions of intracellular NLRP3 inflammasomes promote the occurrence and development of autoimmune diseases, with the majority of studies currently focused on rheumatoid arthritis, systemic lupus erythematosus and systemic sclerosis. In recent years, a number of bioactive substances have shown new potentiality for regulating the NLRP3 inflammasome in autoimmune diseases. This review provides a concise overview of the composition, functions, and regulation of the NLRP3 inflammasome. Additionally, we focus on the newly discovered bioactive substances for regulating the NLRP3 inflammasome in autoimmune diseases in the past three years.
Collapse
Affiliation(s)
| | | | - Guangjie Chen
- Department of Immunology and Microbiology, Shanghai Jiao Tong University School of Medicine, Shanghai 200025, China; (B.C.); (Y.W.)
| |
Collapse
|
6
|
Zhang Z, Chen M, Zhan W, Chen Y, Wang T, Chen Z, Fu Y, Zhao G, Mao D, Ruan J, Yuan FL. Acid-sensing ion channel 1a modulation of apoptosis in acidosis-related diseases: implications for therapeutic intervention. Cell Death Discov 2023; 9:330. [PMID: 37666823 PMCID: PMC10477349 DOI: 10.1038/s41420-023-01624-6] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2023] [Revised: 07/28/2023] [Accepted: 08/22/2023] [Indexed: 09/06/2023] Open
Abstract
Acid-sensing ion channel 1a (ASIC1a), a prominent member of the acid-sensing ion channel (ASIC) superfamily activated by extracellular protons, is ubiquitously expressed throughout the human body, including the nervous system and peripheral tissues. Excessive accumulation of Ca2+ ions via ASIC1a activation may occur in the acidified microenvironment of blood or local tissues. ASIC1a-mediated Ca2+‑induced apoptosis has been implicated in numerous pathologies, including neurological disorders, cancer, and rheumatoid arthritis. This review summarizes the role of ASIC1a in the modulation of apoptosis via various signaling pathways across different disease states to provide insights for future studies on the underlying mechanisms and development of therapeutic strategies.
Collapse
Affiliation(s)
- Zhenyu Zhang
- Institute of Integrated Chinese and Western Medicine, Affiliated to Jiangnan University, Wuxi, Jiangsu, 214041, China
| | - Minnan Chen
- Nantong First People's Hospital, Nantong, 226001, China
| | - Wenjing Zhan
- The Key Laboratory of Anti-Inflammatory and Immune Medicine, Anhui Medical University, Hefei, 230032, China
| | - Yuechun Chen
- Institute of Integrated Chinese and Western Medicine, Affiliated to Jiangnan University, Wuxi, Jiangsu, 214041, China
| | - Tongtong Wang
- Institute of Integrated Chinese and Western Medicine, Affiliated to Jiangnan University, Wuxi, Jiangsu, 214041, China
| | - Zhonghua Chen
- Institute of Integrated Chinese and Western Medicine, Affiliated to Jiangnan University, Wuxi, Jiangsu, 214041, China
| | - Yifei Fu
- Institute of Integrated Chinese and Western Medicine, Affiliated to Jiangnan University, Wuxi, Jiangsu, 214041, China
| | - Gang Zhao
- Orthopaedic Institute, Wuxi 9th People's Hospital Affiliated to Soochow University, Wuxi, 214062, China
| | - Dong Mao
- Orthopaedic Institute, Wuxi 9th People's Hospital Affiliated to Soochow University, Wuxi, 214062, China.
| | - Jingjing Ruan
- Nantong First People's Hospital, Nantong, 226001, China.
- Department of Respiratory and Critical Care Medicine, The First Affiliated Hospital of Anhui Medical University, Hefei, 230022, People's Republic of China.
| | - Feng-Lai Yuan
- Institute of Integrated Chinese and Western Medicine, Affiliated to Jiangnan University, Wuxi, Jiangsu, 214041, China.
| |
Collapse
|
7
|
Chen XW, Li QW, Wang H. Sequencing and bioinformatics analysis of miRNA from rat endplate chondrogenic exosomes. Exp Ther Med 2023; 25:267. [PMID: 37206570 PMCID: PMC10189748 DOI: 10.3892/etm.2023.11966] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2022] [Accepted: 03/16/2023] [Indexed: 05/21/2023] Open
Abstract
Exosomes have a key role in various diseases, such as arthritis, heart disease and respiratory disease. Exosomes from various sources have also been indicated to improve intervertebral disc degeneration. However, the role of endplate chondrogenic exosomes in intervertebral disc degeneration has remained largely elusive. The aim of the present study was to compare exosomal microRNA (miRNA) expression patterns in endplate chondrocytes before and after degeneration, and their potential roles in the pathogenesis of intervertebral disc degeneration (IVDD). Endplate chondrocytes were extracted from rats and cultured to obtain pre- and post-degeneration chondrocytes. Exosomes were obtained from the chondrocytes by centrifugation. The two groups of exosomes were subjected to small RNA sequencing, miRNA identification, novel miRNA prediction, quantitative analysis of miRNA expression and differentially expressed (DE) miRNA screening, in addition to miRNA target gene (TG) prediction and TG functional annotation and enrichment analysis. The percentage of miRNAs isolated from the exosomes before and after degeneration was found to differ. A total of 58 DE miRNAs were analyzed, the expression levels of which were significantly different post-degeneration compared with pre-degeneration. Cell experiments were also performed, in which the exosomes were co-cultured with nucleus pulposus (NP) cells. The results indicated that the chondrocyte-derived exosomes were taken up by the NP cells and influenced the expression of aggrecan and collagen 1A and 2A, suggesting that they may inhibit IVDD via their action on NP cells. The specific miRNAs present in exosomes during IVDD may be used to develop new targets for the treatment and diagnosis of this condition. DE exosomal miRNAs derived from endplate cartilage pre- and post-degeneration may be associated with the risk of IVDD and could help to distinguish patients with IVDD. Furthermore, the expression of certain miRNAs may be associated with disease progression, which may contribute to understanding the pathophysiology of IVDD from an epigenetic perspective.
Collapse
Affiliation(s)
- Xue-Wu Chen
- Department of Spinal Orthopedics, Yijishan Hospital of Wannan Medical College, Wuhu, Anhui 241000, P.R. China
| | - Qiu-Wei Li
- Department of Spinal Orthopedics, Yijishan Hospital of Wannan Medical College, Wuhu, Anhui 241000, P.R. China
| | - Hong Wang
- Department of Spinal Orthopedics, Yijishan Hospital of Wannan Medical College, Wuhu, Anhui 241000, P.R. China
- Correspondence to: Professor Hong Wang, Department of Spinal Orthopedics, Yijishan Hospital of Wannan Medical College, 2 Zheshan West Road, Jinghu, Wuhu, Anhui 241000, P.R. China
| |
Collapse
|