1
|
Yin QZ, Liu YJ, Zhang Q, Xi SY, Yang TB, Li JP, Gao J. Overexpression of Basonuclin Zinc Finger Protein 2 in stromal cell is related to mesenchymal phenotype and immunosuppression of mucinous colorectal adenocarcinoma. Int Immunopharmacol 2024; 142:113184. [PMID: 39306894 DOI: 10.1016/j.intimp.2024.113184] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2024] [Revised: 09/02/2024] [Accepted: 09/13/2024] [Indexed: 10/12/2024]
Abstract
BACKGROUND Mucinous carcinoma (MC) is a distinct histologic subtype of colorectal cancer (CRC) that is less studied and associated with poor prognosis. This study aimed to identify MC-specific therapeutic targets and biomarkers to improve the prognosis of this aggressive disease. METHODS CRC samples from The Cancer Genome Atlas (TCGA) were categorized into MC and non-MC (NMC) groups based on histologic type. A multi-scale embedded gene co-expression network analysis (MEGENA) was constructed to identify gene modules associated with the MC group. The potential functions of Basonuclin Zinc Finger Protein 2 (BNC2) were further analyzed using the Biomarker Exploration for Solid Tumors (BEST) database. In vivo and in vitro experiments were conducted to validate the predicted results. RESULTS We identified the stromal component-related gene, BNC2, in the MC population. This gene is associated with a shorter progression-free interval (PFI) in CRC patients. BNC2 promotes FAP (encoding Fibroblast Activation Protein Alpha) transcription in cancer-associated fibroblasts (CAFs) and is involved in angiogenesis through two pathways. Additionally, BNC2 enhances tumor cell invasiveness in a CAF-dependent manner. Patients with high BNC2 expression benefited less from immunotherapy compared to those with low BNC2 expression. CONCLUSIONS Our study highlights the clinical importance of BNC2 in MC, and targeting BNC2 on stromal cells (fibroblasts and endothelial cells) may be an effective strategy for treating MC.
Collapse
Affiliation(s)
- Qing-Zhong Yin
- Xuzhou Medical University, Xuzhou, Jiangsu 221004, China
| | - Yuan-Jie Liu
- Affiliated Hospital of Nanjing University of Chinese Medicine, Jiangsu Province Hospital of Chinese Medicine, Nanjing, Jiangsu, 210029, China
| | - Qian Zhang
- Affiliated Hospital of Nanjing University of Chinese Medicine, Jiangsu Province Hospital of Chinese Medicine, Nanjing, Jiangsu, 210029, China
| | - Song-Yang Xi
- Zhenjiang Hospital of Chinese Traditional and Western Medicine, Zhenjiang, Jiangsu 212000, China
| | - Tian-Bao Yang
- Xuzhou Medical University, Xuzhou, Jiangsu 221004, China
| | - Jie-Pin Li
- Affiliated Hospital of Nanjing University of Chinese Medicine, Jiangsu Province Hospital of Chinese Medicine, Nanjing, Jiangsu, 210029, China.
| | - Ju Gao
- The Yangzhou Clinical Medical College of Xuzhou Medical University, Yangzhou, Jiangsu 225009, China; Northern Jiangsu People's Hospital, Yangzhou, Jiangsu 225009, China.
| |
Collapse
|
2
|
Guo LF, Hong JG, Wang RJ, Chen GP, Wu SG. Nasopharyngeal carcinoma survival by histology in endemic and non-endemic areas. Ann Med 2024; 56:2425066. [PMID: 39529559 PMCID: PMC11559018 DOI: 10.1080/07853890.2024.2425066] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/03/2024] [Revised: 08/11/2024] [Accepted: 10/22/2024] [Indexed: 11/16/2024] Open
Abstract
BACKGROUND To investigate the prognostic implications of histology among nasopharyngeal carcinoma (NPC) using the data from a Chinese cohort and the Surveillance, Epidemiology, and End Results (SEER) database. METHODS We included patients diagnosed with WHO II and III subtypes NPC from two independent cohorts (Xiamen [XM]-NPC cohort and SEER-NPC cohort). RESULTS We identified 726 patients in the XM-NPC cohort and 1334 patients in the SEER cohort. In the XM-NPC cohort, 94 (12.9%) and 632 (87.1%) patients had WHO II and III subtypes, respectively. In the SEER-NPC cohort, 839 (62.9%) and 495 (37.1%) patients had WHO II and III subtypes, respectively. WHO II subtype patients had a higher smoking rate than the WHO III subtype (57.4% vs. 43.4%) in the XM-NPC cohort. There were no significant differences in age, gender, tumor stage, or nodal stage between the two subtypes in both cohorts. In the XM-NPC cohort, patients with the WHO II subtype had worse locoregional relapse-free survival (82.2% vs. 89.5%, p = 0.063), distant metastasis-free survival (72.4% vs. 85.9%, p = 0.028), disease-free survival (61.6% vs. 78.8%, p = 0.003), and overall survival (OS) (71.7% vs. 84.0%, p = 0.035) than those with WHO III subtype. In the SEER-NPC cohort, patients with the WHO II subtype had worse NPC-specific survival (81.1% vs. 89.4%, p < 0.001) and OS (71.6% vs. 78.8%, p < 0.001) than those with WHO III subtype. The multivariate analysis showed that histology was an independent prognostic factor associated with outcomes in both cohorts. CONCLUSIONS Our study demonstrates the significant influence of histological subtypes on outcomes in NPC among various populations, highlighting substantial disparities between the WHO II and WHO III subtypes.
Collapse
Affiliation(s)
- Lin-Feng Guo
- Department of Radiation Oncology, Xiamen Cancer Quality Control Center, Xiamen Cancer Center, Xiamen Key Laboratory of Radiation Oncology, the First Affiliated Hospital of Xiamen University, School of Medicine, Xiamen University, Xiamen, People’s Republic of China
| | - Jia-Geng Hong
- The School of Clinical Medicine, Fujian Medical University, Fuzhou, People’s Republic of China
- Department of Anesthesiology, the First Affiliated Hospital of Xiamen University, School of Medicine, Xiamen University, Xiamen, People’s Republic of China
| | - Run-Jie Wang
- Department of Radiation Oncology, Xiamen Cancer Quality Control Center, Xiamen Cancer Center, Xiamen Key Laboratory of Radiation Oncology, the First Affiliated Hospital of Xiamen University, School of Medicine, Xiamen University, Xiamen, People’s Republic of China
| | - Gui-Ping Chen
- Department of Radiation Oncology, Zhangzhou Affiliated Hospital of Fujian Medical University, Zhangzhou, People’s Republic of China
| | - San-Gang Wu
- Department of Radiation Oncology, Xiamen Cancer Quality Control Center, Xiamen Cancer Center, Xiamen Key Laboratory of Radiation Oncology, the First Affiliated Hospital of Xiamen University, School of Medicine, Xiamen University, Xiamen, People’s Republic of China
| |
Collapse
|
3
|
Liu WN, Harden SL, Tan SLW, Tan RJR, Fong SY, Tan SY, Liu M, Karnik I, Shuen TWH, Toh HC, Fan Y, Lim SG, Chan JKY, Chen Q. Single-cell RNA sequencing reveals anti-tumor potency of CD56 + NK cells and CD8 + T cells in humanized mice via PD-1 and TIGIT co-targeting. Mol Ther 2024; 32:3895-3914. [PMID: 39318093 PMCID: PMC11573594 DOI: 10.1016/j.ymthe.2024.09.025] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2024] [Revised: 08/16/2024] [Accepted: 09/19/2024] [Indexed: 09/26/2024] Open
Abstract
In solid tumors, the exhaustion of natural killer (NK) cells and cytotoxic T cells in the immunosuppressive tumor microenvironment poses challenges for effective tumor control. Conventional humanized mouse models of hepatocellular carcinoma patient-derived xenografts (HCC-PDX) encounter limitations in NK cell infiltration, hindering studies on NK cell immunobiology. Here, we introduce an improved humanized mouse model with restored NK cell reconstitution and infiltration in HCC-PDX, coupled with single-cell RNA sequencing (scRNA-seq) to identify potential anti-HCC treatments. A single administration of adeno-associated virus carrying human interleukin-15 reinstated persistent NK cell reconstitution and infiltration in HCC-PDX in humanized mice. scRNA-seq revealed NK cell and T cell subpopulations with heightened PDCD1 and TIGIT levels. Notably, combination therapy with anti-PD-1 and anti-TIGIT antibodies alleviated HCC burden in humanized mice, demonstrating NK cell-dependent efficacy. Bulk-RNA sequencing analysis also revealed significant alterations in the tumor transcriptome that may contribute to further resistance after combination therapy, warranting further investigations. As an emerging strategy, ongoing clinical trials with anti-PD-1 and anti-TIGIT antibodies provide limited data. The improved humanized mouse HCC-PDX model not only sheds light on the pivotal role of NK cells but also serves as a robust platform for evaluating safety and anti-tumor efficacy of combination therapies and other potential regimens, complementing clinical insights.
Collapse
MESH Headings
- Animals
- Killer Cells, Natural/immunology
- Killer Cells, Natural/metabolism
- Humans
- Mice
- Programmed Cell Death 1 Receptor/antagonists & inhibitors
- Programmed Cell Death 1 Receptor/metabolism
- Receptors, Immunologic/metabolism
- Receptors, Immunologic/genetics
- CD56 Antigen/metabolism
- CD56 Antigen/genetics
- Carcinoma, Hepatocellular/therapy
- Carcinoma, Hepatocellular/immunology
- Carcinoma, Hepatocellular/genetics
- Carcinoma, Hepatocellular/pathology
- Liver Neoplasms/therapy
- Liver Neoplasms/immunology
- Liver Neoplasms/genetics
- CD8-Positive T-Lymphocytes/immunology
- CD8-Positive T-Lymphocytes/metabolism
- Interleukin-15/metabolism
- Interleukin-15/genetics
- Xenograft Model Antitumor Assays
- Single-Cell Analysis/methods
- Tumor Microenvironment/immunology
- Disease Models, Animal
- Cell Line, Tumor
- Sequence Analysis, RNA/methods
- Dependovirus/genetics
Collapse
Affiliation(s)
- Wai Nam Liu
- Institute of Molecular and Cell Biology (IMCB), Agency for Science, Technology and Research (A∗STAR), 61 Biopolis Drive, Proteos, Singapore 138673, Republic of Singapore
| | - Sarah L Harden
- Institute of Molecular and Cell Biology (IMCB), Agency for Science, Technology and Research (A∗STAR), 61 Biopolis Drive, Proteos, Singapore 138673, Republic of Singapore
| | - Shawn Lu Wen Tan
- Institute of Molecular and Cell Biology (IMCB), Agency for Science, Technology and Research (A∗STAR), 61 Biopolis Drive, Proteos, Singapore 138673, Republic of Singapore
| | - Rachel Jun Rou Tan
- Institute of Molecular and Cell Biology (IMCB), Agency for Science, Technology and Research (A∗STAR), 61 Biopolis Drive, Proteos, Singapore 138673, Republic of Singapore
| | - Shin Yie Fong
- Institute of Molecular and Cell Biology (IMCB), Agency for Science, Technology and Research (A∗STAR), 61 Biopolis Drive, Proteos, Singapore 138673, Republic of Singapore
| | - Sue Yee Tan
- Institute of Molecular and Cell Biology (IMCB), Agency for Science, Technology and Research (A∗STAR), 61 Biopolis Drive, Proteos, Singapore 138673, Republic of Singapore
| | - Min Liu
- Institute of Molecular and Cell Biology (IMCB), Agency for Science, Technology and Research (A∗STAR), 61 Biopolis Drive, Proteos, Singapore 138673, Republic of Singapore
| | - Isha Karnik
- Institute of Molecular and Cell Biology (IMCB), Agency for Science, Technology and Research (A∗STAR), 61 Biopolis Drive, Proteos, Singapore 138673, Republic of Singapore
| | - Timothy Wai Ho Shuen
- Division of Medical Oncology, National Cancer Centre Singapore, Singapore 168583, Republic of Singapore
| | - Han Chong Toh
- Division of Medical Oncology, National Cancer Centre Singapore, Singapore 168583, Republic of Singapore
| | - Yong Fan
- Key Laboratory for Major Obstetric Diseases of Guangdong Province, The Third Affiliated Hospital of Guangzhou Medical University, Guangzhou, China
| | - Seng Gee Lim
- Division of Gastroenterology and Hepatology, National University Hospital, Singapore 119228, Republic of Singapore; Department of Medicine, Yong Loo Lin School of Medicine, National University of Singapore, Singapore 117597, Republic of Singapore
| | - Jerry Kok Yen Chan
- Department of Reproductive Medicine, KK Women's and Children's Hospital, Singapore 229899, Republic of Singapore; Experimental Fetal Medicine Group, Yong Loo Lin School of Medicine, National University of Singapore, Singapore 117593, Republic of Singapore
| | - Qingfeng Chen
- Institute of Molecular and Cell Biology (IMCB), Agency for Science, Technology and Research (A∗STAR), 61 Biopolis Drive, Proteos, Singapore 138673, Republic of Singapore; Department of Microbiology and Immunology, Yong Loo Lin School of Medicine, National University of Singapore, Singapore 117593, Republic of Singapore; Singapore Immunology Network (SIgN), A∗STAR, 8A Biomedical Grove, Immunos, Singapore 138648, Republic of Singapore.
| |
Collapse
|
4
|
Liu YJ, Li JX, Li JP, Hu YD, Ma ZB, Huang W, Liu SL, Zou X. Endoplasmic Reticulum Membrane Protein Complex Regulates Cancer Stem Cells and is Associated with Sorafenib Resistance in Hepatocellular Carcinoma. J Hepatocell Carcinoma 2024; 11:1519-1539. [PMID: 39139735 PMCID: PMC11321348 DOI: 10.2147/jhc.s474343] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2024] [Accepted: 08/01/2024] [Indexed: 08/15/2024] Open
Abstract
Background Hepatocellular carcinoma (HCC) remains a leading cause of cancer-related mortality, underscoring the need for novel therapeutic targets. This study aimed to elucidate the role of endoplasmic reticulum membrane protein complex subunit 1 (EMC1) in HCC progression and its therapeutic potential. Methods Publicly available sequencing data and biopsy specimens were analyzed to assess EMC's clinical value and functions in HCC. In vitro experiments validated EMC functions, and multiplex immunofluorescence analysis examined EMC-associated sorafenib resistance mechanisms. EMC1 expression was knocked down in HCC cell lines, followed by cell viability, wound healing, and transwell migration assays. Tumor growth and response to sorafenib treatment were evaluated in mouse models. Metabolomic analysis assessed changes in the TCA cycle. Results EMC genes were aberrantly expressed in HCC, and high EMC1 expression correlated with poorer survival rates. EMC1 disruption enhanced HCC cells' sensitivity to sorafenib, reducing cell viability, increasing apoptosis, and decreasing tumor size and weight. EMC1 maintained cancer cell stemness and promoted M2 macrophage infiltration. Metabolomic analysis revealed significant changes in the TCA cycle, indicating EMC1's role in HCC metabolic reprogramming. Importantly, EMC1 is highly associated with sorafenib resistance, potentially linked to CTNNB1 mutation or activation. Conclusion EMC1 plays a critical role in regulating the sorafenib resistance in HCC. Targeting EMC1 may improve HCC treatment efficacy.
Collapse
Affiliation(s)
- Yuan-Jie Liu
- Affiliated Hospital of Nanjing University of Chinese Medicine, Jiangsu Province Hospital of Chinese Medicine, Nanjing, Jiangsu, 210029, People’s Republic of China
| | - Jing-Xiao Li
- Affiliated Hospital of Nanjing University of Chinese Medicine, Jiangsu Province Hospital of Chinese Medicine, Nanjing, Jiangsu, 210029, People’s Republic of China
| | - Jie-Pin Li
- Affiliated Hospital of Nanjing University of Chinese Medicine, Jiangsu Province Hospital of Chinese Medicine, Nanjing, Jiangsu, 210029, People’s Republic of China
| | - Yi-Dou Hu
- Zhangjiagang TCM Hospital Affiliated to Nanjing University of Chinese Medicine, Zhangjiagang, Jiangsu, 215600, People’s Republic of China
| | - Zhi-Bin Ma
- Nanjing YOUMENG Biology Science and Technology Co. Ltd, Nanjing, Jiangsu, 210029, People’s Republic of China
| | - Wei Huang
- Affiliated Hospital of Nanjing University of Chinese Medicine, Jiangsu Province Hospital of Chinese Medicine, Nanjing, Jiangsu, 210029, People’s Republic of China
| | - Shen-Lin Liu
- Affiliated Hospital of Nanjing University of Chinese Medicine, Jiangsu Province Hospital of Chinese Medicine, Nanjing, Jiangsu, 210029, People’s Republic of China
| | - Xi Zou
- Affiliated Hospital of Nanjing University of Chinese Medicine, Jiangsu Province Hospital of Chinese Medicine, Nanjing, Jiangsu, 210029, People’s Republic of China
| |
Collapse
|
5
|
Zhang W, Zeng M, Li Y, Yu L. Leveraging oncovirus-derived antigen against the viral malignancies in adoptive cell therapies. Biomark Res 2024; 12:71. [PMID: 39075601 PMCID: PMC11287861 DOI: 10.1186/s40364-024-00617-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2024] [Accepted: 07/10/2024] [Indexed: 07/31/2024] Open
Abstract
Adoptive cell therapies (ACTs) have revolutionized cancer immunotherapy, prompting exploration into their application against oncoviruses. Oncoviruses such as human papillomavirus (HPV), hepatitis B virus (HBV), hepatitis C virus (HCV), and Epstein-Barr virus (EBV) contribute significantly (12-25%) to human malignancies through direct or indirect oncogenic mechanisms. These viruses persistently or latently infect cells, disrupt cellular homeostasis and pathways, challenging current antiviral treatment paradigms. Moreover, viral infections pose additional risks in the setting of long-term cancer therapy and lead to morbidity and mortality. Virally encoded oncoproteins, which are tumor-restricted, immunologically foreign, and even uniformly expressed, represent promising targets for patient-tailored ACTs. This review elucidates the rationale for leveraging viral antigen-specific ACTs in combating viral-associated malignancies. On this basis, ongoing preclinical studies consolidate our understanding of harnessing ACTs against viral malignancies, underscoring their potential to eradicate viruses implicated in cancer progression. Furthermore, we scrutinize the current landscape of clinical trials focusing on virus-specific ACTs and discuss their implications for therapeutic advancement.
Collapse
Affiliation(s)
- Wei Zhang
- Department of Hematology and Oncology, Shenzhen University General Hospital, International Cancer Center, Hematology Institution of Shenzhen University, Shenzhen University Medical School, Shenzhen University, Shenzhen, Guangdong, 518000, China
- Guangdong Key Laboratory for Biomedical Measurements and Ultrasound Imaging, National-Regional Key Technology Engineering Laboratory for Medical Ultrasound, School of Biomedical Engineering, Shenzhen University Medical school, Shenzhen, 518060, China
| | - Miao Zeng
- Department of Hematology and Oncology, Shenzhen University General Hospital, International Cancer Center, Hematology Institution of Shenzhen University, Shenzhen University Medical School, Shenzhen University, Shenzhen, Guangdong, 518000, China
- Guangdong Key Laboratory for Biomedical Measurements and Ultrasound Imaging, National-Regional Key Technology Engineering Laboratory for Medical Ultrasound, School of Biomedical Engineering, Shenzhen University Medical school, Shenzhen, 518060, China
| | - Yisheng Li
- Shenzhen Haoshi Biotechnology Co., Ltd, No. 155 Hongtian Road, Xinqiao Street, Bao'an District, Shenzhen, Guangdong, 518125, China
- Haoshi Cell Therapy Institute, Shenzhen University, Shenzhen, China
| | - Li Yu
- Department of Hematology and Oncology, Shenzhen University General Hospital, International Cancer Center, Hematology Institution of Shenzhen University, Shenzhen University Medical School, Shenzhen University, Shenzhen, Guangdong, 518000, China.
- Haoshi Cell Therapy Institute, Shenzhen University, Shenzhen, China.
| |
Collapse
|
6
|
Jiang Y, Yu Z, Zheng H, Zhou X, Zhou M, Geng X, Zhu Y, Huang S, Gong Y, Guo L. An immune biomarker associated with EMT serves as a predictor for prognosis and drug response in bladder cancer. Aging (Albany NY) 2024; 16:10813-10831. [PMID: 38980253 PMCID: PMC11272103 DOI: 10.18632/aging.205927] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2023] [Accepted: 04/22/2024] [Indexed: 07/10/2024]
Abstract
BACKGROUND Bladder cancer (BLCA), which develops from the upper endometrial of the bladder, is the sixth most prevalent cancer across the globe. WDHD1 (WD repeat and HMG-box DNA binding protein 1 gene) directly affects signaling, the cell cycle, and the development of the cell skeleton. Uncertainty surrounds WDHD1's function in BLCA immunity and prognosis, though. MATERIALS AND METHODS Using weighed gene co-expression network analysis (WGCNA), initially, we first identified 32 risk factors in genes with differential expression for this investigation. Then, using a variety of bioinformatic techniques and experimental validation, we examined the connections between WDHD1 and BLCA expression, clinical pathological traits, WDHD1-related proteins, upper-skin-intermediate conversion (EMT), immune cell immersion, convergence factors, immune markers, and drug sensitivity. RESULT The findings demonstrated that we constructed a 32-gene risk-predicting model where WDHD1 was elevated as a representative gene expression in BLCA and related to a range of clinical traits. Furthermore, high WDHD1 expression was a standalone predictor associated with a worse survival rate. The most commonly recruited cells and their evolutionary patterns were highlighted to better comprehend WDHD1's function in cancer. High WDHD1 expression was associated with many aspects of immunology. Finally, the study found that individuals with high expression of WDHD1 were drug-sensitive to four different broad-spectrum anti-cancer drugs. CONCLUSION These results describe dynamic changes in the tumor microenvironment in BLCA and provide evidence for the hypothesis that WDHD1 is a novel biomarker of tumor development. WDHD1 may therefore be a useful target for the detection and management of BLCA.
Collapse
Affiliation(s)
- Yike Jiang
- Department of Ultrasonography, Second Affiliated Hospital of Nanchang University, Nanchang, Jiangxi 330000, China
- Second College of Clinical Medicine, Nanchang University, Nanchang, Jiangxi 330000, China
| | - Zichuan Yu
- Second College of Clinical Medicine, Nanchang University, Nanchang, Jiangxi 330000, China
| | - Hao Zheng
- Second College of Clinical Medicine, Nanchang University, Nanchang, Jiangxi 330000, China
| | - Xuanrui Zhou
- Second College of Clinical Medicine, Nanchang University, Nanchang, Jiangxi 330000, China
| | - Minqin Zhou
- Second College of Clinical Medicine, Nanchang University, Nanchang, Jiangxi 330000, China
| | - Xitong Geng
- Second College of Clinical Medicine, Nanchang University, Nanchang, Jiangxi 330000, China
| | - Yanting Zhu
- Second College of Clinical Medicine, Nanchang University, Nanchang, Jiangxi 330000, China
| | - Shuhan Huang
- Second College of Clinical Medicine, Nanchang University, Nanchang, Jiangxi 330000, China
| | - Yiyang Gong
- Second College of Clinical Medicine, Nanchang University, Nanchang, Jiangxi 330000, China
| | - Liangyun Guo
- Department of Ultrasonography, Second Affiliated Hospital of Nanchang University, Nanchang, Jiangxi 330000, China
| |
Collapse
|
7
|
Chen Q, Mo S, Zhu L, Tang M, Cheng J, Ye P, Zheng W, Hu J. Prognostic implication of UBE2C + CD8 + T cell in neoadjuvant immune checkpoint blockade plus chemotherapy for locally advanced esophageal cancer. Int Immunopharmacol 2024; 130:111696. [PMID: 38412672 DOI: 10.1016/j.intimp.2024.111696] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/25/2023] [Revised: 02/04/2024] [Accepted: 02/12/2024] [Indexed: 02/29/2024]
Abstract
BACKGROUND Immune checkpoint blockers (ICBs) plus chemotherapy as neoadjuvant therapy for patients with esophageal cancer (EC) has gained substantial attention. This study aimed to investigate the early and mid-term outcome of neoadjuvant ICBs plus chemotherapy and discover immune-associated predictors of major pathological response (MPR) for locally advanced EC. METHOD Patients with locally advanced EC who received neoadjuvant ICBs plus chemotherapy were retrospectively included between June 2019 to December 2021. Conjoint analysis of Bulk-RNA seq (GSE165252) and scRNA seq (GSE188900) were used to investigate potential prognostic factors and immunological mechanisms, then multiplexed immunofluorescence was applied to validate. RESULTS 76 patients were included. A total of 21 (27.6 %) patients achieved MPR, with 13 (17.1 %) attaining a pathological complete response. Over a median follow-up of 1.8 years, 6 (7.9 %) patients died and 21 (27.6 %) experienced disease recurrence within 0.6 to 2.1 years after surgery. The overall survival rate and recurrence-free survival rate were 93.3 + 2.9 % and 84.8 + 4.2 % at 12 months, 90.8 + 3.7 % and 67.1 + 6.4 % at 24 months, and 90.8 + 3.7 % and 62.9 + 7.2 % at 36 months, respectively. Patients achieving MPR had a significantly lower risk of recurrence compared to non-responders (9.5 % vs 34.5 %, P = 0.017). Analysis of bulk-RNA seq and scRNA-seq revealed that UBE2C and UBE2C + CD8 + T cells were adverse prognostic factors. Immunohistochemistry demonstrated that the non-MPR group had a higher infiltration of UBE2C + immune cells than MPR group after neoadjuvant treatment. Multiplexed immunofluorescence confirmed that infiltrating UBE2C + CD8 + T cells in MPR group were significantly fewer than non-MPR group after neoadjuvant treatment, indicating their poor prognostic role for EC. CONCLUSIONS Neoadjuvant ICBs plus chemotherapy shows promising efficacy in locally advanced EC, with MPR being a significant predictor of lower recurrence risk. Immunological analyses identified UBE2C + CD8 + T cells as adverse prognostic factors, suggesting their potential as biomarkers for patient stratification and treatment response.
Collapse
Affiliation(s)
- Qiuming Chen
- Department of Thoracic Surgery, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang, China.
| | - Shaocong Mo
- Department of Digestive Diseases, Huashan Hospital, Fudan University, Shanghai, China
| | - Linhai Zhu
- Department of Thoracic Surgery, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang, China
| | - Muhu Tang
- Department of Thoracic Surgery, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang, China
| | - Jun Cheng
- Department of Thoracic Surgery, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang, China
| | - Peng Ye
- Department of Thoracic Surgery, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang, China
| | - Wanwei Zheng
- Department of Digestive Diseases, Huashan Hospital, Fudan University, Shanghai, China.
| | - Jian Hu
- Department of Thoracic Surgery, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang, China.
| |
Collapse
|
8
|
Li S, Dai W, Kam NW, Zhang J, Lee VHF, Ren X, Kwong DLW. The Role of Natural Killer Cells in the Tumor Immune Microenvironment of EBV-Associated Nasopharyngeal Carcinoma. Cancers (Basel) 2024; 16:1312. [PMID: 38610990 PMCID: PMC11011204 DOI: 10.3390/cancers16071312] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2024] [Revised: 03/23/2024] [Accepted: 03/23/2024] [Indexed: 04/14/2024] Open
Abstract
Endemic nasopharyngeal carcinoma (NPC) is closely associated with the Epstein-Barr virus (EBV), which contributes to tumor development and influences the tumor immune microenvironment (TIME) in NPC. Natural killer (NK) cells, as part of the innate immune system, play a crucial role in responding to viral infections and malignant cell transformations. Notably, NK cells possess a unique ability to target tumor cells independent of major histocompatibility complex class I (MHC I) expression. This means that MHC I-deficient tumor cells, which can escape from effective T cell attack, are susceptible to NK-cell-mediated killing. The activation of NK cells is determined by the signals generated through inhibitory and activating receptors expressed on their surface. Understanding the role of NK cells in the complex TIME of EBV+ NPC is of utmost importance. In this review, we provide a comprehensive summary of the current understanding of NK cells in NPC, focusing on their subpopulations, interactions, and cytotoxicity within the TIME. Moreover, we discuss the potential translational therapeutic applications of NK cells in NPC. This review aims to enhance our knowledge of the role of NK cells in NPC and provide valuable insights for future investigations.
Collapse
Affiliation(s)
- Shuzhan Li
- Department of Biotherapy, Tianjin Medical University Cancer Institute and Hospital, National Clinical Research Center for Cancer, Tianjin 300060, China; (S.L.); (J.Z.)
- Tianjin’s Clinical Research Center for Cancer, Tianjin 300060, China
- Key Laboratory of Cancer Immunology and Biotherapy, Tianjin 300060, China
| | - Wei Dai
- Department of Clinical Oncology, Centre of Cancer Medicine, School of Clinical Medicine, LKS Faculty of Medicine, The University of Hong Kong, Hong Kong 999077, China; (W.D.); (N.-W.K.); (V.H.F.L.)
| | - Ngar-Woon Kam
- Department of Clinical Oncology, Centre of Cancer Medicine, School of Clinical Medicine, LKS Faculty of Medicine, The University of Hong Kong, Hong Kong 999077, China; (W.D.); (N.-W.K.); (V.H.F.L.)
- Laboratory for Synthetic Chemistry and Chemical Biology Limited, Hong Kong Science Park, New Territories, Hong Kong 999077, China
| | - Jiali Zhang
- Department of Biotherapy, Tianjin Medical University Cancer Institute and Hospital, National Clinical Research Center for Cancer, Tianjin 300060, China; (S.L.); (J.Z.)
- Tianjin’s Clinical Research Center for Cancer, Tianjin 300060, China
- Key Laboratory of Cancer Immunology and Biotherapy, Tianjin 300060, China
| | - Victor H. F. Lee
- Department of Clinical Oncology, Centre of Cancer Medicine, School of Clinical Medicine, LKS Faculty of Medicine, The University of Hong Kong, Hong Kong 999077, China; (W.D.); (N.-W.K.); (V.H.F.L.)
- Clinical Oncology Center, The University of Hong Kong-Shenzhen Hospital, Shenzhen 518053, China
| | - Xiubao Ren
- Department of Biotherapy, Tianjin Medical University Cancer Institute and Hospital, National Clinical Research Center for Cancer, Tianjin 300060, China; (S.L.); (J.Z.)
- Tianjin’s Clinical Research Center for Cancer, Tianjin 300060, China
- Key Laboratory of Cancer Immunology and Biotherapy, Tianjin 300060, China
| | - Dora Lai-Wan Kwong
- Department of Clinical Oncology, Centre of Cancer Medicine, School of Clinical Medicine, LKS Faculty of Medicine, The University of Hong Kong, Hong Kong 999077, China; (W.D.); (N.-W.K.); (V.H.F.L.)
- Clinical Oncology Center, The University of Hong Kong-Shenzhen Hospital, Shenzhen 518053, China
| |
Collapse
|
9
|
Tang W, Lo CWS, Ma W, Chu ATW, Tong AHY, Chung BHY. Revealing the role of SPP1 + macrophages in glioma prognosis and therapeutic targeting by investigating tumor-associated macrophage landscape in grade 2 and 3 gliomas. Cell Biosci 2024; 14:37. [PMID: 38515213 PMCID: PMC10956315 DOI: 10.1186/s13578-024-01218-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2023] [Accepted: 03/13/2024] [Indexed: 03/23/2024] Open
Abstract
BACKGROUND Glioma is a highly heterogeneous brain tumor categorized into World Health Organization (WHO) grades 1-4 based on its malignancy. The suppressive immune microenvironment of glioma contributes significantly to unfavourable patient outcomes. However, the cellular composition and their complex interplays within the glioma environment remain poorly understood, and reliable prognostic markers remain elusive. Therefore, in-depth exploration of the tumor microenvironment (TME) and identification of predictive markers are crucial for improving the clinical management of glioma patients. RESULTS Our analysis of single-cell RNA-sequencing data from glioma samples unveiled the immunosuppressive role of tumor-associated macrophages (TAMs), mediated through intricate interactions with tumor cells and lymphocytes. We also discovered the heterogeneity within TAMs, among which a group of suppressive TAMs named TAM-SPP1 demonstrated a significant association with Epidermal Growth Factor Receptor (EGFR) amplification, impaired T cell response and unfavourable patient survival outcomes. Furthermore, by leveraging genomic and transcriptomic data from The Cancer Genome Atlas (TCGA) dataset, two distinct molecular subtypes with a different constitution of TAMs, EGFR status and clinical outcomes were identified. Exploiting the molecular differences between these two subtypes, we developed a four-gene-based prognostic model. This model displayed strong associations with an elevated level of suppressive TAMs and could be used to predict anti-tumor immune response and prognosis in glioma patients. CONCLUSION Our findings illuminated the molecular and cellular mechanisms that shape the immunosuppressive microenvironment in gliomas, providing novel insights into potential therapeutic targets. Furthermore, the developed prognostic model holds promise for predicting immunotherapy response and assisting in more precise risk stratification for glioma patients.
Collapse
Affiliation(s)
- Wenshu Tang
- Hong Kong Genome Institute, 2/F, Building 20E, Hong Kong Science Park, Hong Kong, China
| | - Cario W S Lo
- Hong Kong Genome Institute, 2/F, Building 20E, Hong Kong Science Park, Hong Kong, China
| | - Wei Ma
- Hong Kong Genome Institute, 2/F, Building 20E, Hong Kong Science Park, Hong Kong, China
| | - Annie T W Chu
- Hong Kong Genome Institute, 2/F, Building 20E, Hong Kong Science Park, Hong Kong, China
| | - Amy H Y Tong
- Hong Kong Genome Institute, 2/F, Building 20E, Hong Kong Science Park, Hong Kong, China
| | - Brian H Y Chung
- Hong Kong Genome Institute, 2/F, Building 20E, Hong Kong Science Park, Hong Kong, China.
- Department of Pediatrics and Adolescent Medicine, School of Clinical Medicine, LKS Faculty of Medicine, The University of Hong Kong, Hong Kong, China.
| |
Collapse
|
10
|
Lin Z, Wu Z, Luo W. Bulk and single-cell sequencing identified a prognostic model based on the macrophage and lipid metabolism related signatures for osteosarcoma patients. Heliyon 2024; 10:e26091. [PMID: 38404899 PMCID: PMC10884844 DOI: 10.1016/j.heliyon.2024.e26091] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2023] [Revised: 02/07/2024] [Accepted: 02/07/2024] [Indexed: 02/27/2024] Open
Abstract
The introduction of multidrug combination chemotherapy has significantly advanced the long-term survival prospects for osteosarcoma (OS) patients over the past decades. However, the escalating prevalence of chemoresistance has emerged as a substantial impediment to further advancements, necessitating the formulation of innovative strategies. Our present study leveraged sophisticated bulk and single-cell sequencing techniques to scrutinize the OS immune microenvironment, unveiling a potential association between the differentiation state of macrophages and the efficacy of OS chemotherapy. Notably, we observed that a heightened presence of lipid metabolism genes and pathways in predifferentiated macrophages, constituting the major cluster of OS patients exhibiting a less favorable response to chemotherapy. Subsequently, we developed a robust Macrophage and Lipid Metabolism (MLMR) risk model and a nomogram, both of which demonstrated commendable prognostic predictive performance. Furthermore, a comprehensive investigation into the underlying mechanisms of the risk model revealed intricate associations with variations in the immune response among OS patients. Finally, our meticulous drug sensitivity analysis identified a spectrum of potential therapeutic agents for OS, including AZD2014, Sapitinib, Buparlisib, Afuresertib, MIRA-1, and BIBR-1532. These findings significantly augment the therapeutic arsenal available to clinicians managing OS, presenting a promising avenue for elevating treatment outcomes.
Collapse
Affiliation(s)
- Zili Lin
- Department of Orthopaedics, Xiangya Hospital, Central South University, Changsha, Hunan, 410008, PR China
| | - Ziyi Wu
- Department of Orthopaedics, the Second Xiangya Hospital, Central South University, Changsha, Hunan, 410011, PR China
| | - Wei Luo
- Department of Orthopaedics, Xiangya Hospital, Central South University, Changsha, Hunan, 410008, PR China
- National Clinical Research Center for Geriatric Disorders,Xiangya Hospital, Changsha, Hunan, 410008, PR China
| |
Collapse
|
11
|
Zhang Y, Liu YJ, Mei J, Yang ZX, Qian XP, Huang W. An Analysis Regarding the Association Between DAZ Interacting Zinc Finger Protein 1 (DZIP1) and Colorectal Cancer (CRC). Mol Biotechnol 2024:10.1007/s12033-024-01065-1. [PMID: 38334905 DOI: 10.1007/s12033-024-01065-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2023] [Accepted: 12/21/2023] [Indexed: 02/10/2024]
Abstract
Colorectal cancer (CRC) is the third most common malignant disease worldwide, and its incidence is increasing, but the molecular mechanisms of this disease are highly heterogeneous and still far from being fully understood. Increasing evidence suggests that fibrosis mediated by abnormal activation of fibroblasts based in the microenvironment is associated with a poor prognosis. However, the function and pathogenic mechanisms of fibroblasts in CRC remain unclear. Here, combining scrna-seq and clinical specimen data, DAZ Interacting Protein 1 (DZIP1) was found to be expressed on fibroblasts and cancer cells and positively correlated with stromal deposition. Importantly, pseudotime-series analysis showed that DZIP1 levels were up-regulated in malignant transformation of fibroblasts and experimentally confirmed that DZIP1 modulates activation of fibroblasts and promotes epithelial-mesenchymal transition (EMT) in tumor cells. Further studies showed that DZIP1 expressed by tumor cells also has a driving effect on EMT and contributes to the recruitment of more fibroblasts. A similar phenomenon was observed in xenografted nude mice. And it was confirmed in xenograft mice that downregulation of DZIP1 expression significantly delayed tumor formation and reduced tumor size in CRC cells. Taken together, our findings suggested that DZIP1 was a regulator of the CRC mesenchymal phenotype. The revelation of targeting DZIP1 provides a new avenue for CRC therapy.
Collapse
Affiliation(s)
- Yu Zhang
- Comprehensive Cancer Center, Nanjing Drum Tower Hospital Clinical College of Nanjing Medical University, Nanjing, 210008, Jiangsu, China
- Department of Medical Oncology, Affiliated Jinling Hospital, Medical School Nanjing University, Nanjing, 210029, Jiangsu, China
- Department of Oncology, Nanjing Tianyinshan Hospital, Nanjing, 211199, Jiangsu, China
| | - Yuan-Jie Liu
- Nanjing University of Chinese Medicine, Nanjing, 210029, Jiangsu, China
| | - Jia Mei
- Department of Pathology, Affiliated Jinling Hospital, Medical School Nanjing University, Nanjing, 210029, Jiangsu, China
| | - Zhao-Xu Yang
- Department of Medical Oncology, Affiliated Jinling Hospital, Medical School Nanjing University, Nanjing, 210029, Jiangsu, China
| | - Xiao-Ping Qian
- Comprehensive Cancer Center, Nanjing Drum Tower Hospital Clinical College of Nanjing Medical University, Nanjing, 210008, Jiangsu, China.
- Comprehensive Cancer Center, Nanjing Drum Tower Hospital, The Affiliated Hospital of Nanjing University Medical School, Clinical Cancer Institute of Nanjing University, Nanjing, 210008, Jiangsu, China.
| | - Wei Huang
- Department of Oncology, Jiangsu Province Hospital of Chinese Medicine, Affiliated Hospital of Nanjing University of Chinese Medicine, Hanzhong Road No.155, Nanjing, 210029, Jiangsu, China.
| |
Collapse
|
12
|
Zhang D, Zhao F, Liu H, Guo P, Li Z, Li S. FABP6 serves as a new therapeutic target in esophageal tumor. Aging (Albany NY) 2024; 16:1640-1662. [PMID: 38277205 PMCID: PMC10866426 DOI: 10.18632/aging.205448] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2023] [Accepted: 12/04/2023] [Indexed: 01/27/2024]
Abstract
BACKGROUND Esophageal cancer is one of the most common malignant tumors with high incidence and mortality rates. Despite the continuous development of treatment options, the prognosis for esophageal cancer patients remains poor. Therefore, there is an urgent need for new diagnostic and therapeutic targets in clinical practice to improve the survival of patients with esophageal cancer. METHODS In this study, we conducted a comprehensive scRNA-seq analysis of the tumor microenvironment in primary esophageal tumors to elucidate cell composition and heterogeneity. Using Seurat, we identified eight clusters, encompassing non-immune cells (fibroblasts, myofibroblasts, endothelial cells, and epithelial cells) and immunocytes (myeloid-derived cells, T cells, B cells, and plasma cells). Compared to normal tissues, tumors exhibited an increased proportion of epithelial cells and alterations in immune cell infiltration. Analysis of epithelial cells revealed a cluster (cluster 0) with a high differentiation score and early distribution, suggesting its importance as a precursor cell. RESULTS Cluster 0 was characterized by high expression of FABP6, indicating a potential role in fatty acid metabolism and tumor growth. T cell analysis revealed shifts in the balance between Treg and CD8+ effector T cells in tumor tissues. Cellular communication analysis identified increased interactions between FABP6+ tumor cells and T cells, with the involvement of the MIF-related pathway and the CD74-CD44 interaction. This study provides insights into the cellular landscape and immune interactions within esophageal tumors, contributing to a better understanding of tumor heterogeneity and potential therapeutic targets.
Collapse
Affiliation(s)
- Dengfeng Zhang
- Department of Thoracic Surgery, The Second Hospital of Hebei Medical University, Shijiazhuang, Hebei 050000, China
| | - Fangchao Zhao
- Department of Thoracic Surgery, The Second Hospital of Hebei Medical University, Shijiazhuang, Hebei 050000, China
| | - Haitao Liu
- College of Life Science, Inner Mongolia University, Hohhot, Inner Mongolia 010031, China
| | - Pengfei Guo
- Department of Thoracic Surgery, The Second Hospital of Hebei Medical University, Shijiazhuang, Hebei 050000, China
| | - Zhirong Li
- Department of Thoracic Surgery, The Second Hospital of Hebei Medical University, Shijiazhuang, Hebei 050000, China
| | - Shujun Li
- Department of Thoracic Surgery, The Second Hospital of Hebei Medical University, Shijiazhuang, Hebei 050000, China
| |
Collapse
|
13
|
Chen M, Jiang J, Hou J. Single-cell technologies in multiple myeloma: new insights into disease pathogenesis and translational implications. Biomark Res 2023; 11:55. [PMID: 37259170 PMCID: PMC10234006 DOI: 10.1186/s40364-023-00502-8] [Citation(s) in RCA: 9] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2023] [Accepted: 05/12/2023] [Indexed: 06/02/2023] Open
Abstract
Multiple myeloma (MM) is a hematological malignancy characterized by clonal proliferation of plasma cells. Although therapeutic advances have been made to improve clinical outcomes and to prolong patients' survival in the past two decades, MM remains largely incurable. Single-cell sequencing (SCS) is a powerful method to dissect the cellular and molecular landscape at single-cell resolution, instead of providing averaged results. The application of single-cell technologies promises to address outstanding questions in myeloma biology and has revolutionized our understanding of the inter- and intra-tumor heterogeneity, tumor microenvironment, and mechanisms of therapeutic resistance in MM. In this review, we summarize the recently developed SCS methodologies and latest MM research progress achieved by single-cell profiling, including information regarding the cancer and immune cell landscapes, tumor heterogeneities, underlying mechanisms and biomarkers associated with therapeutic response and resistance. We also discuss future directions of applying transformative SCS approaches with contribution to clinical translation.
Collapse
Affiliation(s)
- Mengping Chen
- Department of Hematology, Ren Ji Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200127, China
| | - Jinxing Jiang
- Department of Hematology, Ren Ji Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200127, China
| | - Jian Hou
- Department of Hematology, Ren Ji Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200127, China.
| |
Collapse
|