1
|
Patel SG, Husain N, Rigsby CK, Robinson JD. Safety and Efficacy of Regadenoson for Pediatric Stress Perfusion Cardiac MRI with Quantification of Myocardial Blood Flow. CHILDREN (BASEL, SWITZERLAND) 2022; 9:children9091332. [PMID: 36138640 PMCID: PMC9497237 DOI: 10.3390/children9091332] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/29/2022] [Revised: 08/15/2022] [Accepted: 08/29/2022] [Indexed: 11/16/2022]
Abstract
Myocardial stress perfusion magnetic resonance imaging is a non-invasive tool to assess for myocardial ischemia and viability. Pediatric myocardial stress perfusion MRI can be challenging due to multiple intravenous lines, sedation, inadequate breath holding, fast heart rates, and complex anatomy. We performed a retrospective analysis in 39 children to evaluate safety and efficacy of regadenoson, a coronary vasodilator administered via a single intravenous line (6−10 mcg/kg), with respiratory motion correction (MOCO) and semi-quantitative blood flow analysis. Stress response data and adverse events were recorded, and image quality compared between native and MOCO reconstructions, assessing for perfusion deficits. Semi-quantitative analysis compared myocardial perfusion reserve index (MPRI) between patients who had a focal perfusion defect, patients who had undergone an orthotopic heart transplant, and non-transplant patients with no focal defects. Stress perfusion was completed in 38/39 patients (median age 15 years with a 41 ± 27% rise in heart rate (p < 0.005). Fifteen out of thirty-eight had transient minor side effects with no major adverse events. MOCO image quality was better than non-MOCO (4.63 vs. 4.01 at rest, p < 0.005: 4.41 vs. 3.84 at stress, p < 0.005). Reversible perfusion defects were seen in 4/38 patients with lower segmental mean MPRI in the area of the perfusion defect, nearing statistical significance when compared to non-transplant patients with no defects (0.78 ± 0.22 vs. 0.99 ± 0.36, p = 0.07). The global MPRI of the 16 patients who had undergone orthotopic heart transplant was significantly lower than the non-transplant patients (0.75 ± 0.22 vs. 0.92 ± 0.23, p = 0.03). Regadenoson is a safe and effective coronary vasodilator for pediatric stress perfusion MRI with MOCO producing better image quality and allowing for semi-quantitative assessment of perfusion deficits that correlate with qualitative assessment.
Collapse
Affiliation(s)
- Shivani G. Patel
- Division of Cardiology, Ann and Robert H. Lurie Children’s Hospital of Chicago, Chicago, IL 60611, USA
- Department of Pediatrics, Feinberg School of Medicine, Northwestern University, Chicago, IL 60611, USA
- Correspondence:
| | - Nazia Husain
- Division of Cardiology, Ann and Robert H. Lurie Children’s Hospital of Chicago, Chicago, IL 60611, USA
- Department of Pediatrics, Feinberg School of Medicine, Northwestern University, Chicago, IL 60611, USA
| | - Cynthia K. Rigsby
- Department of Pediatrics, Feinberg School of Medicine, Northwestern University, Chicago, IL 60611, USA
- Department of Medical Imaging, Ann and Robert H. Lurie Children’s Hospital of Chicago, Chicago, IL 60611, USA
- Department of Radiology, Feinberg School of Medicine, Northwestern University, Chicago, IL 60611, USA
| | - Joshua D. Robinson
- Division of Cardiology, Ann and Robert H. Lurie Children’s Hospital of Chicago, Chicago, IL 60611, USA
- Department of Pediatrics, Feinberg School of Medicine, Northwestern University, Chicago, IL 60611, USA
- Department of Radiology, Feinberg School of Medicine, Northwestern University, Chicago, IL 60611, USA
| |
Collapse
|
2
|
Mia I, Le M, Arendt C, Brand D, Bremekamp S, D’Angelo T, Puntmann VO, Nagel E. Quantitative perfusion-CMR is significantly influenced by the placement of the arterial input function. Int J Cardiovasc Imaging 2021; 37:1023-1031. [PMID: 33047177 PMCID: PMC7969553 DOI: 10.1007/s10554-020-02049-3] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/06/2020] [Accepted: 09/26/2020] [Indexed: 11/29/2022]
Abstract
The aim of this study is to provide a systematic assessment of the influence of the position on the arterial input function (AIF) for perfusion quantification. In 39 patients with a wide range of left ventricular function the AIF was determined using a diluted contrast bolus of a cardiac magnetic resonance imaging in three left ventricular levels (basal, mid, apex) as well as aortic sinus (AoS). Time to peak signal intensities, baseline corrected peak signal intensity and upslopes were determined and compared to those obtained in the AoS. The error induced by sampling the AIF in a position different to the AoS was determined by Fermi deconvolution. The time to peak signal intensity was strongly correlated (r2 > 0.9) for all positions with a systematic earlier arrival in the basal (- 2153 ± 818 ms), the mid (- 1429 ± 928 ms) and the apical slice (- 450 ± 739 ms) relative to the AoS (all p < 0.001). Peak signal intensity as well as upslopes were strongly correlated (r2 > 0.9 for both) for all positions with a systematic overestimation in all positions relative to the AoS (all p < 0.001 and all p < 0.05). Differences between the positions were more pronounced for patients with reduced ejection fraction. The error of averaged MBF quantification was 8%, 13% and 27% for the base, mid and apex. The location of the AIF significantly influences core parameters for perfusion quantification with a systematic and ejection fraction dependent error. Full quantification should be based on obtaining the AIF as close as possible to the myocardium to minimize these errors.
Collapse
Affiliation(s)
- Ibnul Mia
- Institute for Experimental and Translational Cardiovascular Imaging, University Hospital Frankfurt, Theodor-Stern Kai 7, 60590 Frankfurt am Main, Germany
- Institute for Experimental and Translational Cardiovascular Imaging, University Hospital, Goethe University, Frankfurt am Main, Germany
| | - Melanie Le
- Institute for Experimental and Translational Cardiovascular Imaging, University Hospital Frankfurt, Theodor-Stern Kai 7, 60590 Frankfurt am Main, Germany
| | - Christophe Arendt
- Institute for Experimental and Translational Cardiovascular Imaging, University Hospital Frankfurt, Theodor-Stern Kai 7, 60590 Frankfurt am Main, Germany
| | - Diana Brand
- Institute for Experimental and Translational Cardiovascular Imaging, University Hospital Frankfurt, Theodor-Stern Kai 7, 60590 Frankfurt am Main, Germany
| | - Sina Bremekamp
- Institute for Experimental and Translational Cardiovascular Imaging, University Hospital Frankfurt, Theodor-Stern Kai 7, 60590 Frankfurt am Main, Germany
| | - Tommaso D’Angelo
- Department of Biomedical Sciences and Morphological and Functional Imaging, G. Martino University Hospital Messina, Via Consolare Valeria 1, 98100 Messina, Italy
| | - Valentina O. Puntmann
- Institute for Experimental and Translational Cardiovascular Imaging, University Hospital Frankfurt, Theodor-Stern Kai 7, 60590 Frankfurt am Main, Germany
| | - Eike Nagel
- Institute for Experimental and Translational Cardiovascular Imaging, University Hospital Frankfurt, Theodor-Stern Kai 7, 60590 Frankfurt am Main, Germany
- Institute for Experimental and Translational Cardiovascular Imaging, University Hospital, Goethe University, Frankfurt am Main, Germany
| |
Collapse
|
3
|
Chebrolu VV, Kollasch PD, Deshpande V, Grinstead J, Howe BM, Frick MA, Fagan AJ, Benner T, Heidemann RM, Felmlee JP, Amrami KK. Uniform combined reconstruction of multichannel 7T knee MRI receive coil data without the use of a reference scan. J Magn Reson Imaging 2019; 50:1534-1544. [PMID: 30779475 DOI: 10.1002/jmri.26691] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2018] [Revised: 02/07/2019] [Accepted: 02/07/2019] [Indexed: 12/12/2022] Open
Abstract
BACKGROUND MR image intensity nonuniformity is often observed at 7T. Reference scans from the body coil used for uniformity correction at lower field strengths are typically not available at 7T. PURPOSE To evaluate the efficacy of a novel algorithm, Uniform Combined Reconstruction (UNICORN), to correct receive coil-induced nonuniformity in musculoskeletal 7T MRI without the use of a reference scan. STUDY TYPE Retrospective image analysis study. SUBJECTS MRI data of 20 subjects was retrospectively processed offline. Field Strength/Sequence: Knees of 20 subjects were imaged at 7T with a single-channel transmit, 28-channel phased-array receive knee coil. A turbo-spin-echo sequence was used to acquire 33 series of images. ASSESSMENT Three fellowship-trained musculoskeletal radiologists with cumulative experience of 42 years reviewed the images. The uniformity, contrast, signal-to-noise ratio (SNR), and overall image quality were evaluated for images with no postprocessing, images processed with N4 bias field correction algorithm, and the UNICORN algorithm. STATISTICAL TESTS Intraclass correlation coefficient (ICC) was used for measuring the interrater reliability. ICC and 95% confidence intervals (CIs) were calculated using the R statistical package employing a two-way mixed-effects model based on a mean rating (k = 3) for absolute agreement. The Wilcoxon signed-rank test with continuity correction was used for analyzing the overall image quality scores. RESULTS UNICORN was preferred among the three methods evaluated for uniformity in 97.9% of the pooled ratings, with excellent interrater agreement (ICC of 0.98, CI 0.97-0.99). UNICORN was also rated better than N4 for contrast and equivalent to N4 in SNR with ICCs of 0.80 (CI 0.72-0.86) and 0.67 (CI 0.54-0.77), respectively. The overall image quality scores for UNICORN were significantly higher than N4 (P < 6 × 10-13 ), with good to excellent interrater agreement (ICC 0.90, CI 0.86-0.93). DATA CONCLUSION Without the use of a reference scan, UNICORN provides better image uniformity, contrast, and overall image quality at 7T compared with the N4 bias field-correction algorithm. LEVEL OF EVIDENCE 4 Technical Efficacy: Stage 1 J. Magn. Reson. Imaging 2019;50:1534-1544.
Collapse
Affiliation(s)
| | | | | | | | - Benjamin M Howe
- Department of Radiology, Mayo Clinic, Rochester, Minnesota, USA
| | - Matthew A Frick
- Department of Radiology, Mayo Clinic, Rochester, Minnesota, USA
| | - Andrew J Fagan
- Department of Radiology, Mayo Clinic, Rochester, Minnesota, USA
| | | | | | - Joel P Felmlee
- Department of Radiology, Mayo Clinic, Rochester, Minnesota, USA
| | | |
Collapse
|
4
|
Corcoran D, Ford TJ, Hsu LY, Chiribiri A, Orchard V, Mangion K, McEntegart M, Rocchiccioli P, Watkins S, Good R, Brooksbank K, Padmanabhan S, Sattar N, McConnachie A, Oldroyd KG, Touyz RM, Arai A, Berry C. Rationale and design of the Coronary Microvascular Angina Cardiac Magnetic Resonance Imaging (CorCMR) diagnostic study: the CorMicA CMR sub-study. Open Heart 2018; 5:e000924. [PMID: 30687508 PMCID: PMC6326326 DOI: 10.1136/openhrt-2018-000924] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/21/2018] [Revised: 09/24/2018] [Accepted: 11/12/2018] [Indexed: 01/04/2023] Open
Abstract
Introduction Angina with no obstructive coronary artery disease (ANOCA) is a common syndrome with unmet clinical needs. Microvascular and vasospastic angina are relevant but may not be diagnosed without measuring coronary vascular function. The relationship between cardiovascular magnetic resonance (CMR)-derived myocardial blood flow (MBF) and reference invasive coronary function tests is uncertain. We hypothesise that multiparametric CMR assessment will be clinically useful in the ANOCA diagnostic pathway. Methods/analysis The Stratified Medical Therapy Using Invasive Coronary Function Testing In Angina (CorMicA) trial is a prospective, blinded, randomised, sham-controlled study comparing two management approaches in patients with ANOCA. We aim to recruit consecutive patients with stable angina undergoing elective invasive coronary angiography. Eligible patients with ANOCA (n=150) will be randomised to invasive coronary artery function-guided diagnosis and treatment (intervention group) or not (control group). Based on these test results, patients will be stratified into disease endotypes: microvascular angina, vasospastic angina, mixed microvascular/vasospastic angina, obstructive epicardial coronary artery disease and non-cardiac chest pain. After randomisation in CorMicA, subjects will be invited to participate in the Coronary Microvascular Angina Cardiac Magnetic Resonance Imaging (CorCMR) substudy. Patients will undergo multiparametric CMR and have assessments of MBF (using a novel pixel-wise fully quantitative method), left ventricular function and mass, and tissue characterisation (T1 mapping and late gadolinium enhancement imaging). Abnormalities of myocardial perfusion and associations between MBF and invasive coronary artery function tests will be assessed. The CorCMR substudy represents the largest cohort of ANOCA patients with paired multiparametric CMR and comprehensive invasive coronary vascular function tests. Ethics/dissemination The CorMicA trial and CorCMR substudy have UK REC approval (ref.16/WS/0192). Trial registration number NCT03193294.
Collapse
Affiliation(s)
- David Corcoran
- British Heart Foundation Glasgow Cardiovascular Research Centre, University of Glasgow, Glasgow, UK.,West of Scotland Heart and Lung Centre, Golden Jubilee National Hospital, Glasgow, UK
| | - Thomas J Ford
- British Heart Foundation Glasgow Cardiovascular Research Centre, University of Glasgow, Glasgow, UK.,West of Scotland Heart and Lung Centre, Golden Jubilee National Hospital, Glasgow, UK
| | - Li-Yueh Hsu
- Advanced Cardiovascular Imaging Laboratory, National Heart, Lung, and Blood Institute, National Institutes of Health, Bethesda, Maryland, USA
| | - Amedeo Chiribiri
- School of Biomedical Engineering and Imaging Sciences, Department of Cardiovascular Imaging, King's College London, London, UK
| | - Vanessa Orchard
- West of Scotland Heart and Lung Centre, Golden Jubilee National Hospital, Glasgow, UK
| | - Kenneth Mangion
- British Heart Foundation Glasgow Cardiovascular Research Centre, University of Glasgow, Glasgow, UK.,West of Scotland Heart and Lung Centre, Golden Jubilee National Hospital, Glasgow, UK
| | - Margaret McEntegart
- West of Scotland Heart and Lung Centre, Golden Jubilee National Hospital, Glasgow, UK
| | - Paul Rocchiccioli
- West of Scotland Heart and Lung Centre, Golden Jubilee National Hospital, Glasgow, UK
| | - Stuart Watkins
- West of Scotland Heart and Lung Centre, Golden Jubilee National Hospital, Glasgow, UK
| | - Richard Good
- West of Scotland Heart and Lung Centre, Golden Jubilee National Hospital, Glasgow, UK
| | - Katriona Brooksbank
- British Heart Foundation Glasgow Cardiovascular Research Centre, University of Glasgow, Glasgow, UK
| | - Sandosh Padmanabhan
- British Heart Foundation Glasgow Cardiovascular Research Centre, University of Glasgow, Glasgow, UK
| | - Naveed Sattar
- British Heart Foundation Glasgow Cardiovascular Research Centre, University of Glasgow, Glasgow, UK
| | - Alex McConnachie
- Robertson Centre for Biostatistics, University of Glasgow, Glasgow, UK
| | - Keith G Oldroyd
- West of Scotland Heart and Lung Centre, Golden Jubilee National Hospital, Glasgow, UK
| | - Rhian M Touyz
- British Heart Foundation Glasgow Cardiovascular Research Centre, University of Glasgow, Glasgow, UK
| | - Andrew Arai
- Advanced Cardiovascular Imaging Laboratory, National Heart, Lung, and Blood Institute, National Institutes of Health, Bethesda, Maryland, USA
| | - Colin Berry
- British Heart Foundation Glasgow Cardiovascular Research Centre, University of Glasgow, Glasgow, UK.,West of Scotland Heart and Lung Centre, Golden Jubilee National Hospital, Glasgow, UK
| |
Collapse
|
5
|
Manning WJ. Review of Journal of Cardiovascular Magnetic Resonance (JCMR) 2015-2016 and transition of the JCMR office to Boston. J Cardiovasc Magn Reson 2017; 19:108. [PMID: 29284487 PMCID: PMC5747150 DOI: 10.1186/s12968-017-0423-x] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2017] [Accepted: 12/07/2017] [Indexed: 02/06/2023] Open
Abstract
The Journal of Cardiovascular Magnetic Resonance (JCMR) is the official publication of the Society for Cardiovascular Magnetic Resonance (SCMR). In 2016, the JCMR published 93 manuscripts, including 80 research papers, 6 reviews, 5 technical notes, 1 protocol, and 1 case report. The number of manuscripts published was similar to 2015 though with a 12% increase in manuscript submissions to an all-time high of 369. This reflects a decrease in the overall acceptance rate to <25% (excluding solicited reviews). The quality of submissions to JCMR continues to be high. The 2016 JCMR Impact Factor (which is published in June 2016 by Thomson Reuters) was steady at 5.601 (vs. 5.71 for 2015; as published in June 2016), which is the second highest impact factor ever recorded for JCMR. The 2016 impact factor means that the JCMR papers that were published in 2014 and 2015 were on-average cited 5.71 times in 2016.In accordance with Open-Access publishing of Biomed Central, the JCMR articles are published on-line in the order that they are accepted with no collating of the articles into sections or special thematic issues. For this reason, over the years, the Editors have felt that it is useful to annually summarize the publications into broad areas of interest or themes, so that readers can view areas of interest in a single article in relation to each other and other recent JCMR articles. The papers are presented in broad themes with previously published JCMR papers to guide continuity of thought in the journal. In addition, I have elected to open this publication with information for the readership regarding the transition of the JCMR editorial office to the Beth Israel Deaconess Medical Center, Boston and the editorial process.Though there is an author publication charge (APC) associated with open-access to cover the publisher's expenses, this format provides a much wider distribution/availability of the author's work and greater manuscript citation. For SCMR members, there is a substantial discount in the APC. I hope that you will continue to send your high quality manuscripts to JCMR for consideration. Importantly, I also ask that you consider referencing recent JCMR publications in your submissions to the JCMR and elsewhere as these contribute to our impact factor. I also thank our dedicated Associate Editors, Guest Editors, and reviewers for their many efforts to ensure that the review process occurs in a timely and responsible manner and that the JCMR continues to be recognized as the leading publication in our field.
Collapse
Affiliation(s)
- Warren J Manning
- From the Journal of Cardiovascular Magnetic Resonance Editorial Office and the Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA, USA.
| |
Collapse
|
6
|
Hu C, Sinusas AJ, Huber S, Thorn S, Stacy MR, Mojibian H, Peters DC. T1-refBlochi: high resolution 3D post-contrast T1 myocardial mapping based on a single 3D late gadolinium enhancement volume, Bloch equations, and a reference T1. J Cardiovasc Magn Reson 2017; 19:63. [PMID: 28821300 PMCID: PMC5563030 DOI: 10.1186/s12968-017-0375-1] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2017] [Accepted: 07/17/2017] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND High resolution 3D T1 mapping is important for assessment of diffuse myocardial fibrosis in left atrium or other thin-walled structures. In this work, we investigated a fast single-TI 3D high resolution T1 mapping method that directly transforms a 3D late gadolinium enhancement (LGE) volume to a 3D T1 map. METHODS The proposed method, T1-refBlochi, is based on Bloch equation modeling of the LGE signal, a single-point calibration, and assumptions that proton density and T2* are relatively uniform in the heart. Several sources of error of this method were analyzed mathematically and with simulations. Imaging was performed in phantoms, eight swine and five patients, comparing T1-refBlochi to a standard spin-echo T1 mapping, 3D multi-TI T1 mapping, and 2D ShMOLLI, respectively. RESULTS The method has a good accuracy and adequate precision, even considering various sources of error. In phantoms, over a range of protocols, heart-rates and T1 s, the bias ±1SD was -3 ms ± 9 ms. The porcine studies showed excellent agreement between T1-refBlochi and the multi-TI method (bias ±1SD = -6 ± 22 ms). The proton density and T2* weightings yielded ratios for scar/blood of 0.94 ± 0.01 and for myocardium/blood of 1.03 ± 0.02 in the eight swine, confirming that sufficient uniformity of proton density and T2* weightings exists among heterogeneous tissues of the heart. In the patients, the mean T1 bias ±1SD in myocardium and blood between T1-refBlochi and ShMOLLI was -9 ms ± 21 ms. CONCLUSION T1-refBlochi provides a fast single-TI high resolution 3D T1 map of the heart with good accuracy and adequate precision.
Collapse
Affiliation(s)
- Chenxi Hu
- Department of Radiology and Biomedical Imaging, Yale School of Medicine, New Haven, CT 06520 USA
| | - Albert J. Sinusas
- Department of Internal Medicine (Cardiology), Yale School of Medicine, New Haven, CT 06520 USA
| | - Steffen Huber
- Department of Radiology and Biomedical Imaging, Yale School of Medicine, New Haven, CT 06520 USA
| | - Stephanie Thorn
- Department of Internal Medicine (Cardiology), Yale School of Medicine, New Haven, CT 06520 USA
| | - Mitchel R. Stacy
- Department of Internal Medicine (Cardiology), Yale School of Medicine, New Haven, CT 06520 USA
| | - Hamid Mojibian
- Department of Radiology and Biomedical Imaging, Yale School of Medicine, New Haven, CT 06520 USA
| | - Dana C. Peters
- Department of Radiology and Biomedical Imaging, Yale School of Medicine, New Haven, CT 06520 USA
| |
Collapse
|
7
|
Benovoy M, Jacobs M, Cheriet F, Dahdah N, Arai AE, Hsu LY. Robust universal nonrigid motion correction framework for first-pass cardiac MR perfusion imaging. J Magn Reson Imaging 2017; 46:1060-1072. [PMID: 28205347 DOI: 10.1002/jmri.25659] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2016] [Revised: 01/20/2017] [Accepted: 01/23/2017] [Indexed: 11/05/2022] Open
Abstract
PURPOSE To present and assess an automatic nonrigid image registration framework that compensates motion in cardiac magnetic resonance imaging (MRI) perfusion series and auxiliary images acquired under a wide range of conditions to facilitate myocardial perfusion quantification. MATERIALS AND METHODS Our framework combines discrete feature matching for large displacement estimation with a dense variational optical flow formulation in a multithreaded architecture. This framework was evaluated on 291 clinical subjects to register 1.5T and 3.0T steady-state free-precession (FISP) and fast low-angle shot (FLASH) dynamic contrast myocardial perfusion images, arterial input function (AIF) images, and proton density (PD)-weighted images acquired under breath-hold (BH) and free-breath (FB) settings. RESULTS Our method significantly improved frame-to-frame appearance consistency compared to raw series, expressed in correlation coefficient (R2 = 0.996 ± 3.735E-3 vs. 0.978 ± 2.024E-2, P < 0.0001) and mutual information (3.823 ± 4.098E-1 vs. 2.967 ± 4.697E-1, P < 0.0001). It is applicable to both BH (R2 = 0.998 ± 3.217E-3 vs. 0.990 ± 7.527E-3) and FB (R2 = 0.995 ± 3.410E-3 vs. 0.968 ± 2.257E-3) paradigms as well as FISP and FLASH sequences. The method registers PD images to perfusion T1 series (9.70% max increase in R2 vs. no registration, P < 0.001) and also corrects motion in low-resolution AIF series (R2 = 0.987 ± 1.180E-2 vs. 0.964 ± 3.860E-2, P < 0.001). Finally, we showed the myocardial perfusion contrast dynamic was preserved in the motion-corrected images compared to the raw series (R2 = 0.995 ± 6.420E-3). CONCLUSION The critical step of motion correction prior to pixel-wise cardiac MR perfusion quantification can be performed with the proposed universal system. It is applicable to a wide range of perfusion series and auxiliary images with different acquisition settings. LEVEL OF EVIDENCE 3 Technical Efficacy: Stage 1 J. Magn. Reson. Imaging 2017;46:1060-1072.
Collapse
Affiliation(s)
- Mitchel Benovoy
- National Heart, Lung and Blood Institute, National Institutes of Health, Bethesda, Maryland, USA.,Department of Biomedical Engineering, Polytechnique Montreal, Montreal, Canada
| | - Matthew Jacobs
- National Heart, Lung and Blood Institute, National Institutes of Health, Bethesda, Maryland, USA.,Department of Electrical Engineering and Computer Science, Catholic University of America, Washington DC, USA
| | - Farida Cheriet
- Department of Biomedical Engineering, Polytechnique Montreal, Montreal, Canada
| | - Nagib Dahdah
- Sainte-Justine University Hospital Research Center, Montreal, Canada
| | - Andrew E Arai
- National Heart, Lung and Blood Institute, National Institutes of Health, Bethesda, Maryland, USA
| | - Li-Yueh Hsu
- National Heart, Lung and Blood Institute, National Institutes of Health, Bethesda, Maryland, USA
| |
Collapse
|
8
|
Pennell DJ, Baksi AJ, Prasad SK, Mohiaddin RH, Alpendurada F, Babu-Narayan SV, Schneider JE, Firmin DN. Review of Journal of Cardiovascular Magnetic Resonance 2015. J Cardiovasc Magn Reson 2016; 18:86. [PMID: 27846914 PMCID: PMC5111217 DOI: 10.1186/s12968-016-0305-7] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2016] [Accepted: 11/02/2016] [Indexed: 12/14/2022] Open
Abstract
There were 116 articles published in the Journal of Cardiovascular Magnetic Resonance (JCMR) in 2015, which is a 14 % increase on the 102 articles published in 2014. The quality of the submissions continues to increase. The 2015 JCMR Impact Factor (which is published in June 2016) rose to 5.75 from 4.72 for 2014 (as published in June 2015), which is the highest impact factor ever recorded for JCMR. The 2015 impact factor means that the JCMR papers that were published in 2013 and 2014 were cited on average 5.75 times in 2015. The impact factor undergoes natural variation according to citation rates of papers in the 2 years following publication, and is significantly influenced by highly cited papers such as official reports. However, the progress of the journal's impact over the last 5 years has been impressive. Our acceptance rate is <25 % and has been falling because the number of articles being submitted has been increasing. In accordance with Open-Access publishing, the JCMR articles go on-line as they are accepted with no collating of the articles into sections or special thematic issues. For this reason, the Editors have felt that it is useful once per calendar year to summarize the papers for the readership into broad areas of interest or theme, so that areas of interest can be reviewed in a single article in relation to each other and other recent JCMR articles. The papers are presented in broad themes and set in context with related literature and previously published JCMR papers to guide continuity of thought in the journal. We hope that you find the open-access system increases wider reading and citation of your papers, and that you will continue to send your quality papers to JCMR for publication.
Collapse
Affiliation(s)
- D. J. Pennell
- Cardiovascular Magnetic Resonance Unit, Royal Brompton & Harefield NHS Foundation Trust, Sydney Street, London, SW 3 6NP UK
| | - A. J. Baksi
- Cardiovascular Magnetic Resonance Unit, Royal Brompton & Harefield NHS Foundation Trust, Sydney Street, London, SW 3 6NP UK
| | - S. K. Prasad
- Cardiovascular Magnetic Resonance Unit, Royal Brompton & Harefield NHS Foundation Trust, Sydney Street, London, SW 3 6NP UK
| | - R. H. Mohiaddin
- Cardiovascular Magnetic Resonance Unit, Royal Brompton & Harefield NHS Foundation Trust, Sydney Street, London, SW 3 6NP UK
| | - F. Alpendurada
- Cardiovascular Magnetic Resonance Unit, Royal Brompton & Harefield NHS Foundation Trust, Sydney Street, London, SW 3 6NP UK
| | - S. V. Babu-Narayan
- Cardiovascular Magnetic Resonance Unit, Royal Brompton & Harefield NHS Foundation Trust, Sydney Street, London, SW 3 6NP UK
| | - J. E. Schneider
- Cardiovascular Magnetic Resonance Unit, Royal Brompton & Harefield NHS Foundation Trust, Sydney Street, London, SW 3 6NP UK
| | - D. N. Firmin
- Cardiovascular Magnetic Resonance Unit, Royal Brompton & Harefield NHS Foundation Trust, Sydney Street, London, SW 3 6NP UK
| |
Collapse
|