1
|
Pei Z, Qiu J, Zhao Y, Song S, Wang R, Luo W, Cai X, Liu B, Chen H, Yin J, Weng X, Wu Y, Li C, Shen L, Ge J. A novel intracoronary hypothermia device reduces myocardial reperfusion injury in pigs. Chin Med J (Engl) 2024; 137:2461-2472. [PMID: 38445387 PMCID: PMC11479452 DOI: 10.1097/cm9.0000000000003033] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2023] [Indexed: 03/07/2024] Open
Abstract
BACKGROUND Hypothermia therapy has been suggested to attenuate myocardial necrosis; however, the clinical implementation as a valid therapeutic strategy has failed, and new approaches are needed to translate into clinical applications. This study aimed to assess the feasibility, safety, and efficacy of a novel selective intracoronary hypothermia (SICH) device in mitigating myocardial reperfusion injury. METHODS This study comprised two phases. The first phase of the SICH was performed in a normal porcine model for 30 minutes ( n = 5) to evaluate its feasibility. The second phase was conducted in a porcine myocardial infarction (MI) model of myocardial ischemia/reperfusion which was performed by balloon occlusion of the left anterior descending coronary artery for 60 minutes and maintained for 42 days. Pigs in the hypothermia group ( n = 8) received hypothermia intervention onset reperfusion for 30 minutes and controls ( n = 8) received no intervention. All animals were followed for 42 days. Cardiac magnetic resonance analysis (five and 42 days post-MI) and a series of biomarkers/histological studies were performed. RESULTS The average time to lower temperatures to a steady state was 4.8 ± 0.8 s. SICH had no impact on blood pressure or heart rate and was safely performed without complications by using a 3.9 F catheter. Interleukin-6 (IL-6), tumor necrosis factor-α, C-reactive protein (CRP), and brain natriuretic peptide (BNP) were lower at 60 min post perfusion in pigs that underwent SICH as compared with the control group. On day 5 post MI/R, edema, intramyocardial hemorrhage, and microvascular obstruction were reduced in the hypothermia group. On day 42 post MI/R, the infarct size, IL-6, CRP, BNP, and matrix metalloproteinase-9 were reduced, and the ejection fraction was improved in pigs that underwent SICH. CONCLUSIONS The SICH device safely and effectively reduced the infarct size and improved heart function in a pig model of MI/R. These beneficial effects indicate the clinical potential of SICH for treatment of myocardial reperfusion injury.
Collapse
Affiliation(s)
- Zhiqiang Pei
- Department of Cardiology, Zhongshan Hospital, Fudan University, Shanghai 200032, China
- Shanghai Institute of Cardiovascular Diseases, Shanghai 200032, China
| | - Jin Qiu
- Department of Cardiology, Taiyuan Central Hospital of Shanxi Medical University, Taiyuan, Shanxi 030009, China
| | - Yongchao Zhao
- Department of Cardiology, Affiliated Hospital of Zunyi Medical University, Zunyi, Guizhou 563000, China
| | - Shuai Song
- Department of Cardiology, Zhongshan Hospital, Fudan University, Shanghai 200032, China
- Shanghai Institute of Cardiovascular Diseases, Shanghai 200032, China
- National Clinical Research for Interventional Medicine, Shanghai 200032, China
| | - Rui Wang
- Department of Cardiology, Zhongshan Hospital, Fudan University, Shanghai 200032, China
- Shanghai Institute of Cardiovascular Diseases, Shanghai 200032, China
- National Clinical Research for Interventional Medicine, Shanghai 200032, China
| | - Wei Luo
- Department of Cardiology, Zhongshan Hospital, Fudan University, Shanghai 200032, China
- Shanghai Institute of Cardiovascular Diseases, Shanghai 200032, China
- National Clinical Research for Interventional Medicine, Shanghai 200032, China
| | - Xingxing Cai
- Department of Cardiology, Xinhua Hospital Affiliated to Shanghai Jiaotong University School of Medicine, Shanghai 201322, China
| | - Bin Liu
- Department of Cardiology, Taiyuan Central Hospital of Shanxi Medical University, Taiyuan, Shanxi 030009, China
| | - Han Chen
- Department of Cardiology, Zhongshan Hospital, Fudan University, Shanghai 200032, China
- Shanghai Institute of Cardiovascular Diseases, Shanghai 200032, China
- National Clinical Research for Interventional Medicine, Shanghai 200032, China
| | - Jiasheng Yin
- Department of Cardiology, Zhongshan Hospital, Fudan University, Shanghai 200032, China
- Shanghai Institute of Cardiovascular Diseases, Shanghai 200032, China
- National Clinical Research for Interventional Medicine, Shanghai 200032, China
| | - Xinyu Weng
- Department of Cardiology, Zhongshan Hospital, Fudan University, Shanghai 200032, China
- National Clinical Research for Interventional Medicine, Shanghai 200032, China
| | - Yizhe Wu
- Department of Cardiology, Zhongshan Hospital, Fudan University, Shanghai 200032, China
- National Clinical Research for Interventional Medicine, Shanghai 200032, China
| | - Chenguang Li
- Department of Cardiology, Zhongshan Hospital, Fudan University, Shanghai 200032, China
- National Clinical Research for Interventional Medicine, Shanghai 200032, China
| | - Li Shen
- National Clinical Research for Interventional Medicine, Shanghai 200032, China
| | - Junbo Ge
- Department of Cardiology, Zhongshan Hospital, Fudan University, Shanghai 200032, China
- Shanghai Institute of Cardiovascular Diseases, Shanghai 200032, China
| |
Collapse
|
2
|
Mehdi RR, Kadivar N, Mukherjee T, Mendiola EA, Shah DJ, Karniadakis G, Avazmohammadi R. Multi-Modality Deep Infarct: Non-invasive identification of infarcted myocardium using composite in-silico-human data learning. RESEARCH SQUARE 2024:rs.3.rs-4468678. [PMID: 38883756 PMCID: PMC11177985 DOI: 10.21203/rs.3.rs-4468678/v1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/18/2024]
Abstract
Myocardial infarction (MI) continues to be a leading cause of death worldwide. The precise quantification of infarcted tissue is crucial to diagnosis, therapeutic management, and post-MI care. Late gadolinium enhancement-cardiac magnetic resonance (LGE-CMR) is regarded as the gold standard for precise infarct tissue localization in MI patients. A fundamental limitation of LGE-CMR is the invasive intravenous introduction of gadolinium-based contrast agents that present potential high-risk toxicity, particularly for individuals with underlying chronic kidney diseases. Herein, we develop a completely non-invasive methodology that identifies the location and extent of an infarct region in the left ventricle via a machine learning (ML) model using only cardiac strains as inputs. In this transformative approach, we demonstrate the remarkable performance of a multi-fidelity ML model that combines rodent-based in-silico-generated training data (low-fidelity) with very limited patient-specific human data (high-fidelity) in predicting LGE ground truth. Our results offer a new paradigm for developing feasible prognostic tools by augmenting synthetic simulation-based data with very small amounts of in-vivo human data. More broadly, the proposed approach can significantly assist with addressing biomedical challenges in healthcare where human data are limited.
Collapse
Affiliation(s)
- Rana Raza Mehdi
- Department of Biomedical Engineering, Texas A&M University, College Station, TX 77843, USA
| | - Nikhil Kadivar
- School of Engineering, Brown University, Providence, RI 02912, USA
| | - Tanmay Mukherjee
- Department of Biomedical Engineering, Texas A&M University, College Station, TX 77843, USA
| | - Emilio A. Mendiola
- Department of Biomedical Engineering, Texas A&M University, College Station, TX 77843, USA
| | - Dipan J. Shah
- Houston Methodist DeBakey Heart & Vascular Center, Houston, TX 77030, USA
| | - George Karniadakis
- School of Engineering, Brown University, Providence, RI 02912, USA
- Division of Applied Mathematics, Brown University, Providence, RI 02912, USA
| | - Reza Avazmohammadi
- Department of Biomedical Engineering, Texas A&M University, College Station, TX 77843, USA
- School of Engineering Medicine, Texas A&M University, Houston, TX 77030, USA
- J. Mike Walker ‘66 Department of Mechanical Engineering, Texas A&M University, College Station, TX 77843, USA
- Department of Cardiovascular Sciences, Houston Methodist Research Institute, Houston, TX 77030, USA
| |
Collapse
|
3
|
Grazzini G, Pradella S, Bani R, Fornaciari C, Cappelli F, Perfetto F, Cozzi D, Giovannelli S, Sica G, Miele V. The Role of T2 Mapping in Cardiac Amyloidosis. Diagnostics (Basel) 2024; 14:1048. [PMID: 38786346 PMCID: PMC11120592 DOI: 10.3390/diagnostics14101048] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2024] [Revised: 05/14/2024] [Accepted: 05/17/2024] [Indexed: 05/25/2024] Open
Abstract
Cardiac amyloidosis (CA) is an infiltrative cardiomyopathy divided into two types: light-chain (LA) and transthyretin (ATTR) CA. Cardiac magnetic resonance (CMR) has emerged as an important diagnostic tool in CA. While late gadolinium enhancement (LGE), T1 mapping and extracellular volume (ECV) have a consolidate role in the assessment of CA, T2 mapping has been less often evaluated. We aimed to test the value of T2 mapping in the evaluation of CA. This study recruited 70 patients with CA (51 ATTR, 19 AL). All the subjects underwent 1.5 T CMR with T1 and T2 mapping and cine and LGE imaging. Their QALE scores were evaluated. The myocardial T2 values were significantly (p < 0.001) increased in both types of CA compared to the controls. In the AL-CA group, increased T2 values were associated with a higher QALE score. The myocardial native T1 values and ECV were significantly (p < 0.001) higher in the CA patients than in the healthy subjects. Left ventricular (LV) mass, QALE score and ECV were higher in ATTR amyloidosis compared with AL amyloidosis, while the LV ejection fraction was lower (p < 0.001). These results support the concept of the presence of myocardial edema in CA. Therefore, a CMR evaluation including not only myocardial T1 imaging but also myocardial T2 imaging allows for more comprehensive tissue characterization in CA.
Collapse
Affiliation(s)
- Giulia Grazzini
- Department of Radiology, Careggi University Hospital, Largo Brambilla 3, 50134 Florence, Italy
| | - Silvia Pradella
- Department of Radiology, Careggi University Hospital, Largo Brambilla 3, 50134 Florence, Italy
| | - Rossella Bani
- Department of Radiology, Careggi University Hospital, Largo Brambilla 3, 50134 Florence, Italy
| | - Chiara Fornaciari
- Department of Radiology, Careggi University Hospital, Largo Brambilla 3, 50134 Florence, Italy
| | - Francesco Cappelli
- Regional Amyloid Center, Azienda Ospedaliero Universitaria Careggi, Largo Piero Palagi 1, 50134 Florence, Italy
| | - Federico Perfetto
- Regional Amyloid Center, Azienda Ospedaliero Universitaria Careggi, Largo Piero Palagi 1, 50134 Florence, Italy
| | - Diletta Cozzi
- Department of Radiology, Careggi University Hospital, Largo Brambilla 3, 50134 Florence, Italy
| | - Simona Giovannelli
- Department of Radiology, Careggi University Hospital, Largo Brambilla 3, 50134 Florence, Italy
| | - Giacomo Sica
- Department of Radiology, Monaldi Hospital, Azienda Ospedaliera dei Colli, 80131 Naples, Italy
| | - Vittorio Miele
- Department of Radiology, Careggi University Hospital, Largo Brambilla 3, 50134 Florence, Italy
| |
Collapse
|
4
|
Carrabba N, Amico MA, Guaricci AI, Carella MC, Maestrini V, Monosilio S, Pedrotti P, Ricci F, Monti L, Figliozzi S, Torlasco C, Barison A, Baggiano A, Scatteia A, Pontone G, Dellegrottaglie S. CMR Mapping: The 4th-Era Revolution in Cardiac Imaging. J Clin Med 2024; 13:337. [PMID: 38256470 PMCID: PMC10816333 DOI: 10.3390/jcm13020337] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2023] [Revised: 01/04/2024] [Accepted: 01/05/2024] [Indexed: 01/24/2024] Open
Abstract
Cardiac magnetic resonance (CMR) imaging has witnessed substantial progress with the advent of parametric mapping techniques, most notably T1 and T2 mapping. These advanced techniques provide valuable insights into a wide range of cardiac conditions, including ischemic heart disease, cardiomyopathies, inflammatory cardiomyopathies, heart valve disease, and athlete's heart. Mapping could be the first sign of myocardial injury and oftentimes precedes symptoms, changes in ejection fraction, and irreversible myocardial remodeling. The ability of parametric mapping to offer a quantitative assessment of myocardial tissue properties addresses the limitations of conventional CMR methods, which often rely on qualitative or semiquantitative data. However, challenges persist, especially in terms of standardization and reference value establishment, hindering the wider clinical adoption of parametric mapping. Future developments should prioritize the standardization of techniques to enhance their clinical applicability, ultimately optimizing patient care pathways and outcomes. In this review, we endeavor to provide insights into the potential contributions of CMR mapping techniques in enhancing the diagnostic processes across a range of cardiac conditions.
Collapse
Affiliation(s)
- Nazario Carrabba
- Cardio-Thoraco-Vascular Department, Careggi Hospital, 50134 Florence, Italy;
| | - Mattia Alexis Amico
- Cardio-Thoraco-Vascular Department, Careggi Hospital, 50134 Florence, Italy;
| | - Andrea Igoren Guaricci
- University Cardiology Unit, Interdisciplinary Department of Medicine, University of Bari Aldo Moro, 70121 Bari, Italy
| | - Maria Cristina Carella
- University Cardiology Unit, Interdisciplinary Department of Medicine, University of Bari Aldo Moro, 70121 Bari, Italy
| | - Viviana Maestrini
- Department of Clinical, Anestesiological and Cardiovascular Science, Sapienza University of Rome, 00185 Rome, Italy (S.M.)
- Institute of Sports Medicine and Science of Rome, Comitato Olimpico Nazionale Italiano (CONI), 00197 Rome, Italy
| | - Sara Monosilio
- Department of Clinical, Anestesiological and Cardiovascular Science, Sapienza University of Rome, 00185 Rome, Italy (S.M.)
- Institute of Sports Medicine and Science of Rome, Comitato Olimpico Nazionale Italiano (CONI), 00197 Rome, Italy
| | - Patrizia Pedrotti
- S.S. Cardiologia Diagnostica per Immagini—RM Cardiaca; S.C. Cardiologia 4 Diagnostica-Riabilitativa Dipartimento CardioToracoVascolare “De Gasperis”, ASST Grande Ospedale Metropolitano Niguarda, 20162 Milano, Italy
| | - Fabrizio Ricci
- Department of Neuroscience, Imaging and Clinical Sciences, G. d’Annunzio University of Chieti-Pescara, 66100 Chieti, Italy
| | - Lorenzo Monti
- IRCCS Humanitas Research Hospital, Via Manzoni 56, Rozzano, 20089 Milan, Italy; (L.M.)
| | - Stefano Figliozzi
- IRCCS Humanitas Research Hospital, Via Manzoni 56, Rozzano, 20089 Milan, Italy; (L.M.)
| | - Camilla Torlasco
- Department of Cardiovascular, Neural and Metabolic Sciences, IRCCS Istituto Auxologico Italiano, 20165 Milan, Italy;
| | - Andrea Barison
- Fondazione Toscana Gabriele Monasterio, 56127 Pisa, Italy
| | - Andrea Baggiano
- Department of Perioperative Cardiology and Cardiovascular Imaging, Centro Cardiologico Monzino IRCCS, 20138 Milan, Italy; (A.B.); (G.P.)
- Department of Biomedical, Surgical and Dental Sciences, University of Milan, 20133 Milan, Italy
| | - Alessandra Scatteia
- Cardiovascular MRI Laboratory, Unit of Advanced Cardiovascular Imaging, Ospedale Medico-Chirurgico Accreditato Villa dei Fiori, 80011 Acerra, Italy
| | - Gianluca Pontone
- Department of Perioperative Cardiology and Cardiovascular Imaging, Centro Cardiologico Monzino IRCCS, 20138 Milan, Italy; (A.B.); (G.P.)
- Department of Biomedical, Surgical and Dental Sciences, University of Milan, 20133 Milan, Italy
| | - Santo Dellegrottaglie
- Cardiovascular MRI Laboratory, Unit of Advanced Cardiovascular Imaging, Ospedale Medico-Chirurgico Accreditato Villa dei Fiori, 80011 Acerra, Italy
| |
Collapse
|
5
|
Hopman LHGA, van Pouderoijen N, Mulder MJ, van der Laan AM, Bhagirath P, Nazarian S, Niessen HWM, Ferrari VA, Allaart CP, Götte MJW. Atrial Ablation Lesion Evaluation by Cardiac Magnetic Resonance: Review of Imaging Strategies and Histological Correlations. JACC Clin Electrophysiol 2023; 9:2665-2679. [PMID: 37737780 DOI: 10.1016/j.jacep.2023.08.013] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2023] [Accepted: 08/09/2023] [Indexed: 09/23/2023]
Abstract
Cardiac magnetic resonance (CMR) imaging is a valuable noninvasive tool for evaluating tissue response following catheter ablation of atrial tissue. This review provides an overview of the contemporary CMR strategies to visualize atrial ablation lesions in both the acute and chronic postablation stages, focusing on their strengths and limitations. Moreover, the accuracy of CMR imaging in comparison to atrial lesion histology is discussed. T2-weighted CMR imaging is sensitive to edema and tends to overestimate lesion size in the acute stage after ablation. Noncontrast agent-enhanced T1-weighted CMR imaging has the potential to provide more accurate assessment of lesions in the acute stage but may not be as effective in the chronic stage. Late gadolinium enhancement imaging can be used to detect chronic atrial scarring, which may inform repeat ablation strategies. Moreover, novel imaging strategies are being developed, but their efficacy in characterizing atrial lesions is yet to be determined. Overall, CMR imaging has the potential to provide virtual histology that aids in evaluating the efficacy and safety of catheter ablation and monitoring of postprocedural myocardial changes. However, technical factors, scanning during arrhythmia, and transmurality assessment pose challenges. Therefore, further research is needed to develop CMR strategies to visualize the ablation lesion maturation process more effectively.
Collapse
Affiliation(s)
| | | | - Mark J Mulder
- Department of Cardiology, Amsterdam UMC, Amsterdam, the Netherlands
| | | | - Pranav Bhagirath
- Department of Cardiology, Amsterdam UMC, Amsterdam, the Netherlands
| | - Saman Nazarian
- Penn Cardiovascular Institute, Penn Heart and Vascular Center, Perelman Center for Advanced Medicine, Philadelphia, Pennsylvania, USA
| | - Hans W M Niessen
- Department of Pathology, Amsterdam UMC, Amsterdam, the Netherlands
| | - Victor A Ferrari
- Penn Cardiovascular Institute, Penn Heart and Vascular Center, Perelman Center for Advanced Medicine, Philadelphia, Pennsylvania, USA
| | | | - Marco J W Götte
- Department of Cardiology, Amsterdam UMC, Amsterdam, the Netherlands.
| |
Collapse
|
6
|
Xiao Z, Zhong J, Zhong L, Dai S, Lu W, Song L, Zhang H, Yang J, Yao W. The prognostic value of myocardial salvage index by cardiac magnetic resonance in ST-segment elevation myocardial infarction patients: a systematic review and meta-analysis. Eur Radiol 2023; 33:8214-8225. [PMID: 37328640 DOI: 10.1007/s00330-023-09739-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2022] [Revised: 03/13/2023] [Accepted: 03/27/2023] [Indexed: 06/18/2023]
Abstract
OBJECTIVE To assess the prognostic value of myocardial salvage index (MSI) by cardiac magnetic resonance (CMR) in ST-segment elevation myocardial infarction (STEMI) patients. METHODS We systematically searched PubMed, Embase, Web of Science, Cochrane Central, China National Knowledge Infrastructure, and Wanfang Data to identify primary studies reporting MSI in STEMI patients with major adverse cardiovascular events (MACE) comprised of death, myocardial reinfarction, and congestive heart failure. The MSI and MACE rates were pooled. The bias of risk was assessed using the Quality In Prognosis Studies tool. The evidence level was rated based on the meta-analysis of hazard ratio (HR) and 95% confidence interval (CI) of MSI for predicting MACE. RESULTS Eighteen studies were included covering twelve unique cohorts. Eleven cohorts measured MSI using T2-weighted imaging and T1-weighted late gadolinium enhancement, while one cohort applied T2-mapping and T1-mapping. The pooled MSI (95% CI) was 44% (39 to 49%; 11 studies, 2946 patients), and the pooled MACE rate (95% CI) was 10% (7 to 14%; 12 studies, 311/3011 events/patients). Seven prognostic studies overall showed low risk of bias. The HR (95% CI) per 1% increase of MSI for MACE was 0.95 (0.92 to 0.98; 5 studies, 150/885 events/patients), and HR (95% CI) of MSI < median versus MSI > median for MACE was 5.62 (3.74 to 8.43; 6 studies, 166/1570 events/patients), both rated as weak evidence. CONCLUSIONS MSI presents potential in predicting MACE in STEMI patients. The prognostic value of MSI using advanced CMR techniques for adverse cardiovascular events needs further investigation. CLINICAL RELEVANCE STATEMENT Seven studies supported the MSI to serve as a predictor for MACE in STEMI patients, indicating its potential as a risk stratification tool to help manage expectations for these patients in clinical practice. KEY POINTS • The pooled infarct size (95% CI) and area at risk (95% CI) were 21% (18 to 23%; 11 studies, 2783 patients) and 38% (34 to 43%; 10 studies, 2022 patients), respectively. • The pooled rates (95% CI) of cardiac mortality, myocardial reinfarction, and congestive heart failure were 2% (1 to 3%; 11 studies, 86/2907 events/patients), 4% (3 to 6%; 12 studies, 127/3011 events/patients), and 3% (1 to 5%; 12 studies, 94/3011 events/patients), respectively. • The HRs (95% CI) per 1% increase of MSI for cardiac mortality and congestive heart failure were 0.93 (0.91 to 0.96; 1 study, 14/202 events/patients) and 0.96 (0.93 to 0.99; 1 study, 11/104 events/patients), respectively, but the prognostic value of MSI for myocardial re-infraction has not been measured.
Collapse
Affiliation(s)
- Zhengguang Xiao
- Department of Imaging, Tongren Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200336, China
| | - Jingyu Zhong
- Department of Imaging, Tongren Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200336, China
| | - Lingna Zhong
- Electrocardiogram Room, Department of Internal Medicine, International Peace Maternity and Child Health Hospital of China Welfare Institution, Shanghai Jiao Tong University School of Medicine, 20030, Shanghai, China
| | - Shun Dai
- Department of Imaging, Tongren Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200336, China
| | - Wenjie Lu
- Department of Imaging, Tongren Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200336, China
| | - Lei Song
- Department of Cardiology, Tongren Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200336, China
| | - Huan Zhang
- Department of Radiology, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200025, China
| | - Jun Yang
- Department of Imaging, Tongren Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200336, China.
| | - Weiwu Yao
- Department of Imaging, Tongren Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200336, China.
| |
Collapse
|
7
|
Wang J, Meng Y, Han S, Hu C, Lu Y, Wu P, Han L, Xu Y, Xu K. Predictive value of total ischaemic time and T1 mapping after emergency percutaneous coronary intervention in acute ST-segment elevation myocardial infarction. Clin Radiol 2023; 78:e724-e731. [PMID: 37460337 DOI: 10.1016/j.crad.2023.06.010] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2022] [Revised: 04/05/2023] [Accepted: 06/12/2023] [Indexed: 09/03/2023]
Abstract
AIM To investigate the predictive value of ischaemic time and cardiac magnetic resonance imaging (CMRI) T1 mapping in acute ST-segment elevation myocardial infarction (STEMI) patients undergoing primary percutaneous coronary intervention (PCI). MATERIALS AND METHODS A total of 127 patients with STEMI treated by primary PCI were studied. All patients underwent CMRI with native T1 and extracellular volume (ECV) measurement, 61 of whom also had 4-month follow-up data. The total ischaemic (symptom onset to balloon, S2B) time expressed in minutes was recorded. CMRI cine, T1 mapping, and late gadolinium enhancement (LGE) images were analysed to evaluate left ventricular (LV) function, T1 value, ECV, and myocardial infract (MI) scar characteristics, respectively. The correlation between S2B time and T1 mapping was evaluated. The predictive values of S2B time and T1 mapping for large final infarct size were estimated. RESULTS The incidence of microvascular obstruction (MVO) increased with the prolongation of ischaemia time. Regardless of MVO or not, ECV in myocardial infarction (ECVMI) was significantly correlated with S2B time (r=0.61, p<0.001), while native T1 in MI (T1MI) was not (r=-0.19, p=0.029). In the 4-month follow-up, native T1MI was improved (1385.1 ± 90.4 versus 1288.6 ± 74 ms, p<0.001). Furthermore, ECVMI was independently associated with final larger infarct size (AUC = 0.89, 95% confidence interval [CI] = 0.81-0.98, p<0.001) in multivariable regression analysis. CONCLUSION ECVMI was correlated with total ischaemic time and was an independent predictor of final larger infarct size.
Collapse
Affiliation(s)
- J Wang
- Department of Radiology, The Affiliated Hospital of Xuzhou Medical University, Xuzhou, China
| | - Y Meng
- Department of Radiology, The Affiliated Hospital of Xuzhou Medical University, Xuzhou, China
| | - S Han
- Department of Radiology, The Affiliated Hospital of Xuzhou Medical University, Xuzhou, China
| | - C Hu
- Department of Radiology, The Affiliated Hospital of Xuzhou Medical University, Xuzhou, China
| | - Y Lu
- Department of Cardiac Care Unit, The Affiliated Hospital of Xuzhou Medical University, Xuzhou, China
| | - P Wu
- Philips Healthcare, Shanghai, China
| | - L Han
- Philips Healthcare, Shanghai, China
| | - Y Xu
- Philips Healthcare, Guangzhou, China
| | - K Xu
- Department of Radiology, The Affiliated Hospital of Xuzhou Medical University, Xuzhou, China.
| |
Collapse
|
8
|
Repeatability and reproducibility of cardiac manganese-enhanced magnetic resonance imaging. Sci Rep 2023; 13:3366. [PMID: 36849509 PMCID: PMC9971197 DOI: 10.1038/s41598-023-29591-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2022] [Accepted: 02/07/2023] [Indexed: 03/01/2023] Open
Abstract
Manganese-enhanced magnetic resonance imaging can provide a surrogate measure of myocardial calcium handling. Its repeatability and reproducibility are currently unknown. Sixty-eight participants: 20 healthy volunteers, 20 with acute myocardial infarction, 18 with hypertrophic and 10 with non-ischemic dilated cardiomyopathy underwent manganese-enhanced magnetic resonance imaging. Ten healthy volunteers were re-scanned at 3 months. Native T1 values and myocardial manganese uptake were assessed for intra and inter-observer repeatability. Scan-rescan reproducibility was assessed in ten healthy volunteers. Intra-observer and inter-observer correlation was excellent in healthy volunteers for mean native T1 mapping [Lin's correlation coefficient (LCC) 0.97 and 0.97 respectively] and myocardial manganese uptake (LCC: 0.99 and 0.96 respectively). Scan-rescan correlation for native T1 and myocardial manganese uptake was also excellent. Similarly, intra-observer correlations for native T1 and myocardial manganese uptake in patients with acute myocardial infarction (LCC: 0.97 and 0.97 respectively), hypertrophic (LCC: 0.98 and 0.97 respectively) and dilated cardiomyopathy (LCC: 0.99 and 0.95 respectively) were excellent. Limits of agreement were broader in patients with dilated cardiomyopathy. Manganese-enhanced magnetic resonance imaging has high repeatability and reproducibility in healthy myocardium and high repeatability in diseased myocardium. However, further study is needed to establish robustness in pathologies with diffuse myocardial fibrosis.
Collapse
|
9
|
Shanmuganathan M, Masi A, Burrage MK, Kotronias RA, Borlotti A, Scarsini R, Banerjee A, Terentes-Printzios D, Zhang Q, Hann E, Tunnicliffe E, Lucking A, Langrish J, Kharbanda R, De Maria GL, Banning AP, Choudhury RP, Channon KM, Piechnik SK, Ferreira VM. Acute Response in the Noninfarcted Myocardium Predicts Long-Term Major Adverse Cardiac Events After STEMI. JACC Cardiovasc Imaging 2023; 16:46-59. [PMID: 36599569 PMCID: PMC9834063 DOI: 10.1016/j.jcmg.2022.09.015] [Citation(s) in RCA: 7] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/20/2021] [Revised: 09/26/2022] [Accepted: 09/28/2022] [Indexed: 12/15/2022]
Abstract
BACKGROUND Acute ST-segment elevation myocardial infarction (STEMI) has effects on the myocardium beyond the immediate infarcted territory. However, pathophysiologic changes in the noninfarcted myocardium and their prognostic implications remain unclear. OBJECTIVES The purpose of this study was to evaluate the long-term prognostic value of acute changes in both infarcted and noninfarcted myocardium post-STEMI. METHODS Patients with acute STEMI undergoing primary percutaneous coronary intervention underwent evaluation with blood biomarkers and cardiac magnetic resonance (CMR) at 2 days and 6 months, with long-term follow-up for major adverse cardiac events (MACE). A comprehensive CMR protocol included cine, T2-weighted, T2∗, T1-mapping, and late gadolinium enhancement (LGE) imaging. Areas without LGE were defined as noninfarcted myocardium. MACE was a composite of cardiac death, sustained ventricular arrhythmia, and new-onset heart failure. RESULTS Twenty-two of 219 patients (10%) experienced an MACE at a median of 4 years (IQR: 2.5-6.0 years); 152 patients returned for the 6-month visit. High T1 (>1250 ms) in the noninfarcted myocardium was associated with lower left ventricular ejection fraction (LVEF) (51% ± 8% vs 55% ± 9%; P = 0.002) and higher NT-pro-BNP levels (290 pg/L [IQR: 103-523 pg/L] vs 170 pg/L [IQR: 61-312 pg/L]; P = 0.008) at 6 months and a 2.5-fold (IQR: 1.03-6.20) increased risk of MACE (2.53 [IQR: 1.03-6.22]), compared with patients with normal T1 in the noninfarcted myocardium (P = 0.042). A lower T1 (<1,300 ms) in the infarcted myocardium was associated with increased MACE (3.11 [IQR: 1.19-8.13]; P = 0.020). Both noninfarct and infarct T1 were independent predictors of MACE (both P = 0.001) and significantly improved risk prediction beyond LVEF, infarct size, and microvascular obstruction (C-statistic: 0.67 ± 0.07 vs 0.76 ± 0.06, net-reclassification index: 40% [IQR: 12%-64%]; P = 0.007). CONCLUSIONS The acute responses post-STEMI in both infarcted and noninfarcted myocardium are independent incremental predictors of long-term MACE. These insights may provide new opportunities for treatment and risk stratification in STEMI.
Collapse
Affiliation(s)
- Mayooran Shanmuganathan
- Acute Vascular Imaging Centre (AVIC), University of Oxford, John Radcliffe Hospital, Oxford, United Kingdom,Oxford Centre for Clinical Magnetic Resonance Research (OCMR), John Radcliffe Hospital, National Institute for Health Research (NIHR) Oxford Biomedical Research Centre, Oxford BHF Centre of Research Excellence, University of Oxford, Oxford, United Kingdom,Oxford University Hospitals NHS Trust, John Radcliffe Hospital, Oxford, United Kingdom
| | - Ambra Masi
- Oxford Centre for Clinical Magnetic Resonance Research (OCMR), John Radcliffe Hospital, National Institute for Health Research (NIHR) Oxford Biomedical Research Centre, Oxford BHF Centre of Research Excellence, University of Oxford, Oxford, United Kingdom
| | - Matthew K. Burrage
- Oxford Centre for Clinical Magnetic Resonance Research (OCMR), John Radcliffe Hospital, National Institute for Health Research (NIHR) Oxford Biomedical Research Centre, Oxford BHF Centre of Research Excellence, University of Oxford, Oxford, United Kingdom,Oxford University Hospitals NHS Trust, John Radcliffe Hospital, Oxford, United Kingdom
| | - Rafail A. Kotronias
- Acute Vascular Imaging Centre (AVIC), University of Oxford, John Radcliffe Hospital, Oxford, United Kingdom,Oxford University Hospitals NHS Trust, John Radcliffe Hospital, Oxford, United Kingdom
| | - Alessandra Borlotti
- Acute Vascular Imaging Centre (AVIC), University of Oxford, John Radcliffe Hospital, Oxford, United Kingdom
| | - Roberto Scarsini
- Acute Vascular Imaging Centre (AVIC), University of Oxford, John Radcliffe Hospital, Oxford, United Kingdom,Oxford University Hospitals NHS Trust, John Radcliffe Hospital, Oxford, United Kingdom
| | - Abhirup Banerjee
- Acute Vascular Imaging Centre (AVIC), University of Oxford, John Radcliffe Hospital, Oxford, United Kingdom
| | - Dimitrios Terentes-Printzios
- Acute Vascular Imaging Centre (AVIC), University of Oxford, John Radcliffe Hospital, Oxford, United Kingdom,Oxford University Hospitals NHS Trust, John Radcliffe Hospital, Oxford, United Kingdom
| | - Qiang Zhang
- Oxford Centre for Clinical Magnetic Resonance Research (OCMR), John Radcliffe Hospital, National Institute for Health Research (NIHR) Oxford Biomedical Research Centre, Oxford BHF Centre of Research Excellence, University of Oxford, Oxford, United Kingdom
| | - Evan Hann
- Oxford Centre for Clinical Magnetic Resonance Research (OCMR), John Radcliffe Hospital, National Institute for Health Research (NIHR) Oxford Biomedical Research Centre, Oxford BHF Centre of Research Excellence, University of Oxford, Oxford, United Kingdom
| | - Elizabeth Tunnicliffe
- Oxford Centre for Clinical Magnetic Resonance Research (OCMR), John Radcliffe Hospital, National Institute for Health Research (NIHR) Oxford Biomedical Research Centre, Oxford BHF Centre of Research Excellence, University of Oxford, Oxford, United Kingdom
| | - Andrew Lucking
- Oxford University Hospitals NHS Trust, John Radcliffe Hospital, Oxford, United Kingdom
| | - Jeremy Langrish
- Oxford University Hospitals NHS Trust, John Radcliffe Hospital, Oxford, United Kingdom
| | - Rajesh Kharbanda
- Oxford University Hospitals NHS Trust, John Radcliffe Hospital, Oxford, United Kingdom
| | - Giovanni Luigi De Maria
- Acute Vascular Imaging Centre (AVIC), University of Oxford, John Radcliffe Hospital, Oxford, United Kingdom,Oxford University Hospitals NHS Trust, John Radcliffe Hospital, Oxford, United Kingdom
| | - Adrian P. Banning
- Acute Vascular Imaging Centre (AVIC), University of Oxford, John Radcliffe Hospital, Oxford, United Kingdom,Oxford University Hospitals NHS Trust, John Radcliffe Hospital, Oxford, United Kingdom
| | - Robin P. Choudhury
- Acute Vascular Imaging Centre (AVIC), University of Oxford, John Radcliffe Hospital, Oxford, United Kingdom,Oxford University Hospitals NHS Trust, John Radcliffe Hospital, Oxford, United Kingdom
| | - Keith M. Channon
- Acute Vascular Imaging Centre (AVIC), University of Oxford, John Radcliffe Hospital, Oxford, United Kingdom,Oxford University Hospitals NHS Trust, John Radcliffe Hospital, Oxford, United Kingdom,Address for correspondence: Prof Keith Channon, Level 2–Oxford Heart Centre, John Radcliffe Hospital, Oxford OX3 9DU, United Kingdom.
| | - Stefan K. Piechnik
- Oxford Centre for Clinical Magnetic Resonance Research (OCMR), John Radcliffe Hospital, National Institute for Health Research (NIHR) Oxford Biomedical Research Centre, Oxford BHF Centre of Research Excellence, University of Oxford, Oxford, United Kingdom
| | - Vanessa M. Ferreira
- Acute Vascular Imaging Centre (AVIC), University of Oxford, John Radcliffe Hospital, Oxford, United Kingdom,Oxford Centre for Clinical Magnetic Resonance Research (OCMR), John Radcliffe Hospital, National Institute for Health Research (NIHR) Oxford Biomedical Research Centre, Oxford BHF Centre of Research Excellence, University of Oxford, Oxford, United Kingdom,Oxford University Hospitals NHS Trust, John Radcliffe Hospital, Oxford, United Kingdom
| | | |
Collapse
|
10
|
Yang MX, Li QL, Wang DQ, Ye L, Li KM, Lin XJ, Li XS, Fu C, Ma XM, Liu X, Yin RT, Yang ZG, Guo YK. Myocardial edema during chemotherapy for gynecologic malignancies: A cardiac magnetic resonance T2 mapping study. Front Oncol 2022; 12:961841. [PMID: 36263209 PMCID: PMC9574218 DOI: 10.3389/fonc.2022.961841] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2022] [Accepted: 09/05/2022] [Indexed: 11/13/2022] Open
Abstract
ObjectiveMyocardial edema is an early manifestation of chemotherapy-related myocardial injury. In this study, we used cardiac magnetic resonance (CMR) T2 mapping to assess myocardial edema and its changes during chemotherapy for gynecologic malignancies.MethodsWe enrolled 73 patients receiving chemotherapy for gynecologic malignancies, whose the latest cycle was within one month before the beginning of this study, and 41 healthy volunteers. All participants underwent CMR imaging. Of the 73 patients, 35 completed CMR follow-up after a median interval of 6 (3.3 to 9.6) months. The CMR sequences included cardiac cine, T2 mapping, and late gadolinium enhancement.ResultsMyocardial T2 was elevated in patients who were treated with chemotherapy compared with healthy volunteers [41ms (40ms to 43ms) vs. 41ms (39ms to 41ms), P = 0.030]. During follow-up, myocardial T2 rose further [40ms (39ms to 42ms) vs. 42.70 ± 2.92ms, P < 0.001]. Multivariate analysis showed that the number of chemotherapy cycles was associated with myocardial T2 elevation (β = 0.204, P = 0.029). After adjustment for other confounders, myocardial T2 elevation was independently associated with a decrease in left ventricular mass (β = −0.186; P = 0.024).ConclusionIn patients with gynecologic malignancies, myocardial edema developed with chemotherapy cycles increase, and was associated with left ventricular mass decrease. T2 mapping allows the assessment of myocardial edema and monitoring of its change during chemotherapy.
Collapse
Affiliation(s)
- Meng-Xi Yang
- Department of Radiology, Key Laboratory of Obstetric & Gynecologic and Pediatric Diseases and Birth Defects of Ministry of Education, West China Second University Hospital, Sichuan University, Chengdu, China
- Department of Radiology, West China Hospital, Sichuan University, Chengdu, China
- Department of Radiology, Sichuan Cancer Hospital & Institute, Sichuan Cancer Center, School of Medicine, University of Electronic Science and Technology of China, Chengdu, China
| | - Qing-Li Li
- Department of Gynecology, Key Laboratory of Birth Defects and Related Diseases of Women and Children of Ministry of Education, West China Second University Hospital, Sichuan University, Chengdu, China
| | - Dan-Qing Wang
- Department of Gynecology, Key Laboratory of Birth Defects and Related Diseases of Women and Children of Ministry of Education, West China Second University Hospital, Sichuan University, Chengdu, China
| | - Lu Ye
- Department of Ultrasound, Key Laboratory of Birth Defects and Related Diseases of Women and Children of Ministry of Education, West China Second University Hospital, Sichuan University, Chengdu, China
| | - Ke-Min Li
- Department of Gynecology, Key Laboratory of Birth Defects and Related Diseases of Women and Children of Ministry of Education, West China Second University Hospital, Sichuan University, Chengdu, China
| | - Xiao-Juan Lin
- Department of Gynecology, Key Laboratory of Birth Defects and Related Diseases of Women and Children of Ministry of Education, West China Second University Hospital, Sichuan University, Chengdu, China
| | - Xue-Sheng Li
- Department of Radiology, Key Laboratory of Obstetric & Gynecologic and Pediatric Diseases and Birth Defects of Ministry of Education, West China Second University Hospital, Sichuan University, Chengdu, China
| | - Chuan Fu
- Department of Radiology, Key Laboratory of Obstetric & Gynecologic and Pediatric Diseases and Birth Defects of Ministry of Education, West China Second University Hospital, Sichuan University, Chengdu, China
| | - Xin-Mao Ma
- Department of Radiology, Key Laboratory of Obstetric & Gynecologic and Pediatric Diseases and Birth Defects of Ministry of Education, West China Second University Hospital, Sichuan University, Chengdu, China
| | - Xi Liu
- Key Laboratory of Carcinogenesis and Translational Research (Ministry of Education), Department of Radiology, Peking University Cancer Hospital & Institute, Beijing, China
| | - Ru-Tie Yin
- Department of Gynecology, Key Laboratory of Birth Defects and Related Diseases of Women and Children of Ministry of Education, West China Second University Hospital, Sichuan University, Chengdu, China
| | - Zhi-Gang Yang
- Department of Radiology, West China Hospital, Sichuan University, Chengdu, China
| | - Ying-Kun Guo
- Department of Radiology, Key Laboratory of Obstetric & Gynecologic and Pediatric Diseases and Birth Defects of Ministry of Education, West China Second University Hospital, Sichuan University, Chengdu, China
- *Correspondence: Ying-Kun Guo,
| |
Collapse
|
11
|
Muscogiuri G, Guaricci AI, Soldato N, Cau R, Saba L, Siena P, Tarsitano MG, Giannetta E, Sala D, Sganzerla P, Gatti M, Faletti R, Senatieri A, Chierchia G, Pontone G, Marra P, Rabbat MG, Sironi S. Multimodality Imaging of Sudden Cardiac Death and Acute Complications in Acute Coronary Syndrome. J Clin Med 2022; 11:jcm11195663. [PMID: 36233531 PMCID: PMC9573273 DOI: 10.3390/jcm11195663] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2022] [Revised: 09/07/2022] [Accepted: 09/22/2022] [Indexed: 11/23/2022] Open
Abstract
Sudden cardiac death (SCD) is a potentially fatal event usually caused by a cardiac arrhythmia, which is often the result of coronary artery disease (CAD). Up to 80% of patients suffering from SCD have concomitant CAD. Arrhythmic complications may occur in patients with acute coronary syndrome (ACS) before admission, during revascularization procedures, and in hospital intensive care monitoring. In addition, about 20% of patients who survive cardiac arrest develop a transmural myocardial infarction (MI). Prevention of ACS can be evaluated in selected patients using cardiac computed tomography angiography (CCTA), while diagnosis can be depicted using electrocardiography (ECG), and complications can be evaluated with cardiac magnetic resonance (CMR) and echocardiography. CCTA can evaluate plaque, burden of disease, stenosis, and adverse plaque characteristics, in patients with chest pain. ECG and echocardiography are the first-line tests for ACS and are affordable and useful for diagnosis. CMR can evaluate function and the presence of complications after ACS, such as development of ventricular thrombus and presence of myocardial tissue characterization abnormalities that can be the substrate of ventricular arrhythmias.
Collapse
Affiliation(s)
- Giuseppe Muscogiuri
- Department of Radiology, Istituto Auxologico Italiano IRCCS, San Luca Hospital, Piazzale Brescia 20, 20149 Milan, Italy
- School of Medicine, University of Milano-Bicocca, 20126 Milan, Italy
- Correspondence:
| | - Andrea Igoren Guaricci
- University Cardiology Unit, Department of Interdisciplinary Medicine, University of Bari, 70121 Bari, Italy
| | - Nicola Soldato
- University Cardiology Unit, Department of Interdisciplinary Medicine, University of Bari, 70121 Bari, Italy
| | - Riccardo Cau
- Department of Radiology, Azienda Ospedaliero Universitaria (A.O.U.), di Cagliari-Polo di Monserrato, 09124 Cagliari, Italy
| | - Luca Saba
- Department of Radiology, Azienda Ospedaliero Universitaria (A.O.U.), di Cagliari-Polo di Monserrato, 09124 Cagliari, Italy
| | - Paola Siena
- University Cardiology Unit, Department of Interdisciplinary Medicine, University of Bari, 70121 Bari, Italy
| | - Maria Grazia Tarsitano
- Department of Medical and Surgical Science, University Magna Grecia, 88100 Catanzaro, Italy
| | - Elisa Giannetta
- Department of Experimental Medicine, Sapienza University of Rome, Viale Regina Elena, 324, 00161 Rome, Italy
| | - Davide Sala
- Department of Cardiac, Neurological and Metabolic Sciences, San Luca Hospital, Istituto Auxologico Italiano IRCCS, 20149 Milan, Italy
| | - Paolo Sganzerla
- Department of Cardiac, Neurological and Metabolic Sciences, San Luca Hospital, Istituto Auxologico Italiano IRCCS, 20149 Milan, Italy
| | - Marco Gatti
- Radiology Unit, Department of Surgical Sciences, University of Turin, 10124 Turin, Italy
| | - Riccardo Faletti
- Radiology Unit, Department of Surgical Sciences, University of Turin, 10124 Turin, Italy
| | - Alberto Senatieri
- School of Medicine, University of Milano-Bicocca, 20126 Milan, Italy
| | | | | | - Paolo Marra
- School of Medicine, University of Milano-Bicocca, 20126 Milan, Italy
- Department of Radiology, ASST Papa Giovanni XXIII, 24127 Bergamo, Italy
| | - Mark G. Rabbat
- Division of Cardiology, Loyola University of Chicago, Chicago, IL 60611, USA
- Edward Hines Jr. VA Hospital, Hines, IL 60141, USA
| | - Sandro Sironi
- School of Medicine, University of Milano-Bicocca, 20126 Milan, Italy
- Department of Radiology, ASST Papa Giovanni XXIII, 24127 Bergamo, Italy
| |
Collapse
|
12
|
Topriceanu CC, Pierce I, Moon JC, Captur G. T 2 and T 2⁎ mapping and weighted imaging in cardiac MRI. Magn Reson Imaging 2022; 93:15-32. [PMID: 35914654 DOI: 10.1016/j.mri.2022.07.012] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2022] [Revised: 07/20/2022] [Accepted: 07/20/2022] [Indexed: 11/29/2022]
Abstract
Cardiac imaging is progressing from simple imaging of heart structure and function to techniques visualizing and measuring underlying tissue biological changes that can potentially define disease and therapeutic options. These techniques exploit underlying tissue magnetic relaxation times: T1, T2 and T2*. Initial weighting methods showed myocardial heterogeneity, detecting regional disease. Current methods are now fully quantitative generating intuitive color maps that do not only expose regionality, but also diffuse changes - meaning that between-scan comparisons can be made to define disease (compared to normal) and to monitor interval change (compared to old scans). T1 is now familiar and used clinically in multiple scenarios, yet some technical challenges remain. T2 is elevated with increased tissue water - oedema. Should there also be blood troponin elevation, this oedema likely reflects inflammation, a key biological process. T2* falls in the presence of magnetic/paramagnetic materials - practically, this means it measures tissue iron, either after myocardial hemorrhage or in myocardial iron overload. This review discusses how T2 and T2⁎ imaging work (underlying physics, innovations, dependencies, performance), current and emerging use cases, quality assurance processes for global delivery and future research directions.
Collapse
Affiliation(s)
- Constantin-Cristian Topriceanu
- Cardiac MRI Unit, Barts Heart Centre, West Smithfield, London, UK; UCL Institute of Cardiovascular Science, University College London, London, UK; UCL MRC Unit for Lifelong Health and Ageing, University College London, London, UK
| | - Iain Pierce
- Cardiac MRI Unit, Barts Heart Centre, West Smithfield, London, UK; UCL Institute of Cardiovascular Science, University College London, London, UK
| | - James C Moon
- Cardiac MRI Unit, Barts Heart Centre, West Smithfield, London, UK; UCL Institute of Cardiovascular Science, University College London, London, UK
| | - Gabriella Captur
- Cardiac MRI Unit, Barts Heart Centre, West Smithfield, London, UK; UCL Institute of Cardiovascular Science, University College London, London, UK; UCL MRC Unit for Lifelong Health and Ageing, University College London, London, UK; The Royal Free Hospital, Centre for Inherited Heart Muscle Conditions, Cardiology Department, Pond Street, Hampstead, London, UK.
| |
Collapse
|
13
|
O'Brien AT, Gil KE, Varghese J, Simonetti OP, Zareba KM. T2 mapping in myocardial disease: a comprehensive review. J Cardiovasc Magn Reson 2022; 24:33. [PMID: 35659266 PMCID: PMC9167641 DOI: 10.1186/s12968-022-00866-0] [Citation(s) in RCA: 61] [Impact Index Per Article: 30.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2021] [Accepted: 04/27/2022] [Indexed: 12/20/2022] Open
Abstract
Cardiovascular magnetic resonance (CMR) is considered the gold standard imaging modality for myocardial tissue characterization. Elevated transverse relaxation time (T2) is specific for increased myocardial water content, increased free water, and is used as an index of myocardial edema. The strengths of quantitative T2 mapping lie in the accurate characterization of myocardial edema, and the early detection of reversible myocardial disease without the use of contrast agents or ionizing radiation. Quantitative T2 mapping overcomes the limitations of T2-weighted imaging for reliable assessment of diffuse myocardial edema and can be used to diagnose, stage, and monitor myocardial injury. Strong evidence supports the clinical use of T2 mapping in acute myocardial infarction, myocarditis, heart transplant rejection, and dilated cardiomyopathy. Accumulating data support the utility of T2 mapping for the assessment of other cardiomyopathies, rheumatologic conditions with cardiac involvement, and monitoring for cancer therapy-related cardiac injury. Importantly, elevated T2 relaxation time may be the first sign of myocardial injury in many diseases and oftentimes precedes symptoms, changes in ejection fraction, and irreversible myocardial remodeling. This comprehensive review discusses the technical considerations and clinical roles of myocardial T2 mapping with an emphasis on expanding the impact of this unique, noninvasive tissue parameter.
Collapse
Affiliation(s)
- Aaron T O'Brien
- Ohio University Heritage College of Osteopathic Medicine, Athens, Ohio, USA
| | - Katarzyna E Gil
- Department of Internal Medicine, Division of Cardiovascular Medicine, The Ohio State University Wexner Medical Center, Columbus, Ohio, USA
| | - Juliet Varghese
- Dorothy M. Davis Heart and Lung Research Institute, The Ohio State University, Columbus, Ohio, USA
| | - Orlando P Simonetti
- Department of Internal Medicine, Division of Cardiovascular Medicine, The Ohio State University Wexner Medical Center, Columbus, Ohio, USA
- Dorothy M. Davis Heart and Lung Research Institute, The Ohio State University, Columbus, Ohio, USA
- Department of Radiology, The Ohio State University, Columbus, Ohio, USA
| | - Karolina M Zareba
- Department of Internal Medicine, Division of Cardiovascular Medicine, The Ohio State University Wexner Medical Center, Columbus, Ohio, USA.
- Dorothy M. Davis Heart and Lung Research Institute, The Ohio State University, Columbus, Ohio, USA.
| |
Collapse
|
14
|
Saad JM, Ahmed AI, Han Y, Malahfji M, Aljizeeri A, Al-Mallah MH. Cardiovascular magnetic resonance for suspected cardiac amyloidosis: where are we now? Heart Fail Rev 2022; 27:1543-1548. [PMID: 35246774 DOI: 10.1007/s10741-022-10226-w] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 02/24/2022] [Indexed: 11/25/2022]
Abstract
Cardiac amyloidosis (CA) is an underdiagnosed form of restrictive cardiomyopathy leading to a rapid progression into heart failure. Evaluation of CA requires a multimodality approach making use of echocardiography, cardiac magnetic imaging (CMR), and nuclear imaging. With superior tissue characterization, high-resolution imaging, and precise cardiac assessment, CMR has emerged as a versatile tool in the workup of cardiac amyloidosis with a wide array of parameters both visual and quantitative. This includes late gadolinium enhancement patterns, T1/T2 mapping, and extracellular volume (ECV) measurement providing robust diagnostic accuracies, patient stratification, and prognostication. Recent advancements have introduced new measures able to identify early disease, track disease progression, and response to therapy positioning CMR as an instrumental imaging modality in the era of rising interest in CA screening and emerging effective therapies.
Collapse
Affiliation(s)
- Jean Michel Saad
- Houston Methodist Debakey Heart & Vascular Center, Houston, TX, USA
| | | | - Yushui Han
- Houston Methodist Debakey Heart & Vascular Center, Houston, TX, USA
| | - Maan Malahfji
- Houston Methodist Debakey Heart & Vascular Center, Houston, TX, USA
| | - Ahmed Aljizeeri
- King Abdulaziz Cardiac Center, Ministry of National Guard, Health Affairs, Riyadh, Saudi Arabia
- King Abdullah International Medical Research Center, Riyadh, Saudi Arabia
- King Saud Bin Abdulaziz University for Health Sciences, Riyadh, Saudi Arabia
| | - Mouaz H Al-Mallah
- Houston Methodist Debakey Heart & Vascular Center, Houston, TX, USA.
| |
Collapse
|
15
|
Abstract
Ischemic cardiomyopathy (ICM) is one of the most common causes of congestive heart failure. In patients with ICM, tissue characterization with cardiac magnetic resonance imaging (CMR) allows for evaluation of myocardial abnormalities in acute and chronic settings. Myocardial edema, microvascular obstruction (MVO), intracardiac thrombus, intramyocardial hemorrhage, and late gadolinium enhancement of the myocardium are easily depicted using standard CMR sequences. In the acute setting, tissue characterization is mainly focused on assessment of ventricular thrombus and MVO, which are associated with poor prognosis. Conversely, in chronic ICM, it is important to depict late gadolinium enhancement and myocardial ischemia using stress perfusion sequences. Overall, with CMR's ability to accurately characterize myocardial tissue in acute and chronic ICM, it represents a valuable diagnostic and prognostic imaging method for treatment planning. In particular, tissue characterization abnormalities in the acute setting can provide information regarding the patients that may develop major adverse cardiac event and show the presence of ventricular thrombus; in the chronic setting, evaluation of viable myocardium can be fundamental for planning myocardial revascularization. In this review, the main findings on tissue characterization are illustrated in acute and chronic settings using qualitative and quantitative tissue characterization.
Collapse
|
16
|
Emrich T, Bordonaro V, Schoepf UJ, Petrescu A, Young G, Halfmann M, Schoeler T, Decker J, Abidoye I, Emrich AL, Kreitner KF, Schmidt KH, Varga-Szemes A, Secinaro A. Right/Left Ventricular Blood Pool T2 Ratio as an Innovative Cardiac MRI Screening Tool for the Identification of Left-to-Right Shunts in Patients With Right Ventricular Disease. J Magn Reson Imaging 2021; 55:1452-1458. [PMID: 34374157 DOI: 10.1002/jmri.27881] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2021] [Revised: 07/27/2021] [Accepted: 07/28/2021] [Indexed: 11/08/2022] Open
Abstract
BACKGROUND Left-to-right (L-R) shunts are characterized by a pathological connection between high- and low-pressure systems, leading to a mixing of oxygen-rich blood with low oxygenated blood. They are typically diagnosed by phase-contrast cardiac magnetic resonance imaging (MRI) which requires extensive planning. T2 is sensitive to blood oxygenation and may be able to detect oxygenation differences between the left (LV) and right ventricles (RV) caused by L-R shunts. PURPOSE To test the feasibility of routine T2 mapping to detect L-R shunts. STUDY TYPE Retrospective. POPULATION Patients with known L-R shunts (N = 27), patients with RV disease without L-R shunts (N = 21), and healthy volunteers (HV; N = 52). FIELD STRENGTH/SEQUENCE 1.5 and 3 T/balanced steady-state free-precession (bSSFP) sequence (cine imaging), T2-prepared bSSFP sequence (T2 mapping), and velocity sensitized gradient echo sequence (phase-contrast MRI). ASSESSMENT Aortic (Qs) and pulmonary (Qp) flow was measured by phase-contrast imaging, and the Qp/Qs ratio was calculated as a measure of shunt severity. T2 maps were used to measure T2 in the RV and LV and the RV/LV T2 ratio was calculated. Cine imaging was used to calculate RV end-diastolic volume index (RV-EDVi). STATISTICAL TESTS Wilcoxon test, paired t-tests, Spearmen correlation coefficient, receiver operating curve (ROC) analysis. Significance level P < 0.05. RESULTS The Qp/Qs and T2 ratios in L-R shunt patients (1.84 ± 0.84 and 0.89 ± 0.07) were significantly higher compared to those in patients with RV disease (1.01 ± 0.03 and 0.72 ± 0.10) and in HV (1.04 ± 0.04 and 0.71 ± 0.09). A T2 ratio of >0.78 showed a sensitivity, specificity, and negative predictive value of 100%, 73.9%, and 100%, respectively, for the detection of L-R shunts. The T2 ratio was strongly correlated with the severity of the shunt (r = 0.83). DATA CONCLUSION RV/LV T2 ratio is an imaging biomarker that may be able to detect or rule-out L-R shunts. Such a diagnostic tool may prevent unnecessary phase-contrast acquisitions in cases with RV dilatation of unknown etiology. LEVEL OF EVIDENCE 3 TECHNICAL EFFICACY: Stage 2.
Collapse
Affiliation(s)
- Tilman Emrich
- Division of Cardiovascular Imaging, Department of Radiology and Radiological Science, Medical University of South Carolina, Charleston, South Carolina.,Department of Radiology, University Medical Center of the Johannes Gutenberg University Mainz, Mainz, Germany.,German Center for Cardiovascular Research (DZHK), Partner Site Rhine Main, Mainz, Germany
| | - Veronica Bordonaro
- Department of Imaging, Advanced Cardiovascular Imaging Unit, Bambino Gesù Children's Hospital, IRCCS, Rome, Italy
| | - U Joseph Schoepf
- Division of Cardiovascular Imaging, Department of Radiology and Radiological Science, Medical University of South Carolina, Charleston, South Carolina
| | - Aniela Petrescu
- Center for Cardiology, Cardiology I, University Medical Center Mainz, Mainz, Germany
| | - Gabrielle Young
- Division of Cardiovascular Imaging, Department of Radiology and Radiological Science, Medical University of South Carolina, Charleston, South Carolina
| | - Moritz Halfmann
- Department of Radiology, University Medical Center of the Johannes Gutenberg University Mainz, Mainz, Germany.,German Center for Cardiovascular Research (DZHK), Partner Site Rhine Main, Mainz, Germany
| | - Theresia Schoeler
- Department of Radiology, University Medical Center of the Johannes Gutenberg University Mainz, Mainz, Germany
| | - Josua Decker
- Division of Cardiovascular Imaging, Department of Radiology and Radiological Science, Medical University of South Carolina, Charleston, South Carolina.,Department of Diagnostic and Interventional Radiology, Universitätsklinikum Augsburg, Augsburg, Germany
| | - Ibukun Abidoye
- Department of Radiology, University Medical Center of the Johannes Gutenberg University Mainz, Mainz, Germany.,Department of Radiology, Afe Babalola University Multisystem Hospital, Ado-Ekiti, Nigeria
| | - Anna Lena Emrich
- Department of Cardiothoracic and Vascular Surgery, University Medical Center of the Johannes Gutenberg University Mainz, Mainz, Germany.,Division of Cardiothoracic Surgery, Medical University of South Carolina, Charleston, South Carolina, USA
| | - Karl-Friedrich Kreitner
- Department of Radiology, University Medical Center of the Johannes Gutenberg University Mainz, Mainz, Germany
| | - Kai Helge Schmidt
- Center for Cardiology, Cardiology I, University Medical Center Mainz, Mainz, Germany
| | - Akos Varga-Szemes
- Division of Cardiovascular Imaging, Department of Radiology and Radiological Science, Medical University of South Carolina, Charleston, South Carolina
| | - Aurelio Secinaro
- Department of Imaging, Advanced Cardiovascular Imaging Unit, Bambino Gesù Children's Hospital, IRCCS, Rome, Italy
| |
Collapse
|
17
|
Yang MX, Shi K, Xu HY, He Y, Ma M, Zhang L, Wang JL, Li XS, Fu C, Li H, Zhou B, Zhou XY, Yang Z, Guo YK, Yang ZG. Inflammation in Remote Myocardium and Left Ventricular Remodeling After Acute Myocardial Infarction: A Pilot Study Using T2 Mapping. J Magn Reson Imaging 2021; 55:555-564. [PMID: 34245075 DOI: 10.1002/jmri.27827] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2021] [Revised: 06/22/2021] [Accepted: 06/22/2021] [Indexed: 02/05/2023] Open
Abstract
BACKGROUND The pathophysiological changes in the remote myocardium after acute myocardial infarction (MI) remains less understood. PURPOSE To assess the inflammation in the remote myocardium post-MI and its association with left ventricular (LV) remodeling using T2 mapping. STUDY TYPE Prospective. ANIMAL MODEL AND SUBJECTS Twelve pigs at 3-day post-MI, 6 pigs at 3-month post-MI, 6 healthy pigs; 54 patients at 3-day and 3-month post-MI, 31 healthy volunteers; FIELD STRENGTH/SEQUENCE: A 3 T MRI/ steady-state free-precession sequence for T2 mapping (animals: 0, 30, and 55 msec; human: 0, 25, and 55 msec), phase-sensitive inversion recovery gradient echo for late gadolinium enhancement (LGE), balanced steady free-precession sequence for cine. ASSESSMENT Infarcted myocardium was defined on LGE, remote T2 was measured on T2 maps. LV remodeling was evaluated as LV end-diastolic volume change index between two scans using cine. CD68 staining was conducted to detect monocyte/macrophage. STATISTICAL TESTS Student-t test and one-way ANOVA were used to compare remote T2 with normal controls. The association of remote T2 with LV remodeling was assessed using linear regression. P values of <0.05 were used to denote statistical significance. RESULTS Compared with healthy pigs, remote T2 significantly increased from 3 days to 3 months post-MI (31.43 ± 0.67 vs. 33.53 ± 1.15 vs. 36.43 ± 1.07 msec). CD68 staining demonstrated the inflammation in remote myocardium post-MI but not in healthy pigs. Significant remote myocardial alterations in T2 were also observed in human group (40.51 ± 1.79 vs. 41.94 ± 1.14 vs. 42.52 ± 1.71 msec). In patients, the 3-month remote T2 (β = 0.432) and remote T2 variation between two scans (β = 0.554) were both independently associated with LV remodeling. CONCLUSION T2 mapping could characterize the abnormalities in the remote myocardium post-MI, which was potentially caused by the inflammatory response. Moreover, variations in remote T2 were associated with LV remodeling. EVIDENCE LEVEL 1 TECHNICAL EFFICACY: Stage 3.
Collapse
Affiliation(s)
- Meng-Xi Yang
- Department of Radiology, State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Sichuan, China
| | - Ke Shi
- Department of Radiology, West China Hospital, Sichuan University, Sichuan, China
| | - Hua-Yan Xu
- Department of Radiology, Key Laboratory of Obstetric & Gynecologic and Pediatric Diseases and Birth Defects of Ministry of Education, West China Second University Hospital, Sichuan University, Sichuan, China
| | - Yong He
- Department of Cardiology, West China Hospital, Sichuan University, Sichuan, China
| | - Min Ma
- Department of Cardiology, West China Hospital, Sichuan University, Sichuan, China.,Department of Cardiology, The Sixth People's Hospital of Chengdu, Sichuan, China
| | - Lu Zhang
- Department of Radiology, Key Laboratory of Obstetric & Gynecologic and Pediatric Diseases and Birth Defects of Ministry of Education, West China Second University Hospital, Sichuan University, Sichuan, China
| | | | - Xue-Sheng Li
- Department of Radiology, West China Second University Hospital, Sichuan University, Sichuan, China
| | - Chuan Fu
- Department of Radiology, West China Second University Hospital, Sichuan University, Sichuan, China
| | - Hong Li
- Key Laboratory of Obstetric & Gynecologic and Pediatric Diseases and Birth Defects of Ministry of Education, West China Second University Hospital, Sichuan University, Sichuan, China
| | - Bin Zhou
- Key Laboratory of Obstetric & Gynecologic and Pediatric Diseases and Birth Defects of Ministry of Education, West China Second University Hospital, Sichuan University, Sichuan, China
| | - Xiao-Yue Zhou
- MR Collaboration, Siemens Healthcare Ltd, Shanghai, China
| | - Zhi Yang
- Department of Radiology, Key Laboratory of Obstetric & Gynecologic and Pediatric Diseases and Birth Defects of Ministry of Education, West China Second University Hospital, Sichuan University, Sichuan, China.,Department of Radiology, Chengdu Fifth People's Hospital, Sichuan, China
| | - Ying-Kun Guo
- Department of Radiology, Key Laboratory of Obstetric & Gynecologic and Pediatric Diseases and Birth Defects of Ministry of Education, West China Second University Hospital, Sichuan University, Sichuan, China
| | - Zhi-Gang Yang
- Department of Radiology, State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Sichuan, China
| |
Collapse
|
18
|
Emrich T, Halfmann M, Schoepf UJ, Kreitner KF. CMR for myocardial characterization in ischemic heart disease: state-of-the-art and future developments. Eur Radiol Exp 2021; 5:14. [PMID: 33763757 PMCID: PMC7990980 DOI: 10.1186/s41747-021-00208-2] [Citation(s) in RCA: 28] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2020] [Accepted: 01/22/2021] [Indexed: 01/25/2023] Open
Abstract
Ischemic heart disease and its sequelae are one of the major contributors to morbidity and mortality worldwide. Over the last decades, technological developments have strengthened the role of noninvasive imaging for detection, risk stratification, and management of patients with ischemic heart disease. Cardiac magnetic resonance (CMR) imaging incorporates both functional and morphological characterization of the heart to determine presence, acuteness, and severity of ischemic heart disease by evaluating myocardial wall motion and function, the presence and extent of myocardial edema, ischemia, and scarring. Currently established clinical protocols have already demonstrated their diagnostic and prognostic value. Nevertheless, there are emerging imaging technologies that provide additional information based on advanced quantification of imaging biomarkers and improved diagnostic accuracy, therefore potentially allowing reduction or avoidance of contrast and/or stressor agents. The aim of this review is to summarize the current state of the art of CMR imaging for ischemic heart disease and to provide insights into promising future developments.
Collapse
Affiliation(s)
- Tilman Emrich
- Department of Diagnostic and Interventional Radiology, University Medical Center, Mainz; Langenbeckstraße 1, 55131, Mainz, Germany. .,German Center for Cardiovascular Research (DZHK), Partner Site Rhine Main, Mainz, Langenbeckstraße 1, 55131, Mainz, Germany. .,Department of Radiology and Radiological Science, Medical University of South Carolina, 25 Courtenay Drive, Charleston, SC, 29425, USA.
| | - Moritz Halfmann
- Department of Diagnostic and Interventional Radiology, University Medical Center, Mainz; Langenbeckstraße 1, 55131, Mainz, Germany.,German Center for Cardiovascular Research (DZHK), Partner Site Rhine Main, Mainz, Langenbeckstraße 1, 55131, Mainz, Germany
| | - U Joseph Schoepf
- Department of Radiology and Radiological Science, Medical University of South Carolina, 25 Courtenay Drive, Charleston, SC, 29425, USA
| | - Karl-Friedrich Kreitner
- Department of Diagnostic and Interventional Radiology, University Medical Center, Mainz; Langenbeckstraße 1, 55131, Mainz, Germany
| |
Collapse
|
19
|
Pontone G, Di Cesare E, Castelletti S, De Cobelli F, De Lazzari M, Esposito A, Focardi M, Di Renzi P, Indolfi C, Lanzillo C, Lovato L, Maestrini V, Mercuro G, Natale L, Mantini C, Polizzi A, Rabbat M, Secchi F, Secinaro A, Aquaro GD, Barison A, Francone M. Appropriate use criteria for cardiovascular magnetic resonance imaging (CMR): SIC-SIRM position paper part 1 (ischemic and congenital heart diseases, cardio-oncology, cardiac masses and heart transplant). LA RADIOLOGIA MEDICA 2021; 126:365-379. [PMID: 33629237 PMCID: PMC7937599 DOI: 10.1007/s11547-020-01332-6] [Citation(s) in RCA: 23] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/05/2020] [Accepted: 12/22/2020] [Indexed: 01/02/2023]
Abstract
Cardiac magnetic resonance (CMR) has emerged as new mainstream technique for the evaluation of patients with cardiac diseases, providing unique information to support clinical decision-making. This document has been developed by a joined group of experts of the Italian Society of Cardiology and Italian society of Radiology and aims to produce an updated consensus statement about the current state of technology and clinical applications of CMR. The writing committee consisted of members and experts of both societies who worked jointly to develop a more integrated approach in the field of cardiac radiology. Part 1 of the document will cover ischemic heart disease, congenital heart disease, cardio-oncology, cardiac masses and heart transplant.
Collapse
Affiliation(s)
| | - Ernesto Di Cesare
- Department of Life, Healt and Enviromental Sciences, University of L'Aquila, L'Aquila, Italy
| | - Silvia Castelletti
- Center for the Cardiac Arrhythmias of Genetic Origin, Istituto Auxologico Italiano IRCCS, Milan, Italy
| | - Francesco De Cobelli
- School of Medicine, Vita-Salute San Raffaele University, Milan, Italy
- Department of Radiology, IRCCS San Raffaele Scientific Institute, Milan, Italy
| | - Manuel De Lazzari
- Department of Cardio-Thoraco-Vascular Sciences and Public Health, University of Padua, Padua, Italy
| | - Antonio Esposito
- Center for the Cardiac Arrhythmias of Genetic Origin, Istituto Auxologico Italiano IRCCS, Milan, Italy
| | - Marta Focardi
- Department of Cardiology, Azienda Ospedaliera Universitaria Senese, Siena, Italy
| | - Paolo Di Renzi
- U.O.C. Radiologia, Ospedale "San Giovanni Calibita" Fatebenefratelli - Isola Tiberina, Rome, Italy
| | - Ciro Indolfi
- Division of Cardiology, University Magna Graecia, Italy and Mediterranea Cardiocentro, Naples, Italy
| | | | - Luigi Lovato
- Cardiovascular Radiology Unit, Department of Imaging S.Orsola, Malpighi University Hospital, Bologna, Italy
| | - Viviana Maestrini
- Department of Clinical Internal, Anesthesiologic and Cardiovascular Sciences, Sapienza University of Rome, Rome, Italy
| | - Giuseppe Mercuro
- Department of Medical Sciences and Public Health, University of Cagliari, Cagliari, Italy
| | - Luigi Natale
- Department of Diagnostic Imaging, Oncological Radiotherapy, and Hematology - Diagnostic Imaging Area, Rome, Italy
- Fondazione Policlinico Universitario Agostino Gemelli IRCCS, Rome, Italy
- Universita ` Cattolica del Sacro Cuore, Rome, Italy
| | - Cesare Mantini
- Department of Neuroscience, Imaging and Clinical Sciences, "G. d'Annunzio" University, Chieti, Italy
| | - Aldo Polizzi
- Unit of Radiodiagnostics II, University Hospital "Policlinico-Vittorio Emanuele", Catania, Italy
| | - Mark Rabbat
- Loyola University of Chicago, Chicago, USA
- Edward Hines Jr. VA Hospital, Hines, IL, USA
| | - Francesco Secchi
- Department of Biomedical Sciences for Health, Università degli Studi di Milano, Milan, Italy
- Unit of Radiology, IRCCS Policlinico San Donato, San Donato Milanese, Italy
| | - Aurelio Secinaro
- Advanced Cardiovascular Imaging Unit, Department of Imaging, Bambino Gesù Children's Hospital, Rome, Italy
| | | | | | - Marco Francone
- Department of Radiological, Oncological and Pathological Sciences, Sapienza University of Rome, Rome, Italy.
- Department of Biomedical Sciences, Humanitas University, Via Rita Levi Montalcini 4, 20090, Milan, Pieve Emanuele, Italy.
| |
Collapse
|
20
|
Shi K, Yang MX, Xia CC, Peng WL, Zhang K, Li ZL, Guo YK, Yang ZG. Noninvasive oxygenation assessment after acute myocardial infarction with breathing maneuvers-induced oxygenation-sensitive magnetic resonance imaging. J Magn Reson Imaging 2021; 54:284-289. [PMID: 33433045 DOI: 10.1002/jmri.27509] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2020] [Revised: 12/29/2020] [Accepted: 12/30/2020] [Indexed: 02/05/2023] Open
Abstract
The safety profiles when performing stress oxygenation-sensitive magnetic resonance imaging (OS-MRI) have raised concerns in clinical practice. Adenosine infusion can cause side effects such as chest pain, dyspnea, arrhythmia, and even cardiac death. The aim of this study was to investigate the feasibility of breathing maneuvers-induced OS-MRI in acute myocardial infarction (MI). This was a prospective study, which included 14 healthy rabbits and nine MI rabbit models. This study used 3 T MRI/modified Look-Locker inversion recovery sequence for native T1 mapping, balanced steady-state free precession sequence for OS imaging, and phase-sensitive inversion recovery sequence for late gadolinium enhancement. The changes in myocardial oxygenation (ΔSI) were assessed under two breathing maneuvers protocols in healthy rabbits: a series of extended breath-holding (BH), and a combined maneuver of hyperventilation followed by the extended BH (HVBH). Subsequently, OS-MRI with HVBH in acute MI rabbits was performed, and the ΔSI was compared with that of adenosine stress protocol. Student's t-test, Wilcoxon rank test, and Friedman test were used to compare ΔSI in different subgroups. Pearson and Spearman correlation was used to obtain the association of ΔSI between breathing maneuvers and adenosine stress. Bland-Altman analysis was used to assess the bias of ΔSI between HVBH and adenosine stress. In healthy rabbits, BH maneuvers from 30 to 50 s induced significant increase in SI compared with the baseline (all p < 0.05). By contrast, hyperventilation for 60 s followed by 10 s-BH (HVBH 10 s) exhibited a comparable ΔSI to that of stress test (p = 0.07). In acute MI rabbits, HVBH 10 s-induced ΔSIs among infarcted, salvaged, and the remote myocardial area were no less effectiveness than adenosine stress when performing OS-MRI (r = 0.84; p < 0.05). Combined breathing maneuvers with OS-MRI have the potential to be used as a nonpharmacological alternative for assessing myocardial oxygenation in patients with acute MI. LEVEL OF EVIDENCE: 2 TECHNICAL EFFICACY STAGE: 2.
Collapse
Affiliation(s)
- Ke Shi
- Department of Radiology, West China Hospital, Sichuan University, Chengdu, Sichuan, 610041, China
| | - Meng-Xi Yang
- Department of Radiology, West China Hospital, Sichuan University, Chengdu, Sichuan, 610041, China.,Department of Radiology, State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, Sichuan University, Chengdu, Sichuan, 610041, China
| | - Chun-Chao Xia
- Department of Radiology, West China Hospital, Sichuan University, Chengdu, Sichuan, 610041, China
| | - Wan-Lin Peng
- Department of Radiology, West China Hospital, Sichuan University, Chengdu, Sichuan, 610041, China
| | - Kun Zhang
- Department of Radiology, Key Laboratory of Obstetric and Gynecologic and Pediatric Diseases and Birth Defects of Ministry of Education, West China Second University Hospital, Sichuan University, Chengdu, Sichuan, 610041, China
| | - Zhen-Lin Li
- Department of Radiology, West China Hospital, Sichuan University, Chengdu, Sichuan, 610041, China
| | - Ying-Kun Guo
- Department of Radiology, Key Laboratory of Obstetric and Gynecologic and Pediatric Diseases and Birth Defects of Ministry of Education, West China Second University Hospital, Sichuan University, Chengdu, Sichuan, 610041, China
| | - Zhi-Gang Yang
- Department of Radiology, West China Hospital, Sichuan University, Chengdu, Sichuan, 610041, China
| |
Collapse
|
21
|
Ma Q, Ma Y, Yu T, Sun Z, Hou Y. Radiomics of Non-Contrast-Enhanced T1 Mapping: Diagnostic and Predictive Performance for Myocardial Injury in Acute ST-Segment-Elevation Myocardial Infarction. Korean J Radiol 2020; 22:535-546. [PMID: 33289360 DOI: 10.3348/kjr.2019.0969] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2019] [Revised: 06/15/2020] [Accepted: 08/16/2020] [Indexed: 12/16/2022] Open
Abstract
OBJECTIVE To evaluate the feasibility of texture analysis on non-contrast-enhanced T1 maps of cardiac magnetic resonance (CMR) imaging for the diagnosis of myocardial injury in acute myocardial infarction (MI). MATERIALS AND METHODS This study included 68 patients (57 males and 11 females; mean age, 55.7 ± 10.5 years) with acute ST-segment-elevation MI who had undergone 3T CMR after a percutaneous coronary intervention. Forty patients of them also underwent a 6-month follow-up CMR. The CMR protocol included T2-weighted imaging, T1 mapping, rest first-pass perfusion, and late gadolinium enhancement. Radiomics features were extracted from the T1 maps using open-source software. Radiomics signatures were constructed with the selected strongest features to evaluate the myocardial injury severity and predict the recovery of left ventricular (LV) longitudinal systolic myocardial contractility. RESULTS A total of 1088 segments of the acute CMR images were analyzed; 103 (9.5%) segments showed microvascular obstruction (MVO), and 557 (51.2%) segments showed MI. A total of 640 segments were included in the 6-month follow-up analysis, of which 160 (25.0%) segments showed favorable recovery of LV longitudinal systolic myocardial contractility. Combined radiomics signature and T1 values resulted in a higher diagnostic performance for MVO compared to T1 values alone (area under the curve [AUC] in the training set; 0.88, 0.72, p = 0.031: AUC in the test set; 0.86, 0.71, p002). Combined radiomics signature and T1 values also provided a higher predictive value for LV longitudinal systolic myocardial contractility recovery compared to T1 values (AUC in the training set; 0.76, 0.55, p < 0.001: AUC in the test set; 0.77, 0.60, p < 0.001). CONCLUSION The combination of radiomics of non-contrast-enhanced T1 mapping and T1 values could provide higher diagnostic accuracy for MVO. Radiomics also provides incremental value in the prediction of LV longitudinal systolic myocardial contractility at six months.
Collapse
Affiliation(s)
- Quanmei Ma
- Department of Radiology, Shengjing Hospital of China Medical University, Shenyang, China
| | - Yue Ma
- Department of Radiology, Shengjing Hospital of China Medical University, Shenyang, China
| | - Tongtong Yu
- Department of Cardiology, Shengjing Hospital of China Medical University, Shenyang, China
| | - Zhaoqing Sun
- Department of Cardiology, Shengjing Hospital of China Medical University, Shenyang, China
| | - Yang Hou
- Department of Radiology, Shengjing Hospital of China Medical University, Shenyang, China.
| |
Collapse
|
22
|
Demirkiran A, Everaars H, Amier RP, Beijnink C, Bom MJ, Götte MJW, van Loon RB, Selder JL, van Rossum AC, Nijveldt R. Cardiovascular magnetic resonance techniques for tissue characterization after acute myocardial injury. Eur Heart J Cardiovasc Imaging 2020; 20:723-734. [PMID: 31131401 DOI: 10.1093/ehjci/jez094] [Citation(s) in RCA: 37] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/17/2019] [Revised: 03/19/2019] [Accepted: 04/26/2019] [Indexed: 12/22/2022] Open
Abstract
The annual incidence of hospital admission for acute myocardial infarction lies between 90 and 312 per 100 000 inhabitants in Europe. Despite advances in patient care 1 year mortality after ST-segment elevation myocardial infarction (STEMI) remains around 10%. Cardiovascular magnetic resonance imaging (CMR) has emerged as a robust imaging modality for assessing patients after acute myocardial injury. In addition to accurate assessment of left ventricular ejection fraction and volumes, CMR offers the unique ability of visualization of myocardial injury through a variety of imaging techniques such as late gadolinium enhancement and T2-weighted imaging. Furthermore, new parametric mapping techniques allow accurate quantification of myocardial injury and are currently being exploited in large trials aiming to augment risk management and treatment of STEMI patients. Of interest, CMR enables the detection of microvascular injury (MVI) which occurs in approximately 40% of STEMI patients and is a major independent predictor of mortality and heart failure. In this article, we review traditional and novel CMR techniques used for myocardial tissue characterization after acute myocardial injury, including the detection and quantification of MVI. Moreover, we discuss clinical scenarios of acute myocardial injury in which the tissue characterization techniques can be applied and we provide proposed imaging protocols tailored to each scenario.
Collapse
Affiliation(s)
- Ahmet Demirkiran
- Department of Cardiology, Amsterdam University Medical Center - Vrije Universiteit Amsterdam, Amsterdam Cardiovascular Sciences, De Boelelaan 1117, HV, Amsterdam, the Netherlands
| | - Henk Everaars
- Department of Cardiology, Amsterdam University Medical Center - Vrije Universiteit Amsterdam, Amsterdam Cardiovascular Sciences, De Boelelaan 1117, HV, Amsterdam, the Netherlands
| | - Raquel P Amier
- Department of Cardiology, Amsterdam University Medical Center - Vrije Universiteit Amsterdam, Amsterdam Cardiovascular Sciences, De Boelelaan 1117, HV, Amsterdam, the Netherlands
| | - Casper Beijnink
- Department of Cardiology, Radboudumc, Geert Grooteplein Zuid 10, GA, Nijmegen, the Netherlands
| | - Michiel J Bom
- Department of Cardiology, Amsterdam University Medical Center - Vrije Universiteit Amsterdam, Amsterdam Cardiovascular Sciences, De Boelelaan 1117, HV, Amsterdam, the Netherlands
| | - Marco J W Götte
- Department of Cardiology, Amsterdam University Medical Center - Vrije Universiteit Amsterdam, Amsterdam Cardiovascular Sciences, De Boelelaan 1117, HV, Amsterdam, the Netherlands
| | - Ramon B van Loon
- Department of Cardiology, Amsterdam University Medical Center - Vrije Universiteit Amsterdam, Amsterdam Cardiovascular Sciences, De Boelelaan 1117, HV, Amsterdam, the Netherlands
| | - Jasper L Selder
- Department of Cardiology, Amsterdam University Medical Center - Vrije Universiteit Amsterdam, Amsterdam Cardiovascular Sciences, De Boelelaan 1117, HV, Amsterdam, the Netherlands
| | - Albert C van Rossum
- Department of Cardiology, Amsterdam University Medical Center - Vrije Universiteit Amsterdam, Amsterdam Cardiovascular Sciences, De Boelelaan 1117, HV, Amsterdam, the Netherlands
| | - Robin Nijveldt
- Department of Cardiology, Amsterdam University Medical Center - Vrije Universiteit Amsterdam, Amsterdam Cardiovascular Sciences, De Boelelaan 1117, HV, Amsterdam, the Netherlands.,Department of Cardiology, Radboudumc, Geert Grooteplein Zuid 10, GA, Nijmegen, the Netherlands
| |
Collapse
|
23
|
Wetscherek M, Rutschke W, Frank C, Stehning C, Lurz P, Grothoff M, Thiele H, Gutberlet M, Lücke C. High inter- and intra-observer agreement in mapping sequences compared to classical Lake Louise Criteria assessment of myocarditis by inexperienced observers. Clin Radiol 2020; 75:796.e17-796.e26. [DOI: 10.1016/j.crad.2020.05.013] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2019] [Accepted: 05/08/2020] [Indexed: 11/24/2022]
|
24
|
Abstract
Cardiac magnetic resonance (CMR) imaging is an effective method for noninvasively imaging the heart which in the last two decades impressively enhanced spatial and temporal resolution and imaging speed, broadening its spectrum of applications in cardiovascular disease. CMR imaging techniques are designed to noninvasively assess cardiovascular morphology, ventricular function, myocardial perfusion, tissue characterization, flow quantification and coronary artery disease. These intrinsic features yield CMR suitable for diagnosis, follow-up and longitudinal monitoring after treatment of cardiovascular diseases. The aim of this paper is to review the technical basis of CMR, from cardiac imaging planes to cardiac imaging sequences.
Collapse
|
25
|
Pavon AG, Georgiopoulos G, Vincenti G, Muller O, Monney P, Berchier G, Cirillo C, Eeckhout E, Schwitter J, Masci PG. Head-to-head comparison of multiple cardiovascular magnetic resonance techniques for the detection and quantification of intramyocardial haemorrhage in patients with ST-elevation myocardial infarction. Eur Radiol 2020; 31:1245-1256. [PMID: 32929640 PMCID: PMC7880961 DOI: 10.1007/s00330-020-07254-1] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2020] [Revised: 07/27/2020] [Accepted: 08/31/2020] [Indexed: 11/25/2022]
Abstract
Objectives T2*-weighted (T2*w) is deemed as a reference standard for post-infarction intramyocardial haemorrhage (IMH). However, high proportion of T2* images is affected by off-resonance artefacts hampering image interpretation. Diagnostic accuracy and precision of alternative techniques for IMH diagnosis and quantification have been seldomly investigated. Methods and results Between April 2016 and May 2017, 50 ST-segment elevation myocardial infarction patients (66% male, 57 ± 17 years) and 15 healthy controls (60% male, 58 ± 13) were consecutively enrolled. Subjects underwent head-to-head comparison of single mid-infarct slice acquired on black-blood T2-weighted short-TI-inversion recovery (T2w-STIR), bright-blood T2prep-steady-state-free precession (T2prep-SSFP), and T2/T1 maps for IMH diagnosis and quantification against T2*w. All images were graded for quality (grade 1: very poor; grade 4: excellent) and diagnostic confidence (Likert scale, 1: very unsure and 5: highly confident). Reduced relaxation time/hypointense region (hypocore) embedded in infarct-related oedema on T2 map, T1 map, and T2w-STIR had the best overall diagnostic accuracy (per-subject: 91%, 86%, and 86%, respectively; per segment: 95%, 93%, and 93%, respectively). By mixed-effects analysis, image quality, and diagnostic confidence were higher for T2 map and T1 maps than T2*w (p < 0.05 for both scores). For IMH quantification, hypocore on T2 map and T1 map strongly correlated (Spearman’s r > 0.7, p < 0.001 for both) with IMH extent on T2*w and presented an overall excellent agreement on Bland-Altman analysis. By linear mixed model analysis, absolute hypocore size did not differ among T1-, T2 map, and T2*w. T2/T1 maps had the best intra- and inter-observer reproducibility among CMR techniques. Conclusion Hypocore on T2/T1 map is the best alternative technique to T2*w for diagnosing and quantifying IMH in post-STEMI patients. Key Point • Mapping techniques are the best alternatives for diagnosing post-infarction intramyocardial haemorrhage. • Mapping techniques are valuable tools for imaging intramyocardial haemorrhage. Electronic supplementary material The online version of this article (10.1007/s00330-020-07254-1) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Anna Giulia Pavon
- Centre of Cardiac Magnetic Resonance - Lausanne University Hospital, Lausanne, Switzerland
- Cardiology Division, Heart & Vessels Department, Lausanne University Hospital, Lausanne, Switzerland
- Cardio-Thoracic-Vascular Department, San Raffaele Scientific Institute, Milan, Italy
| | - Georgios Georgiopoulos
- School of Biomedical Engineering and Imaging Sciences, King's College London, St Thomas' Hospital, Westminster Bridge Road, London, SE1 7EH, UK.
| | - Gabriella Vincenti
- Centre of Cardiac Magnetic Resonance - Lausanne University Hospital, Lausanne, Switzerland
- Cardiology Division, Heart & Vessels Department, Lausanne University Hospital, Lausanne, Switzerland
| | - Olivier Muller
- Cardiology Division, Heart & Vessels Department, Lausanne University Hospital, Lausanne, Switzerland
| | - Pierre Monney
- Centre of Cardiac Magnetic Resonance - Lausanne University Hospital, Lausanne, Switzerland
- Cardiology Division, Heart & Vessels Department, Lausanne University Hospital, Lausanne, Switzerland
- Faculty Biology and Medicine, Lausanne University, Lausanne, Switzerland
| | - Gregoire Berchier
- Radiology Department, Lausanne University Hospital, Lausanne, Switzerland
| | - Chiara Cirillo
- School of Biomedical Engineering and Imaging Sciences, King's College London, St Thomas' Hospital, Westminster Bridge Road, London, SE1 7EH, UK
| | - Eric Eeckhout
- Cardiology Division, Heart & Vessels Department, Lausanne University Hospital, Lausanne, Switzerland
| | - Juerg Schwitter
- Centre of Cardiac Magnetic Resonance - Lausanne University Hospital, Lausanne, Switzerland
- Cardiology Division, Heart & Vessels Department, Lausanne University Hospital, Lausanne, Switzerland
- Faculty Biology and Medicine, Lausanne University, Lausanne, Switzerland
| | - Pier Giorgio Masci
- Centre of Cardiac Magnetic Resonance - Lausanne University Hospital, Lausanne, Switzerland
- Cardiology Division, Heart & Vessels Department, Lausanne University Hospital, Lausanne, Switzerland
- School of Biomedical Engineering and Imaging Sciences, King's College London, St Thomas' Hospital, Westminster Bridge Road, London, SE1 7EH, UK
| |
Collapse
|
26
|
An DA, Chen BH, He J, Suo ST, Fahmy LM, Han TT, Hu J, Xu JR, Wu LM, Pu J. Diagnostic Utility of the Simplified Perfusion Fraction for Identifying Myocardial Injury in Patients With Reperfused ST-segment Elevation Myocardial Infarction. J Magn Reson Imaging 2020; 53:516-526. [PMID: 32841481 DOI: 10.1002/jmri.27310] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2020] [Revised: 07/17/2020] [Accepted: 07/18/2020] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND Acute myocardial infarction (AMI) is a disease with high morbidity and mortality worldwide and the evaluation of myocardial injury and perfusion status following myocardial ischemia and reperfusion is of clinical value. PURPOSE To assess the diagnostic utility of simplified perfusion fraction (SPF) in differentiating salvage and infarcted myocardium and its predictive value for left ventricular remodeling in patients with reperfusion ST-segment elevation myocardial infarction (STEMI). STUDY TYPE Prospective. POPULATION Forty-one reperfused STEMI patients and 20 healthy volunteers. FIELD STRENGTH/SEQUENCE 3.0T MRI. The MR examination included cine, T2 -short tau inversion recovery (T2 -STIR), first pass perfusiong (FPP),phase sensitive inversion recovery (PSIR), and diffusion-weighted imaging (DWI). ASSESSMENT SPF values among different myocardium regions (infarcted, salvaged, remote, and MVO) and stages of reperfused STEMI patients as well as normal controls were measured. The diagnostic utility of SPF values in differentiating salvaged and infarcted myocardium was assessed. STATISTICAL ANALYSIS Independent t-test and the Mann-Whitney U-test. Logistic regression. RESULTS SPF values in healthy controls were not significantly different than SPF values in the remote myocardium of patients (40.09 ± 1.47% vs. 40.28 ± 1.93%, P = 0.698). In reperfusion STEMI patients, SPF values were lower in infarcted myocardium compared to remote and salvaged myocardium (32.15 ± 2.36% vs. 40.28 ± 1.93%, P < 0.001; 32.15 ± 2.36% vs. 36.68 ± 2.71%, P < 0.001). SPF values of infarcted myocardium showed a rebound increase from acute to convalescent stages (32.15 ± 2.36% vs. 34.69 ± 3.69%, P < 0.001). When differentiating infarcted and salvaged myocardium, SPF values demonstrated an area under the curve (AUC) of 0.89 (sensitivity 85.4%, specificity 80.5%, cutoff 34.42%). Lower SPF values were associated with lower odds ratio (OR = 0.304) of left ventricular remodeling after adjusting for potential confounders with a confidence interval (CI) of 0.129-0.717, P = 0.007. DATA CONCLUSION SPF might be able to differentiate salvaged and infarcted myocardium and is a strong predictor of left ventricular remodeling in reperfused STEMI patients. Level of Evidence 2 Technical Efficacy Stage 2.
Collapse
Affiliation(s)
- Dong-Aolei An
- Department of Radiology, Ren Ji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, China
| | - Bing-Hua Chen
- Department of Radiology, Ren Ji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, China
| | - Jie He
- Department of Cardiology, Ren Ji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, China
| | - Shi-Teng Suo
- Department of Radiology, Ren Ji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, China
| | - Lara M Fahmy
- Department of Psychiatry and Behavioral Neurosciences, Wayne State University, Detroit, Michigan, USA
| | - Tong-Tong Han
- Circle Cardiovascular Imaging, Calgary, Alberta, Canada
| | - Jiani Hu
- Department of Radiology, Wayne State University, Detroit, Michigan, USA
| | - Jian-Rong Xu
- Department of Radiology, Ren Ji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, China
| | - Lian-Ming Wu
- Department of Radiology, Ren Ji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, China
| | - Jun Pu
- Department of Cardiology, Ren Ji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, China
| |
Collapse
|
27
|
Hassan S, Barrett CJ, Crossman DJ. Imaging tools for assessment of myocardial fibrosis in humans: the need for greater detail. Biophys Rev 2020; 12:969-987. [PMID: 32705483 PMCID: PMC7429810 DOI: 10.1007/s12551-020-00738-w] [Citation(s) in RCA: 23] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2020] [Accepted: 07/08/2020] [Indexed: 02/06/2023] Open
Abstract
Myocardial fibrosis is recognized as a key pathological process in the development of cardiac disease and a target for future therapeutics. Despite this recognition, the assessment of fibrosis is not a part of routine clinical practice. This is primarily due to the difficulties in obtaining an accurate assessment of fibrosis non-invasively. Moreover, there is a clear discrepancy between the understandings of myocardial fibrosis clinically where fibrosis is predominately studied with comparatively low-resolution medical imaging technologies like MRI compared with the basic science laboratories where fibrosis can be visualized invasively with high resolution using molecularly specific fluorescence microscopes at the microscopic and nanoscopic scales. In this article, we will first review current medical imaging technologies for assessing fibrosis including echo and MRI. We will then highlight the need for greater microscopic and nanoscopic analysis of human tissue and how this can be addressed through greater utilization of human tissue available through endomyocardial biopsies and cardiac surgeries. We will then describe the relatively new field of molecular imaging that promises to translate research findings to the clinical practice by non-invasively monitoring the molecular signature of fibrosis in patients.
Collapse
Affiliation(s)
- Summer Hassan
- Department of Physiology, University of Auckland, Auckland, New Zealand
- Auckland City Hospital, Auckland District Health Board, Auckland, New Zealand
| | - Carolyn J Barrett
- Department of Physiology, University of Auckland, Auckland, New Zealand
| | - David J Crossman
- Department of Physiology, University of Auckland, Auckland, New Zealand.
| |
Collapse
|
28
|
Fahlenkamp UL, Ziegeler K, Adams LC, Böker SM, Engel G, Makowski MR. Native T1 mapping for assessment of the perilesional zone in metastases and benign lesions of the liver. Sci Rep 2020; 10:12889. [PMID: 32733016 PMCID: PMC7393097 DOI: 10.1038/s41598-020-69819-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2020] [Accepted: 07/20/2020] [Indexed: 11/21/2022] Open
Abstract
Adjacent to hepatic metastases, liver parenchyma is often histopathologically altered even if its visual appearance on native magnetic resonance (MR) images is blunt. Yet, relaxation properties in MR imaging may show structural changes prior to visual alteration, and therefore, the aim of this study was to investigate whether T1 relaxation times in the perilesional zone differ between metastases and benign lesions. A total of 113 patients referred for MRI were included prospectively. Images were assessed for metastases, solid benign lesions and cysts, and regions-of-interest were drawn on T1 maps including the focal lesion and a close (inner perilesional zone = IPZ) and a larger perilesional zone (outer perilesional zone = OPZ). Simple ratios between these zones, as well as a gradient ratio between the IPZ and the entire perilesional zone (EPZ) were calculated. Within the collective, 44 patients had lesions of one or two entities. For metastases, the simple ratio between IPZ and OPZ as well as the mean EPZ gradient was significantly higher than for both solid benign lesions and cysts. Lesion size was not a significant covariate. We conclude, that native T1 properties of the perilesional zones differ significantly between malignant and both solid and cystic benign lesions.
Collapse
Affiliation(s)
- Ute Lina Fahlenkamp
- Department of Radiology, Charité Universitätsmedizin Berlin, Charitéplatz 1, 10117, Berlin, Germany.
| | - Katharina Ziegeler
- Department of Radiology, Charité Universitätsmedizin Berlin, Charitéplatz 1, 10117, Berlin, Germany
| | - Lisa Christine Adams
- Department of Radiology, Charité Universitätsmedizin Berlin, Charitéplatz 1, 10117, Berlin, Germany
| | - Sarah Maria Böker
- Department of Radiology, Charité Universitätsmedizin Berlin, Charitéplatz 1, 10117, Berlin, Germany
| | - Günther Engel
- Department of Radiology, Charité Universitätsmedizin Berlin, Charitéplatz 1, 10117, Berlin, Germany
| | - Marcus Richard Makowski
- Department of Radiology, Charité Universitätsmedizin Berlin, Charitéplatz 1, 10117, Berlin, Germany
- Department of Radiology, Klinikum rechts der Isar der TU München, Ismaninger Straße 22, 81675, Munich, Germany
| |
Collapse
|
29
|
Chen BH, An DA, He J, Xu JR, Wu LM, Pu J. Myocardial Extracellular Volume Fraction Allows Differentiation of Reversible Versus Irreversible Myocardial Damage and Prediction of Adverse Left Ventricular Remodeling of ST-Elevation Myocardial Infarction. J Magn Reson Imaging 2020; 52:476-487. [PMID: 31943526 DOI: 10.1002/jmri.27047] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2019] [Revised: 12/17/2019] [Accepted: 12/19/2019] [Indexed: 11/07/2022] Open
Abstract
BACKGROUND The relationship between dynamic changes of myocardial injury in ST-elevation myocardial infarction (STEMI) patients and long-term prognosis is still unclear. PURPOSE To evaluate the extracellular volume fraction (ECV) in the differentiation of reversible from irreversible myocardial injury and the prediction value of left ventricular adverse remodeling in patients with STEMI after reperfusion. STUDY TYPE Prospective. POPULATION Twenty-four STEMI patients after reperfusion were included FIELD STRENGTH/SEQUENCE: 3.0 T, T1 mapping, ECV, T2 -STIR, and late gadolinium enhancement (LGE). ASSESSMENT All the patients underwent cardiac MRI at four timepoints (days 1, 3, and 7, and at 6 months). The regions of interest (ROIs) were selected at the infarcted myocardium (with/without intramyocardial hemorrhage [IMH] and microvascular obstruction [MVO]). STATISTICAL TESTS One-way analysis of variance and the Kruskal-Wallis test were used for the statistical analysis. RESULTS Native T1 of MI (without MVO/IMH) gradually decreased after reperfusion (P < 0.05). The ECV of MI increased during the first 3 days and then slowly declined. Native T1 of MI with MVO/IMH was the lowest (1184 msec; 1108.5-1266), while ECV (78%; 65.5-87%) was the highest, P < 0.001. Native T1 and ECV of salvageable myocardium were higher than those of the remote myocardium but lower than those of the MI without MVO or IMH (P < 0.001). ROC analysis revealed an area under the curve (AUC) of ECV (0.85, P < 0.001) for differentiating infarcted and salvageable myocardium was higher than that of native T1 mapping (AUC: 0.63, P < 0.001) in the first week after STEMI (P < 0.0001). T1 and ECV differed significantly between patients with and without left ventricle adverse remodeling (P < 0.05). DATA CONCLUSION Dynamic temporal changes in reversibly and irreversibly damaged myocardia were differentiated via native T1 and ECV mapping after primary percutaneous coronary intervention in STEMI patients. ECV may better reflect microvascular injury severity and myocardial viability. MI with higher native T1 and ECV or with severe microvascular injury (MVO and IMH) was correlated with adverse LV remodeling. LEVEL OF EVIDENCE 2 Technical Efficacy Stage: 2 J. Magn. Reson. Imaging 2020. J. Magn. Reson. Imaging 2020;52:476-487.
Collapse
Affiliation(s)
- Bing-Hua Chen
- Department of Radiology, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, China
| | - Dong-Aolei An
- Department of Radiology, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, China
| | - Jie He
- Department of Cardiology, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, China
| | - Jian-Rong Xu
- Department of Radiology, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, China
| | - Lian-Ming Wu
- Department of Radiology, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, China
| | - Jun Pu
- Department of Radiology, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, China
| |
Collapse
|
30
|
Nickander J, Themudo R, Thalén S, Sigfridsson A, Xue H, Kellman P, Ugander M. The relative contributions of myocardial perfusion, blood volume and extracellular volume to native T1 and native T2 at rest and during adenosine stress in normal physiology. J Cardiovasc Magn Reson 2019; 21:73. [PMID: 31767018 PMCID: PMC6876099 DOI: 10.1186/s12968-019-0585-9] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2018] [Accepted: 10/22/2019] [Indexed: 02/01/2023] Open
Abstract
BACKGROUND Both ischemic and non-ischemic heart disease can cause disturbances in the myocardial blood volume (MBV), myocardial perfusion and the myocardial extracellular volume fraction (ECV). Recent studies suggest that native myocardial T1 mapping can detect changes in MBV during adenosine stress without the use of contrast agents. Furthermore, native T2 mapping could also potentially be used to quantify changes in myocardial perfusion and/or MBV. Therefore, the aim of this study was to explore the relative contributions of myocardial perfusion, MBV and ECV to native T1 and native T2 at rest and during adenosine stress in normal physiology. METHODS Healthy subjects (n = 41, 26 ± 5 years, 51% females) underwent 1.5 T cardiovascular magnetic resonance (CMR) scanning. Quantitative myocardial perfusion [ml/min/g] and MBV [%] maps were computed from first pass perfusion imaging at adenosine stress (140 microg/kg/min infusion) and rest following an intravenous contrast bolus (0.05 mmol/kg, gadobutrol). Native T1 and T2 maps were acquired before and during adenosine stress. T1 maps at rest and stress were also acquired following a 0.2 mmol/kg cumulative intravenous contrast dose, rendering rest and stress ECV maps [%]. Myocardial T1, T2, perfusion, MBV and ECV values were measured by delineating a region of interest in the midmural third of the myocardium. RESULTS During adenosine stress, there was an increase in myocardial native T1, native T2, perfusion, MBV, and ECV (p ≤ 0.001 for all). Myocardial perfusion, MBV and ECV all correlated with both native T1 and native T2, respectively (R2 = 0.35 to 0.61, p < 0.001 for all). Multivariate linear regression revealed that ECV and perfusion together best explained the change in native T2 (ECV beta 0.21, p = 0.02, perfusion beta 0.66, p < 0.001, model R2 = 0.64, p < 0.001), and native T1 (ECV beta 0.50, p < 0.001, perfusion beta 0.43, p < 0.001, model R2 = 0.69, p < 0.001). CONCLUSIONS Myocardial native T1, native T2, perfusion, MBV, and ECV all increase during adenosine stress. Changes in myocardial native T1 and T2 during adenosine stress in normal physiology can largely be explained by the combined changes in myocardial perfusion and ECV. TRIAL REGISTRATION Clinicaltrials.gov identifier NCT02723747. Registered March 16, 2016.
Collapse
Affiliation(s)
- Jannike Nickander
- Department of Clinical Physiology, Karolinska University Hospital and Karolinska Institutet, Stockholm, Sweden
| | - Raquel Themudo
- Department of Clinical Physiology, Karolinska University Hospital and Karolinska Institutet, Stockholm, Sweden
- Department of Radiology, Karolinska University Hospital and Karolinska Institutet, Stockholm, Sweden
| | - Simon Thalén
- Department of Clinical Physiology, Karolinska University Hospital and Karolinska Institutet, Stockholm, Sweden
| | - Andreas Sigfridsson
- Department of Clinical Physiology, Karolinska University Hospital and Karolinska Institutet, Stockholm, Sweden
| | - Hui Xue
- National Heart, Lung, and Blood Institute, National Institutes of Health, Bethesda, MD USA
| | - Peter Kellman
- National Heart, Lung, and Blood Institute, National Institutes of Health, Bethesda, MD USA
| | - Martin Ugander
- Department of Clinical Physiology, Karolinska University Hospital and Karolinska Institutet, Stockholm, Sweden
- Kolling Institute, Royal North Shore Hospital, and Northern Clinical School, Sydney Medical School, University of Sydney, Sydney, Australia
| |
Collapse
|
31
|
Zhu Y, Yang D, Zou L, Chen Y, Liu X, Chung YC. T 2STIR preparation for single-shot cardiovascular magnetic resonance myocardial edema imaging. J Cardiovasc Magn Reson 2019; 21:72. [PMID: 31752919 PMCID: PMC6873416 DOI: 10.1186/s12968-019-0583-y] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2018] [Accepted: 10/22/2019] [Indexed: 02/05/2023] Open
Abstract
BACKGROUND Myocardial edema in acute myocardial infarction (AMI) is commonly imaged using dark-blood short tau inversion recovery turbo spin echo (STIR-TSE) cardiovascular magnetic resonance (CMR). The technique is sensitive to cardiac motion and coil sensitivity variation, leading to myocardial signal nonuniformity and impeding reliable depiction of edematous tissues. T2-prepared balanced steady state free precession (T2p-bSSFP) imaging has been proposed, but its contrast is low, and averaging is commonly needed. T2 mapping is useful but requires a long scan time and breathholding. We propose here a single-shot magnetization prepared sequence that increases the contrast between edema and normal myocardium and apply it to myocardial edema imaging. METHODS A magnetization preparation module (T2STIR) is designed to exploit the simultaneous elevation of T1 and T2 in edema to improve the depiction of edematous myocardium. The module tips magnetization down to the -z axis after T2 preparation. Transverse magnetization is sampled at the fat null point using bSSFP readout and allows for single-shot myocardial edema imaging. The sequence (T2STIR-bSSFP) was studied for its contrast behavior using simulation and phantoms. It was then evaluated on 7 healthy subjects and 7 AMI patients by comparing it to T2p-bSSFP and T2 mapping using the contrast-to-noise ratio (CNR) and the contrast ratio as performance indices. RESULTS In simulation and phantom studies, T2STIR-bSSFP had improved contrast between edema and normal myocardium compared with the other two edema imaging techniques. In patients, the CNR of T2STIR-bSSFP was higher than T2p-bSSFP (5.9 ± 2.6 vs. 2.8 ± 2.0, P < 0.05) but had no significant difference compared with that of the T2 map (T2 map: 6.6 ± 3.3 vs. 5.9 ± 2.6, P = 0.62). The contrast ratio of T2STIR-bSSFP (2.4 ± 0.8) was higher than that of the T2 map (1.3 ± 0.1, P < 0.01) and T2p-bSSFP (1.4 ± 0.5, P < 0.05). CONCLUSION T2STIR-bSSFP has improved contrast between edematous and normal myocardium compared with commonly used bSSFP-based edema imaging techniques. T2STIR-bSSFP also differentiates between fat that was robustly suppressed and fluids around the heart. The technique is useful for single-shot edema imaging in AMI patients.
Collapse
Affiliation(s)
- Yanjie Zhu
- Paul C. Lauterbur Research Centre for Biomedical Imaging, Shenzhen Institutes of Advanced Technology, Guangdong, 518055 China
| | - Dan Yang
- Department of Cardiology, West China Hospital, Chengdu, 610041 China
| | - Lixian Zou
- Paul C. Lauterbur Research Centre for Biomedical Imaging, Shenzhen Institutes of Advanced Technology, Guangdong, 518055 China
| | - Yucheng Chen
- Department of Cardiology, West China Hospital, Chengdu, 610041 China
| | - Xin Liu
- Paul C. Lauterbur Research Centre for Biomedical Imaging, Shenzhen Institutes of Advanced Technology, Guangdong, 518055 China
| | - Yiu-Cho Chung
- Siemens Healthcare Pte Ltd., 60 MacPherson Road, Singapore, 348615 Singapore
| |
Collapse
|
32
|
Kotecha T, Martinez-Naharro A, Treibel TA, Francis R, Nordin S, Abdel-Gadir A, Knight DS, Zumbo G, Rosmini S, Maestrini V, Bulluck H, Rakhit RD, Wechalekar AD, Gilbertson J, Sheppard MN, Kellman P, Gillmore JD, Moon JC, Hawkins PN, Fontana M. Myocardial Edema and Prognosis in Amyloidosis. J Am Coll Cardiol 2019; 71:2919-2931. [PMID: 29929616 DOI: 10.1016/j.jacc.2018.03.536] [Citation(s) in RCA: 139] [Impact Index Per Article: 27.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/30/2017] [Revised: 03/26/2018] [Accepted: 03/26/2018] [Indexed: 12/15/2022]
Abstract
BACKGROUND Prognosis in light-chain (AL) and transthyretin (ATTR) amyloidosis is influenced by cardiac involvement. ATTR amyloidosis has better prognosis than AL amyloidosis despite more amyloid infiltration, suggesting additional mechanisms of damage in AL amyloidosis. OBJECTIVES The aim of the study was to assess the presence and prognostic significance of myocardial edema in patients with amyloidosis. METHODS The study recruited 286 patients: 100 with systemic AL amyloidosis, 163 with cardiac ATTR amyloidosis, 12 with suspected cardiac ATTR amyloidosis (grade 1 on 99mTc-3,3-diphosphono-1,2-propanodicarboxylic acid), 11 asymptomatic individuals with amyloidogenic TTR gene mutations, and 30 healthy volunteers. All subjects underwent cardiovascular magnetic resonance with T1 and T2 mapping and 16 underwent endomyocardial biopsy. RESULTS Myocardial T2 was increased in amyloidosis with the degree of elevation being highest in untreated AL patients (untreated AL amyloidosis 56.6 ± 5.1 ms; treated AL amyloidosis 53.6 ± 3.9 ms; ATTR amyloidosis 54.2 ± 4.1 ms; each p < 0.01 compared with control subjects: 48.9 ± 2.0 ms). Left ventricular (LV) mass and extracellular volume fraction were higher in ATTR amyloidosis compared with AL amyloidosis while LV ejection fraction was lower (p < 0.001). Histological evidence of edema was present in 87.5% of biopsy samples ranging from 5% to 40% myocardial involvement. Using Cox regression models, myocardial T2 predicted death in AL amyloidosis (hazard ratio: 1.48; 95% confidence interval: 1.20 to 1.82) and remained significant after adjusting for extracellular volume fraction and N-terminal pro-B-type natriuretic peptide (hazard ratio: 1.32; 95% confidence interval: 1.05 to 1.67). CONCLUSIONS Myocardial edema is present in cardiac amyloidosis by histology and cardiovascular magnetic resonance T2 mapping. T2 is higher in untreated AL amyloidosis compared with treated AL and ATTR amyloidosis, and is a predictor of prognosis in AL amyloidosis. This suggests mechanisms additional to amyloid infiltration contributing to mortality in amyloidosis.
Collapse
Affiliation(s)
- Tushar Kotecha
- National Amyloidosis Centre, University College London, Royal Free Hospital, London, United Kingdom; Institute of Cardiovascular Science, University College London, London, United Kingdom; Royal Free Hospital, London, United Kingdom
| | - Ana Martinez-Naharro
- National Amyloidosis Centre, University College London, Royal Free Hospital, London, United Kingdom; Institute of Cardiovascular Science, University College London, London, United Kingdom
| | - Thomas A Treibel
- Institute of Cardiovascular Science, University College London, London, United Kingdom; Barts Heart Centre, London, United Kingdom
| | - Rohin Francis
- National Amyloidosis Centre, University College London, Royal Free Hospital, London, United Kingdom; Institute of Cardiovascular Science, University College London, London, United Kingdom
| | - Sabrina Nordin
- Institute of Cardiovascular Science, University College London, London, United Kingdom; Barts Heart Centre, London, United Kingdom
| | - Amna Abdel-Gadir
- Institute of Cardiovascular Science, University College London, London, United Kingdom; Barts Heart Centre, London, United Kingdom
| | - Daniel S Knight
- National Amyloidosis Centre, University College London, Royal Free Hospital, London, United Kingdom; Royal Free Hospital, London, United Kingdom
| | - Giulia Zumbo
- National Amyloidosis Centre, University College London, Royal Free Hospital, London, United Kingdom
| | | | - Viviana Maestrini
- Barts Heart Centre, London, United Kingdom; Department of Cardiovascular, Respiratory, Nephrology, Anesthesiology & Geriatric Sciences, "Sapienza" University of Rome, Rome, Italy
| | - Heerajnarain Bulluck
- Institute of Cardiovascular Science, University College London, London, United Kingdom
| | - Roby D Rakhit
- Institute of Cardiovascular Science, University College London, London, United Kingdom; Royal Free Hospital, London, United Kingdom
| | - Ashutosh D Wechalekar
- National Amyloidosis Centre, University College London, Royal Free Hospital, London, United Kingdom; Royal Free Hospital, London, United Kingdom
| | - Janet Gilbertson
- National Amyloidosis Centre, University College London, Royal Free Hospital, London, United Kingdom
| | - Mary N Sheppard
- Molecular and Clinical Sciences Research Institute, St. George's, University of London, London, United Kingdom
| | - Peter Kellman
- National Heart, Lung, and Blood Institute, National Institutes of Health, Bethesda, Maryland
| | - Julian D Gillmore
- National Amyloidosis Centre, University College London, Royal Free Hospital, London, United Kingdom; Royal Free Hospital, London, United Kingdom
| | | | - Philip N Hawkins
- National Amyloidosis Centre, University College London, Royal Free Hospital, London, United Kingdom; Royal Free Hospital, London, United Kingdom
| | - Marianna Fontana
- National Amyloidosis Centre, University College London, Royal Free Hospital, London, United Kingdom; Institute of Cardiovascular Science, University College London, London, United Kingdom; Royal Free Hospital, London, United Kingdom.
| |
Collapse
|
33
|
Ibanez B, Aletras AH, Arai AE, Arheden H, Bax J, Berry C, Bucciarelli-Ducci C, Croisille P, Dall'Armellina E, Dharmakumar R, Eitel I, Fernández-Jiménez R, Friedrich MG, García-Dorado D, Hausenloy DJ, Kim RJ, Kozerke S, Kramer CM, Salerno M, Sánchez-González J, Sanz J, Fuster V. Cardiac MRI Endpoints in Myocardial Infarction Experimental and Clinical Trials: JACC Scientific Expert Panel. J Am Coll Cardiol 2019; 74:238-256. [PMID: 31296297 PMCID: PMC7363031 DOI: 10.1016/j.jacc.2019.05.024] [Citation(s) in RCA: 223] [Impact Index Per Article: 44.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/17/2019] [Accepted: 05/15/2019] [Indexed: 02/07/2023]
Abstract
After a reperfused myocardial infarction (MI), dynamic tissue changes occur (edema, inflammation, microvascular obstruction, hemorrhage, cardiomyocyte necrosis, and ultimately replacement by fibrosis). The extension and magnitude of these changes contribute to long-term prognosis after MI. Cardiac magnetic resonance (CMR) is the gold-standard technique for noninvasive myocardial tissue characterization. CMR is also the preferred methodology for the identification of potential benefits associated with new cardioprotective strategies both in experimental and clinical trials. However, there is a wide heterogeneity in CMR methodologies used in experimental and clinical trials, including time of post-MI scan, acquisition protocols, and, more importantly, selection of endpoints. There is a need for standardization of these methodologies to improve the translation into a real clinical benefit. The main objective of this scientific expert panel consensus document is to provide recommendations for CMR endpoint selection in experimental and clinical trials based on pathophysiology and its association with hard outcomes.
Collapse
Affiliation(s)
- Borja Ibanez
- Centro Nacional de Investigaciones Cardiovasculares (CNIC), Madrid, Spain; CIBERCV, Madrid, Spain; Cardiology Department, IIS Fundación Jiménez Díaz Hospital, Madrid, Spain.
| | - Anthony H Aletras
- Laboratory of Computing, Medical Informatics and Biomedical-Imaging Technologies, School of Medicine, Aristotle University of Thessaloniki, Thessaloniki, Greece; Lund University, Department of Clinical Sciences Lund, Clinical Physiology, Skane University Hospital, Lund, Sweden
| | - Andrew E Arai
- National Heart, Lung, and Blood Institute, National Institutes of Health, Bethesda, Maryland
| | - Hakan Arheden
- Lund University, Department of Clinical Sciences Lund, Clinical Physiology, Skane University Hospital, Lund, Sweden
| | - Jeroen Bax
- Department of Cardiology, Heart Lung Center, Leiden University Medical Center, Leiden, the Netherlands
| | - Colin Berry
- British Heart Foundation Glasgow Cardiovascular Research Centre, University of Glasgow, and Golden Jubilee National Hospital, Clydebank, United Kingdom
| | - Chiara Bucciarelli-Ducci
- Bristol Heart Institute, Bristol NIHR Cardiovascular Research Centre, University of Bristol and University Hospitals Bristol NHS Trust, Bristol, United Kingdom
| | - Pierre Croisille
- University Lyon, UJM-Saint-Etienne, INSA, CNRS UMR 5520, INSERM U1206, CREATIS, F-42023, Saint-Etienne, France
| | - Erica Dall'Armellina
- Leeds Institute of Cardiovascular and Metabolic Medicine, Department of Biomedical Imaging Sciences, University of Leeds, Leeds, United Kingdom
| | - Rohan Dharmakumar
- Biomedical Imaging Research Institute, Cedars-Sinai Medical Center, and Division of Cardiology, Department of Medicine, University of California, Los Angeles, California
| | - Ingo Eitel
- University Heart Center Lübeck, Medical Clinic II (Cardiology/Angiology/Intensive Care Medicine) and German Center for Cardiovascular Research (DZHK), partner site Hamburg/Kiel/Lübeck, Lübeck, Germany
| | - Rodrigo Fernández-Jiménez
- Centro Nacional de Investigaciones Cardiovasculares (CNIC), Madrid, Spain; CIBERCV, Madrid, Spain; Cardiology Department, Icahn School of Medicine at Mount Sinai, New York, New York
| | - Matthias G Friedrich
- Departments of Medicine & Diagnostic Radiology, McGill University, Montreal, Quebec, Canada; Department of Medicine, Heidelberg University, Heidelberg, Germany
| | - David García-Dorado
- CIBERCV, Madrid, Spain; Vall d'Hebron University Hospital and Research Institute, Universtat Autònoma de Barcelona, Barcelona, Spain
| | - Derek J Hausenloy
- Cardiovascular & Metabolic Disorders Program, Duke-National University of Singapore Medical School, National Heart Research Institute Singapore, National Heart Centre, Yong Loo Lin School of Medicine, National University Singapore, Singapore; The Hatter Cardiovascular Institute, University College London, and The National Institute of Health Research University College London Hospitals Biomedical Research Centre, Research & Development, London, United Kingdom; Tecnologico de Monterrey, Centro de Biotecnologia-FEMSA, Nuevo Leon, Mexico
| | - Raymond J Kim
- Duke Cardiovascular Magnetic Resonance Center, Division of Cardiology, and Department of Radiology, Duke University Medical Center, Durham, North Carolina
| | - Sebastian Kozerke
- Institute for Biomedical Engineering, University and ETH Zurich, Zurich, Switzerland
| | - Christopher M Kramer
- Departments of Medicine and Radiology, University of Virginia Health System, Charlottesville, Virginia
| | - Michael Salerno
- Departments of Medicine and Radiology, University of Virginia Health System, Charlottesville, Virginia
| | | | - Javier Sanz
- Centro Nacional de Investigaciones Cardiovasculares (CNIC), Madrid, Spain; Cardiology Department, Icahn School of Medicine at Mount Sinai, New York, New York
| | - Valentin Fuster
- Centro Nacional de Investigaciones Cardiovasculares (CNIC), Madrid, Spain; Cardiology Department, Icahn School of Medicine at Mount Sinai, New York, New York.
| |
Collapse
|
34
|
Hausenloy DJ, Lim MX, Chan MHH, Paradies V, Francis R, Kotecha T, Knight DS, Fontana M, Kellman P, Moon JC, Bulluck H. Interrogation of the infarcted and salvaged myocardium using multi-parametric mapping cardiovascular magnetic resonance in reperfused ST-segment elevation myocardial infarction patients. Sci Rep 2019; 9:9056. [PMID: 31227761 PMCID: PMC6588689 DOI: 10.1038/s41598-019-45449-9] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2018] [Accepted: 06/03/2019] [Indexed: 01/06/2023] Open
Abstract
We used multi-parametric cardiovascular magnetic resonance (CMR) mapping to interrogate the myocardium following ST-segment elevation myocardial infarction (STEMI). Forty-eight STEMI patients underwent CMR at 4 ± 2 days. One matching short-axis slice of native T1 map, T2 map, late gadolinium enhancement (LGE), and automated extracellular volume fraction (ECV) maps per patient were analyzed. Manual regions-of-interest were drawn within the infarcted, the salvaged and the remote myocardium. A subgroup analysis was performed in those without MVO and with ≤75% transmural extent of infarct. For the whole cohort, T1, T2 and ECV in both the infarcted and the salvaged myocardium were significantly higher than in the remote myocardium. T1 and T2 could not differentiate between the salvaged and the infarcted myocardium, but ECV was significantly higher in the latter. In the subgroup analysis of 15 patients, similar findings were observed for T1 and T2. However, there was only a trend towards ECVsalvage being higher than ECVremote. In the clinical setting, current native T1 and T2 methods with the specific voxel sizes at 1.5 T could not differentiate between the infarcted and salvaged myocardium, whereas ECV could differentiate between the two. ECV was also higher in the salvaged myocardium when compared to the remote myocardium.
Collapse
Affiliation(s)
- Derek J Hausenloy
- The Hatter Cardiovascular Institute, Institute of Cardiovascular Science, University College London, London, United Kingdom.,The National Institute of Health Research University College London Hospitals Biomedical Research Centre, London, United Kingdom.,Tecnologico de Monterrey, Centro de Biotecnologia-FEMSA, Nuevo Leon, Mexico.,National Heart Research Institute Singapore, National Heart Centre Singapore, Singapore, Singapore.,Cardiovascular and Metabolic Disorders Program, Duke-National University of Singapore, Singapore, Singapore.,Yong Loo Lin School of Medicine, National University Singapore, Singapore, Singapore
| | - Mei Xing Lim
- National Heart Research Institute Singapore, National Heart Centre Singapore, Singapore, Singapore.,Cardiovascular and Metabolic Disorders Program, Duke-National University of Singapore, Singapore, Singapore
| | - Mervyn H H Chan
- National Heart Research Institute Singapore, National Heart Centre Singapore, Singapore, Singapore.,Cardiovascular and Metabolic Disorders Program, Duke-National University of Singapore, Singapore, Singapore
| | - Valeria Paradies
- National Heart Research Institute Singapore, National Heart Centre Singapore, Singapore, Singapore
| | - Rohin Francis
- The Hatter Cardiovascular Institute, Institute of Cardiovascular Science, University College London, London, United Kingdom.,National Amyloidosis Centre, University College London, Royal Free Hospital, London, United Kingdom
| | - Tushar Kotecha
- National Amyloidosis Centre, University College London, Royal Free Hospital, London, United Kingdom
| | - Daniel S Knight
- National Amyloidosis Centre, University College London, Royal Free Hospital, London, United Kingdom
| | - Marianna Fontana
- National Amyloidosis Centre, University College London, Royal Free Hospital, London, United Kingdom
| | - Peter Kellman
- National Heart, Lung and Blood Institute, National Institutes of Health, Bethesda, USA
| | - James C Moon
- The National Institute of Health Research University College London Hospitals Biomedical Research Centre, London, United Kingdom.,Tecnologico de Monterrey, Centro de Biotecnologia-FEMSA, Nuevo Leon, Mexico
| | - Heerajnarain Bulluck
- The Hatter Cardiovascular Institute, Institute of Cardiovascular Science, University College London, London, United Kingdom. .,Golden Jubilee National Hospital, Clydebank, Glasgow, United Kingdom.
| |
Collapse
|
35
|
Bulluck H, Dharmakumar R, Arai AE, Berry C, Hausenloy DJ. Cardiovascular Magnetic Resonance in Acute ST-Segment-Elevation Myocardial Infarction: Recent Advances, Controversies, and Future Directions. Circulation 2019; 137:1949-1964. [PMID: 29712696 DOI: 10.1161/circulationaha.117.030693] [Citation(s) in RCA: 117] [Impact Index Per Article: 23.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
Although mortality after ST-segment elevation myocardial infarction (MI) is on the decline, the number of patients developing heart failure as a result of MI is on the rise. Apart from timely reperfusion by primary percutaneous coronary intervention, there is currently no established therapy for reducing MI size. Thus, new cardioprotective therapies are required to improve clinical outcomes after ST-segment-elevation MI. Cardiovascular magnetic resonance has emerged as an important imaging modality for assessing the efficacy of novel therapies for reducing MI size and preventing subsequent adverse left ventricular remodeling. The recent availability of multiparametric mapping cardiovascular magnetic resonance imaging has provided new insights into the pathophysiology underlying myocardial edema, microvascular obstruction, intramyocardial hemorrhage, and changes in the remote myocardial interstitial space after ST-segment-elevation MI. In this article, we provide an overview of the recent advances in cardiovascular magnetic resonance imaging in reperfused patients with ST-segment-elevation MI, discuss the controversies surrounding its use, and explore future applications of cardiovascular magnetic resonance in this setting.
Collapse
Affiliation(s)
- Heerajnarain Bulluck
- Hatter Cardiovascular Institute, Institute of Cardiovascular Science, University College London, United Kingdom (H.B., D.J.H.).,Royal Papworth Hospital, Cambridge, United Kingdom (H.B.)
| | - Rohan Dharmakumar
- Biomedical Imaging Research Institute and Heart Institute, Cedars-Sinai Medical Center, Los Angeles, CA (R.D.).,Department of Medicine, David Geffen School of Medicine, University of California, Los Angeles (R.D.)
| | - Andrew E Arai
- Laboratory for Advanced Cardiovascular Imaging, National Heart, Lung, and Blood Institute, National Institutes of Health, Department of Health and Human Services, Bethesda, MD (A.E.A.)
| | - Colin Berry
- British Heart Foundation Glasgow Cardiovascular Research Center, Institute of Cardiovascular and Medical Sciences, University of Glasgow, United Kingdom (C.B.)
| | - Derek J Hausenloy
- Hatter Cardiovascular Institute, Institute of Cardiovascular Science, University College London, United Kingdom (H.B., D.J.H.). .,National Institute of Health Research University College London Hospitals Biomedical Research Centre, United Kingdom (D.J.H.).,Barts Heart Centre, St. Bartholomew's Hospital, London, United Kingdom (D.J.H.).,National Heart Research Institute Singapore, National Heart Centre Singapore, Singapore (D.J.H.).,Cardiovascular and Metabolic Disorders Program, Duke-National University of Singapore, Singapore (D.J.H.).,Yong Loo Lin School of Medicine, National University Singapore, Singapore (D.J.H.)
| |
Collapse
|
36
|
Combined T1-mapping and tissue tracking analysis predicts severity of ischemic injury following acute STEMI-an Oxford Acute Myocardial Infarction (OxAMI) study. Int J Cardiovasc Imaging 2019; 35:1297-1308. [PMID: 30778713 PMCID: PMC6598944 DOI: 10.1007/s10554-019-01542-8] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/09/2018] [Accepted: 01/18/2019] [Indexed: 12/13/2022]
Abstract
Early risk stratification after ST-segment–elevation myocardial infarction (STEMI) is of major clinical importance. Strain quantifies myocardial deformation and can demonstrate abnormal global and segmental myocardial function in acute ischaemia. Native T1-mapping allows assessment of the severity of acute ischemic injury, however its clinical applicability early post MI is limited by the complex dynamic changes happening in the myocardium post MI. We aimed to explore relationship between T1-mapping and feature tracking imaging, to establish whether combined analysis of these parameters could predict recovery after STEMI. 96 STEMI patients (aged 60 ± 11) prospectively recruited in the Oxford Acute Myocardial Infarction (OxAMI) study underwent 3T-CMR scans acutely (within 53 ± 32 h from primary percutaneous coronary intervention) and at 6 months (6M). The imaging protocol included: cine, ShMOLLI T1-mapping and late gadolinium enhancement (LGE). Segments were divided in the infarct, adjacent and remote zones based on the presence of LGE. Peak circumferential (Ecc) and radial (Err) strain was assessed using cvi42 software. Acute segmental strain correlated with segmental T1-mapping values (T1 vs. Err − 0.75 ± 0.25, p < 0.01; T1 vs. Ecc 0.72 ± 0.32, p < 0.01) and with LGE segmental injury (LGE vs. Err − 0.56 ± 0.29, p < 0.01; LGE vs. Ecc 0.54 ± 0.35, p < 0.01). Moreover, acute segmental T1 and strain predicted segmental LGE transmurality on 6M scans (p < 0.001, r = 0.5). Multiple regression analysis confirmed combined analysis of global Ecc and T1-mapping was significantly better than either method alone in predicting final infarct size at 6M (r = 0.556 vs r = 0.473 for global T1 only and r = 0.476 for global Ecc only, p < 0.001). This novel CMR method combining T1-mapping and feature tracking analysis of acute CMR scans predicts LGE transmurality and infarct size at 6M following STEMI.
Collapse
|
37
|
Acute changes in cardiac structural and tissue characterisation parameters following haemodialysis measured using cardiovascular magnetic resonance. Sci Rep 2019; 9:1388. [PMID: 30718606 PMCID: PMC6362126 DOI: 10.1038/s41598-018-37845-4] [Citation(s) in RCA: 25] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2018] [Accepted: 12/10/2018] [Indexed: 12/29/2022] Open
Abstract
In patients with chronic kidney disease (CKD), reverse left ventricular (LV) remodelling, including reduction in LV mass, can be observed following long-term haemodialysis (HD) and has been attributed to regression of LV hypertrophy. However, LV mass can vary in response to changes in myocyte volume, edema, or fibrosis. The aims of this study were to investigate the acute changes in structural (myocardial mass and biventricular volumes) and tissue characterization parameters (native T1 and T2) following HD using cardiovascular magnetic resonance (CMR). Twenty-five stable HD patients underwent non-contrast CMR including volumetric assessment and native T1 and T2 mapping immediately pre- and post-HD. The mean time between the first and second scan was 9.1 ± 1.1 hours and mean time from completion of dialysis to the second scan was 3.5 ± 1.3 hours. Post-HD, there was reduction in LV mass (pre-dialysis 98.9 ± 36.9 g/m2 vs post-dialysis 93.3 ± 35.8 g/m2, p = 0.003), which correlated with change in body weight (r = 0.717, p < 0.001). Both native T1 and T2 reduced significantly following HD (Native T1: pre-dialysis 1085 ± 43 ms, post-dialysis 1072 ± 43 ms; T2: pre-dialysis 53.3 ± 3.0 ms, post-dialysis 51.8 ± 3.1 ms, both p < 0.05). These changes presumably reflect acute reduction in myocardial water content rather than regression of LV hypertrophy. CMR with multiparametric mapping is a promising tool to assess the cardiac changes associated with HD.
Collapse
|
38
|
van der Weg K, Kuijt WJ, Bekkers SC, Tijssen JG, Green CL, Smulders MW, Lemmert ME, Krucoff MW, Gorgels AP. Bursts of reperfusion arrhythmias occur independently of area at risk size and are the first marker of reperfusion injury. Int J Cardiol 2018; 271:240-246. [DOI: 10.1016/j.ijcard.2018.05.083] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/01/2017] [Revised: 04/22/2018] [Accepted: 05/22/2018] [Indexed: 12/22/2022]
|
39
|
Dastidar AG, Harries I, Pontecorboli G, Bruno VD, De Garate E, Moret C, Baritussio A, Johnson TW, McAlindon E, Bucciarelli-Ducci C. Native T1 mapping to detect extent of acute and chronic myocardial infarction: comparison with late gadolinium enhancement technique. Int J Cardiovasc Imaging 2018; 35:517-527. [DOI: 10.1007/s10554-018-1467-1] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/07/2018] [Accepted: 10/10/2018] [Indexed: 12/28/2022]
|
40
|
Myocardial Imaging with CMR Parametric Mapping: Clinical Applications. CURRENT RADIOLOGY REPORTS 2018. [DOI: 10.1007/s40134-018-0306-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/28/2022]
|
41
|
T1 and T2 mapping in the identification of acute myocardial injury in patients with NSTEMI. Radiol Med 2018; 123:926-934. [PMID: 30132183 DOI: 10.1007/s11547-018-0931-2] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2018] [Accepted: 08/07/2018] [Indexed: 12/18/2022]
Abstract
AIMS To test T1 and T2 mapping in the assessment of acute myocardial injury in patients with non-ST-segment elevation myocardial infarction (NSTEMI), evaluated before revascularization. METHODS Forty-seven patients with acute NSTEMI underwent cardiac magnetic resonance (CMR) at 1.5 T, including T1 and T2 mapping. RESULTS Coronary angiography (CA) evidenced an obstructive coronary artery disease (CAD) in 36 patients (80%) and a non-obstructive CAD in 11 patients (20%). Edema was detected in 51.1/65.9% of patients in T1/T2 maps, respectively. This difference was due to artifacts in T1 maps. T1/T2 values were significantly higher in the infarcted myocardium (IM) compared with the remote myocardium (RM) (in T1: 1151.6 ± 53.5 ms vs. 958.2 ± 38.6 ms, respectively; in T2: 69 ± 6 ms vs. 51.9 ± 2.9 ms, respectively; p < 0.0001 for both). We found both an obstructive CAD at CA and myocardial edema at CMR in 53.2% of patients, while 8.5% of patients had a non-obstructive CAD and no edema. However, 25.5% of patients had an obstructive CAD without edema, while 12.8% of patients showed edema despite a non-obstructive CAD. Furthermore, in 6 of the edema-positive patients with multi-vessels obstructive CAD, CMR identified myocardial edema in a vascular territory different from that of the lesion supposed to be the culprit at CA. CONCLUSIONS In a non-negligible percentage of NSTEMI patients, T1 and T2 mapping detect myocardial edema without significant stenosis at CA and vice versa. Therefore, CA and CMR edema imaging might provide complementary information in the evaluation of NSTEMI.
Collapse
|
42
|
Andrikopoulou E, Lloyd SG. Could 82Rb-PET be the next best thing in evaluation of myocardial salvage? J Nucl Cardiol 2018; 25:982-985. [PMID: 27878515 DOI: 10.1007/s12350-016-0733-7] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2016] [Accepted: 11/03/2016] [Indexed: 10/20/2022]
Affiliation(s)
- Efstathia Andrikopoulou
- Division of Cardiovascular Disease, Department of Internal Medicine, University of Alabama at Birmingham, 1808 7th Avenue South, BDB 201, Birmingham, AL, USA
| | - Steven G Lloyd
- Division of Cardiovascular Disease, Department of Internal Medicine, University of Alabama at Birmingham, 1808 7th Avenue South, BDB 201, Birmingham, AL, USA.
- Birmingham VA Medical Center, Birmingham, AL, USA.
| |
Collapse
|
43
|
Kunze KP, Dirschinger RJ, Kossmann H, Hanus F, Ibrahim T, Laugwitz KL, Schwaiger M, Rischpler C, Nekolla SG. Quantitative cardiovascular magnetic resonance: extracellular volume, native T1 and 18F-FDG PET/CMR imaging in patients after revascularized myocardial infarction and association with markers of myocardial damage and systemic inflammation. J Cardiovasc Magn Reson 2018; 20:33. [PMID: 29792210 PMCID: PMC5967072 DOI: 10.1186/s12968-018-0454-y] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2017] [Accepted: 04/16/2018] [Indexed: 01/09/2023] Open
Abstract
BACKGROUND Characterization of tissue integrity and inflammatory processes after acute myocardial infarction (AMI) using non-invasive imaging is predictive of patient outcome. Quantitative cardiovascular magnetic resonance (CMR) techniques such as native T1 and extracellular volume (ECV) mapping as well as 18F-FDG positron emission tomography (PET) imaging targeting inflammatory cell populations are gaining acceptance, but are often applied without assessing their quantitative potential. Using simultaneously acquired PET/CMR data from patients early after AMI, this study quantitatively compares these three imaging markers and investigates links to blood markers of myocardial injury and systemic inflammatory activity. METHODS A total of 25 patients without microvascular obstruction were retrospectively recruited. All imaging was simultaneously performed 5 ± 1 days after revascularization following AMI on an integrated 3T PET/MRI scanner. Native and post-contrast T1 data were acquired using a modified Look-Locker inversion recovery (MOLLI) sequence, ECV maps were calculated using individually sampled hematocrit. 18F-FDG PET was executed after 1 day of dietary preparation, 12 h of fasting, and administration of heparin. ECV, 18F-FDG and native T1 data were compared mutually as well as to peak counts of peripheral blood markers (creatine kinase, creatine kinase-MB, troponin, leukocytes, monocytes) and infarct size. RESULTS High intra-patient correlations of relative ECV, 18F-FDG PET and native T1 signal increases were observed in combination with no inter-patient correlation of maximum absolute values at the infarct center, suggesting well-colocalized but physiologically diverse processes begetting the respective image signals. Comparison of maximum image signals to markers of myocardial damage and systemic inflammation yielded highly significant correlations of ECV to peak creatine kinase-MB and overall infarct size as well as between native T1 and peak monocyte counts. CONCLUSIONS Absolute native T1 values at the infarct core early after AMI can be linked to the systemic inflammatory response independent of infarct size. Absolute ECV at the infarct core is related to both infarct size and blood markers of myocardial damage.
Collapse
Affiliation(s)
- Karl P. Kunze
- Nuklearmedizinische Klinik und Poliklinik, Klinikum rechts der Isar, Technische Universität München, Ismaninger Straße 22, 81675 Munich, Germany
| | - Ralf J. Dirschinger
- Klinik und Poliklinik für Medizin I, Klinikum rechts der Isar, Technische Universität München, Ismaninger Straße 22, 81675 Munich, Germany
| | - Hans Kossmann
- Klinik und Poliklinik für Medizin I, Klinikum rechts der Isar, Technische Universität München, Ismaninger Straße 22, 81675 Munich, Germany
| | - Franziska Hanus
- Klinik und Poliklinik für Medizin I, Klinikum rechts der Isar, Technische Universität München, Ismaninger Straße 22, 81675 Munich, Germany
| | - Tareq Ibrahim
- Klinik und Poliklinik für Medizin I, Klinikum rechts der Isar, Technische Universität München, Ismaninger Straße 22, 81675 Munich, Germany
- DZHK (Deutsches Zentrum für Herz-Kreislauf-Forschung e.V.) partner site Munich Heart Alliance, Munich, Germany
| | - Karl-Ludwig Laugwitz
- Klinik und Poliklinik für Medizin I, Klinikum rechts der Isar, Technische Universität München, Ismaninger Straße 22, 81675 Munich, Germany
- DZHK (Deutsches Zentrum für Herz-Kreislauf-Forschung e.V.) partner site Munich Heart Alliance, Munich, Germany
| | - Markus Schwaiger
- Nuklearmedizinische Klinik und Poliklinik, Klinikum rechts der Isar, Technische Universität München, Ismaninger Straße 22, 81675 Munich, Germany
- DZHK (Deutsches Zentrum für Herz-Kreislauf-Forschung e.V.) partner site Munich Heart Alliance, Munich, Germany
| | - Christoph Rischpler
- Nuklearmedizinische Klinik und Poliklinik, Klinikum rechts der Isar, Technische Universität München, Ismaninger Straße 22, 81675 Munich, Germany
- DZHK (Deutsches Zentrum für Herz-Kreislauf-Forschung e.V.) partner site Munich Heart Alliance, Munich, Germany
| | - Stephan G. Nekolla
- Nuklearmedizinische Klinik und Poliklinik, Klinikum rechts der Isar, Technische Universität München, Ismaninger Straße 22, 81675 Munich, Germany
- DZHK (Deutsches Zentrum für Herz-Kreislauf-Forschung e.V.) partner site Munich Heart Alliance, Munich, Germany
| |
Collapse
|
44
|
Haberkorn SM, Spieker M, Jacoby C, Flögel U, Kelm M, Bönner F. State of the Art in Cardiovascular T2 Mapping: on the Way to a Cardiac Biomarker? CURRENT CARDIOVASCULAR IMAGING REPORTS 2018. [DOI: 10.1007/s12410-018-9455-3] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/16/2022]
|
45
|
Shekhar A, Heeger P, Reutelingsperger C, Arbustini E, Narula N, Hofstra L, Bax JJ, Narula J. Targeted Imaging for Cell Death in Cardiovascular Disorders. JACC Cardiovasc Imaging 2018; 11:476-493. [DOI: 10.1016/j.jcmg.2017.11.018] [Citation(s) in RCA: 32] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/01/2017] [Revised: 11/19/2017] [Accepted: 11/27/2017] [Indexed: 01/30/2023]
|
46
|
Myocardial Salvage Imaging: Where Are We and Where Are We Heading? A Cardiac Magnetic Resonance Perspective. CURRENT CARDIOVASCULAR IMAGING REPORTS 2018. [DOI: 10.1007/s12410-018-9448-2] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
|
47
|
Manning WJ. Review of Journal of Cardiovascular Magnetic Resonance (JCMR) 2015-2016 and transition of the JCMR office to Boston. J Cardiovasc Magn Reson 2017; 19:108. [PMID: 29284487 PMCID: PMC5747150 DOI: 10.1186/s12968-017-0423-x] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2017] [Accepted: 12/07/2017] [Indexed: 02/06/2023] Open
Abstract
The Journal of Cardiovascular Magnetic Resonance (JCMR) is the official publication of the Society for Cardiovascular Magnetic Resonance (SCMR). In 2016, the JCMR published 93 manuscripts, including 80 research papers, 6 reviews, 5 technical notes, 1 protocol, and 1 case report. The number of manuscripts published was similar to 2015 though with a 12% increase in manuscript submissions to an all-time high of 369. This reflects a decrease in the overall acceptance rate to <25% (excluding solicited reviews). The quality of submissions to JCMR continues to be high. The 2016 JCMR Impact Factor (which is published in June 2016 by Thomson Reuters) was steady at 5.601 (vs. 5.71 for 2015; as published in June 2016), which is the second highest impact factor ever recorded for JCMR. The 2016 impact factor means that the JCMR papers that were published in 2014 and 2015 were on-average cited 5.71 times in 2016.In accordance with Open-Access publishing of Biomed Central, the JCMR articles are published on-line in the order that they are accepted with no collating of the articles into sections or special thematic issues. For this reason, over the years, the Editors have felt that it is useful to annually summarize the publications into broad areas of interest or themes, so that readers can view areas of interest in a single article in relation to each other and other recent JCMR articles. The papers are presented in broad themes with previously published JCMR papers to guide continuity of thought in the journal. In addition, I have elected to open this publication with information for the readership regarding the transition of the JCMR editorial office to the Beth Israel Deaconess Medical Center, Boston and the editorial process.Though there is an author publication charge (APC) associated with open-access to cover the publisher's expenses, this format provides a much wider distribution/availability of the author's work and greater manuscript citation. For SCMR members, there is a substantial discount in the APC. I hope that you will continue to send your high quality manuscripts to JCMR for consideration. Importantly, I also ask that you consider referencing recent JCMR publications in your submissions to the JCMR and elsewhere as these contribute to our impact factor. I also thank our dedicated Associate Editors, Guest Editors, and reviewers for their many efforts to ensure that the review process occurs in a timely and responsible manner and that the JCMR continues to be recognized as the leading publication in our field.
Collapse
Affiliation(s)
- Warren J Manning
- From the Journal of Cardiovascular Magnetic Resonance Editorial Office and the Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA, USA.
| |
Collapse
|
48
|
Bulluck H, Hammond-Haley M, Weinmann S, Martinez-Macias R, Hausenloy DJ. Myocardial Infarct Size by CMR in Clinical Cardioprotection Studies: Insights From Randomized Controlled Trials. JACC Cardiovasc Imaging 2017; 10:230-240. [PMID: 28279370 PMCID: PMC5348096 DOI: 10.1016/j.jcmg.2017.01.008] [Citation(s) in RCA: 58] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/30/2016] [Revised: 01/23/2017] [Accepted: 01/26/2017] [Indexed: 01/19/2023]
Abstract
OBJECTIVES The aim of this study was to review randomized controlled trials (RCTs) using cardiac magnetic resonance (CMR) to assess myocardial infarct (MI) size in reperfused patients with ST-segment elevation myocardial infarction (STEMI). BACKGROUND There is limited guidance on the use of CMR in clinical cardioprotection RCTs in patients with STEMI treated by primary percutaneous coronary intervention. METHODS All RCTs in which CMR was used to quantify MI size in patients with STEMI treated with primary percutaneous coronary intervention were identified and reviewed. RESULTS Sixty-two RCTs (10,570 patients, January 2006 to November 2016) were included. One-third did not report CMR vendor or scanner strength, the contrast agent and dose used, and the MI size quantification technique. Gadopentetate dimeglumine was most commonly used, followed by gadoterate meglumine and gadobutrol at 0.20 mmol/kg each, with late gadolinium enhancement acquired at 10 min; in most RCTs, MI size was quantified manually, followed by the 5 standard deviation threshold; dropout rates were 9% for acute CMR only and 16% for paired acute and follow-up scans. Weighted mean acute and chronic MI sizes (≤12 h, initial TIMI [Thrombolysis in Myocardial Infarction] flow grade 0 to 3) from the control arms were 21 ± 14% and 15 ± 11% of the left ventricle, respectively, and could be used for future sample-size calculations. Pre-selecting patients most likely to benefit from the cardioprotective therapy (≤6 h, initial TIMI flow grade 0 or 1) reduced sample size by one-third. Other suggested recommendations for standardizing CMR in future RCTs included gadobutrol at 0.15 mmol/kg with late gadolinium enhancement at 15 min, manual or 6-SD threshold for MI quantification, performing acute CMR at 3 to 5 days and follow-up CMR at 6 months, and adequate reporting of the acquisition and analysis of CMR. CONCLUSIONS There is significant heterogeneity in RCT design using CMR in patients with STEMI. The authors provide recommendations for standardizing the assessment of MI size using CMR in future clinical cardioprotection RCTs.
Collapse
Affiliation(s)
- Heerajnarain Bulluck
- The Hatter Cardiovascular Institute, Institute of Cardiovascular Science, University College London, United Kingdom; The National Institute of Health Research University College London Hospitals Biomedical Research Center, London, United Kingdom; National Heart Research Institute Singapore, National Heart Center Singapore, Singapore, Singapore
| | - Matthew Hammond-Haley
- The Hatter Cardiovascular Institute, Institute of Cardiovascular Science, University College London, United Kingdom
| | - Shane Weinmann
- The Hatter Cardiovascular Institute, Institute of Cardiovascular Science, University College London, United Kingdom
| | - Roberto Martinez-Macias
- The Hatter Cardiovascular Institute, Institute of Cardiovascular Science, University College London, United Kingdom
| | - Derek J Hausenloy
- The Hatter Cardiovascular Institute, Institute of Cardiovascular Science, University College London, United Kingdom; The National Institute of Health Research University College London Hospitals Biomedical Research Center, London, United Kingdom; National Heart Research Institute Singapore, National Heart Center Singapore, Singapore, Singapore; Cardiovascular and Metabolic Disorders Program, Duke-National University of Singapore, Singapore, Singapore.
| |
Collapse
|
49
|
Messroghli DR, Moon JC, Ferreira VM, Grosse-Wortmann L, He T, Kellman P, Mascherbauer J, Nezafat R, Salerno M, Schelbert EB, Taylor AJ, Thompson R, Ugander M, van Heeswijk RB, Friedrich MG. Clinical recommendations for cardiovascular magnetic resonance mapping of T1, T2, T2* and extracellular volume: A consensus statement by the Society for Cardiovascular Magnetic Resonance (SCMR) endorsed by the European Association for Cardiovascular Imaging (EACVI). J Cardiovasc Magn Reson 2017; 19:75. [PMID: 28992817 PMCID: PMC5633041 DOI: 10.1186/s12968-017-0389-8] [Citation(s) in RCA: 1036] [Impact Index Per Article: 148.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2017] [Accepted: 09/25/2017] [Indexed: 12/14/2022] Open
Abstract
Parametric mapping techniques provide a non-invasive tool for quantifying tissue alterations in myocardial disease in those eligible for cardiovascular magnetic resonance (CMR). Parametric mapping with CMR now permits the routine spatial visualization and quantification of changes in myocardial composition based on changes in T1, T2, and T2*(star) relaxation times and extracellular volume (ECV). These changes include specific disease pathways related to mainly intracellular disturbances of the cardiomyocyte (e.g., iron overload, or glycosphingolipid accumulation in Anderson-Fabry disease); extracellular disturbances in the myocardial interstitium (e.g., myocardial fibrosis or cardiac amyloidosis from accumulation of collagen or amyloid proteins, respectively); or both (myocardial edema with increased intracellular and/or extracellular water). Parametric mapping promises improvements in patient care through advances in quantitative diagnostics, inter- and intra-patient comparability, and relatedly improvements in treatment. There is a multitude of technical approaches and potential applications. This document provides a summary of the existing evidence for the clinical value of parametric mapping in the heart as of mid 2017, and gives recommendations for practical use in different clinical scenarios for scientists, clinicians, and CMR manufacturers.
Collapse
Affiliation(s)
- Daniel R. Messroghli
- Department of Internal Medicine and Cardiology, Deutsches Herzzentrum Berlin, Berlin, Germany
- Department of Internal Medicine and Cardiology, Charité Universitätsmedizin Berlin, Augustenburger Platz 1, 13353 Berlin, Germany
- DZHK (German Centre for Cardiovascular Research), partner site Berlin, Augustenburger Platz 1, 13353 Berlin, Germany
| | - James C. Moon
- University College London and Barts Heart Centre, London, UK
| | - Vanessa M. Ferreira
- Oxford Centre for Clinical Magnetic Resonance Research, Division of Cardiovascular Medicine, Radcliffe Department of Medicine, University of Oxford, Oxford, UK
| | - Lars Grosse-Wortmann
- Division of Cardiology in the Department of Pediatrics, The Hospital for Sick Children, University of Toronto, Toronto, ON Canada
| | - Taigang He
- Cardiovascular Science Research Centre, St George’s, University of London, London, UK
| | | | - Julia Mascherbauer
- Department of Internal Medicine II, Division of Cardiology, Vienna, Austria
| | - Reza Nezafat
- Department of Medicine (Cardiovascular Division), Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, USA
| | - Michael Salerno
- Departments of Medicine Cardiology Division, Radiology and Medical Imaging, and Biomedical Engineering, University of Virginia Health System, Charlottesville, VA USA
| | - Erik B. Schelbert
- Department of Medicine, University of Pittsburgh School of Medicine, Pittsburgh, PA USA
- UPMC Cardiovascular Magnetic Resonance Center, Heart and Vascular Institute, Pittsburgh, PA USA
- Clinical and Translational Science Institute, University of Pittsburgh, Pittsburgh, PA USA
| | - Andrew J. Taylor
- The Alfred Hospital, Baker Heart and Diabetes Institute, Melbourne, Australia
| | - Richard Thompson
- Department of Biomedical Engineering, University of Alberta, Edmonton, Canada
| | - Martin Ugander
- Department of Clinical Physiology, Karolinska Institutet, Karolinska University Hospital, Stockholm, Sweden
| | - Ruud B. van Heeswijk
- Department of Radiology, Lausanne University Hospital (CHUV) and Lausanne University (UNIL), Lausanne, Switzerland
| | - Matthias G. Friedrich
- Departments of Medicine and Diagnostic Radiology, McGill University, Montréal, Québec Canada
- Department of Medicine, Heidelberg University, Heidelberg, Germany
- Département de radiologie, Université de Montréal, Montréal, Québec Canada
- Departments of Cardiac Sciences and Radiology, University of Calgary, Calgary, Canada
| |
Collapse
|
50
|
Roy C, Slimani A, de Meester C, Amzulescu M, Pasquet A, Vancraeynest D, Vanoverschelde JL, Pouleur AC, Gerber BL. Age and sex corrected normal reference values of T1, T2 T2* and ECV in healthy subjects at 3T CMR. J Cardiovasc Magn Reson 2017; 19:72. [PMID: 28934962 PMCID: PMC5609021 DOI: 10.1186/s12968-017-0371-5] [Citation(s) in RCA: 91] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2017] [Accepted: 07/10/2017] [Indexed: 12/17/2022] Open
Abstract
BACKGROUND Myocardial T1, T2 and T2* imaging techniques become increasingly used in clinical practice. While normal values for T1, T2 and T2* times are well established for 1.5 Tesla (T) cardiovascular magnetic resonance (CMR), data for 3T remain scarce. Therefore we sought to determine normal reference values relative to gender and age and day to day reproducibility for native T1, T2, T2* mapping and extracellular volume (ECV) at 3T in healthy subjects. METHODS After careful exclusion of cardiovascular abnormality, 75 healthy subjects aged 20 to 90 years old (mean 56 ± 19 years, 47% women) underwent left-ventricular T1 (3-(3)-3-(3)-5 MOLLI)), T2 (8 echo- spin echo-imaging) and T2 * (8 echo gradient echo imaging) mapping at 3T CMR (Philips Ingenia 3T and computation of extracellular volume after administration of 0.2 mmol/kg Gadovist). Inter- and intra-observer reproducibility was estimated by intraclass correlation coefficient (ICC). Day to day reproducibility was assessed in 10 other volunteers. RESULTS Mean myocardial T1 at 3T was 1122 ± 57 ms, T2 52 ± 6 ms, T2* 24 ± 5 ms and ECV 26.6 ± 3.2%. T1 (1139 ± 37 vs 1109 ± 73 ms, p < 0.05) and ECV (28 ± 3 vs 25 ± 2%, p < 0.001), but not T2 (53 ± 8 vs 51 ± 4, p = NS) were significantly greater in age matched women than in men. T1 (r = 0.40, p < 0.001) and ECV (r = 0.37, p = 0.001) increased, while T2 decreased significantly (r = -0.25, p < 0.05) with increasing age. T2* was not influenced by either gender or age. Intra and inter-observer reproducibility was high (ICC ranging between 0.81-0.99), and day to day coefficient of variation was low (6.2% for T1, 7% for T2, 11% for T2* and 11.5% for ECV). CONCLUSIONS We provide normal myocardial T2, T2*,T1 and ECV reference values for 3T CMR which are significantly different from those reported at 1.5 Tesla CMR. Myocardial T1 and ECV values are gender and age dependent. Measurement had high inter and intra-observer reproducibility and good day-to-day reproducibility.
Collapse
Affiliation(s)
- Clotilde Roy
- Pole of Cardiovascular Research (CARD), Institut de Recherche Expérimentale et Clinique, Cliniques Universitaires St. Luc, Université Cathologique, Brussels, Belgium
- Division of Cardiology, Department of Cardiovascular Diseases, Cliniques Universitaires St. Luc UCL, Av Hippocrate 10/2806, B-1200 Woluwe St., Lambert, Belgium
| | - Alisson Slimani
- Pole of Cardiovascular Research (CARD), Institut de Recherche Expérimentale et Clinique, Cliniques Universitaires St. Luc, Université Cathologique, Brussels, Belgium
- Division of Cardiology, Department of Cardiovascular Diseases, Cliniques Universitaires St. Luc UCL, Av Hippocrate 10/2806, B-1200 Woluwe St., Lambert, Belgium
| | - Christophe de Meester
- Pole of Cardiovascular Research (CARD), Institut de Recherche Expérimentale et Clinique, Cliniques Universitaires St. Luc, Université Cathologique, Brussels, Belgium
- Division of Cardiology, Department of Cardiovascular Diseases, Cliniques Universitaires St. Luc UCL, Av Hippocrate 10/2806, B-1200 Woluwe St., Lambert, Belgium
| | - Mihaela Amzulescu
- Pole of Cardiovascular Research (CARD), Institut de Recherche Expérimentale et Clinique, Cliniques Universitaires St. Luc, Université Cathologique, Brussels, Belgium
- Division of Cardiology, Department of Cardiovascular Diseases, Cliniques Universitaires St. Luc UCL, Av Hippocrate 10/2806, B-1200 Woluwe St., Lambert, Belgium
| | - Agnès Pasquet
- Pole of Cardiovascular Research (CARD), Institut de Recherche Expérimentale et Clinique, Cliniques Universitaires St. Luc, Université Cathologique, Brussels, Belgium
- Division of Cardiology, Department of Cardiovascular Diseases, Cliniques Universitaires St. Luc UCL, Av Hippocrate 10/2806, B-1200 Woluwe St., Lambert, Belgium
| | - David Vancraeynest
- Pole of Cardiovascular Research (CARD), Institut de Recherche Expérimentale et Clinique, Cliniques Universitaires St. Luc, Université Cathologique, Brussels, Belgium
- Division of Cardiology, Department of Cardiovascular Diseases, Cliniques Universitaires St. Luc UCL, Av Hippocrate 10/2806, B-1200 Woluwe St., Lambert, Belgium
| | - Jean-Louis Vanoverschelde
- Pole of Cardiovascular Research (CARD), Institut de Recherche Expérimentale et Clinique, Cliniques Universitaires St. Luc, Université Cathologique, Brussels, Belgium
- Division of Cardiology, Department of Cardiovascular Diseases, Cliniques Universitaires St. Luc UCL, Av Hippocrate 10/2806, B-1200 Woluwe St., Lambert, Belgium
| | - Anne-Catherine Pouleur
- Pole of Cardiovascular Research (CARD), Institut de Recherche Expérimentale et Clinique, Cliniques Universitaires St. Luc, Université Cathologique, Brussels, Belgium
- Division of Cardiology, Department of Cardiovascular Diseases, Cliniques Universitaires St. Luc UCL, Av Hippocrate 10/2806, B-1200 Woluwe St., Lambert, Belgium
| | - Bernhard L. Gerber
- Pole of Cardiovascular Research (CARD), Institut de Recherche Expérimentale et Clinique, Cliniques Universitaires St. Luc, Université Cathologique, Brussels, Belgium
- Division of Cardiology, Department of Cardiovascular Diseases, Cliniques Universitaires St. Luc UCL, Av Hippocrate 10/2806, B-1200 Woluwe St., Lambert, Belgium
| |
Collapse
|