1
|
Kara D, Liu Y, Chen S, Garrett T, Younis A, Sugawara M, Bolen MA, Bi X, Wazni O, Nakagawa H, Kwon D, Nguyen C. In vivo cardiac diffusion tensor imaging on an MR system featuring ultrahigh performance gradients with 200 mT/m maximum gradient strength. Magn Reson Med 2025; 93:673-688. [PMID: 39313764 PMCID: PMC11604833 DOI: 10.1002/mrm.30308] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2024] [Revised: 08/01/2024] [Accepted: 09/03/2024] [Indexed: 09/25/2024]
Abstract
PURPOSE Our aim is to assess the potential of an MR system with ultrahigh performance gradients (200 mT/m maximum gradient strength) to address two interrelated challenges in cardiac DTI: low SNR and sensitivity to bulk motion. METHODS Imaging was performed in 20 healthy volunteers, two patients, and one swine post-myocardial infarction. The impact of maximum gradient strength was assessed with spin echo cardiac DTI featuring second-order motion compensation and varying maximum system gradient strengths (40, 80, 200 mT/m). Motion compensation requirements at 200 mT/m were assessed with sequences featuring zeroth-, first-, and second-order motion compensation. SNR, mean diffusivity, fractional anisotropy, helix angle transmurality, and secondary eigenvector angle in the left ventricle were compared. RESULTS Increasing maximum system gradient strength from 40 and 80 mT/m to 200 mT/m increased SNR of b = 500 s/mm2 images by 150% and 40% due to reductions in TE. Observed improvements in DTI metrics included reduction in variance in mean diffusivity and helix angle transmurality across healthy volunteers, improved visualization of myocardial borders and delineation of suspected scar. Whereas second-order motion compensation acquisitions were robust to motion-induced signal dropout, zeroth- and first-order motion compensation acquisitions suffered from severe signal loss and localized signal voids, respectively. CONCLUSION Ultrahigh performance gradients (200 mT/m) enable high SNR DWIs of the heart and resultant improvements in diffusion tensor metrics. Despite reduced diffusion-encoding duration, second-order motion compensation is required to overcome sensitivity to cardiac motion.
Collapse
Affiliation(s)
- Danielle Kara
- Cardiovascular Innovation Research Center, Heart, Vascular, and Thoracic Institute, Cleveland Clinic
ClevelandOhioUSA
- Diagnostic Radiology, Imaging Institute, Cleveland ClinicClevelandOhioUSA
| | - Yuchi Liu
- Cardiovascular MR R&D CollaborationsSiemens Medical Solutions USA, Inc.MalvernPennsylvaniaUSA
| | - Shi Chen
- Cardiovascular Innovation Research Center, Heart, Vascular, and Thoracic Institute, Cleveland Clinic
ClevelandOhioUSA
| | - Thomas Garrett
- Cardiovascular Innovation Research Center, Heart, Vascular, and Thoracic Institute, Cleveland Clinic
ClevelandOhioUSA
| | - Arwa Younis
- Department of Cardiovascular & Metabolic ScienceLerner Research Institute, Cleveland ClinicClevelandOhioUSA
- Cardiovascular MedicineHeart Vascular Thoracic Institute, Cleveland ClinicClevelandOhioUSA
| | - Masafumi Sugawara
- Department of Cardiovascular & Metabolic ScienceLerner Research Institute, Cleveland ClinicClevelandOhioUSA
- Cardiovascular MedicineHeart Vascular Thoracic Institute, Cleveland ClinicClevelandOhioUSA
| | - Michael A. Bolen
- Diagnostic Radiology, Imaging Institute, Cleveland ClinicClevelandOhioUSA
- Cardiovascular MedicineHeart Vascular Thoracic Institute, Cleveland ClinicClevelandOhioUSA
| | - Xiaoming Bi
- Cardiovascular MR R&D CollaborationsSiemens Medical Solutions USA, Inc.MalvernPennsylvaniaUSA
| | - Oussama Wazni
- Cardiovascular MedicineHeart Vascular Thoracic Institute, Cleveland ClinicClevelandOhioUSA
| | - Hiroshi Nakagawa
- Cardiovascular MedicineHeart Vascular Thoracic Institute, Cleveland ClinicClevelandOhioUSA
| | - Deborah Kwon
- Cardiovascular Innovation Research Center, Heart, Vascular, and Thoracic Institute, Cleveland Clinic
ClevelandOhioUSA
- Diagnostic Radiology, Imaging Institute, Cleveland ClinicClevelandOhioUSA
- Cardiovascular MedicineHeart Vascular Thoracic Institute, Cleveland ClinicClevelandOhioUSA
| | - Christopher Nguyen
- Cardiovascular Innovation Research Center, Heart, Vascular, and Thoracic Institute, Cleveland Clinic
ClevelandOhioUSA
- Diagnostic Radiology, Imaging Institute, Cleveland ClinicClevelandOhioUSA
- Cardiovascular MedicineHeart Vascular Thoracic Institute, Cleveland ClinicClevelandOhioUSA
- Biomedical Engineering, Lerner Research InstituteCleveland Clinic and Case Western Reserve UniversityClevelandOhioUSA
| |
Collapse
|
2
|
Zhang H, Ma X, Zhao L. Editorial for "Second-Order Motion-Compensated Echo-Planar Cardiac Diffusion-Weighted MRI: Usefulness of Compressed Sensitivity Encoding". J Magn Reson Imaging 2025; 61:319-320. [PMID: 38662936 DOI: 10.1002/jmri.29410] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2024] [Accepted: 02/27/2024] [Indexed: 12/15/2024] Open
Affiliation(s)
- Hongbo Zhang
- Department of Interventional Diagnosis and Treatment, Beijing Anzhen Hospital, Capital Medical University, Beijing, China
| | - Xiaohai Ma
- Department of Interventional Diagnosis and Treatment, Beijing Anzhen Hospital, Capital Medical University, Beijing, China
| | - Lei Zhao
- Department of Radiology, Beijing Anzhen Hospital, Capital Medical University, Beijing, China
| |
Collapse
|
3
|
Chen R, Luo R, Xu Y, Ou J, Li X, Yang Y, Cao L, Wu Z, Luo W, Liu H. Second-Order Motion-Compensated Echo-Planar Cardiac Diffusion-Weighted MRI: Usefulness of Compressed Sensitivity Encoding. J Magn Reson Imaging 2025; 61:305-318. [PMID: 38587265 DOI: 10.1002/jmri.29383] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2023] [Revised: 03/23/2024] [Accepted: 03/25/2024] [Indexed: 04/09/2024] Open
Abstract
BACKGROUND Cardiac diffusion-weighted imaging (DWI) using second-order motion-compensated spin echo (M2C) can provide noninvasive in-vivo microstructural assessment, but limited by relatively low signal-to-noise ratio (SNR). Echo-planar imaging (EPI) with compressed sensitivity encoding (EPICS) could address these issues. PURPOSE To combine M2C DWI and EPCIS (M2C EPICS DWI), and compare image quality for M2C DWI. STUDY TYPE Prospective. POPULATION Ten ex-vivo hearts, 10 healthy volunteers (females, 5 [50%]; mean ± SD of age, 25 ± 4 years), and 12 patients with diseased hearts (female, 1 [8.3%]; mean ± SD of age, 44 ± 16 years; including coronary artery heart disease, congenital heart disease, dilated cardiomyopathy, amyloidosis, and myocarditis). FIELD STRENGTH/SEQUENCE 3-T, M2C EPICS DWI, and M2C DWI. ASSESSMENT The apparent SNR (aSNR) and the rating scores were used to evaluate and compared image quality of all three groups. The aSNR was calculated using aSNR = Mean intensity myocardium / Standard deviation myocardium , and the myocardium was segmented manually. Three observers independently rated subjective image quality using a 5-point Likert scale. STATISTICAL TESTS Bland-Altman analysis and paired t-tests. The threshold for statistical significance was set at P < 0.05. RESULTS In healthy volunteers, the aSNR with a b-value of 450 s/mm2 acquired by M2C EPICS DWI was significantly higher than M2C DWI at in-plane resolutions of 3.0 × 3.0, 2.5 × 2.5, and 2.0 × 2.0 mm2. In patients with diseased hearts, the aSNR ofM2C EPICS DWI was also significantly higher than that for M2C DWI (bias of M2C EPICS-M2C = 1.999, 95% limits of agreement, 0.362 to 3.636; mean ± SD, 7.80 ± 1.37 vs. 5.80 ± 0.81). The ADC values of M2C EPICS was significantly higher than M2C DWI in in-vivo hearts. Over 80% of the images with rating scores for M2C EPICS DWI were higher than M2C DWI in in-vivo hearts. DATA CONCLUSION Cardiac imaging by M2C EPICS DWI may demonstrate better overall image quality and higher aSNR than M2C DWI. EVIDENCE LEVEL 2 TECHNICAL EFFICACY: Stage 1.
Collapse
Affiliation(s)
- Rui Chen
- Department of Radiology, Guangdong Provincial People's Hospital (Guangdong Academy of Medical Sciences), Southern Medical University, Guangzhou, Guangdong, China
- Guangdong Provincial Key Laboratory of Artificial Intelligence in Medical Image Analysis and Application, Guangdong Provincial People's Hospital (Guangdong Academy of Medical Sciences), Southern Medical University, Guangzhou, Guangdong, China
| | - Ruohong Luo
- Department of Radiology, Guangdong Provincial People's Hospital (Guangdong Academy of Medical Sciences), Southern Medical University, Guangzhou, Guangdong, China
- Guangdong Provincial Key Laboratory of Artificial Intelligence in Medical Image Analysis and Application, Guangdong Provincial People's Hospital (Guangdong Academy of Medical Sciences), Southern Medical University, Guangzhou, Guangdong, China
- Guangdong Cardiovascular Institute, Guangdong Provincial People's Hospital, Guangdong Academy of Medical Sciences, Guangzhou, Guangdong, China
| | - Yongzhou Xu
- Department of MSC Clinical & Technical Solutions, Philips Healthcare, Shenzhen, China
| | - Jiehao Ou
- Department of Radiology, Guangdong Provincial People's Hospital (Guangdong Academy of Medical Sciences), Southern Medical University, Guangzhou, Guangdong, China
- Guangdong Provincial Key Laboratory of Artificial Intelligence in Medical Image Analysis and Application, Guangdong Provincial People's Hospital (Guangdong Academy of Medical Sciences), Southern Medical University, Guangzhou, Guangdong, China
| | - Xiaodan Li
- Department of Radiology, Guangdong Provincial People's Hospital (Guangdong Academy of Medical Sciences), Southern Medical University, Guangzhou, Guangdong, China
- Guangdong Provincial Key Laboratory of Artificial Intelligence in Medical Image Analysis and Application, Guangdong Provincial People's Hospital (Guangdong Academy of Medical Sciences), Southern Medical University, Guangzhou, Guangdong, China
| | - Yuelong Yang
- Department of Radiology, Guangdong Provincial People's Hospital (Guangdong Academy of Medical Sciences), Southern Medical University, Guangzhou, Guangdong, China
- Guangdong Provincial Key Laboratory of Artificial Intelligence in Medical Image Analysis and Application, Guangdong Provincial People's Hospital (Guangdong Academy of Medical Sciences), Southern Medical University, Guangzhou, Guangdong, China
| | - Liqi Cao
- Department of Radiology, Guangdong Provincial People's Hospital (Guangdong Academy of Medical Sciences), Southern Medical University, Guangzhou, Guangdong, China
- Guangdong Provincial Key Laboratory of Artificial Intelligence in Medical Image Analysis and Application, Guangdong Provincial People's Hospital (Guangdong Academy of Medical Sciences), Southern Medical University, Guangzhou, Guangdong, China
| | - Zhigang Wu
- Department of MSC Clinical & Technical Solutions, Philips Healthcare, Shenzhen, China
| | - Wei Luo
- Department of Radiology, Guangdong Provincial People's Hospital (Guangdong Academy of Medical Sciences), Southern Medical University, Guangzhou, Guangdong, China
- Guangdong Provincial Key Laboratory of Artificial Intelligence in Medical Image Analysis and Application, Guangdong Provincial People's Hospital (Guangdong Academy of Medical Sciences), Southern Medical University, Guangzhou, Guangdong, China
| | - Hui Liu
- Department of Radiology, Guangdong Provincial People's Hospital (Guangdong Academy of Medical Sciences), Southern Medical University, Guangzhou, Guangdong, China
- Guangdong Provincial Key Laboratory of Artificial Intelligence in Medical Image Analysis and Application, Guangdong Provincial People's Hospital (Guangdong Academy of Medical Sciences), Southern Medical University, Guangzhou, Guangdong, China
- Guangdong Cardiovascular Institute, Guangdong Provincial People's Hospital, Guangdong Academy of Medical Sciences, Guangzhou, Guangdong, China
| |
Collapse
|
4
|
Voges I, Raimondi F, McMahon CJ, Ait-Ali L, Babu-Narayan SV, Botnar RM, Burkhardt B, Gabbert DD, Grosse-Wortmann L, Hasan H, Hansmann G, Helbing WA, Krupickova S, Latus H, Martini N, Martins D, Muthurangu V, Ojala T, van Ooij P, Pushparajah K, Rodriguez-Palomares J, Sarikouch S, Grotenhuis HB, Greil FG, Bohbot Y, Cikes M, Dweck M, Donal E, Grapsa J, Keenan N, Petrescu AM, Szabo L, Ricci F, Uusitalo V. Clinical impact of novel cardiovascular magnetic resonance technology on patients with congenital heart disease: a scientific statement of the Association for European Pediatric and Congenital Cardiology and the European Association of Cardiovascular Imaging of the European Society of Cardiology. Eur Heart J Cardiovasc Imaging 2024; 25:e274-e294. [PMID: 38985851 DOI: 10.1093/ehjci/jeae172] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/28/2024] [Accepted: 07/01/2024] [Indexed: 07/12/2024] Open
Abstract
Cardiovascular magnetic resonance (CMR) imaging is recommended in patients with congenital heart disease (CHD) in clinical practice guidelines as the imaging standard for a large variety of diseases. As CMR is evolving, novel techniques are becoming available. Some of them are already used clinically, whereas others still need further evaluation. In this statement, the authors give an overview of relevant new CMR techniques for the assessment of CHD. Studies with reference values for these new techniques are listed in the Supplementary data online, supplement.
Collapse
Affiliation(s)
- Inga Voges
- Department of Congenital Heart Disease and Pediatric Cardiology, University Hospital Schleswig-Holstein, Campus Kiel, Germany
- German Center for Cardiovascular Research (DZHK), Partner Site Hamburg/Lübeck/Kiel, Kiel, Germany
| | | | - Colin J McMahon
- Department of Paediatric Cardiology, Children's Health Ireland at Crumlin, Dublin 12, Ireland
| | - Lamia Ait-Ali
- Institute of Clinical Physiology CNR, Massa, Italy
- Heart Hospital, G. Monastery foundation, Massa, Italy
| | - Sonya V Babu-Narayan
- Royal Brompton Hospital, Part of Guy's and St Thomas' NHS Foundation Trust, Sydney Street, London SW3 6NP, UK
- National Heart and Lung Institute, Imperial College, London, UK
| | - René M Botnar
- School of Biomedical Engineering and Imaging Sciences, King's College London, St. Thomas' Hospital, London, UK
- Institute for Biological and Medical Engineering and School of Engineering, Pontificia Universidad Católica de Chile, Santiago, Chile
| | - Barbara Burkhardt
- Pediatric Heart Center, University Children's Hospital Zurich, Zurich, Switzerland
| | - Dominik D Gabbert
- Department of Congenital Heart Disease and Pediatric Cardiology, University Hospital Schleswig-Holstein, Campus Kiel, Germany
- German Center for Cardiovascular Research (DZHK), Partner Site Hamburg/Lübeck/Kiel, Kiel, Germany
| | - Lars Grosse-Wortmann
- Division of Cardiology, Oregon Health and Science University Hospital, Portland, OR, USA
| | - Hosan Hasan
- Department of Pediatric Cardiology and Critical Care, Hannover Medical School, Hannover, Germany
- European Pediatric Pulmonary Vascular Disease Network, Berlin, Germany
| | - Georg Hansmann
- Department of Pediatric Cardiology and Critical Care, Hannover Medical School, Hannover, Germany
- European Pediatric Pulmonary Vascular Disease Network, Berlin, Germany
| | - Willem A Helbing
- Department of Pediatrics, Division of Cardiology, and Department of Radiology, Erasmus MC-Sophia Children's Hospital, Rotterdam, The Netherlands
| | - Sylvia Krupickova
- Royal Brompton Hospital, Part of Guy's and St Thomas' NHS Foundation Trust, Sydney Street, London SW3 6NP, UK
- National Heart and Lung Institute, Imperial College, London, UK
- Department of Paediatric Cardiology, Royal Brompton Hospital, Sydney Street, London SW3 6NP, UK
| | - Heiner Latus
- Clinic for Pediatric Cardiology and Congenital Heart Disease Klinikum, Stuttgart Germany
| | - Nicola Martini
- Department of Radiology, Fondazione G. Monasterio CNR-Regione Toscana, Pisa, Italy
- U.O.C. Bioingegneria, Fondazione G. Monasterio CNR-Regione Toscana, Pisa, Italy
| | - Duarte Martins
- Pediatric Cardiology Department, Hospital de Santa Cruz, Centro Hospitalar Lisboa Ocidental, Lisbon, Portugal
| | - Vivek Muthurangu
- Centre for Translational Cardiovascular Imaging, Institute of Cardiovascular Science, University College London, London, UK
| | - Tiina Ojala
- New Children's Hospital Pediatric Research Center, Helsinki University Hospital, Helsinki, Finland
| | - Pim van Ooij
- Department of Radiology and Nuclear Medicine, Amsterdam University Medical Center, Location AMC, Amsterdam, The Netherlands
- Department of Pediatric Cardiology, Wilhelmina Children's Hospital/University Medical Center Utrecht, Utrecht, The Netherlands
| | - Kuberan Pushparajah
- School of Biomedical Engineering and Imaging Sciences, King's College London, St. Thomas' Hospital, London, UK
- Department of Congenital Heart Disease, Evelina London Children's Hospital, Westminster Bridge Road, London SE1 7EH, UK
| | - Jose Rodriguez-Palomares
- CIBER Cardiovascular, Instituto de Salud Carlos III, Madrid, Spain
- European Reference Network for Rare and Low Prevalence Complex Diseases of the Heart, Amsterdam, The Netherlands
- Servicio de Cardiología, Hospital Universitario Vall Hebrón, Institut de Recerca Vall Hebrón (VHIR), Departamento de Medicina, Universitat Autònoma de Barcelona, Barcelona, Spain
| | - Samir Sarikouch
- Department for Cardiothoracic, Transplant, and Vascular Surgery, Hannover Medical School, Hannover, Germany
| | - Heynric B Grotenhuis
- Department of Pediatric Cardiology, Wilhelmina Children's Hospital/University Medical Center Utrecht, Utrecht, The Netherlands
| | - F Gerald Greil
- Department of Pediatrics, UT Southwestern/Children's Health, Dallas, TX, USA
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
5
|
Kirmani S, Woodard PK, Shi L, Hamza TH, Canter CE, Colan SD, Pahl E, Towbin JA, Webber SA, Rossano JW, Everitt MD, Molina KM, Kantor PF, Jefferies JL, Feingold B, Addonizio LJ, Ware SM, Chung WK, Ballweg JA, Lee TM, Bansal N, Razoky H, Czachor J, Lunze FI, Marcus E, Commean P, Wilkinson JD, Lipshultz SE. Cardiac imaging and biomarkers for assessing myocardial fibrosis in children with hypertrophic cardiomyopathy. Am Heart J 2023; 264:153-162. [PMID: 37315879 PMCID: PMC11003360 DOI: 10.1016/j.ahj.2023.06.005] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/14/2023] [Revised: 06/07/2023] [Accepted: 06/07/2023] [Indexed: 06/16/2023]
Abstract
BACKGROUND Myocardial fibrosis, as diagnosed on cardiac magnetic resonance imaging (cMRI) by late gadolinium enhancement (LGE), is associated with adverse outcomes in adults with hypertrophic cardiomyopathy (HCM), but its prevalence and magnitude in children with HCM have not been established. We investigated: (1) the prevalence and extent of myocardial fibrosis as detected by LGE cMRI; (2) the agreement between echocardiographic and cMRI measurements of cardiac structure; and (3) whether serum concentrations of N-terminal pro hormone B-type natriuretic peptide (NT-proBNP) and cardiac troponin-T are associated with cMRI measurements. METHODS A cross-section of children with HCM from 9 tertiary-care pediatric heart centers in the U.S. and Canada were enrolled in this prospective NHLBI study of cardiac biomarkers in pediatric cardiomyopathy (ClinicalTrials.gov Identifier: NCT01873976). The median age of the 67 participants was 13.8 years (range 1-18 years). Core laboratories analyzed echocardiographic and cMRI measurements, and serum biomarker concentrations. RESULTS In 52 children with non-obstructive HCM undergoing cMRI, overall low levels of myocardial fibrosis with LGE >2% of left ventricular (LV) mass were detected in 37 (71%) (median %LGE, 9.0%; IQR: 6.0%, 13.0%; range, 0% to 57%). Echocardiographic and cMRI measurements of LV dimensions, LV mass, and interventricular septal thickness showed good agreement using the Bland-Altman method. NT-proBNP concentrations were strongly and positively associated with LV mass and interventricular septal thickness (P < .001), but not LGE. CONCLUSIONS Low levels of myocardial fibrosis are common in pediatric patients with HCM seen at referral centers. Longitudinal studies of myocardial fibrosis and serum biomarkers are warranted to determine their predictive value for adverse outcomes in pediatric patients with HCM.
Collapse
Affiliation(s)
- Sonya Kirmani
- Department of Pediatrics, University of Wisconsin-Madison, Madison, WI
| | - Pamela K Woodard
- Mallinckrodt Institute of Radiology, Washington University School of Medicine, St. Louis, MO
| | - Ling Shi
- New England Research Institute, Watertown, MA
| | | | - Charles E Canter
- Department of Pediatrics, Washington University School of Medicine, St. Louis, MO
| | - Steven D Colan
- Department of Cardiology, Boston Children's Hospital, Boston, MA
| | - Elfriede Pahl
- Department of Pediatrics, Northwestern Feinberg School of Medicine, Chicago, IL
| | | | - Steven A Webber
- Department of Pediatrics, Vanderbilt University School of Medicine, Nashville, TN
| | - Joseph W Rossano
- Department of Pediatrics, Children's Hospital of Philadelphia, Philadelphia, PA
| | - Melanie D Everitt
- Department of Pediatrics, Children's Hospital of Colorado, Aurora, CO
| | - Kimberly M Molina
- Department of Pediatrics, Primary Children's Hospital, Salt Lake City, UT
| | - Paul F Kantor
- Department of Pediatrics, Children's Hospital Los Angeles, Los Angeles, CA
| | | | - Brian Feingold
- Department of Pediatrics, University of Pittsburgh, Pittsburgh, PA
| | - Linda J Addonizio
- Department of Pediatrics, Columbia University Irving Medical Center, New York, NY
| | - Stephanie M Ware
- Department of Pediatrics and Medical and Molecular Genetics, Indiana University School of Medicine, Indianapolis, IN
| | - Wendy K Chung
- Department of Pediatrics, Columbia University Irving Medical Center, New York, NY
| | - Jean A Ballweg
- Department of Pediatrics, Helen DeVos Children's Hospital, Grand Rapids, MI
| | - Teresa M Lee
- Department of Pediatrics, Columbia University Irving Medical Center, New York, NY
| | - Neha Bansal
- Department of Pediatrics, Children's Hospital at Montefiore, Bronx, NY
| | - Hiedy Razoky
- Department of Pediatrics, Children's Hospital of Michigan, Detroit, MI
| | - Jason Czachor
- Department of Pediatrics, Children's Hospital of Michigan, Detroit, MI
| | - Fatima I Lunze
- Department of Cardiology, Boston Children's Hospital, Boston, MA; German Heart Center Berlin, Charité Medical School, Berlin, Germany
| | - Edward Marcus
- Department of Cardiology, Boston Children's Hospital, Boston, MA
| | - Paul Commean
- Mallinckrodt Institute of Radiology, Washington University School of Medicine, St. Louis, MO
| | - James D Wilkinson
- Department of Pediatrics, Vanderbilt University School of Medicine, Nashville, TN
| | - Steven E Lipshultz
- Department of Pediatrics, University at Buffalo Jacobs School of Medicine and Biomedical Sciences, Buffalo, NY.
| |
Collapse
|
6
|
Bonner BP, Yurista SR, Coll‐Font J, Chen S, Eder RA, Foster AN, Nguyen KD, Caravan P, Gale EM, Nguyen C. Contrast-Enhanced Cardiac Magnetic Resonance Imaging With a Manganese-Based Alternative to Gadolinium for Tissue Characterization of Acute Myocardial Infarction. J Am Heart Assoc 2023; 12:e026923. [PMID: 37042259 PMCID: PMC10227253 DOI: 10.1161/jaha.122.026923] [Citation(s) in RCA: 7] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/24/2022] [Accepted: 01/05/2023] [Indexed: 04/13/2023]
Abstract
Background Late gadolinium enhancement cardiac magnetic resonance imaging is an effective and reproducible method for characterizing myocardial infarction. However, gadolinium-based contrast agents are contraindicated in patients with acute and chronic renal insufficiency. In addition, several recent studies have noted tissue deposition of free gadolinium in patients who have undergone serial contrast-enhanced magnetic resonance imaging. There is a clinical need for alternative forms of magnetic resonance imaging contrast agents that are acceptable in the setting of renal insufficiency. Methods and Results Three days after 80 minutes of ischemia/reperfusion of the left anterior descending coronary artery, cardiac magnetic resonance imaging was performed to assess myocardial lesion burden using both contrast agents. Late gadolinium enhancement cardiac magnetic resonance imaging was examined 10 and 15 minutes after contrast injection. Contrast agents were administered in alternating manner with a 2- to 3-hour washout period between contrast agent injections. Lesion evaluation and image processing were performed using Segment Medviso software. Mean infarct size and transmurality, measured using RVP-001, were not different compared with those measured using late gadolinium enhancement images. Bland-Altman analysis demonstrated a nominal bias of 0.13 mL (<1% of average total lesion volume) for RVP-001 in terms of gross infarct size measurement. Conclusions The experimental manganese-based contrast agent RVP-001 appears to be an effective agent for assessment of myocardial infarction location, size, and transmurality, and it may be useful as an alternative to gadolinium-based agents.
Collapse
Affiliation(s)
- Benjamin P. Bonner
- Cardiovascular Research CenterMassachusetts General HospitalBostonMA
- Athinoula A. Martinos Center for Biomedical ImagingMassachusetts General HospitalBostonMA
- Louisiana State University Health Sciences CenterNew OrleansLA
| | - Salva R. Yurista
- Cardiovascular Research CenterMassachusetts General HospitalBostonMA
- Athinoula A. Martinos Center for Biomedical ImagingMassachusetts General HospitalBostonMA
- Harvard Medical SchoolBostonMA
| | - Jaume Coll‐Font
- Cardiovascular Research CenterMassachusetts General HospitalBostonMA
- Athinoula A. Martinos Center for Biomedical ImagingMassachusetts General HospitalBostonMA
- Harvard Medical SchoolBostonMA
| | - Shi Chen
- Cardiovascular Research CenterMassachusetts General HospitalBostonMA
- Athinoula A. Martinos Center for Biomedical ImagingMassachusetts General HospitalBostonMA
| | - Robert A. Eder
- Cardiovascular Research CenterMassachusetts General HospitalBostonMA
- Athinoula A. Martinos Center for Biomedical ImagingMassachusetts General HospitalBostonMA
| | - Anna N. Foster
- Cardiovascular Research CenterMassachusetts General HospitalBostonMA
- Athinoula A. Martinos Center for Biomedical ImagingMassachusetts General HospitalBostonMA
| | - Khoi D. Nguyen
- Cardiovascular Research CenterMassachusetts General HospitalBostonMA
- Athinoula A. Martinos Center for Biomedical ImagingMassachusetts General HospitalBostonMA
- Harvard Medical SchoolBostonMA
| | - Peter Caravan
- Athinoula A. Martinos Center for Biomedical ImagingMassachusetts General HospitalBostonMA
- Harvard Medical SchoolBostonMA
| | - Eric M. Gale
- Athinoula A. Martinos Center for Biomedical ImagingMassachusetts General HospitalBostonMA
- Harvard Medical SchoolBostonMA
| | - Christopher Nguyen
- Cardiovascular Research CenterMassachusetts General HospitalBostonMA
- Athinoula A. Martinos Center for Biomedical ImagingMassachusetts General HospitalBostonMA
- Harvard Medical SchoolBostonMA
- Division of Health Science TechnologyHarvard–Massachusetts Institute of TechnologyCambridgeMA
- Cardiovascular Innovation Research CenterHeart, Vascular, and Thoracic Institute, Cleveland ClinicClevelandOH
| |
Collapse
|
7
|
Yao B, Wu R, Chen BH, Wesemann LD, Xu JR, Zhou Y, Wu LM. Cardiovascular magnetic resonance myocardial feature tracking for the determination of left atrial strain in hypertensive left ventricular hypertrophy and hypertrophic cardiomyopathy. Clin Radiol 2023; 78:e409-e416. [PMID: 36746719 DOI: 10.1016/j.crad.2022.12.016] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2022] [Revised: 07/07/2022] [Accepted: 12/28/2022] [Indexed: 01/23/2023]
Abstract
AIM To measure the left atrial (LA) function in patients with hypertrophic cardiomyopathy (HCM; with [OHCM] and without obstruction [NOHCM]) and hypertension-related left ventricular hypertrophy (H-LVH) using cardiovascular magnetic resonance imaging feature tracking (CMR-FT). MATERIALS AND METHODS Patients who met the criteria for HCM (n=68), H-LVH (n=46), and 30 healthy controls participated. Left atrial strain was analysed using CMR-FT in cine images with two and four chambers. RESULTS The strain rate and LA strain measurements showed that patients with HCM, and H-LVH had impaired conduit and reservoir functions (versus controls). These capacities were more severely impaired in OHCM than those seen in NOHCM and H-LVH. The LA volume parameters (LAVIpac, LAVImin and LAVImax) from the OHCM group were higher than both the NOHCM and H-LVH groups (all p<0.05). There were differences between the OHCM and H-LVH groups in terms of the parameters for LA reservoir function (εs), booster pump function (SRa), and conduit function (SRe, LA passive EF, εe; p<0.05). The strongest correlations included the associations between LA total EF and εs, εe and LA passive EF, and SRe and LA passive EF. CONCLUSION CMR-FT can reliably identify LA dysfunction and deformation in the early stages of HCM and H-LVH.
Collapse
Affiliation(s)
- B Yao
- Department of Radiology, Suzhou TCM Hospital Affiliated to Nanjing University of Chinese Medicine, Suzhou 215000, China
| | - R Wu
- Department of Radiology, Ren Ji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai 200127, China
| | - B-H Chen
- Department of Radiology, Ren Ji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai 200127, China
| | - L D Wesemann
- Department of Radiology, School of Medicine, Wayne State University, Detroit, MI 48201, USA
| | - J-R Xu
- Department of Radiology, Ren Ji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai 200127, China
| | - Y Zhou
- Department of Radiology, Ren Ji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai 200127, China
| | - L-M Wu
- Department of Radiology, Ren Ji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai 200127, China.
| |
Collapse
|
8
|
Mazur W, Urbańczyk-Zawadzka M, Czyż Ł, Kwiecień E, Banyś R, Musiałek P, Krzyżak AT. Diffusion-tensor magnetic resonance imaging of the human heart in health and in acute myocardial infarction using diffusion-weighted echo-planar imaging technique with spin-echo signals. ADVANCES IN INTERVENTIONAL CARDIOLOGY 2022; 18:416-422. [PMID: 36967856 PMCID: PMC10031662 DOI: 10.5114/aic.2022.121344] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2021] [Accepted: 02/13/2022] [Indexed: 11/24/2022] Open
Abstract
Introduction Originally thought unsuitable due to proneness to myocardial motion and susceptibility artefacts, spin-echo echo planar imaging (SE-EPI) has gained attention for the cardiac diffusion-weighted imaging (DWI) and diffusion tensor imaging (DTI) offering higher SNR and lower achievable echo time (TE). Aim The application of DTI for patients with acute myocardial infarction (AMI) using our methodology developed on the basis of the SE-EPI sequence. Material and methods Twelve patients with AMI and six healthy controls were enrolled in the preliminary DTI study within the CIRCULATE STRATEGMED 2 project. Our method relied on a pilot ECG-triggered DTI examination, based on which the initial evaluation was possible and allowed proper manipulation of TE (64/47 ms for patients/control), repetition time (TR) and ECG trigger delay in the consecutive DTI. Results The study demonstrated that by using our algorithm it was possible to obtain DWI images showing infarct zones identified on T1-weighted images with late gadolinium-enhancement (LGE) with division into subtle and severe damage. Quantitative DTI showed increased mean diffusivity (MD) and decreased fractional anisotropy (FA) in the infarct compared to remote tissue. The application of B-matrix spatial distribution (BSD) calibration allowed the improvement of FA. Conclusions Our algorithm is suitable for qualitative assessment of infarction zones with different severity. The analysis of the quantitative DTI showed that despite the lack of motion compensation blocks in the applied SE-EPI sequence, it was possible to approach the diffusion tensor parameter values reported for the myocardium.
Collapse
Affiliation(s)
- Weronika Mazur
- Faculty of Physics and Applied Computer Science, AGH University of Science and Technology, Krakow, Poland
| | | | - Łukasz Czyż
- Department of Cardiac and Vascular Diseases, Jagiellonian University, John Paul II Hospital, Krakow, Poland
| | - Ewa Kwiecień
- Department of Cardiac and Vascular Diseases, Jagiellonian University, John Paul II Hospital, Krakow, Poland
| | - Robert Banyś
- Department of Radiology, John Paul II Hospital, Krakow, Poland
| | - Piotr Musiałek
- Department of Cardiac and Vascular Diseases, Jagiellonian University, John Paul II Hospital, Krakow, Poland
| | - Artur T. Krzyżak
- Faculty of Geology, Geophysics and Environmental Protection, AGH University of Science and Technology, Krakow, Poland
| |
Collapse
|
9
|
Wei X, Lin L, Zhang G, Zhou X. Cardiovascular Magnetic Resonance Imaging in the Early Detection of Cardiotoxicity Induced by Cancer Therapies. Diagnostics (Basel) 2022; 12:1846. [PMID: 36010197 PMCID: PMC9406931 DOI: 10.3390/diagnostics12081846] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2022] [Revised: 07/21/2022] [Accepted: 07/26/2022] [Indexed: 11/16/2022] Open
Abstract
The significant progress in cancer treatment, including chemotherapy, immunotherapy, radiotherapy, and combination therapies, has led to higher long-term survival rates in cancer patients, while the cardiotoxicity caused by cancer treatment has become increasingly prominent. Cardiovascular magnetic resonance (CMR) is a non-invasive comprehensive imaging modality that provides not only anatomical information, but also tissue characteristics and cardiometabolic and energetic assessment, leading to its increased use in the early identification of cardiotoxicity, and is of major importance in improving the survival rate of cancer patients. This review focused on CMR techniques, including myocardial strain analysis, T1 mapping, T2 mapping, and extracellular volume fraction (ECV) calculation in the detection of early myocardial injury induced by cancer therapies. We summarized the existing studies and ongoing clinical trials using CMR for the assessment of subclinical ventricular dysfunction and myocardial changes at the tissue level. The main focus was to explore the potential of clinical and preclinical CMR techniques for continuous non-invasive monitoring of myocardial toxicity associated with cancer therapy.
Collapse
Affiliation(s)
| | | | - Guizhi Zhang
- Department of Radiology, The Eighth Affiliated Hospital of Sun Yat-sen University, Shenzhen 518036, China; (X.W.); (L.L.)
| | - Xuhui Zhou
- Department of Radiology, The Eighth Affiliated Hospital of Sun Yat-sen University, Shenzhen 518036, China; (X.W.); (L.L.)
| |
Collapse
|
10
|
Eder RA, van den Boomen M, Yurista SR, Rodriguez-Aviles YG, Islam MR, Chen YCI, Trager L, Coll-Font J, Cheng L, Li H, Rosenzweig A, Wrann CD, Nguyen CT. Exercise-induced CITED4 expression is necessary for regional remodeling of cardiac microstructural tissue helicity. Commun Biol 2022; 5:656. [PMID: 35787681 PMCID: PMC9253017 DOI: 10.1038/s42003-022-03635-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2022] [Accepted: 06/23/2022] [Indexed: 11/10/2022] Open
Abstract
Both exercise-induced molecular mechanisms and physiological cardiac remodeling have been previously studied on a whole heart level. However, the regional microstructural tissue effects of these molecular mechanisms in the heart have yet to be spatially linked and further elucidated. We show in exercised mice that the expression of CITED4, a transcriptional co-regulator necessary for cardioprotection, is regionally heterogenous in the heart with preferential significant increases in the lateral wall compared with sedentary mice. Concordantly in this same region, the heart's local microstructural tissue helicity is also selectively increased in exercised mice. Quantification of CITED4 expression and microstructural tissue helicity reveals a significant correlation across both sedentary and exercise mouse cohorts. Furthermore, genetic deletion of CITED4 in the heart prohibits regional exercise-induced microstructural helicity remodeling. Taken together, CITED4 expression is necessary for exercise-induced regional remodeling of the heart's microstructural helicity revealing how a key molecular regulator of cardiac remodeling manifests into downstream local tissue-level changes.
Collapse
Affiliation(s)
- Robert A Eder
- Cardiovascular Research Center, Massachusetts General Hospital, Charlestown, MA, 02129, USA
| | - Maaike van den Boomen
- Cardiovascular Research Center, Massachusetts General Hospital, Charlestown, MA, 02129, USA
- Martinos Center for Biomedical Imaging, Massachusetts General Hospital, Charlestown, MA, 02129, USA
- Department of Radiology, University Medical Center Groningen, University of Groningen, Hanzeplein 1, 9713 GZ, Groningen, The Netherlands
- Harvard Medical School, Boston, MA, 02129, USA
| | - Salva R Yurista
- Cardiovascular Research Center, Massachusetts General Hospital, Charlestown, MA, 02129, USA
- Harvard Medical School, Boston, MA, 02129, USA
| | - Yaiel G Rodriguez-Aviles
- Cardiovascular Research Center, Massachusetts General Hospital, Charlestown, MA, 02129, USA
- Ponce Health Sciences University, School of Medicine, Ponce, PR, 00716, USA
| | - Mohammad Rashedul Islam
- Cardiovascular Research Center, Massachusetts General Hospital, Charlestown, MA, 02129, USA
- Harvard Medical School, Boston, MA, 02129, USA
| | - Yin-Ching Iris Chen
- Martinos Center for Biomedical Imaging, Massachusetts General Hospital, Charlestown, MA, 02129, USA
- Harvard Medical School, Boston, MA, 02129, USA
| | - Lena Trager
- Cardiovascular Research Center, Massachusetts General Hospital, Charlestown, MA, 02129, USA
| | - Jaume Coll-Font
- Cardiovascular Research Center, Massachusetts General Hospital, Charlestown, MA, 02129, USA
- Martinos Center for Biomedical Imaging, Massachusetts General Hospital, Charlestown, MA, 02129, USA
- Harvard Medical School, Boston, MA, 02129, USA
| | - Leo Cheng
- Martinos Center for Biomedical Imaging, Massachusetts General Hospital, Charlestown, MA, 02129, USA
- Harvard Medical School, Boston, MA, 02129, USA
| | - Haobo Li
- Cardiovascular Research Center, Massachusetts General Hospital, Charlestown, MA, 02129, USA
- Harvard Medical School, Boston, MA, 02129, USA
| | - Anthony Rosenzweig
- Cardiovascular Research Center, Massachusetts General Hospital, Charlestown, MA, 02129, USA
- Harvard Medical School, Boston, MA, 02129, USA
- Massachusetts General Hospital, Cardiology Division and Corrigan Minehan Heart Center, Boston, MA, 02114, USA
| | - Christiane D Wrann
- Cardiovascular Research Center, Massachusetts General Hospital, Charlestown, MA, 02129, USA.
- Harvard Medical School, Boston, MA, 02129, USA.
- McCance Center for Brain Health, Massachusetts General Hospital, Boston, MA, 02114, USA.
| | - Christopher T Nguyen
- Cardiovascular Research Center, Massachusetts General Hospital, Charlestown, MA, 02129, USA.
- Martinos Center for Biomedical Imaging, Massachusetts General Hospital, Charlestown, MA, 02129, USA.
- Harvard Medical School, Boston, MA, 02129, USA.
- Division of Health Sciences and Technology, Harvard-Massachusetts Institute of Technology, Cambridge, MA, 02139, USA.
- Cardiovascular Innovation Research Center, Heart, Vascular, and Thoracic Institute, Cleveland Clinic, Cleveland, Ohio, 44195, USA.
| |
Collapse
|
11
|
Teh I, Romero R. WA, Boyle J, Coll‐Font J, Dall'Armellina E, Ennis DB, Ferreira PF, Kalra P, Kolipaka A, Kozerke S, Lohr D, Mongeon F, Moulin K, Nguyen C, Nielles‐Vallespin S, Raterman B, Schreiber LM, Scott AD, Sosnovik DE, Stoeck CT, Tous C, Tunnicliffe EM, Weng AM, Croisille P, Viallon M, Schneider JE. Validation of cardiac diffusion tensor imaging sequences: A multicentre test-retest phantom study. NMR IN BIOMEDICINE 2022; 35:e4685. [PMID: 34967060 PMCID: PMC9285553 DOI: 10.1002/nbm.4685] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 05/24/2021] [Revised: 11/19/2021] [Accepted: 12/24/2021] [Indexed: 05/23/2023]
Abstract
Cardiac diffusion tensor imaging (DTI) is an emerging technique for the in vivo characterisation of myocardial microstructure, and there is a growing need for its validation and standardisation. We sought to establish the accuracy, precision, repeatability and reproducibility of state-of-the-art pulse sequences for cardiac DTI among 10 centres internationally. Phantoms comprising 0%-20% polyvinylpyrrolidone (PVP) were scanned with DTI using a product pulsed gradient spin echo (PGSE; N = 10 sites) sequence, and a custom motion-compensated spin echo (SE; N = 5) or stimulated echo acquisition mode (STEAM; N = 5) sequence suitable for cardiac DTI in vivo. A second identical scan was performed 1-9 days later, and the data were analysed centrally. The average mean diffusivities (MDs) in 0% PVP were (1.124, 1.130, 1.113) x 10-3 mm2 /s for PGSE, SE and STEAM, respectively, and accurate to within 1.5% of reference data from the literature. The coefficients of variation in MDs across sites were 2.6%, 3.1% and 2.1% for PGSE, SE and STEAM, respectively, and were similar to previous studies using only PGSE. Reproducibility in MD was excellent, with mean differences in PGSE, SE and STEAM of (0.3 ± 2.3, 0.24 ± 0.95, 0.52 ± 0.58) x 10-5 mm2 /s (mean ± 1.96 SD). We show that custom sequences for cardiac DTI provide accurate, precise, repeatable and reproducible measurements. Further work in anisotropic and/or deforming phantoms is warranted.
Collapse
Affiliation(s)
- Irvin Teh
- Leeds Institute of Cardiovascular and Metabolic MedicineUniversity of LeedsLeedsUK
| | - William A. Romero R.
- Univ Lyon, INSA‐Lyon, Université Claude Bernard Lyon 1UJM‐Saint Etienne, CNRS, Inserm, CREATIS UMR 5220, U1294, F‐42023Saint EtienneFrance
| | - Jordan Boyle
- School of Mechanical EngineeringUniversity of LeedsLeedsUK
| | - Jaume Coll‐Font
- Cardiovascular Research Center and A. A. Martinos Center for Biomedical ImagingMassachusetts General Hospital and Harvard Medical SchoolBostonMassachusettsUSA
| | - Erica Dall'Armellina
- Leeds Institute of Cardiovascular and Metabolic MedicineUniversity of LeedsLeedsUK
| | - Daniel B. Ennis
- Division of RadiologyVA Palo Alto Health Care SystemPalo AltoCaliforniaUSA
- Department of RadiologyStanford UniversityStanfordCaliforniaUSA
| | - Pedro F. Ferreira
- Cardiovascular Magnetic Resonance UnitThe Royal Brompton and Harefield NHS Foundation TrustLondonUK
- National Heart and Lung InstituteImperial College LondonLondonUK
| | - Prateek Kalra
- Department of RadiologyThe Ohio State University Wexner Medical CenterColumbusOhioUSA
| | - Arunark Kolipaka
- Department of RadiologyThe Ohio State University Wexner Medical CenterColumbusOhioUSA
| | - Sebastian Kozerke
- Institute for Biomedical EngineeringUniversity and ETH ZurichZurichSwitzerland
| | - David Lohr
- Department of Cardiovascular ImagingComprehensive Heart Failure CenterWürzburgGermany
| | | | - Kévin Moulin
- Department of RadiologyStanford UniversityStanfordCaliforniaUSA
| | - Christopher Nguyen
- Cardiovascular Research Center and A. A. Martinos Center for Biomedical ImagingMassachusetts General Hospital and Harvard Medical SchoolBostonMassachusettsUSA
| | - Sonia Nielles‐Vallespin
- Cardiovascular Magnetic Resonance UnitThe Royal Brompton and Harefield NHS Foundation TrustLondonUK
- National Heart and Lung InstituteImperial College LondonLondonUK
| | - Brian Raterman
- Department of RadiologyThe Ohio State University Wexner Medical CenterColumbusOhioUSA
| | - Laura M. Schreiber
- Department of Cardiovascular ImagingComprehensive Heart Failure CenterWürzburgGermany
| | - Andrew D. Scott
- Cardiovascular Magnetic Resonance UnitThe Royal Brompton and Harefield NHS Foundation TrustLondonUK
- National Heart and Lung InstituteImperial College LondonLondonUK
| | - David E. Sosnovik
- Cardiovascular Research Center and A. A. Martinos Center for Biomedical ImagingMassachusetts General Hospital and Harvard Medical SchoolBostonMassachusettsUSA
| | - Christian T. Stoeck
- Institute for Biomedical EngineeringUniversity and ETH ZurichZurichSwitzerland
| | - Cyril Tous
- Department of Radiology, Radiation‐Oncology and Nuclear Medicine and Institute of Biomedical EngineeringUniversité de MontréalMontréalCanada
| | - Elizabeth M. Tunnicliffe
- Radcliffe Department of MedicineUniversity of OxfordOxfordUK
- Oxford NIHR Biomedical Research CentreOxfordUK
| | - Andreas M. Weng
- Department of Diagnostic and Interventional RadiologyUniversity Hospital WürzburgWürzburgGermany
| | - Pierre Croisille
- Univ Lyon, INSA‐Lyon, Université Claude Bernard Lyon 1UJM‐Saint Etienne, CNRS, Inserm, CREATIS UMR 5220, U1294, F‐42023Saint EtienneFrance
| | - Magalie Viallon
- Univ Lyon, INSA‐Lyon, Université Claude Bernard Lyon 1UJM‐Saint Etienne, CNRS, Inserm, CREATIS UMR 5220, U1294, F‐42023Saint EtienneFrance
| | - Jürgen E. Schneider
- Leeds Institute of Cardiovascular and Metabolic MedicineUniversity of LeedsLeedsUK
| |
Collapse
|
12
|
Asadian S, Rezaeian N, Hosseini L, Toloueitabar Y, Hemmati Komasi MM. The role of cardiac CT and MRI in the diagnosis and management of primary cardiac lymphoma: A comprehensive review. Trends Cardiovasc Med 2021; 32:408-420. [PMID: 34454052 DOI: 10.1016/j.tcm.2021.08.010] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/15/2021] [Revised: 08/05/2021] [Accepted: 08/20/2021] [Indexed: 12/18/2022]
Abstract
Primary cardiac tumors comprise a distinct category of disorders that result in significant cardiac complications. Primary cardiac lymphomas (PCLs) constitute the second most frequent primary malignancy involving the heart. Without treatment, survival may be limited to just a few months; however, a timely therapeutic schedule may prolong the five-year survival. Accordingly, robust diagnostic modalities are essential to improve prognosis. We herein review the literature available in PubMed, MEDLINE, Cochrane, Google Scholar and Scopus databases. Our review demonstrated that cardiac computed tomography (CT) and magnetic resonance imaging (MRI) employ multiple advanced sequences for tumor characterization with or without a contrast agent. These methods assist not only in differentiating PCLs from other cardiac masses such as cardiac thrombi but also in defining the extent of PCLs and conducting a safe biopsy. Cardiac magnetic resonance (CMR) and CT imaging provide essential knowledge regarding PCLs and cardiotoxicity induced by therapeutic regimens. The application of these robust imaging modalities aids in the early diagnosis of PCLs, accelerates the initiation of the treatment program, and improves patient outcomes significantly. Also presented is our introduction into novel techniques and the feasibility of their use to diagnose and treat cardiac masses, particularly PCLs. It should be mentioned that the paramount role of FDG-PET was not the focus of this paper.
Collapse
Affiliation(s)
- Sanaz Asadian
- Rajaie Cardiovascular Medical and Research Center, Tehran, Iran
| | - Nahid Rezaeian
- Rajaie Cardiovascular Medical and Research Center, Tehran, Iran.
| | - Leila Hosseini
- Rajaie Cardiovascular Medical and Research Center, Tehran, Iran
| | | | | |
Collapse
|
13
|
Lin L, Zhou X, Dekkers IA, Lamb HJ. Cardiorenal Syndrome: Emerging Role of Medical Imaging for Clinical Diagnosis and Management. J Pers Med 2021; 11:734. [PMID: 34442378 PMCID: PMC8400880 DOI: 10.3390/jpm11080734] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2021] [Revised: 07/24/2021] [Accepted: 07/24/2021] [Indexed: 12/16/2022] Open
Abstract
Cardiorenal syndrome (CRS) concerns the interconnection between heart and kidneys in which the dysfunction of one organ leads to abnormalities of the other. The main clinical challenges associated with cardiorenal syndrome are the lack of tools for early diagnosis, prognosis, and evaluation of therapeutic effects. Ultrasound, computed tomography, nuclear medicine, and magnetic resonance imaging are increasingly used for clinical management of cardiovascular and renal diseases. In the last decade, rapid development of imaging techniques provides a number of promising biomarkers for functional evaluation and tissue characterization. This review summarizes the applicability as well as the future technological potential of each imaging modality in the assessment of CRS. Furthermore, opportunities for a comprehensive imaging approach for the evaluation of CRS are defined.
Collapse
Affiliation(s)
- Ling Lin
- Cardiovascular Imaging Group (CVIG), Department of Radiology, Leiden University Medical Center, 2333 ZA Leiden, The Netherlands; (L.L.); (I.A.D.); (H.J.L.)
| | - Xuhui Zhou
- Department of Radiology, The Eighth Affiliated Hospital of Sun Yat-sen University, Shenzhen 510833, China
| | - Ilona A. Dekkers
- Cardiovascular Imaging Group (CVIG), Department of Radiology, Leiden University Medical Center, 2333 ZA Leiden, The Netherlands; (L.L.); (I.A.D.); (H.J.L.)
| | - Hildo J. Lamb
- Cardiovascular Imaging Group (CVIG), Department of Radiology, Leiden University Medical Center, 2333 ZA Leiden, The Netherlands; (L.L.); (I.A.D.); (H.J.L.)
| |
Collapse
|
14
|
Sharifian M, Rezaeian N, Asadian S, Mohammadzadeh A, Nahardani A, Kasani K, Toloueitabar Y, Farahmand AM, Hosseini L. Efficacy of Novel Noncontrast Cardiac Magnetic Resonance Methods in Indicating Fibrosis in Hypertrophic Cardiomyopathy. Cardiol Res Pract 2021; 2021:9931136. [PMID: 34123419 PMCID: PMC8169266 DOI: 10.1155/2021/9931136] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/03/2021] [Accepted: 05/19/2021] [Indexed: 01/05/2023] Open
Abstract
OBJECTIVE In hypertrophic cardiomyopathy (HCM), myocardial fibrosis is routinely shown by late gadolinium enhancement (LGE) in cardiac magnetic resonance (CMR) imaging. We evaluated the efficacy of 2 novel contrast-free CMR methods, namely, diffusion-weighted imaging (DWI) and feature-tracking (FT) method, in detecting myocardial fibrosis. METHODS This cross-sectional study was conducted on 26 patients with HCM. Visual and quantitative comparisons were made between DWI and LGE images. Regional longitudinal, circumferential, and radial strains were compared between LGE-positive and LGE-negative segments. Moreover, global strains were compared between LGE-positive and LGE-negative patients as well as between patients with mild and marked LGE. RESULTS All 3 strains showed significant differences between LGE-positive and LGE-negative segments (P < 0.001). The regional longitudinal and circumferential strain parameters showed significant associations with LGE (P < 0.001), while regional circumferential strain was the only independent predictor of LGE in logistic regression models (OR: 1.140, 95% CI: 1.073 to 1.207, P < 0.001). A comparison of global strains between patients with LGE percentages of below 15% and above 15% demonstrated that global circumferential strain was the only parameter to show impairment in the group with marked myocardial fibrosis, with borderline significance (P=0.09). A review of 212 segments demonstrated a qualitative visual agreement between DWI and LGE in 193 segments (91%). The mean apparent diffusion coefficient was comparable between LGE-positive and LGE-negative segments (P=0.51). CONCLUSIONS FT-CMR, especially regional circumferential strain, can reliably show fibrosis-containing segments in HCM. Further, DWI can function as an efficient qualitative method for the estimation of the fibrosis extent in HCM.
Collapse
Affiliation(s)
- Maedeh Sharifian
- Rajaie Cardiovascular Medical and Research Center, Iran University of Medical Sciences, Tehran, Iran
| | - Nahid Rezaeian
- Rajaie Cardiovascular Medical and Research Center, Iran University of Medical Sciences, Tehran, Iran
| | - Sanaz Asadian
- Rajaie Cardiovascular Medical and Research Center, Iran University of Medical Sciences, Tehran, Iran
| | - Ali Mohammadzadeh
- Rajaie Cardiovascular Medical and Research Center, Iran University of Medical Sciences, Tehran, Iran
| | - Ali Nahardani
- Rajaie Cardiovascular Medical and Research Center, Iran University of Medical Sciences, Tehran, Iran
| | - Kianosh Kasani
- Rajaie Cardiovascular Medical and Research Center, Iran University of Medical Sciences, Tehran, Iran
| | - Yaser Toloueitabar
- Rajaie Cardiovascular Medical and Research Center, Iran University of Medical Sciences, Tehran, Iran
| | | | - Leila Hosseini
- Rajaie Cardiovascular Medical and Research Center, Iran University of Medical Sciences, Tehran, Iran
| |
Collapse
|
15
|
Gupta S, Ge Y, Singh A, Gräni C, Kwong RY. Multimodality Imaging Assessment of Myocardial Fibrosis. JACC Cardiovasc Imaging 2021; 14:2457-2469. [PMID: 34023250 DOI: 10.1016/j.jcmg.2021.01.027] [Citation(s) in RCA: 24] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/18/2020] [Revised: 01/19/2021] [Accepted: 01/25/2021] [Indexed: 02/07/2023]
Abstract
Myocardial fibrosis, seen in ischemic and nonischemic cardiomyopathies, is associated with adverse cardiac outcomes. Noninvasive imaging plays a key role in early identification and quantification of myocardial fibrosis with the use of an expanding array of techniques including cardiac magnetic resonance, computed tomography, and nuclear imaging. This review discusses currently available noninvasive imaging techniques, provides insights into their strengths and limitations, and examines novel developments that will affect the future of noninvasive imaging of myocardial fibrosis.
Collapse
Affiliation(s)
- Sumit Gupta
- Department of Radiology Brigham and Women's Hospital, Boston, Massachusetts, USA; Noninvasive Cardiovascular Imaging Section, Cardiovascular Division, Department of Medicine and Department of Radiology, Brigham and Women's Hospital, Boston, Massachusetts, USA
| | - Yin Ge
- Noninvasive Cardiovascular Imaging Section, Cardiovascular Division, Department of Medicine and Department of Radiology, Brigham and Women's Hospital, Boston, Massachusetts, USA; Division of Cardiology, Department of Medicine, St. Michael's Hospital, University of Toronto, Toronto, Ontario, Canada
| | - Amitoj Singh
- Noninvasive Cardiovascular Imaging Section, Cardiovascular Division, Department of Medicine and Department of Radiology, Brigham and Women's Hospital, Boston, Massachusetts, USA
| | - Christoph Gräni
- Noninvasive Cardiovascular Imaging Section, Cardiovascular Division, Department of Medicine and Department of Radiology, Brigham and Women's Hospital, Boston, Massachusetts, USA
| | - Raymond Y Kwong
- Noninvasive Cardiovascular Imaging Section, Cardiovascular Division, Department of Medicine and Department of Radiology, Brigham and Women's Hospital, Boston, Massachusetts, USA.
| |
Collapse
|
16
|
Wu R, An DA, Shi RY, Chen BH, Wu CW, Jiang M, Xu JR, Wu LM, Pu J. The feasibility and diagnostic value of intravoxel incoherent motion diffusion-weighted imaging in the assessment of myocardial fibrosis in hypertrophic cardiomyopathy patients. Eur J Radiol 2020; 132:109333. [PMID: 33068839 DOI: 10.1016/j.ejrad.2020.109333] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2019] [Revised: 02/27/2020] [Accepted: 09/30/2020] [Indexed: 10/23/2022]
Abstract
PURPOSE To investigate the feasibility and diagnostic value of intravoxel incoherent motion (IVIM) in the assessment of myocardial fibrosis in hypertrophic cardiomyopathy (HCM) patients. METHODS Fifty-five HCM patients underwent IVIM diffusion-weighted cardiovascular resonance imaging; Cine, T1 mapping, IVIM and late gadolinium enhancement (LGE) were performed. The relationship of strain, pre T1, extracellular volume (ECV), IVIM-derived parameters (D, D* and f) and LGE were analyzed based on 16 American Heart Association segments. Abnormal segments of myocardial fibrosis were defined as: the presence of LGE (LGE+) or ECV ≥ 29.6 %. RESULTS D parameter was significantly increased in LGE + vs LGE- (1.89 ± 0.14 μm2/ms vs. 1.63 ± 0.12 μm2/ms, p < 0.001) and ECV ≥ 29.6 % vs ECV < 29.6 % (1.84 ± 0.13 μm2/ms vs. 1.61 ± 0.12 μm2/ms, p < 0.001), respectively. D* and f parameters were significantly decreased in LGE + vs LGE- (D*: 34.9 ± 6.6 μm2/m vs 55.2 ± 11.4 μm2/m, p < 0.001; f: 10.8 ± 1.29 % vs 12.5 ± 1.26 %, p < 0.001) and ECV ≥ 29.6 % vs ECV < 29.6 % (D*: 37.5 ± 6.9 μm2/m vs 59.6 ± 9.2 μm2/m, p < 0.001; f: 10.9 ± 1.1 % vs 13.00 ± 1.0 %, p = 0.021), respectively. Moreover, significant correlations were demonstrated between D and ECV, as well as D* and f. CONCLUSIONS IVIM DW-CMR has proven to be ingenious in the investigation of myocardial fibrosis; D* and f parameters may have potential value to assess the perfusion status of fibrotic regions in HCM patients.
Collapse
Affiliation(s)
- Rui Wu
- Department of Radiology, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, No.160 PuJian Road Shanghai 200127, China
| | - Dong-Aolei An
- Department of Radiology, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, No.160 PuJian Road Shanghai 200127, China
| | - Ruo-Yang Shi
- Department of Radiology, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, No.160 PuJian Road Shanghai 200127, China
| | - Bing-Hua Chen
- Department of Radiology, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, No.160 PuJian Road Shanghai 200127, China
| | - Chong-Wen Wu
- Department of Radiology, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, No.160 PuJian Road Shanghai 200127, China
| | - Meng Jiang
- Department of Cardiology, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, No.160 PuJian Road Shanghai 200127, China
| | - Jian-Rong Xu
- Department of Radiology, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, No.160 PuJian Road Shanghai 200127, China
| | - Lian-Ming Wu
- Department of Radiology, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, No.160 PuJian Road Shanghai 200127, China.
| | - Jun Pu
- Department of Cardiology, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, No.160 PuJian Road Shanghai 200127, China.
| |
Collapse
|
17
|
Abstract
PURPOSE OF REVIEW Left ventricular hypertrophy (LVH) is a common presentation encountered in clinical practice with a diverse range of potential aetiologies. Differentiation of pathological from physiological hypertrophy can be challenging but is crucial for further management and prognostication. Cardiovascular magnetic resonance (CMR) with advanced myocardial tissue characterisation is a powerful tool that may help to differentiate these aetiologies in the assessment of LVH. RECENT FINDINGS The use of CMR for detailed morphological assessment of LVH is well described. More recently, advanced CMR techniques (late gadolinium enhancement, parametric mapping, diffusion tensor imaging, and myocardial strain) have been used. These techniques are highly promising in helping to differentiate key aetiologies of LVH and provide valuable prognostic information. Recent advancements in CMR tissue characterisation, such as parametric mapping, in combination with detailed morphological assessment and late gadolinium enhancement, provide a powerful resource that may help assess and differentiate important causes of LVH.
Collapse
Affiliation(s)
- Matthew K Burrage
- University of Oxford Centre for Clinical Magnetic Resonance Research (OCMR), Radcliffe Department of Medicine, University of Oxford, Level 0, John Radcliffe Hospital, Oxford, OX3 9DU, UK
| | - Vanessa M Ferreira
- University of Oxford Centre for Clinical Magnetic Resonance Research (OCMR), Radcliffe Department of Medicine, University of Oxford, Level 0, John Radcliffe Hospital, Oxford, OX3 9DU, UK.
| |
Collapse
|
18
|
Cau R, Bassareo P, Cherchi V, Palmisano V, Suri JS, Porcu M, Balestrieri A, Pontone G, Saba L. Early diagnosis of chemotherapy-induced cardiotoxicity by cardiac MRI. Eur J Radiol 2020; 130:109158. [PMID: 32652404 DOI: 10.1016/j.ejrad.2020.109158] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2020] [Accepted: 06/29/2020] [Indexed: 01/06/2023]
Abstract
Survival rate in cancer patients has improved over the course of the years. In cancer survivors, cardiovascular disease is the second leading cause of mortality and early detection and serial monitoring of cardiotoxicity are key factors towards the improvement of patients' outcomes. This review article will provide an overview of the existing literature regarding the tools that MRI can offer in the early diagnosis of myocardial damage.
Collapse
Affiliation(s)
- Riccardo Cau
- Department of Radiology, Azienda Ospedaliero Universitaria (A.O.U.), di Cagliari - Polo di Monserrato, s.s. 554 Monserrato, Cagliari, 09045, Italy
| | - Pierpaolo Bassareo
- University College of Dublin, Mater Misericordiae University Hospital and Our Lady's Children's Hospital, Crumlin, Dublin, Ireland
| | - Valeria Cherchi
- Department of Radiology, Azienda Ospedaliero Universitaria (A.O.U.), di Cagliari - Polo di Monserrato, s.s. 554 Monserrato, Cagliari, 09045, Italy
| | - Vitanio Palmisano
- Department of Radiology, Azienda Ospedaliero Universitaria (A.O.U.), di Cagliari - Polo di Monserrato, s.s. 554 Monserrato, Cagliari, 09045, Italy; Radiology Department, Miulli Hospital, Acquaviva delle Fonti, Italy Strada Prov. 127 Acquaviva - Santeramo Km. 4,100, 70021, Acquaviva delle Fonti, BA, Italy
| | - Jasjit S Suri
- Diagnostic and Monitoring Division, AtheroPoint™ LLC, Roseville, CA, 95661, United States
| | - Michele Porcu
- Department of Radiology, Azienda Ospedaliero Universitaria (A.O.U.), di Cagliari - Polo di Monserrato, s.s. 554 Monserrato, Cagliari, 09045, Italy
| | - Antonella Balestrieri
- Department of Radiology, Azienda Ospedaliero Universitaria (A.O.U.), di Cagliari - Polo di Monserrato, s.s. 554 Monserrato, Cagliari, 09045, Italy
| | | | - Luca Saba
- Department of Radiology, Azienda Ospedaliero Universitaria (A.O.U.), di Cagliari - Polo di Monserrato, s.s. 554 Monserrato, Cagliari, 09045, Italy.
| |
Collapse
|
19
|
Zhou D, Xu J, Zhao S, Lu M. CMR publications from China of the last more than 30 years. Int J Cardiovasc Imaging 2020; 36:1737-1747. [PMID: 32394180 DOI: 10.1007/s10554-020-01873-x] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/29/2020] [Accepted: 04/30/2020] [Indexed: 01/01/2023]
Abstract
Cardiovascular magnetic resonance (CMR) is a non-invasive imaging technology, gradually playing an irreplaceable role in the diagnosis and treatment of cardiovascular diseases. This review demonstrates the progress and research highlights of Chinese CMR publications of the last more than 30 years. At initial stage (1988 to 1997), CMR was introduced to evaluate cardiac anatomy, blood flow and ventricular function roughly in China. In the development stage (1998-2007), CMR began to play an important role in the diagnosis of cardiovascular and pericardial disease with the emergence of new techniques, such as myocardial perfusion imaging and magnetic resonance angiography. Since 2008, the development of CMR in China has reached a prosperous period. Cardiovascular disease can be both qualitatively and quantitatively assessment by CMR "one-stop" multi-parameter imaging, including the morphology, function, myocardial perfusion, tissue characteristics, metabolism and even the microstructure of myocardial fibers, which provides comprehensive assessment of the severity, risk stratification and prognosis of cardiovascular disease. Although CMR in China developed very rapidly in recent years, China still needs to put more efforts in CMR research and make greater contributions to the development of CMR in the world.
Collapse
Affiliation(s)
- Di Zhou
- Department of Magnetic Resonance Imaging, Fuwai Hospital, National Center for Cardiovascular Diseases, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100037, China
| | - Jing Xu
- Department of Magnetic Resonance Imaging, Fuwai Hospital, National Center for Cardiovascular Diseases, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100037, China
| | - Shihua Zhao
- Department of Magnetic Resonance Imaging, Fuwai Hospital, National Center for Cardiovascular Diseases, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100037, China.
| | - Minjie Lu
- Department of Magnetic Resonance Imaging, Fuwai Hospital, National Center for Cardiovascular Diseases, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100037, China. .,Key Laboratory of Cardiovascular Imaging (Cultivation), Chinese Academy of Medical Sciences, Beijing, 100037, China.
| |
Collapse
|
20
|
Khalique Z, Ferreira PF, Scott AD, Nielles-Vallespin S, Firmin DN, Pennell DJ. Diffusion Tensor Cardiovascular Magnetic Resonance Imaging. JACC Cardiovasc Imaging 2020; 13:1235-1255. [DOI: 10.1016/j.jcmg.2019.07.016] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/06/2018] [Revised: 07/09/2019] [Accepted: 07/11/2019] [Indexed: 12/15/2022]
|
21
|
Yang Y, Yin G, Jiang Y, Song L, Zhao S, Lu M. Quantification of left atrial function in patients with non-obstructive hypertrophic cardiomyopathy by cardiovascular magnetic resonance feature tracking imaging: a feasibility and reproducibility study. J Cardiovasc Magn Reson 2020; 22:1. [PMID: 31898543 PMCID: PMC6939338 DOI: 10.1186/s12968-019-0589-5] [Citation(s) in RCA: 62] [Impact Index Per Article: 15.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2019] [Accepted: 11/28/2019] [Indexed: 12/26/2022] Open
Abstract
BACKGROUND Atrial fibrillation (AF) is the most common arrhythmia in hypertrophic cardiomyopathy (HCM) and is associated with adverse outcomes in HCM patients. Although the left atrial (LA) diameter has consistently been identified as a strong predictor of AF in HCM patients, the relationship between LA dysfunction and AF still remains unclear. The aim of this study is to evaluate the LA function in patients with non-obstructive HCM (NOHCM) utilizing cardiovascular magnetic resonance feature tracking (CMR-FT). METHODS Thirty-three patients with NOHCM and 28 healthy controls were studied. The global and regional LA function and left ventricular (LV) function were compared between the two groups. The following LA global functional parameters were quantitively analyzed: reservoir function (total ejection fraction [LA total EF], total strain [εs], peak positive strain rate [SRs]), conduit function (passive ejection fraction [LA passive EF], passive strain [εe], peak early-negative SR [SRe]), and booster pump function (active ejection fraction [LA active EF], active strain [εa], peak late-negative SR [SRa]). The LA wall was automatically divided into 6 segments: anterior, antero-roof, inferior, septal, septal-roof and lateral. Three LA strain parameters (εs, εe, εa) and their corresponding strain rate parameters (SRs, SRe, SRa) during the reservoir, conduit and booster pump LA phases were segmentally measured and analyzed. RESULTS The LA reservoir (LA total EF: 57.6 ± 8.2% vs. 63.9 ± 6.4%, p < 0.01; εs: 35.0 ± 12.0% vs. 41.5 ± 11.2%, p = 0.03; SRs: 1.3 ± 0.4 s- 1 vs. 1.5 ± 0.4 s- 1, p = 0.02) and conduit function (LA passive EF: 28.7 ± 9.1% vs. 37.1 ± 10.0%, p < 0.01; εe: 18.7 ± 7.9% vs. 25.9 ± 10.0%, p < 0.01; SRe: - 0.8 ± 0.3 s- 1 vs. -1.1 ± 0.4 s- 1, p < 0.01) were all impaired in patients with NOHCM when compared with healthy controls, while LA booster pump function was preserved. The LA segmental strain and strain rate analysis demonstrated that the εs, εe, SRe of inferior, SRs, SRe of septal-roof, and SRa of antero-roof walls (all p < 0.05) were all decreased in the NOHCM cohort. Correlations between LA functional parameters and LV conventional function and LA functional parameters and baseline parameters (age, body surface area and NYHA classification) were weak. The two strongest relations were between εs and LA total EF(r = 0.84, p < 0.01), εa and LA active EF (r = 0.83, p < 0.01). CONCLUSIONS Compared with healthy controls, patients with NOHCM have LA reservoir and conduit dysfunction, and regional LA deformation before LA enlargement. CMR-FT identifies LA dysfunction and deformation at an early stage.
Collapse
Affiliation(s)
- Yingxia Yang
- Department of Magnetic Resonance Imaging, Fuwai Hospital and National Center for Cardiovascular Diseases, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100037 China
- Department of Radiology, The People’s Hospital of Guangxi Zhuang Autonomous Region, Nanning, 530021 China
| | - Gang Yin
- Department of Magnetic Resonance Imaging, Fuwai Hospital and National Center for Cardiovascular Diseases, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100037 China
| | - Yong Jiang
- Department of Echocardiography, Fuwai Hospital and National Center for Cardiovascular Diseases, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100037 China
- Key Laboratory of Cardiovascular Imaging (Cultivation), Chinese Academy of Medical Sciences, Beijing, 100037 China
| | - Lei Song
- Department of Cardiology, Fuwai Hospital and National Center for Cardiovascular Diseases, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100037 China
| | - Shihua Zhao
- Department of Magnetic Resonance Imaging, Fuwai Hospital and National Center for Cardiovascular Diseases, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100037 China
| | - Minjie Lu
- Department of Magnetic Resonance Imaging, Fuwai Hospital and National Center for Cardiovascular Diseases, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100037 China
- Key Laboratory of Cardiovascular Imaging (Cultivation), Chinese Academy of Medical Sciences, Beijing, 100037 China
| |
Collapse
|
22
|
Mayala HA, Bakari KH, Zhaohui W. The role of Cardiac Magnetic Resonance (CMR) in the diagnosis of cardiomyopathy: A systematic review. Malawi Med J 2019; 31:241-245. [PMID: 31839897 PMCID: PMC6895381 DOI: 10.4314/mmj.v31i3.14] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/22/2023] Open
Abstract
Background Myocardial pathologies are significant causes of morbidity and mortality in patients worldwide. Ischemic and non-ischemic cardiomyopathies have become a worldwide epidemic of the 21st century with an increasing impact on health care systems. The 2012 European Society of Cardiology and 2013 American College of Cardiology Foundation/American Heart Association guidelines provide current therapy guidance to reduce mortality and morbidity. Methods This was a systematic review involving cardiac magnetic resonance (CMR) studies for the diagnosis of cardiomyopathy from January 2013 to April 2017. Out of 62 reviewed studies, only 12 were included in our study. Results The average sensitivity and specificity of CMR in the diagnosis of cardiomyopathy was 86.75% (95% confidence interval [CI], 70.30% to 92.58%) and 81.75% (95% CI, 73.0% to 87.6%), respectively, and the positive predictive and negative predictive values were 80.17% and 86.75%, respectively. Conclusion Despite some limitations, our study shows that CMR has high sensitivity, specificity, and positive predictive value in diagnosing different types of cardiomyopathy. CMR may be used to differentiate types of cardiomyopathy, accurately quantify the chamber dimensions, volumes, and cardiac function, which make it useful for prognosis as well.
Collapse
Affiliation(s)
- Henry Anselmo Mayala
- Wuhan Union Hospital, Tongji Medical College of Huazhong, University of Science and Technology, China
| | - Khamis Hassan Bakari
- Wuhan Union Hospital, Tongji Medical College of Huazhong, University of Science and Technology, China
| | - Wang Zhaohui
- Wuhan Union Hospital, Tongji Medical College of Huazhong, University of Science and Technology, China
| |
Collapse
|
23
|
Mayala HA, Bakari KH, Zhaohui W. The role of cardiac magnetic resonance (CMR) in the diagnosis of cardiomyopathy: A systematic review. Malawi Med J 2019; 30:291-295. [PMID: 31798809 PMCID: PMC6863424 DOI: 10.4314/mmj.v30i4.13] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022] Open
Abstract
Background Myocardial pathologies are significant causes of morbidity and mortality in patients worldwide. Ischemic and non-ischemic cardiomyopathies have become a worldwide epidemic of the 21st century with an increasing impact on health care systems. The 2012 European Society of Cardiology and 2013 American College of Cardiology Foundation/American Heart Association guidelines provide current therapy guidance to reduce mortality and morbidity. Methods This was a systematic review involving cardiac magnetic resonance (CMR) studies for the diagnosis of cardiomyopathy from January 2013 to April 2017. Out of 62 reviewed studies, only 12 were included in our study. Results The average sensitivity and specificity of CMR in the diagnosis of cardiomyopathy was 86.75% (95% confidence interval [CI], 70.30% to 92.58%) and 81.75% (95% CI, 73.0% to 87.6%), respectively, and the positive predictive and negative predictive values were 80.17% and 86.75%, respectively. Conclusion Despite some limitations, our study shows that CMR has high sensitivity, specificity, and positive predictive value in diagnosing different types of cardiomyopathy. CMR may be used to differentiate types of cardiomyopathy, accurately quantify the chamber dimensions, volumes, and cardiac function, which make it useful for prognosis as well.
Collapse
Affiliation(s)
- Henry Anselmo Mayala
- Wuhan Union Hospital, Tongji Medical College of Huazhong, University of Science and Technology, China
| | - Khamis Hassan Bakari
- Wuhan Union Hospital, Tongji Medical College of Huazhong, University of Science and Technology, China
| | - Wang Zhaohui
- Wuhan Union Hospital, Tongji Medical College of Huazhong, University of Science and Technology, China
| |
Collapse
|
24
|
Diffusion tensor cardiovascular magnetic resonance in hypertrophic cardiomyopathy: a comparison of motion-compensated spin echo and stimulated echo techniques. MAGNETIC RESONANCE MATERIALS IN PHYSICS BIOLOGY AND MEDICINE 2019; 33:331-342. [PMID: 31758419 PMCID: PMC7230046 DOI: 10.1007/s10334-019-00799-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/12/2019] [Revised: 10/15/2019] [Accepted: 11/07/2019] [Indexed: 11/18/2022]
Abstract
Objectives Diffusion tensor cardiovascular magnetic resonance (DT-CMR) interrogates myocardial microstructure. Two frequently used in vivo DT-CMR techniques are motion-compensated spin echo (M2-SE) and stimulated echo acquisition mode (STEAM). Whilst M2-SE is strain-insensitive and signal to noise ratio efficient, STEAM has a longer diffusion time and motion compensation is unnecessary. Here we compare STEAM and M2-SE DT-CMR in patients. Materials and methods Biphasic DT-CMR using STEAM and M2-SE, late gadolinium imaging and pre/post gadolinium T1-mapping were performed in a mid-ventricular short-axis slice, in ten hypertrophic cardiomyopathy (HCM) patients at 3 T. Results Adequate quality data were obtained from all STEAM, but only 7/10 (systole) and 4/10 (diastole) M2-SE acquisitions. Compared with STEAM, M2-SE yielded higher systolic mean diffusivity (MD) (p = 0.02) and lower fractional anisotropy (FA) (p = 0.02, systole). Compared with segments with neither hypertrophy nor late gadolinium, segments with both had lower systolic FA using M2-SE (p = 0.02) and trend toward higher MD (p = 0.1). The negative correlation between FA and extracellular volume fraction was stronger with STEAM than M2-SE (r2 = 0.29, p < 0.001 STEAM vs. r2 = 0.10, p = 0.003 M2-SE). Discussion In HCM, only STEAM reliably assesses biphasic myocardial microstructure. Higher MD and lower FA from M2-SE reflect the shorter diffusion times. Further work will relate DT-CMR parameters and microstructural changes in disease. Electronic supplementary material The online version of this article (10.1007/s10334-019-00799-3) contains supplementary material, which is available to authorized users.
Collapse
|
25
|
Gotschy A, von Deuster C, van Gorkum RJH, Gastl M, Vintschger E, Schwotzer R, Flammer AJ, Manka R, Stoeck CT, Kozerke S. Characterizing cardiac involvement in amyloidosis using cardiovascular magnetic resonance diffusion tensor imaging. J Cardiovasc Magn Reson 2019; 21:56. [PMID: 31484544 PMCID: PMC6727537 DOI: 10.1186/s12968-019-0563-2] [Citation(s) in RCA: 35] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2019] [Accepted: 07/15/2019] [Indexed: 01/05/2023] Open
Abstract
BACKGROUND In-vivo cardiovascular magnetic resonance (CMR) diffusion tensor imaging (DTI) allows imaging of alterations of cardiac fiber architecture in diseased hearts. Cardiac amyloidosis (CA) causes myocardial infiltration of misfolded proteins with unknown consequences for myocardial microstructure. This study applied CMR DTI in CA to assess microstructural alterations and their consequences for myocardial function compared to healthy controls. METHODS Ten patients with CA (8 AL, 2 ATTR) and ten healthy controls were studied using a diffusion-weighed second-order motion-compensated spin-echo sequence at 1.5 T. Additionally, left ventricular morphology, ejection fraction, strain and native T1 values were obtained in all subjects. In CA patients, T1 mapping was repeated after the administration of gadolinium for extracellular volume fraction (ECV) calculation. CMR DTI analysis was performed to yield the scalar diffusion metrics mean diffusivity (MD) and fractional anisotropy (FA) as well as the characteristics of myofiber orientation including helix, transverse and E2A sheet angle (HA, TA, E2A). RESULTS MD and FA were found to be significantly different between CA patients and healthy controls (MD 1.77 ± 0.17 10- 3 vs 1.41 ± 0.07 10- 3 mm2/s, p < 0.001; FA 0.25 ± 0.04 vs 0.35 ± 0.03, p < 0.001). MD demonstrated an excellent correlation with native T1 (r = 0.908, p < 0.001) while FA showed a significant correlation with ECV in the CA population (r = - 0.851, p < 0.002). HA exhibited a more circumferential orientation of myofibers in CA patients, in conjunction with a higher TA standard deviation and a higher absolute E2A sheet angle. The transmural HA slope was found to be strongly correlated with the global longitudinal strain (r = 0.921, p < 0.001). CONCLUSION CMR DTI reveals significant alterations of scalar diffusion metrics in CA patients versus healthy controls. Elevated MD and lower FA values indicate myocardial disarray with higher diffusion in CA that correlates well with native T1 and ECV measures. In CA patients, CMR DTI showed pronounced circumferential orientation of the myofibers, which may provide the rationale for the reduction of global longitudinal strain that occurs in amyloidosis patients. Accordingly, CMR DTI captures specific features of amyloid infiltration, which provides a deeper understanding of the microstructural consequences of CA.
Collapse
Affiliation(s)
- Alexander Gotschy
- Institute for Biomedical Engineering, University and ETH Zurich, Gloriastrasse 35, Zurich, 8092 Switzerland
- Department of Cardiology, University Hospital Zurich, Zurich, Switzerland
| | - Constantin von Deuster
- Institute for Biomedical Engineering, University and ETH Zurich, Gloriastrasse 35, Zurich, 8092 Switzerland
| | - Robbert J. H. van Gorkum
- Institute for Biomedical Engineering, University and ETH Zurich, Gloriastrasse 35, Zurich, 8092 Switzerland
| | - Mareike Gastl
- Institute for Biomedical Engineering, University and ETH Zurich, Gloriastrasse 35, Zurich, 8092 Switzerland
| | - Ella Vintschger
- Institute for Biomedical Engineering, University and ETH Zurich, Gloriastrasse 35, Zurich, 8092 Switzerland
| | - Rahel Schwotzer
- Division of Medical Oncology and Hematology, University Hospital Zurich, Zurich, Switzerland
| | - Andreas J. Flammer
- Department of Cardiology, University Hospital Zurich, Zurich, Switzerland
| | - Robert Manka
- Department of Cardiology, University Hospital Zurich, Zurich, Switzerland
- Institute of Diagnostic and Interventional Radiology, University Hospital Zurich, Zurich, Switzerland
| | - Christian T. Stoeck
- Institute for Biomedical Engineering, University and ETH Zurich, Gloriastrasse 35, Zurich, 8092 Switzerland
| | - Sebastian Kozerke
- Institute for Biomedical Engineering, University and ETH Zurich, Gloriastrasse 35, Zurich, 8092 Switzerland
| |
Collapse
|
26
|
Nielles-Vallespin S, Scott A, Ferreira P, Khalique Z, Pennell D, Firmin D. Cardiac Diffusion: Technique and Practical Applications. J Magn Reson Imaging 2019; 52:348-368. [PMID: 31482620 DOI: 10.1002/jmri.26912] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2019] [Revised: 08/13/2019] [Accepted: 08/14/2019] [Indexed: 12/12/2022] Open
Abstract
The 3D microarchitecture of the cardiac muscle underlies the mechanical and electrical properties of the heart. Cardiomyocytes are arranged helically through the depth of the wall, and their shortening leads to macroscopic torsion, twist, and shortening during cardiac contraction. Furthermore, cardiomyocytes are organized in sheetlets separated by shear layers, which reorientate, slip, and shear during macroscopic left ventricle (LV) wall thickening. Cardiac diffusion provides a means for noninvasive interrogation of the 3D microarchitecture of the myocardium. The fundamental principle of MR diffusion is that an MRI signal is attenuated by the self-diffusion of water in the presence of large diffusion-encoding gradients. Since water molecules are constrained by the boundaries in biological tissue (cell membranes, collagen layers, etc.), depicting their diffusion behavior elucidates the shape of the myocardial microarchitecture they are embedded in. Cardiac diffusion therefore provides a noninvasive means to understand not only the dynamic changes in cardiac microstructure of healthy myocardium during cardiac contraction but also the pathophysiological changes in the presence of disease. This unique and innovative technology offers tremendous potential to enable improved clinical diagnosis through novel microstructural and functional assessment. in vivo cardiac diffusion methods are immediately translatable to patients, opening new avenues for diagnostic investigation and treatment evaluation in a range of clinically important cardiac pathologies. This review article describes the 3D microstructure of the LV, explains in vivo and ex vivo cardiac MR diffusion acquisition and postprocessing techniques, as well as clinical applications to date. Level of Evidence: 1 Technical Efficacy: Stage 3 J. Magn. Reson. Imaging 2019. J. Magn. Reson. Imaging 2020;52:348-368.
Collapse
Affiliation(s)
- Sonia Nielles-Vallespin
- Cardiovascular MR Unit, Royal Brompton And Harefield NHS Foundation Trust, London, UK.,NHLI, Imperial College of Science, Technology and Medicine, London, UK
| | - Andrew Scott
- Cardiovascular MR Unit, Royal Brompton And Harefield NHS Foundation Trust, London, UK.,NHLI, Imperial College of Science, Technology and Medicine, London, UK
| | - Pedro Ferreira
- Cardiovascular MR Unit, Royal Brompton And Harefield NHS Foundation Trust, London, UK.,NHLI, Imperial College of Science, Technology and Medicine, London, UK
| | - Zohya Khalique
- Cardiovascular MR Unit, Royal Brompton And Harefield NHS Foundation Trust, London, UK.,NHLI, Imperial College of Science, Technology and Medicine, London, UK
| | - Dudley Pennell
- Cardiovascular MR Unit, Royal Brompton And Harefield NHS Foundation Trust, London, UK.,NHLI, Imperial College of Science, Technology and Medicine, London, UK
| | - David Firmin
- Cardiovascular MR Unit, Royal Brompton And Harefield NHS Foundation Trust, London, UK.,NHLI, Imperial College of Science, Technology and Medicine, London, UK
| |
Collapse
|
27
|
Wu G, Morelli J, Xiong Y, Liu X, Li X. Diffusion weighted cardiovascular magnetic resonance imaging for discriminating acute from non-acute deep venous Thrombus. J Cardiovasc Magn Reson 2019; 21:37. [PMID: 31286985 PMCID: PMC6615231 DOI: 10.1186/s12968-019-0552-5] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/26/2018] [Accepted: 06/14/2019] [Indexed: 11/17/2022] Open
Abstract
BACKGROUND The importance of discriminating acute from non-acute thrombus is highlighted. The study aims to investigate the feasibility of readout-segmented diffusion weighted (DW) cardiovascular magnetic resonance (CMR) for discrimination of acute from non-acute deep venous thrombus (DVT). METHODS For this prospective study from December 2015 to December 2017, 85 participants (mean age = 53 years, age range = 34~74) with DVT of lower extremities underwent readout-segmented DW CMR. DVT of ≤14 days were defined as acute (n = 55) and > 14 days as non-acute (n = 30). DVT visualization on b = 0, b = 800, and apparent diffusion coefficient (ADC) images were assessed using a 4-point scale (0~3, poor~excellent). DW CMR parameters were measured using region of interest (ROI). Relative signal intensity (rSI) and ADC were compared between acute and non-acute DVT using a Mann Whitney test. Sensitivity and specificity for ADC and rSI were calculated. RESULTS ADC maps had higher visualization scores than b = 0 and b = 800 images (2.7 ± 0.5, 2.5 ± 0.6, and 2.4 ± 0.6 respectively, P<0.05). The mean ADC was higher in acute DVT than non-acute DVT (0.56 ± 0.17 × 10- 3 vs. 0.22 ± 0.12 × 10- 3 mm2/s, P<0.001). Using 0.32 × 10- 3 mm2/s as the cutoff, sensitivity and specificity for ADC to discriminate acute from non-acute DVT were 93 and 90% respectively. Sensitivity and specificity were 73 and 60% for rSI on b = 0, and 75 and 63% for rSI on b = 800. CONCLUSIONS Readout segmented diffusion-weighted CMR derived ADC distinguishes acute from non-acute DVT. TRIAL REGISTRATION This study is retrospectively registered. TRIAL REGISTRATION NUMBER HUST-TJH-2015-146 .
Collapse
Affiliation(s)
- Gang Wu
- Department of Radiology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, No.1095, Jiefang Avenue, Wuhan, 430030 Hubei China
| | - John Morelli
- Department of Radiology, St. John’s Medical Center, Tulsa, OK USA
| | - Yan Xiong
- Department of Radiology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, No.1095, Jiefang Avenue, Wuhan, 430030 Hubei China
| | - Xuanlin Liu
- Department of Radiology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, No.1095, Jiefang Avenue, Wuhan, 430030 Hubei China
| | - Xiaoming Li
- Department of Radiology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, No.1095, Jiefang Avenue, Wuhan, 430030 Hubei China
| |
Collapse
|
28
|
Khalique Z, Pennell D. Diffusion tensor cardiovascular magnetic resonance. Postgrad Med J 2019; 95:433-438. [DOI: 10.1136/postgradmedj-2019-136429] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2019] [Revised: 04/16/2019] [Accepted: 04/28/2019] [Indexed: 11/03/2022]
Abstract
Cardiac structure and function are complex and inter-related. Current in vivo techniques assess the heart on a macroscopic scale, but a novel technique called diffusion tensor cardiovascular magnetic resonance (DT-CMR) can now assess the cardiac microstructure non-invasively. It provides information on the helical arrangement of cardiomyocytes that drives torsion and offers dynamic assessment of the sheetlets (aggregated cardiomyocytes) that rotate through the cardiac cycle to facilitate wall thickening. Through diffusion biomarkers, the expansion and organisation of the underlying myocardium can be described. DT-CMR has already identified novel microstructural abnormalities in cardiomyopathy, and ischaemic and congenital heart disease. This new knowledge supports the potential of DT-CMR to improve diagnostics and prognostication in various cardiac diseases.
Collapse
|
29
|
Lee SE, Nguyen C, Xie Y, Deng Z, Zhou Z, Li D, Chang HJ. Recent Advances in Cardiac Magnetic Resonance Imaging. Korean Circ J 2018; 49:146-159. [PMID: 30468040 PMCID: PMC6351278 DOI: 10.4070/kcj.2018.0246] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2018] [Revised: 09/25/2018] [Accepted: 10/23/2018] [Indexed: 01/10/2023] Open
Abstract
Cardiac magnetic resonance (CMR) imaging provides accurate anatomic information and advanced soft contrast, making it the reference standard for assessing cardiac volumes and systolic function. In this review, we summarize the recent advances in CMR sequences. New technical development has widened the use of CMR imaging beyond the simple characterization of myocardial scars and assessment of contractility. These novel CMR sequences offer comprehensive assessments of coronary plaque characterization, myocardial fiber orientation, and even metabolic activity, and they can be readily applied in clinical settings. CMR imaging is able to provide new insights into understanding the pathophysiologic process of underlying cardiac disease, and it can help physicians choose the best treatment strategies. Although several limitations, including the high cost and time-consuming process, have limited the widespread clinical use of CMR imaging so far, recent advances in software and hardware technologies have made the future more promising.
Collapse
Affiliation(s)
- Sang Eun Lee
- Division of Cardiology, Severance Cardiovascular Hospital, Yonsei University College of Medicine, Yonsei University Health System, Seoul, Korea.,Integrative Cardiovascular Imaging Center, Yonsei University Health System, Seoul, Korea.,Biomedical Imaging Research Institute, Cedars-Sinai Medical Center, Los Angeles, CA, USA
| | - Christopher Nguyen
- Biomedical Imaging Research Institute, Cedars-Sinai Medical Center, Los Angeles, CA, USA.,Cardiovascular Research Center, Massachusetts General Hospital, Charlestown, MA, USA.,Harvard Medical School, Boston, MA, USA
| | - Yibin Xie
- Biomedical Imaging Research Institute, Cedars-Sinai Medical Center, Los Angeles, CA, USA
| | - Zixin Deng
- Biomedical Imaging Research Institute, Cedars-Sinai Medical Center, Los Angeles, CA, USA
| | - Zhengwei Zhou
- Biomedical Imaging Research Institute, Cedars-Sinai Medical Center, Los Angeles, CA, USA
| | - Debiao Li
- Biomedical Imaging Research Institute, Cedars-Sinai Medical Center, Los Angeles, CA, USA
| | - Hyuk Jae Chang
- Division of Cardiology, Severance Cardiovascular Hospital, Yonsei University College of Medicine, Yonsei University Health System, Seoul, Korea.,Integrative Cardiovascular Imaging Center, Yonsei University Health System, Seoul, Korea.
| |
Collapse
|
30
|
Gorodezky M, Ferreira PF, Nielles-Vallespin S, Gatehouse PD, Pennell DJ, Scott AD, Firmin DN. High resolution in-vivo DT-CMR using an interleaved variable density spiral STEAM sequence. Magn Reson Med 2018; 81:1580-1594. [PMID: 30408238 DOI: 10.1002/mrm.27504] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2018] [Revised: 08/02/2018] [Accepted: 08/03/2018] [Indexed: 12/13/2022]
Abstract
PURPOSE Diffusion tensor cardiovascular magnetic resonance (DT-CMR) has a limited spatial resolution. The purpose of this study was to demonstrate high-resolution DT-CMR using a segmented variable density spiral sequence with correction for motion, off-resonance, and T2*-related blurring. METHODS A single-shot stimulated echo acquisition mode (STEAM) echo-planar-imaging (EPI) DT-CMR sequence at 2.8 × 2.8 × 8 mm3 and 1.8 × 1.8 × 8 mm3 was compared to a single-shot spiral at 2.8 × 2.8 × 8 mm3 and an interleaved spiral sequence at 1.8 × 1.8 × 8 mm3 resolution in 10 healthy volunteers at peak systole and diastasis. Motion-induced phase was corrected using the densely sampled central k-space data of the spirals. STEAM field maps and T2* measures were obtained using a pair of stimulated echoes each with a double spiral readout, the first used to correct the motion-induced phase of the second. RESULTS The high-resolution spiral sequence produced similar DT-CMR results and quality measures to the standard-resolution sequence in both cardiac phases. Residual differences in fractional anisotropy and helix angle gradient between the resolutions could be attributed to spatial resolution and/or signal-to-noise ratio. Data quality increased after both motion-induced phase correction and off-resonance correction, and sharpness increased after T2* correction. The high-resolution EPI sequence failed to provide sufficient data quality for DT-CMR reconstruction. CONCLUSION In this study, an in vivo DT-CMR acquisition at 1.8 × 1.8 mm2 in-plane resolution was demonstrated using a segmented spiral STEAM sequence. Motion-induced phase and off-resonance corrections are essential for high-resolution spiral DT-CMR. Segmented variable density spiral STEAM was found to be the optimal method for acquiring high-resolution DT-CMR data.
Collapse
Affiliation(s)
- Margarita Gorodezky
- Cardiovascular Magnetic Resonance Unit, Royal Brompton Hospital, London, United Kingdom.,National Heart and Lung Institute, Imperial College, London, United Kingdom
| | - Pedro F Ferreira
- Cardiovascular Magnetic Resonance Unit, Royal Brompton Hospital, London, United Kingdom.,National Heart and Lung Institute, Imperial College, London, United Kingdom
| | | | - Peter D Gatehouse
- Cardiovascular Magnetic Resonance Unit, Royal Brompton Hospital, London, United Kingdom.,National Heart and Lung Institute, Imperial College, London, United Kingdom
| | - Dudley J Pennell
- Cardiovascular Magnetic Resonance Unit, Royal Brompton Hospital, London, United Kingdom.,National Heart and Lung Institute, Imperial College, London, United Kingdom
| | - Andrew D Scott
- Cardiovascular Magnetic Resonance Unit, Royal Brompton Hospital, London, United Kingdom.,National Heart and Lung Institute, Imperial College, London, United Kingdom
| | - David N Firmin
- Cardiovascular Magnetic Resonance Unit, Royal Brompton Hospital, London, United Kingdom.,National Heart and Lung Institute, Imperial College, London, United Kingdom
| |
Collapse
|
31
|
Rose JN, Nielles-Vallespin S, Ferreira PF, Firmin DN, Scott AD, Doorly DJ. Novel insights into in-vivo diffusion tensor cardiovascular magnetic resonance using computational modeling and a histology-based virtual microstructure. Magn Reson Med 2018; 81:2759-2773. [PMID: 30350880 PMCID: PMC6637383 DOI: 10.1002/mrm.27561] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2018] [Revised: 09/12/2018] [Accepted: 09/14/2018] [Indexed: 12/13/2022]
Abstract
Purpose To develop histology‐informed simulations of diffusion tensor cardiovascular magnetic resonance (DT‐CMR) for typical in‐vivo pulse sequences and determine their sensitivity to changes in extra‐cellular space (ECS) and other microstructural parameters. Methods We synthesised the DT‐CMR signal from Monte Carlo random walk simulations. The virtual tissue was based on porcine histology. The cells were thickened and then shrunk to modify ECS. We also created idealised geometries using cuboids in regular arrangement, matching the extra‐cellular volume fraction (ECV) of 16–40%. The simulated voxel size was 2.8 × 2.8 × 8.0 mm3 for pulse sequences covering short and long diffusion times: Stejskal–Tanner pulsed‐gradient spin echo, second‐order motion‐compensated spin echo, and stimulated echo acquisition mode (STEAM), with clinically available gradient strengths. Results The primary diffusion tensor eigenvalue increases linearly with ECV at a similar rate for all simulated geometries. Mean diffusivity (MD) varies linearly, too, but is higher for the substrates with more uniformly distributed ECS. Fractional anisotropy (FA) for the histology‐based geometry is higher than the idealised geometry with low sensitivity to ECV, except for the long mixing time of the STEAM sequence. Varying the intra‐cellular diffusivity (DIC) results in large changes of MD and FA. Varying extra‐cellular diffusivity or using stronger gradients has minor effects on FA. Uncertainties of the primary eigenvector orientation are reduced using STEAM. Conclusions We found that the distribution of ECS has a measurable impact on DT‐CMR parameters. The observed sensitivity of MD and FA to ECV and DIC has potentially interesting applications for interpreting in‐vivo DT‐CMR parameters.
Collapse
Affiliation(s)
- Jan N Rose
- Department of Aeronautics, Imperial College London, London, United Kingdom
| | - Sonia Nielles-Vallespin
- Cardiovascular Magnetic Resonance Unit, The Royal Brompton Hospital, London, United Kingdom.,National Heart and Lung Institute, Imperial College London, London, United Kingdom
| | - Pedro F Ferreira
- Cardiovascular Magnetic Resonance Unit, The Royal Brompton Hospital, London, United Kingdom.,National Heart and Lung Institute, Imperial College London, London, United Kingdom
| | - David N Firmin
- Cardiovascular Magnetic Resonance Unit, The Royal Brompton Hospital, London, United Kingdom.,National Heart and Lung Institute, Imperial College London, London, United Kingdom
| | - Andrew D Scott
- Cardiovascular Magnetic Resonance Unit, The Royal Brompton Hospital, London, United Kingdom.,National Heart and Lung Institute, Imperial College London, London, United Kingdom
| | - Denis J Doorly
- Department of Aeronautics, Imperial College London, London, United Kingdom
| |
Collapse
|
32
|
Nguyen CT, Buckberg G, Li D. Magnetic Resonance Diffusion Tensor Imaging Provides New Insights Into the Microstructural Alterations in Dilated Cardiomyopathy. Circ Cardiovasc Imaging 2018; 9:CIRCIMAGING.116.005593. [PMID: 27729369 DOI: 10.1161/circimaging.116.005593] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Affiliation(s)
- Christopher T Nguyen
- From the Department of Biomedical Sciences, Biomedical Imaging Research Institute, Cedars-Sinai Medical Center, Los Angeles, CA (C.T.N., D.L.); Departments of Cardiac Surgery (G.B.) and Medicine (D.L.), David Geffen School of Medicine at University of California, Los Angeles; and Department of Bioengineering, University of California, Los Angeles (D.L.)
| | - Gerald Buckberg
- From the Department of Biomedical Sciences, Biomedical Imaging Research Institute, Cedars-Sinai Medical Center, Los Angeles, CA (C.T.N., D.L.); Departments of Cardiac Surgery (G.B.) and Medicine (D.L.), David Geffen School of Medicine at University of California, Los Angeles; and Department of Bioengineering, University of California, Los Angeles (D.L.)
| | - Debiao Li
- From the Department of Biomedical Sciences, Biomedical Imaging Research Institute, Cedars-Sinai Medical Center, Los Angeles, CA (C.T.N., D.L.); Departments of Cardiac Surgery (G.B.) and Medicine (D.L.), David Geffen School of Medicine at University of California, Los Angeles; and Department of Bioengineering, University of California, Los Angeles (D.L.).
| |
Collapse
|
33
|
Lee H, Park JB, Yoon YE, Park EA, Kim HK, Lee W, Kim YJ, Cho GY, Sohn DW, Greiser A, Lee SP. Noncontrast Myocardial T1 Mapping by Cardiac Magnetic Resonance Predicts Outcome in Patients With Aortic Stenosis. JACC Cardiovasc Imaging 2018; 11:974-983. [DOI: 10.1016/j.jcmg.2017.09.005] [Citation(s) in RCA: 87] [Impact Index Per Article: 14.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/17/2017] [Revised: 09/06/2017] [Accepted: 09/14/2017] [Indexed: 12/30/2022]
|
34
|
Zhao J, McMahon B, Fox M, Gregersen H. The esophagiome: integrated anatomical, mechanical, and physiological analysis of the esophago-gastric segment. Ann N Y Acad Sci 2018; 1434:5-20. [DOI: 10.1111/nyas.13869] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2017] [Revised: 04/27/2018] [Accepted: 05/04/2018] [Indexed: 12/24/2022]
Affiliation(s)
- Jingbo Zhao
- GIOME Academy, Department of Clinical Medicine; Aarhus University; Aarhus Denmark
| | - Barry McMahon
- Trinity Academic Gastroenterology Group; Tallaght Hospital and Trinity College; Dublin Ireland
| | - Mark Fox
- Abdominal Center: Gastroenterology; St. Claraspital Basel Switzerland
- Neurogastroenterology and Motility Research Group; University Hospital Zürich; Zürich Switzerland
| | - Hans Gregersen
- GIOME, Department of Surgery; Prince of Wales Hospital and Chinese University of Hong Kong; Shatin Hong Kong SAR
- California Medical Innovations Institute; San Diego California
| |
Collapse
|
35
|
Wu R, An DA, Shi RY, Chen BH, Jiang M, Bacyinski A, Han TT, Hu J, Xu JR, Wu LM. Myocardial fibrosis evaluated by diffusion-weighted imaging and its relationship to 3D contractile function in patients with hypertrophic cardiomyopathy. J Magn Reson Imaging 2018; 48:1139-1146. [PMID: 29601139 DOI: 10.1002/jmri.26016] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2017] [Accepted: 03/02/2018] [Indexed: 11/11/2022] Open
Abstract
BACKGROUND Previous studies have shown that diffusion-weighted imaging (DWI) is sensitive to myocardial fibrosis in ischemic and nonischemic cardiomyopathy. PURPOSE To explore the prognostic value of apparent diffusion coefficient (ADC) for detecting myocardial fibrosis and its relationship to the contractile function in hypertrophic cardiomyopathy (HCM). STUDY TYPE Prospective. POPULATION A total of 45 HCM patients and 20 controls. FIELD STRENGTH/SEQUENCE 3.0T cardiac MRI. The cardiac MR sequences included cine, T1 mapping, and DWI. ASSESSMENT According to the presence of late gadolinium enhancement (LGE) and the extracellular volume (ECV) values (+2 SD of control subjects), respectively, reader W and reader J assessed the value of ADC of each segment for detecting myocardial fibrosis and its relationship to impaired contractile function in HCM patients. STATISTICAL TESTS Independent sample t-test, Pearson analysis, and intraclass correlation (ICC). RESULTS The value of ECV was 23.6 ± 3.0% for control. ECV ≥ 29.6% and ECV < 29.6% groups were classified. ADC values in the ECV ≥ 29.6% group were significantly increased compared to the ECV < 29.6% group, (2.41 ± 0.23 μm2 /ms vs. 2.03 ± 0.16 μm2 /ms, P < 0.005). Compared to the LGE - group, ECV (32.1 ± 2.3% vs. 29.0 ± 2.8%, P < 0.005) and ADC (2.60 ± 0.18 μm2 /ms vs. 2.10 ± 0.07 μm2 /ms, P < 0.005) values were significantly increased in the LGE + group. ADC values were linearly associated with ECV values (R2 = 0.65) in HCM patients. ADC values were linearly associated with circumferential and longitudinal strain (R2 = 0.60, R2 = 0.46), as well as circumferential, longitudinal, and radial strain rate (R2 = 0.13, R2 = 0.25, R2 = 0.17, respectively). DATA CONCLUSION Contractile dysfunction in HCM is predominantly associated with ADC, which is a feasible alternative to ECV and LGE for detecting myocardial fibrosis. LEVEL OF EVIDENCE 1 Technical Efficacy: Stage 2 J. Magn. Reson. Imaging 2018;48:1139-1146.
Collapse
Affiliation(s)
- Rui Wu
- Department of Radiology, Ren Ji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, China
| | - Dong-Aolei An
- Department of Radiology, Ren Ji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, China
| | - Ruo-Yang Shi
- Department of Radiology, Ren Ji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, China
| | - Bing-Hua Chen
- Department of Radiology, Ren Ji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, China
| | - Meng Jiang
- Department of Cardiology, Ren Ji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, China
| | - Andrew Bacyinski
- Department of Physical Medicine and Rehabilitation, Detroit Medical Center, Detroit, Michigan, USA
| | - Tong-Tong Han
- Circle Cardiovascular Imaging Inc., Calgary, AB, Canada
| | - Jiani Hu
- Department of Radiology, Wayne State University, Detroit, Michigan, USA
| | - Jian-Rong Xu
- Department of Radiology, Ren Ji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, China
| | - Lian-Ming Wu
- Department of Radiology, Ren Ji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, China
| |
Collapse
|
36
|
Aliotta E, Moulin K, Magrath P, Ennis DB. Quantifying precision in cardiac diffusion tensor imaging with second-order motion-compensated convex optimized diffusion encoding. Magn Reson Med 2018; 80:1074-1087. [PMID: 29427349 DOI: 10.1002/mrm.27107] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2017] [Revised: 01/04/2018] [Accepted: 01/05/2018] [Indexed: 12/13/2022]
Affiliation(s)
- Eric Aliotta
- Department of Radiological Sciences, University of California, Los Angeles, California.,Biomedical Physics Interdepartmental Program, University of California, Los Angeles, California
| | - Kévin Moulin
- Department of Radiological Sciences, University of California, Los Angeles, California
| | - Patrick Magrath
- Department of Bioengineering, University of California, Los Angeles, California
| | - Daniel B Ennis
- Department of Radiological Sciences, University of California, Los Angeles, California.,Biomedical Physics Interdepartmental Program, University of California, Los Angeles, California.,Department of Bioengineering, University of California, Los Angeles, California
| |
Collapse
|
37
|
Nguyen CT, Dawkins J, Bi X, Marbán E, Li D. Diffusion Tensor Cardiac Magnetic Resonance Reveals Exosomes From Cardiosphere-Derived Cells Preserve Myocardial Fiber Architecture After Myocardial Infarction. JACC Basic Transl Sci 2018; 3:97-109. [PMID: 29600288 PMCID: PMC5869026 DOI: 10.1016/j.jacbts.2017.09.005] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/20/2017] [Revised: 09/11/2017] [Accepted: 09/12/2017] [Indexed: 12/15/2022]
Abstract
The object of the study was to reveal the fiber microstructural response with diffusion tensor cardiac magnetic resonance after intramyocardial exosomes secreted by cardiosphere-derived cells (CDCEXO) in chronic porcine myocardial infarction. Porcine with myocardial infarction underwent intramyocardial delivery of human CDCEXO and placebo in a randomized placebo-controlled study. Four weeks after injection, viability improved in the CDCEXO group, whereas myocardial fiber architecture and cardiac function were preserved. In the placebo group, fiber architecture and cardiac function declined. Myocardial regeneration by CDCEXO is not tumor-like; instead, details of tissue architecture are faithfully preserved, which may foster physiological excitation and contraction.
Collapse
Affiliation(s)
- Christopher T. Nguyen
- Biomedical Imaging Research Institute, Cedars-Sinai Medical Center, Los Angeles, California
- Cardiovascular Research Center, Cardiology Division, Massachusetts General Hospital, Harvard Medical School, Charlestown, Massachusetts
| | - James Dawkins
- Heart Institute, Cedars-Sinai Medical Center, Los Angeles, California
| | - Xiaoming Bi
- MR R&D, Siemens Healthcare, Los Angeles, California
| | - Eduardo Marbán
- Heart Institute, Cedars-Sinai Medical Center, Los Angeles, California
| | - Debiao Li
- Biomedical Imaging Research Institute, Cedars-Sinai Medical Center, Los Angeles, California
- Departments of Medicine and Bioengineering, University of California Los Angeles, Los Angeles, California
| |
Collapse
|
38
|
Scott AD, Nielles-Vallespin S, Ferreira PF, Khalique Z, Gatehouse PD, Kilner P, Pennell DJ, Firmin DN. An in-vivo comparison of stimulated-echo and motion compensated spin-echo sequences for 3 T diffusion tensor cardiovascular magnetic resonance at multiple cardiac phases. J Cardiovasc Magn Reson 2018; 20:1. [PMID: 29298692 PMCID: PMC5753538 DOI: 10.1186/s12968-017-0425-8] [Citation(s) in RCA: 52] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2017] [Accepted: 12/18/2017] [Indexed: 01/15/2023] Open
Abstract
BACKGROUND Stimulated-echo (STEAM) and, more recently, motion-compensated spin-echo (M2-SE) techniques have been used for in-vivo diffusion tensor cardiovascular magnetic resonance (DT-CMR) assessment of cardiac microstructure. The two techniques differ in the length scales of diffusion interrogated, their signal-to-noise ratio efficiency and sensitivity to both motion and strain. Previous comparisons of the techniques have used high performance gradients at 1.5 T in a single cardiac phase. However, recent work using STEAM has demonstrated novel findings of microscopic dysfunction in cardiomyopathy patients, when DT-CMR was performed at multiple cardiac phases. We compare STEAM and M2-SE using a clinical 3 T scanner in three potentially clinically interesting cardiac phases. METHODS Breath hold mid-ventricular short-axis DT-CMR was performed in 15 subjects using M2-SE and STEAM at end-systole, systolic sweet-spot and diastasis. Success was defined by ≥50% of the myocardium demonstrating normal helix angles. From successful acquisitions DT-CMR results relating to tensor orientation, size and shape were compared between sequences and cardiac phases using non-parametric statistics. Strain information was obtained using cine spiral displacement encoding with stimulated echoes for comparison with DT-CMR results. RESULTS Acquisitions were successful in 98% of STEAM and 76% of M2-SE cases and visual helix angle (HA) map scores were higher for STEAM at the sweet-spot and diastasis. There were significant differences between sequences (p < 0.05) in mean diffusivity (MD), fractional anisotropy (FA), tensor mode, transmural HA gradient and absolute second eigenvector angle (E2A). Differences in E2A between systole and diastole correlated with peak radial strain for both sequences (p ≤ 0.01). CONCLUSION M2-SE and STEAM can be performed equally well at peak systole at 3 T using standard gradients, but at the sweet-spot and diastole STEAM is more reliable and image quality scores are higher. Differences in DT-CMR results are potentially due to differences in motion sensitivity and the longer diffusion time of STEAM, although the latter appears to be the dominant factor. The benefits of both sequences should be considered when planning future studies and sequence and cardiac phase specific normal ranges should be used for comparison.
Collapse
Affiliation(s)
- Andrew D. Scott
- Cardiovascular Magnetic Resonance Unit, Royal Brompton and Harefield NHS Foundation Trust and Imperial College London, Sydney Street, London, UK
- National Heart and Lung Institute, Imperial College London, Sydney Street, London, UK
| | - Sonia Nielles-Vallespin
- National Heart and Lung Institute, Imperial College London, Sydney Street, London, UK
- National Heart Lung and Blood Institute, National Institutes of Health, Bethesda, MD USA
| | - Pedro F. Ferreira
- Cardiovascular Magnetic Resonance Unit, Royal Brompton and Harefield NHS Foundation Trust and Imperial College London, Sydney Street, London, UK
- National Heart and Lung Institute, Imperial College London, Sydney Street, London, UK
| | - Zohya Khalique
- Cardiovascular Magnetic Resonance Unit, Royal Brompton and Harefield NHS Foundation Trust and Imperial College London, Sydney Street, London, UK
| | - Peter D. Gatehouse
- Cardiovascular Magnetic Resonance Unit, Royal Brompton and Harefield NHS Foundation Trust and Imperial College London, Sydney Street, London, UK
- National Heart and Lung Institute, Imperial College London, Sydney Street, London, UK
| | - Philip Kilner
- Cardiovascular Magnetic Resonance Unit, Royal Brompton and Harefield NHS Foundation Trust and Imperial College London, Sydney Street, London, UK
- National Heart and Lung Institute, Imperial College London, Sydney Street, London, UK
| | - Dudley J. Pennell
- Cardiovascular Magnetic Resonance Unit, Royal Brompton and Harefield NHS Foundation Trust and Imperial College London, Sydney Street, London, UK
- National Heart and Lung Institute, Imperial College London, Sydney Street, London, UK
| | - David N. Firmin
- Cardiovascular Magnetic Resonance Unit, Royal Brompton and Harefield NHS Foundation Trust and Imperial College London, Sydney Street, London, UK
- National Heart and Lung Institute, Imperial College London, Sydney Street, London, UK
| |
Collapse
|
39
|
Manning WJ. Review of Journal of Cardiovascular Magnetic Resonance (JCMR) 2015-2016 and transition of the JCMR office to Boston. J Cardiovasc Magn Reson 2017; 19:108. [PMID: 29284487 PMCID: PMC5747150 DOI: 10.1186/s12968-017-0423-x] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2017] [Accepted: 12/07/2017] [Indexed: 02/06/2023] Open
Abstract
The Journal of Cardiovascular Magnetic Resonance (JCMR) is the official publication of the Society for Cardiovascular Magnetic Resonance (SCMR). In 2016, the JCMR published 93 manuscripts, including 80 research papers, 6 reviews, 5 technical notes, 1 protocol, and 1 case report. The number of manuscripts published was similar to 2015 though with a 12% increase in manuscript submissions to an all-time high of 369. This reflects a decrease in the overall acceptance rate to <25% (excluding solicited reviews). The quality of submissions to JCMR continues to be high. The 2016 JCMR Impact Factor (which is published in June 2016 by Thomson Reuters) was steady at 5.601 (vs. 5.71 for 2015; as published in June 2016), which is the second highest impact factor ever recorded for JCMR. The 2016 impact factor means that the JCMR papers that were published in 2014 and 2015 were on-average cited 5.71 times in 2016.In accordance with Open-Access publishing of Biomed Central, the JCMR articles are published on-line in the order that they are accepted with no collating of the articles into sections or special thematic issues. For this reason, over the years, the Editors have felt that it is useful to annually summarize the publications into broad areas of interest or themes, so that readers can view areas of interest in a single article in relation to each other and other recent JCMR articles. The papers are presented in broad themes with previously published JCMR papers to guide continuity of thought in the journal. In addition, I have elected to open this publication with information for the readership regarding the transition of the JCMR editorial office to the Beth Israel Deaconess Medical Center, Boston and the editorial process.Though there is an author publication charge (APC) associated with open-access to cover the publisher's expenses, this format provides a much wider distribution/availability of the author's work and greater manuscript citation. For SCMR members, there is a substantial discount in the APC. I hope that you will continue to send your high quality manuscripts to JCMR for consideration. Importantly, I also ask that you consider referencing recent JCMR publications in your submissions to the JCMR and elsewhere as these contribute to our impact factor. I also thank our dedicated Associate Editors, Guest Editors, and reviewers for their many efforts to ensure that the review process occurs in a timely and responsible manner and that the JCMR continues to be recognized as the leading publication in our field.
Collapse
Affiliation(s)
- Warren J Manning
- From the Journal of Cardiovascular Magnetic Resonance Editorial Office and the Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA, USA.
| |
Collapse
|
40
|
Gorodezky M, Scott AD, Ferreira PF, Nielles-Vallespin S, Pennell DJ, Firmin DN. Diffusion tensor cardiovascular magnetic resonance with a spiral trajectory: An in vivo comparison of echo planar and spiral stimulated echo sequences. Magn Reson Med 2017; 80:648-654. [PMID: 29266435 DOI: 10.1002/mrm.27051] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2017] [Revised: 11/29/2017] [Accepted: 11/29/2017] [Indexed: 12/13/2022]
Abstract
PURPOSE Diffusion tensor cardiovascular MR (DT-CMR) using stimulated echo acquisition mode (STEAM) with echo-planar-imaging (EPI) readouts is a low signal-to-noise-ratio (SNR) technique and therefore typically has a low spatial resolution. Spiral trajectories are more efficient than EPI, and could increase the SNR. The purpose of this study was to compare the performance of a novel STEAM spiral DT-CMR sequence with an equivalent established EPI technique. METHODS A STEAM DT-CMR sequence was implemented with a spiral readout and a reduced field of view. An in vivo comparison of DT-CMR parameters and data quality between EPI and spiral was performed in 11 healthy volunteers imaged in peak systole and diastasis at 3 T. The SNR was compared in a phantom and in vivo. RESULTS There was a greater than 49% increase in the SNR in vivo and in the phantom measurements (in vivo septum, systole: SNREPI = 8.0 ± 2.2, SNRspiral = 12.0 ± 2.7; diastasis: SNREPI = 8.1 ± 1.6, SNRspiral = 12.0 ± 3.7). There were no significant differences in helix angle gradient (HAG) (systole: HAGEPI = -0.79 ± 0.07 °/%; HAGspiral = -0.74 ± 0.16 °/%; P = 0.11; diastasis: HAGEPI = -0.63 ± 0.05 °/%; HAGspiral = -0.56 ± 0.14 °/%; P = 0.20), mean diffusivity (MD) in systole (MDEPI = 0.99 ± 0.06 × 10-3 mm2 /s, MDspiral = 1.00 ± 0.09 × 10-3 mm2 /s, P = 0.23) and secondary eigenvector angulation (E2A) (systole: E2AEPI = 61 ± 10 °; E2Aspiral = 63 ± 10 °; P = 0.77; diastasis: E2AEPI = 18 ± 11 °; E2Aspiral = 15 ± 8 °; P = 0.20) between the sequences. There was a small difference (≈ 20%) in fractional anisotropy (FA) (systole: FAEPI = 0.49 ± 0.03, FAspiral = 0.41 ± 0.04; P < 0.01; diastasis: FAEPI = 0.66 ± 0.05, FAspiral = 0.55 ± 0.03; P < 0.01) and mean diffusivity in diastasis (10%; MDEPI = 1.00 ± 0.12 × 10-3 mm2 /s, MDspiral = 1.10 ± 0.09 × 10-3 mm2 /s, P = 0.02). CONCLUSION This is the first study to demonstrate DT-CMR STEAM using a spiral trajectory. The SNR was increased by using a spiral rather than the more established EPI readout, and the DT-CMR parameters were largely similar between the two sequences. Magn Reson Med 80:648-654, 2018. © 2017 International Society for Magnetic Resonance in Medicine.
Collapse
Affiliation(s)
- Margarita Gorodezky
- Cardiovascular Magnetic Resonance Unit, Royal Brompton Hospital, Sydney Street, London, SW3 6NP, United Kingdom.,National Heart and Lung Institute, Imperial College, Sydney Street, London, SW3 6NP, United Kingdom
| | - Andrew D Scott
- Cardiovascular Magnetic Resonance Unit, Royal Brompton Hospital, Sydney Street, London, SW3 6NP, United Kingdom.,National Heart and Lung Institute, Imperial College, Sydney Street, London, SW3 6NP, United Kingdom
| | - Pedro F Ferreira
- Cardiovascular Magnetic Resonance Unit, Royal Brompton Hospital, Sydney Street, London, SW3 6NP, United Kingdom.,National Heart and Lung Institute, Imperial College, Sydney Street, London, SW3 6NP, United Kingdom
| | - Sonia Nielles-Vallespin
- Cardiovascular Magnetic Resonance Unit, Royal Brompton Hospital, Sydney Street, London, SW3 6NP, United Kingdom.,National Heart and Lung Institute, Imperial College, Sydney Street, London, SW3 6NP, United Kingdom.,National Heart, Lung and Blood Institute, National Institutes of Health, Bethesda, Maryland, USA
| | - Dudley J Pennell
- Cardiovascular Magnetic Resonance Unit, Royal Brompton Hospital, Sydney Street, London, SW3 6NP, United Kingdom.,National Heart and Lung Institute, Imperial College, Sydney Street, London, SW3 6NP, United Kingdom
| | - David N Firmin
- Cardiovascular Magnetic Resonance Unit, Royal Brompton Hospital, Sydney Street, London, SW3 6NP, United Kingdom.,National Heart and Lung Institute, Imperial College, Sydney Street, London, SW3 6NP, United Kingdom
| |
Collapse
|
41
|
Wu R, An DA, Hu J, Jiang M, Guo Q, Xu JR, Wu LM. The apparent diffusion coefficient is strongly correlated with extracellular volume, a measure of myocardial fibrosis, and subclinical cardiomyopathy in patients with systemic lupus erythematosus. Acta Radiol 2017; 59:287-295. [DOI: 10.1177/0284185117717763] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
Background Extracellular volume (ECV) has been histologically validated as a non-invasive quantitative index of myocardial fibrosis that does not require the use of contrast, which is contraindicated in patients with renal insufficiency. Purpose To evaluate the correlation between the contrast-free apparent diffusion coefficient (ADC) and ECV, an index of fibrosis. Material and Methods Twenty-four patients with systemic lupus erythematosus (SLE), who were predominantly women (mean age = 36 ± 12 years) and 12 normal participants (mean age = 38 ± 10 years) underwent cardiac magnetic resonance (CMR) via 3.0 T MR with T1 mapping. Diffusion-weighted imaging (DWI) and late gadolinium-enhanced (LGE) imaging served as the reference standards with which CMR was compared. The mean ADC, native T1, and ECV were calculated for each patient, and the correlations among these parameters were analyzed. Results Both SLE LGE-positive (LGE+) and SLE LGE-negative (LGE–) participants had higher native T1 values, ECV, and ADC than normal controls ( P < 0.05). SLE LGE+ participants exhibited a higher ECV (0.31 ± 0.02) and ADC (2.44 ± 0.32 × 10−3 mm2/s) than SLE LGE– participants ( p < 0.05); however, SLE LGE+ and SLE LGE– participants had similar native T1 values (1227 ± 48.81 ms versus 1174.70 ± 95.80 ms, respectively; P > 0.05). ADC values were positively correlated with increased ECV (R2 = 0.62) and native T1 values (R2 = 0.28) in all participants. Conclusion ADC measurements are a suitable alternative to ECV that may be used to assess and quantify myocardial fibrosis in patients with SLE.
Collapse
Affiliation(s)
- Rui Wu
- Department of Radiology, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, PR China
| | - Dong-Aolei An
- Department of Radiology, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, PR China
| | - Jiani Hu
- Department of Radiology, Wayne State University, Detroit, MI, USA
| | - Meng Jiang
- Department of Cardiology, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, PR China
| | - Qiang Guo
- Department of Rheumatology, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, PR China
| | - Jian-Rong Xu
- Department of Radiology, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, PR China
| | - Lian-Ming Wu
- Department of Radiology, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, PR China
| |
Collapse
|
42
|
Salerno M, Sharif B, Arheden H, Kumar A, Axel L, Li D, Neubauer S. Recent Advances in Cardiovascular Magnetic Resonance: Techniques and Applications. Circ Cardiovasc Imaging 2017; 10:CIRCIMAGING.116.003951. [PMID: 28611116 DOI: 10.1161/circimaging.116.003951] [Citation(s) in RCA: 112] [Impact Index Per Article: 16.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
Abstract
Cardiovascular magnetic resonance imaging has become the gold standard for evaluating myocardial function, volumes, and scarring. Additionally, cardiovascular magnetic resonance imaging is unique in its comprehensive tissue characterization, including assessment of myocardial edema, myocardial siderosis, myocardial perfusion, and diffuse myocardial fibrosis. Cardiovascular magnetic resonance imaging has become an indispensable tool in the evaluation of congenital heart disease, heart failure, cardiac masses, pericardial disease, and coronary artery disease. This review will highlight some recent novel cardiovascular magnetic resonance imaging techniques, concepts, and applications.
Collapse
Affiliation(s)
- Michael Salerno
- From the Cardiovascular Division, Department of Medicine, Department of Radiology and Medical Imaging, and Department of Biomedical Engineering, University of Virginia Health System, Charlottesville (M.S.); Biomedical Imaging Research Institute, Department of Biomedical Sciences, Cedars-Sinai Medical Center, Los Angeles, CA (B.S., D.L.); Department of Clinical Sciences, Clinical Physiology, Lund University, Skane University Hospital, Sweden (H.A.); Cardiology Division, Department of Medicine, Northern Ontario School of Medicine, Sudbury, Canada (A.K.); Department of Radiology and Department of Medicine, New York University, New York (L.A.); and Division of Cardiovascular Medicine, Oxford Center for Clinical Magnetic Resonance Research, University of Oxford, London, United Kingdom (S.N.).
| | - Behzad Sharif
- From the Cardiovascular Division, Department of Medicine, Department of Radiology and Medical Imaging, and Department of Biomedical Engineering, University of Virginia Health System, Charlottesville (M.S.); Biomedical Imaging Research Institute, Department of Biomedical Sciences, Cedars-Sinai Medical Center, Los Angeles, CA (B.S., D.L.); Department of Clinical Sciences, Clinical Physiology, Lund University, Skane University Hospital, Sweden (H.A.); Cardiology Division, Department of Medicine, Northern Ontario School of Medicine, Sudbury, Canada (A.K.); Department of Radiology and Department of Medicine, New York University, New York (L.A.); and Division of Cardiovascular Medicine, Oxford Center for Clinical Magnetic Resonance Research, University of Oxford, London, United Kingdom (S.N.)
| | - Håkan Arheden
- From the Cardiovascular Division, Department of Medicine, Department of Radiology and Medical Imaging, and Department of Biomedical Engineering, University of Virginia Health System, Charlottesville (M.S.); Biomedical Imaging Research Institute, Department of Biomedical Sciences, Cedars-Sinai Medical Center, Los Angeles, CA (B.S., D.L.); Department of Clinical Sciences, Clinical Physiology, Lund University, Skane University Hospital, Sweden (H.A.); Cardiology Division, Department of Medicine, Northern Ontario School of Medicine, Sudbury, Canada (A.K.); Department of Radiology and Department of Medicine, New York University, New York (L.A.); and Division of Cardiovascular Medicine, Oxford Center for Clinical Magnetic Resonance Research, University of Oxford, London, United Kingdom (S.N.)
| | - Andreas Kumar
- From the Cardiovascular Division, Department of Medicine, Department of Radiology and Medical Imaging, and Department of Biomedical Engineering, University of Virginia Health System, Charlottesville (M.S.); Biomedical Imaging Research Institute, Department of Biomedical Sciences, Cedars-Sinai Medical Center, Los Angeles, CA (B.S., D.L.); Department of Clinical Sciences, Clinical Physiology, Lund University, Skane University Hospital, Sweden (H.A.); Cardiology Division, Department of Medicine, Northern Ontario School of Medicine, Sudbury, Canada (A.K.); Department of Radiology and Department of Medicine, New York University, New York (L.A.); and Division of Cardiovascular Medicine, Oxford Center for Clinical Magnetic Resonance Research, University of Oxford, London, United Kingdom (S.N.)
| | - Leon Axel
- From the Cardiovascular Division, Department of Medicine, Department of Radiology and Medical Imaging, and Department of Biomedical Engineering, University of Virginia Health System, Charlottesville (M.S.); Biomedical Imaging Research Institute, Department of Biomedical Sciences, Cedars-Sinai Medical Center, Los Angeles, CA (B.S., D.L.); Department of Clinical Sciences, Clinical Physiology, Lund University, Skane University Hospital, Sweden (H.A.); Cardiology Division, Department of Medicine, Northern Ontario School of Medicine, Sudbury, Canada (A.K.); Department of Radiology and Department of Medicine, New York University, New York (L.A.); and Division of Cardiovascular Medicine, Oxford Center for Clinical Magnetic Resonance Research, University of Oxford, London, United Kingdom (S.N.)
| | - Debiao Li
- From the Cardiovascular Division, Department of Medicine, Department of Radiology and Medical Imaging, and Department of Biomedical Engineering, University of Virginia Health System, Charlottesville (M.S.); Biomedical Imaging Research Institute, Department of Biomedical Sciences, Cedars-Sinai Medical Center, Los Angeles, CA (B.S., D.L.); Department of Clinical Sciences, Clinical Physiology, Lund University, Skane University Hospital, Sweden (H.A.); Cardiology Division, Department of Medicine, Northern Ontario School of Medicine, Sudbury, Canada (A.K.); Department of Radiology and Department of Medicine, New York University, New York (L.A.); and Division of Cardiovascular Medicine, Oxford Center for Clinical Magnetic Resonance Research, University of Oxford, London, United Kingdom (S.N.)
| | - Stefan Neubauer
- From the Cardiovascular Division, Department of Medicine, Department of Radiology and Medical Imaging, and Department of Biomedical Engineering, University of Virginia Health System, Charlottesville (M.S.); Biomedical Imaging Research Institute, Department of Biomedical Sciences, Cedars-Sinai Medical Center, Los Angeles, CA (B.S., D.L.); Department of Clinical Sciences, Clinical Physiology, Lund University, Skane University Hospital, Sweden (H.A.); Cardiology Division, Department of Medicine, Northern Ontario School of Medicine, Sudbury, Canada (A.K.); Department of Radiology and Department of Medicine, New York University, New York (L.A.); and Division of Cardiovascular Medicine, Oxford Center for Clinical Magnetic Resonance Research, University of Oxford, London, United Kingdom (S.N.)
| |
Collapse
|
43
|
Aliotta E, Moulin K, Zhang Z, Ennis DB. Simultaneous measurement of T 2 and apparent diffusion coefficient (T 2 +ADC) in the heart with motion-compensated spin echo diffusion-weighted imaging. Magn Reson Med 2017; 79:654-662. [PMID: 28516485 DOI: 10.1002/mrm.26705] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2016] [Revised: 03/14/2017] [Accepted: 03/16/2017] [Indexed: 12/16/2022]
Abstract
PURPOSE To evaluate a technique for simultaneous quantitative T2 and apparent diffusion coefficient (ADC) mapping in the heart (T2 +ADC) using spin echo (SE) diffusion-weighted imaging (DWI). THEORY AND METHODS T2 maps from T2 +ADC were compared with single-echo SE in phantoms and with T2 -prepared (T2 -prep) balanced steady-state free precession (bSSFP) in healthy volunteers. ADC maps from T2 +ADC were compared with conventional DWI in phantoms and in vivo. T2 +ADC was also demonstrated in a patient with acute myocardial infarction (MI). RESULTS Phantom T2 values from T2 +ADC were closer to a single-echo SE reference than T2 -prep bSSFP (-2.3 ± 6.0% vs 22.2 ± 16.3%; P < 0.01), and ADC values were in excellent agreement with DWI (0.28 ± 0.4%). In volunteers, myocardial T2 values from T2 +ADC were significantly shorter than T2 -prep bSSFP (35.8 ± 3.1 vs 46.8 ± 3.8 ms; P < 0.01); myocardial ADC was not significantly (N.S.) different between T2 +ADC and conventional motion-compensated DWI (1.39 ± 0.18 vs 1.38 ± 0.18 mm2 /ms; P = N.S.). In the patient, T2 and ADC were both significantly elevated in the infarct compared with remote myocardium (T2 : 40.4 ± 7.6 vs 56.8 ± 22.0; P < 0.01; ADC: 1.47 ± 0.59 vs 1.65 ± 0.65 mm2 /ms; P < 0.01). CONCLUSION T2 +ADC generated coregistered, free-breathing T2 and ADC maps in healthy volunteers and a patient with acute MI with no cost in accuracy, precision, or scan time compared with DWI. Magn Reson Med 79:654-662, 2018. © 2017 International Society for Magnetic Resonance in Medicine.
Collapse
Affiliation(s)
- Eric Aliotta
- Department of Radiological Sciences, University of California, Los Angeles, California, USA.,Biomedical Physics Interdepartmental Program, University of California, Los Angeles, California, USA
| | - Kévin Moulin
- Department of Radiological Sciences, University of California, Los Angeles, California, USA
| | - Zhaohuan Zhang
- Department of Radiological Sciences, University of California, Los Angeles, California, USA.,Department of Bioengineering, University of California, Los Angeles, California, USA
| | - Daniel B Ennis
- Department of Radiological Sciences, University of California, Los Angeles, California, USA.,Biomedical Physics Interdepartmental Program, University of California, Los Angeles, California, USA.,Department of Bioengineering, University of California, Los Angeles, California, USA
| |
Collapse
|
44
|
Maximum likelihood estimation of cardiac fiber bundle orientation from arbitrarily spaced diffusion weighted images. Med Image Anal 2017; 39:56-77. [PMID: 28433947 DOI: 10.1016/j.media.2017.03.005] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2016] [Revised: 03/06/2017] [Accepted: 03/21/2017] [Indexed: 11/23/2022]
Abstract
We propose an estimation scheme for local fiber bundle direction in the left ventricle directly from gray values of arbitrarily spaced cardiac diffusion weighted images (DWI). The approach is based on a parametric and space-dependent mathematical representation of the myocardial fiber bundle orientation and hence the diffusion tensor (DT) for the ventricular geometry. By solving a nonlinear inverse problem derived from a maximum likelihood estimator, the degrees of freedom of the fiber and DT model can be estimated from the measured gray values of the DWIs. The continuity of the DT model allows to relax the restriction to the individual DWIs to match spatially like for voxelwise DT calculation. Hence, the spatial misalignment between image slices with different diffusion encoding directions, that is encountered in-vivo cardiac imaging practice can be integrated into the estimation scheme. This feature results then in a negligible impact of the spatial misalignment on the reconstructed solution. We illustrate the methodology using synthetic data and compare it against a previously reported fiber bundle reconstruction technique. To show the potential for real data, we also present results for multi-slice data constructed from ex-vivo cardiac diffusion weighted measurements in both mono- and bi-ventricular configurations.
Collapse
|
45
|
Fibrosis quantification in Hypertensive Heart Disease with LVH and Non-LVH: Findings from T1 mapping and Contrast-free Cardiac Diffusion-weighted imaging. Sci Rep 2017; 7:559. [PMID: 28373647 PMCID: PMC5428770 DOI: 10.1038/s41598-017-00627-5] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2016] [Accepted: 03/08/2017] [Indexed: 01/19/2023] Open
Abstract
This study assessed the extent of fibrosis and the relationship between the ADC value and systolic strain in hypertensive patients with left ventricular hypertrophy (HTN LVH) and hypertensive patients without LVH (HTN non-LVH) using cardiac diffusion-weighted imaging and T1 mapping. T1 mapping was performed in 13 HTN LVH (mean age, 56.23 ± 3.30 years), 17 HTN non-LVH (mean age, 56.41 ± 2.78 years), and 12 normal control subjects (mean age, 55.67 ± 3.08 years) with 3.0 T MRI using cardiac diffusion-weighted imaging and T1 mapping. HTN LVH subjects had higher native T1 (1233.12 ± 79.01) compared with controls (1133.88 ± 27.40) (p < 0.05). HTN LVH subjects had higher ECV (0.28 ± 0.03) compared with HTN non-LVH subjects (0.26 ± 0.02) or controls (0.24 ± 0.03) (p < 0.05). HTN LVH subjects had higher ADC (2.23 ± 0.34) compared with HTN non-LVH subjects (1.88 ± 0.27) or controls (1.61 ± 0.38), (p < 0.05). Positive associations were noted between LVMI and ADC (Spearman = 0.450, p < 0.05) and between LVMI and ECV (Spearman = 0.181, p < 0.05). ADC was also related to an increase in ECV (R2 = 0.210). Increased levels of ADC were associated with reduced peak systolic and early diastolic circumferential strain rates across all subjects. Contrast-free DW-CMR is an alternative sequence to ECV for the evaluation of fibrosis extent in HTN LVH and HTN non-LVH, while native T1 has limited value.
Collapse
|
46
|
Teh I, McClymont D, Zdora MC, Whittington HJ, Davidoiu V, Lee J, Lygate CA, Rau C, Zanette I, Schneider JE. Validation of diffusion tensor MRI measurements of cardiac microstructure with structure tensor synchrotron radiation imaging. J Cardiovasc Magn Reson 2017; 19:31. [PMID: 28279178 PMCID: PMC5345150 DOI: 10.1186/s12968-017-0342-x] [Citation(s) in RCA: 35] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2016] [Accepted: 02/16/2017] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND Diffusion tensor imaging (DTI) is widely used to assess tissue microstructure non-invasively. Cardiac DTI enables inference of cell and sheetlet orientations, which are altered under pathological conditions. However, DTI is affected by many factors, therefore robust validation is critical. Existing histological validation is intrinsically flawed, since it requires further tissue processing leading to sample distortion, is routinely limited in field-of-view and requires reconstruction of three-dimensional volumes from two-dimensional images. In contrast, synchrotron radiation imaging (SRI) data enables imaging of the heart in 3D without further preparation following DTI. The objective of the study was to validate DTI measurements based on structure tensor analysis of SRI data. METHODS One isolated, fixed rat heart was imaged ex vivo with DTI and X-ray phase contrast SRI, and reconstructed at 100 μm and 3.6 μm isotropic resolution respectively. Structure tensors were determined from the SRI data and registered to the DTI data. RESULTS Excellent agreement in helix angles (HA) and transverse angles (TA) was observed between the DTI and structure tensor synchrotron radiation imaging (STSRI) data, where HADTI-STSRI = -1.4° ± 23.2° and TADTI-STSRI = -1.4° ± 35.0° (mean ± 1.96 standard deviation across all voxels in the left ventricle). STSRI confirmed that the primary eigenvector of the diffusion tensor corresponds with the cardiomyocyte long-axis across the whole myocardium. CONCLUSIONS We have used STSRI as a novel and high-resolution gold standard for the validation of DTI, allowing like-with-like comparison of three-dimensional tissue structures in the same intact heart free of distortion. This represents a critical step forward in independently verifying the structural basis and informing the interpretation of cardiac DTI data, thereby supporting the further development and adoption of DTI in structure-based electro-mechanical modelling and routine clinical applications.
Collapse
Affiliation(s)
- Irvin Teh
- Division of Cardiovascular Medicine, Radcliffe Department of Medicine, University of Oxford, Oxford, UK
- Leeds Institute of Cardiovascular & Metabolic Medicine, University of Leeds, Leeds, UK
| | - Darryl McClymont
- Division of Cardiovascular Medicine, Radcliffe Department of Medicine, University of Oxford, Oxford, UK
| | - Marie-Christine Zdora
- Diamond Light Source, Didcot, UK
- Department of Physics and Astronomy, University College London, London, UK
| | - Hannah J. Whittington
- Division of Cardiovascular Medicine, Radcliffe Department of Medicine, University of Oxford, Oxford, UK
| | - Valentina Davidoiu
- Division of Imaging Sciences and Biomedical Engineering, King’s College London, London, UK
| | - Jack Lee
- Division of Imaging Sciences and Biomedical Engineering, King’s College London, London, UK
| | - Craig A. Lygate
- Division of Cardiovascular Medicine, Radcliffe Department of Medicine, University of Oxford, Oxford, UK
| | - Christoph Rau
- Diamond Light Source, Didcot, UK
- University of Manchester, Manchester, UK
- Feinberg School of Medicine, Northwestern University, Chicago, USA
| | | | - Jürgen E. Schneider
- Division of Cardiovascular Medicine, Radcliffe Department of Medicine, University of Oxford, Oxford, UK
- Leeds Institute of Cardiovascular & Metabolic Medicine, University of Leeds, Leeds, UK
| |
Collapse
|
47
|
Pennell DJ, Baksi AJ, Prasad SK, Mohiaddin RH, Alpendurada F, Babu-Narayan SV, Schneider JE, Firmin DN. Review of Journal of Cardiovascular Magnetic Resonance 2015. J Cardiovasc Magn Reson 2016; 18:86. [PMID: 27846914 PMCID: PMC5111217 DOI: 10.1186/s12968-016-0305-7] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2016] [Accepted: 11/02/2016] [Indexed: 12/14/2022] Open
Abstract
There were 116 articles published in the Journal of Cardiovascular Magnetic Resonance (JCMR) in 2015, which is a 14 % increase on the 102 articles published in 2014. The quality of the submissions continues to increase. The 2015 JCMR Impact Factor (which is published in June 2016) rose to 5.75 from 4.72 for 2014 (as published in June 2015), which is the highest impact factor ever recorded for JCMR. The 2015 impact factor means that the JCMR papers that were published in 2013 and 2014 were cited on average 5.75 times in 2015. The impact factor undergoes natural variation according to citation rates of papers in the 2 years following publication, and is significantly influenced by highly cited papers such as official reports. However, the progress of the journal's impact over the last 5 years has been impressive. Our acceptance rate is <25 % and has been falling because the number of articles being submitted has been increasing. In accordance with Open-Access publishing, the JCMR articles go on-line as they are accepted with no collating of the articles into sections or special thematic issues. For this reason, the Editors have felt that it is useful once per calendar year to summarize the papers for the readership into broad areas of interest or theme, so that areas of interest can be reviewed in a single article in relation to each other and other recent JCMR articles. The papers are presented in broad themes and set in context with related literature and previously published JCMR papers to guide continuity of thought in the journal. We hope that you find the open-access system increases wider reading and citation of your papers, and that you will continue to send your quality papers to JCMR for publication.
Collapse
Affiliation(s)
- D. J. Pennell
- Cardiovascular Magnetic Resonance Unit, Royal Brompton & Harefield NHS Foundation Trust, Sydney Street, London, SW 3 6NP UK
| | - A. J. Baksi
- Cardiovascular Magnetic Resonance Unit, Royal Brompton & Harefield NHS Foundation Trust, Sydney Street, London, SW 3 6NP UK
| | - S. K. Prasad
- Cardiovascular Magnetic Resonance Unit, Royal Brompton & Harefield NHS Foundation Trust, Sydney Street, London, SW 3 6NP UK
| | - R. H. Mohiaddin
- Cardiovascular Magnetic Resonance Unit, Royal Brompton & Harefield NHS Foundation Trust, Sydney Street, London, SW 3 6NP UK
| | - F. Alpendurada
- Cardiovascular Magnetic Resonance Unit, Royal Brompton & Harefield NHS Foundation Trust, Sydney Street, London, SW 3 6NP UK
| | - S. V. Babu-Narayan
- Cardiovascular Magnetic Resonance Unit, Royal Brompton & Harefield NHS Foundation Trust, Sydney Street, London, SW 3 6NP UK
| | - J. E. Schneider
- Cardiovascular Magnetic Resonance Unit, Royal Brompton & Harefield NHS Foundation Trust, Sydney Street, London, SW 3 6NP UK
| | - D. N. Firmin
- Cardiovascular Magnetic Resonance Unit, Royal Brompton & Harefield NHS Foundation Trust, Sydney Street, London, SW 3 6NP UK
| |
Collapse
|
48
|
McClymont D, Teh I, Carruth E, Omens J, McCulloch A, Whittington HJ, Kohl P, Grau V, Schneider JE. Evaluation of non-Gaussian diffusion in cardiac MRI. Magn Reson Med 2016; 78:1174-1186. [PMID: 27670633 PMCID: PMC5366286 DOI: 10.1002/mrm.26466] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2016] [Revised: 08/18/2016] [Accepted: 08/23/2016] [Indexed: 12/20/2022]
Abstract
PURPOSE The diffusion tensor model assumes Gaussian diffusion and is widely applied in cardiac diffusion MRI. However, diffusion in biological tissue deviates from a Gaussian profile as a result of hindrance and restriction from cell and tissue microstructure, and may be quantified better by non-Gaussian modeling. The aim of this study was to investigate non-Gaussian diffusion in healthy and hypertrophic hearts. METHODS Thirteen rat hearts (five healthy, four sham, four hypertrophic) were imaged ex vivo. Diffusion-weighted images were acquired at b-values up to 10,000 s/mm2 . Models of diffusion were fit to the data and ranked based on the Akaike information criterion. RESULTS The diffusion tensor was ranked best at b-values up to 2000 s/mm2 but reflected the signal poorly in the high b-value regime, in which the best model was a non-Gaussian "beta distribution" model. Although there was considerable overlap in apparent diffusivities between the healthy, sham, and hypertrophic hearts, diffusion kurtosis and skewness in the hypertrophic hearts were more than 20% higher in the sheetlet and sheetlet-normal directions. CONCLUSION Non-Gaussian diffusion models have a higher sensitivity for the detection of hypertrophy compared with the Gaussian model. In particular, diffusion kurtosis may serve as a useful biomarker for characterization of disease and remodeling in the heart. Magn Reson Med 78:1174-1186, 2017. © 2016 International Society for Magnetic Resonance in Medicine.
Collapse
Affiliation(s)
- Darryl McClymont
- Division of Cardiovascular Medicine, Radcliffe Department of Medicine, University of Oxford, Oxford, United Kingdom
| | - Irvin Teh
- Division of Cardiovascular Medicine, Radcliffe Department of Medicine, University of Oxford, Oxford, United Kingdom
| | - Eric Carruth
- Department of Bioengineering, University of California-San Diego, La Jolla, California, USA
| | - Jeffrey Omens
- Department of Bioengineering, University of California-San Diego, La Jolla, California, USA.,Department of Medicine, University of California-San Diego, La Jolla, California, USA
| | - Andrew McCulloch
- Department of Bioengineering, University of California-San Diego, La Jolla, California, USA
| | - Hannah J Whittington
- Division of Cardiovascular Medicine, Radcliffe Department of Medicine, University of Oxford, Oxford, United Kingdom
| | - Peter Kohl
- National Heart and Lung Institute, Imperial College London, London, United Kingdom.,Institute for Experimental Cardiovascular Medicine, University Heart Centre Freiburg, Bad Krozingen, Faculty of Medicine, University of Freiburg, Freiburg, Germany
| | - Vicente Grau
- Department of Engineering Science, University of Oxford, Oxford, United Kingdom
| | - Jürgen E Schneider
- Division of Cardiovascular Medicine, Radcliffe Department of Medicine, University of Oxford, Oxford, United Kingdom
| |
Collapse
|
49
|
Wu LM, Chen BH, Yao QY, Ou YR, Wu R, Jiang M, Hu J, An DA, Xu JR. Quantitative diffusion-weighted magnetic resonance imaging in the assessment of myocardial fibrosis in hypertrophic cardiomyopathy compared with T1 mapping. Int J Cardiovasc Imaging 2016; 32:1289-97. [PMID: 27198892 DOI: 10.1007/s10554-016-0909-x] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/19/2016] [Accepted: 05/05/2016] [Indexed: 11/29/2022]
Abstract
To identify myocardial fibrosis in hypertrophic cardiomyopathy (HCM) subjects using quantitative cardiac diffusion-weighted imaging (DWI) and to compare its performance with native T1 mapping and extracellular volume (ECV). Thirty-eight HCM subjects (mean age, 53 ± 9 years) and 14 normal controls (mean age, 51 ± 8 years) underwent cardiac magnetic resonance imaging (CMRI) on a 3.0T magnetic resonance (MR) machine with DWI, T1 mapping and late gadolinium enhancement (LGE) imaging as the reference standard. The mean apparent diffusion coefficient (ADC), native T1 value and ECV were determined for each subject. Overall, the HCM subjects exhibited an increased native T1 value (1241.04 ± 78.50 ms), ECV (0.31 ± 0.03) and ADC (2.36 ± 0.34 s/mm(2)) compared with the normal controls (1114.60 ± 37.99 ms, 0.24 ± 0.04, and 1.62 ± 0.38 s/mm(2), respectively) (p < 0.05). DWI differentiated healthy and fibrotic myocardia with an area under the curve (AUC) of 0.93, while the AUCs of the native T1 values (0.93), (p > 0.05) and ECV (0.94), (p > 0.05) exhibited an equal differentiation ability. Both HCM LGE+ and HCM LGE- subjects had an increased native T1 value, ECV and ADC compared to the normal controls (p < 0.05). HCM LGE+ subjects exhibited an increased ECV (0.31 ± 0.04) and ADC (2.43 ± 0.36 s/mm(2)) compared to HCM LGE- subjects (p < 0.05). HCM LGE+ and HCM LGE- subjects had similar native T1 values (1250 ± 76.36 ms vs. 1213.98 ± 92.30 ms, respectively) (p > 0.05). ADC values were linearly associated with increased ECV (R(2) = 0.36) and native T1 values (R(2) = 0.40) among all subjects. DWI is a feasible alternative to native T1 mapping and ECV for the identification of myocardial fibrosis in patients with HCM. DWI and ECV can quantitatively characterize the extent of fibrosis in HCM LGE+ and HCM LGE- patients.
Collapse
Affiliation(s)
- Lian-Ming Wu
- Department of Radiology, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, China
| | - Bing-Hua Chen
- Department of Radiology, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, China
| | - Qiu-Ying Yao
- Department of Radiology, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, China
| | - Yang-Rongzheng Ou
- Department of Radiology, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, China
| | - Rui Wu
- Department of Radiology, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, China
| | - Meng Jiang
- Department of Cardiology, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, China
| | - Jiani Hu
- Department of Radiology, Wayne State University, Detroit, MI, USA
| | - Dong-Aolei An
- Department of Radiology, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, China
| | - Jian-Rong Xu
- Department of Radiology, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, China.
| |
Collapse
|