1
|
Grob L, Schwerzmann Y, Kaiser D, Jung B, Schweizer T, Huettenmoser SP, Dozio S, Huber AT, Boscolo Berto M, Gräni C, Guensch DP, Fischer K. Retrospective temporal resolution interpolation alters myocardial strain quantification on compressed sensing cine CMR. THE INTERNATIONAL JOURNAL OF CARDIOVASCULAR IMAGING 2025:10.1007/s10554-025-03348-3. [PMID: 39953315 DOI: 10.1007/s10554-025-03348-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/14/2024] [Accepted: 01/30/2025] [Indexed: 02/17/2025]
Abstract
Compressed sensing (CS) is a rapidly developing technique that can acquire functional cines of the heart within seconds while free-breathing and it is ideal for assessing cardiac function in non-typical conditions such as when patients are sedated or anaesthetized or undergoing stress exams. CS cines can further include retrospective temporal resolution interpolation (INTPTR) to improve the frame count per heartbeat, and the impact of INTPTR on biventricular functional measurements is unknown. We investigated the impact of INTPTR on left and right ventricular volumetry and strain measurements of CS cines. Nineteen patients with 51 different CS acquisitions were prospectively enrolled. CS cines were acquired at rest, under adenosine stress, oxygen inhalation or while under general anaesthesia with mechanical ventilation. From the same CS acquisition, a dataset with and without INTPTR were generated by the scanner. The outputs were separated and analysed by blinded readers for left and right ventricular volumetry, as well as systolic and diastolic strain parameters using feature-tracking techniques. Measurements were compared between the INTPTR and non-INTPTR outputs. Similar measurements were obtained for biventricular volumes and ejection fraction independent of INTPTR. Peak strain was significantly underestimated on INTPTR cines for both longitudinal and circumferential orientations (p < 0.01). Nevertheless, good-to-excellent correlations were observed between the two measurements (r > 0.65, p < 0.01), and there was still a high area under the curve (AUC ≥ 0.95, p < 0.01) for detecting abnormal patients defined by strain analysis on the standard segmented cine. INTPTR especially negatively influenced strain rates analysis, as many strain rate curves were deemed unusable with this technique. These findings were consistent independent if the patient was in a resting, stress or anaesthetized condition. Although INTPTR is a feature which improves temporal resolution on CS cines, quantification of biventricular strain and strain rates is not feasible or comparable, thus, feature tracking analysis should be performed on non-INTPTR data. However, volumetry and ejection fraction analysis are consistent independent of which output is analysed.
Collapse
Affiliation(s)
- Leonard Grob
- Department of Anaesthesiology and Pain Medicine, Bern University Hospital, Inselspital, University of Bern, Freiburgstrasse 10, Bern, 3010, Switzerland
| | - Yann Schwerzmann
- Department of Anaesthesiology and Pain Medicine, Bern University Hospital, Inselspital, University of Bern, Freiburgstrasse 10, Bern, 3010, Switzerland
| | - Dario Kaiser
- Department of Anaesthesiology and Pain Medicine, Bern University Hospital, Inselspital, University of Bern, Freiburgstrasse 10, Bern, 3010, Switzerland
| | - Bernd Jung
- Department of Diagnostic, Interventional and Paediatric Radiology, Bern University Hospital, Inselspital, University of Bern, Bern, Switzerland
- Translation Imaging Center (TIC), Swiss Institute for Translational and Entrepreneurial Medicine, Bern, Switzerland
| | - Thilo Schweizer
- Department of Anaesthesiology and Pain Medicine, Bern University Hospital, Inselspital, University of Bern, Freiburgstrasse 10, Bern, 3010, Switzerland
| | - Stefan P Huettenmoser
- Department of Diagnostic, Interventional and Paediatric Radiology, Bern University Hospital, Inselspital, University of Bern, Bern, Switzerland
| | - Scilla Dozio
- Department of Diagnostic, Interventional and Paediatric Radiology, Bern University Hospital, Inselspital, University of Bern, Bern, Switzerland
| | - Adrian T Huber
- Department of Diagnostic, Interventional and Paediatric Radiology, Bern University Hospital, Inselspital, University of Bern, Bern, Switzerland
- Department of Radiology and Nuclear Medicine, Lucerne Cantonal Hospital, University of Lucerne, Lucerne, Switzerland
| | - Martina Boscolo Berto
- Department of Cardiology, Bern University Hospital, Inselspital, University of Bern, Bern, Switzerland
| | - Christoph Gräni
- Department of Cardiology, Bern University Hospital, Inselspital, University of Bern, Bern, Switzerland
| | - Dominik P Guensch
- Department of Anaesthesiology and Pain Medicine, Bern University Hospital, Inselspital, University of Bern, Freiburgstrasse 10, Bern, 3010, Switzerland
- Department of Diagnostic, Interventional and Paediatric Radiology, Bern University Hospital, Inselspital, University of Bern, Bern, Switzerland
| | - Kady Fischer
- Department of Anaesthesiology and Pain Medicine, Bern University Hospital, Inselspital, University of Bern, Freiburgstrasse 10, Bern, 3010, Switzerland.
| |
Collapse
|
2
|
Kravchenko D, Isaak A, Mesropyan N, Peeters JM, Kuetting D, Pieper CC, Katemann C, Attenberger U, Emrich T, Varga-Szemes A, Luetkens JA. Deep learning super-resolution reconstruction for fast and high-quality cine cardiovascular magnetic resonance. Eur Radiol 2024:10.1007/s00330-024-11145-0. [PMID: 39441391 DOI: 10.1007/s00330-024-11145-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2024] [Revised: 08/22/2024] [Accepted: 09/22/2024] [Indexed: 10/25/2024]
Abstract
OBJECTIVES To compare standard-resolution balanced steady-state free precession (bSSFP) cine images with cine images acquired at low resolution but reconstructed with a deep learning (DL) super-resolution algorithm. MATERIALS AND METHODS Cine cardiovascular magnetic resonance (CMR) datasets (short-axis and 4-chamber views) were prospectively acquired in healthy volunteers and patients at normal (cineNR: 1.89 × 1.96 mm2, reconstructed at 1.04 × 1.04 mm2) and at a low-resolution (2.98 × 3.00 mm2, reconstructed at 1.04 × 1.04 mm2). Low-resolution images were reconstructed using compressed sensing DL denoising and resolution upscaling (cineDL). Left ventricular ejection fraction (LVEF), end-diastolic volume index (LVEDVi), and strain were assessed. Apparent signal-to-noise (aSNR) and contrast-to-noise ratios (aCNR) were calculated. Subjective image quality was assessed on a 5-point Likert scale. Student's paired t-test, Wilcoxon matched-pairs signed-rank-test, and intraclass correlation coefficient (ICC) were used for statistical analysis. RESULTS Thirty participants were analyzed (37 ± 16 years; 20 healthy volunteers and 10 patients). Short-axis views whole-stack acquisition duration of cineDL was shorter than cineNR (57.5 ± 8.7 vs 98.7 ± 12.4 s; p < 0.0001). No differences were noted for: LVEF (59 ± 7 vs 59 ± 7%; ICC: 0.95 [95% confidence interval: 0.94, 0.99]; p = 0.17), LVEDVi (85.0 ± 13.5 vs 84.4 ± 13.7 mL/m2; ICC: 0.99 [0.98, 0.99]; p = 0.12), longitudinal strain (-19.5 ± 4.3 vs -19.8 ± 3.9%; ICC: 0.94 [0.88, 0.97]; p = 0.52), short-axis aSNR (81 ± 49 vs 69 ± 38; p = 0.32), aCNR (53 ± 31 vs 45 ± 27; p = 0.33), or subjective image quality (5.0 [IQR 4.9, 5.0] vs 5.0 [IQR 4.7, 5.0]; p = 0.99). CONCLUSION Deep-learning reconstruction of cine images acquired at a lower spatial resolution led to a decrease in acquisition times of 42% with shorter breath-holds without affecting volumetric results or image quality. KEY POINTS Question Cine CMR acquisitions are time-intensive and vulnerable to artifacts. Findings Low-resolution upscaled reconstructions using DL super-resolution decreased acquisition times by 35-42% without a significant difference in volumetric results or subjective image quality. Clinical relevance DL super-resolution reconstructions of bSSFP cine images acquired at a lower spatial resolution reduce acquisition times while preserving diagnostic accuracy, improving the clinical feasibility of cine imaging by decreasing breath hold duration.
Collapse
Affiliation(s)
- Dmitrij Kravchenko
- Department of Diagnostic and Interventional Radiology, University Hospital Bonn, Bonn, Germany
- Quantitative Imaging Laboratory Bonn, Bonn, Germany
- Division of Cardiovascular Imaging, Department of Radiology and Radiological Science, Medical University of South Carolina, Charleston, SC, USA
| | - Alexander Isaak
- Department of Diagnostic and Interventional Radiology, University Hospital Bonn, Bonn, Germany
- Quantitative Imaging Laboratory Bonn, Bonn, Germany
| | - Narine Mesropyan
- Department of Diagnostic and Interventional Radiology, University Hospital Bonn, Bonn, Germany
- Quantitative Imaging Laboratory Bonn, Bonn, Germany
| | | | - Daniel Kuetting
- Department of Diagnostic and Interventional Radiology, University Hospital Bonn, Bonn, Germany
- Quantitative Imaging Laboratory Bonn, Bonn, Germany
| | - Claus C Pieper
- Department of Diagnostic and Interventional Radiology, University Hospital Bonn, Bonn, Germany
| | | | - Ulrike Attenberger
- Department of Diagnostic and Interventional Radiology, University Hospital Bonn, Bonn, Germany
| | - Tilman Emrich
- Division of Cardiovascular Imaging, Department of Radiology and Radiological Science, Medical University of South Carolina, Charleston, SC, USA
- Department of Diagnostic and Interventional Radiology, University Medical Center of the Johannes Gutenberg-University, Mainz, Germany
- German Centre for Cardiovascular Research, Partner site Rhine-Main, Mainz, Germany
| | - Akos Varga-Szemes
- Division of Cardiovascular Imaging, Department of Radiology and Radiological Science, Medical University of South Carolina, Charleston, SC, USA
| | - Julian A Luetkens
- Department of Diagnostic and Interventional Radiology, University Hospital Bonn, Bonn, Germany.
- Quantitative Imaging Laboratory Bonn, Bonn, Germany.
| |
Collapse
|
3
|
Koechli M, Callaghan FM, Burkhardt BEU, Lohézic M, Zhu X, Rücker B, Valsangiacomo Buechel ER, Kellenberger CJ, Geiger J. Accelerated cardiac magnetic resonance imaging using deep learning for volumetric assessment in children. Pediatr Radiol 2024; 54:1674-1685. [PMID: 39017676 PMCID: PMC11377620 DOI: 10.1007/s00247-024-05978-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/20/2024] [Revised: 06/18/2024] [Accepted: 06/20/2024] [Indexed: 07/18/2024]
Abstract
BACKGROUND Ventricular volumetry using a short-axis stack of two-dimensional (D) cine balanced steady-state free precession (bSSFP) sequences is crucial in any cardiac magnetic resonance imaging (MRI) examination. This task becomes particularly challenging in children due to multiple breath-holds. OBJECTIVE To assess the diagnostic performance of accelerated 3-RR cine MRI sequences using deep learning reconstruction compared with standard 2-D cine bSSFP sequences. MATERIAL AND METHODS Twenty-nine consecutive patients (mean age 11 ± 5, median 12, range 1-17 years) undergoing cardiac MRI were scanned with a conventional segmented 2-D cine and a deep learning accelerated cine (three heartbeats) acquisition on a 1.5-tesla scanner. Short-axis volumetrics were performed (semi-)automatically in both datasets retrospectively by two experienced readers who visually assessed image quality employing a 4-point grading scale. Scan times and image quality were compared using the Wilcoxon rank-sum test. Volumetrics were assessed with linear regression and Bland-Altman analyses, and measurement agreement with intraclass correlation coefficient (ICC). RESULTS Mean acquisition time was significantly reduced with the 3-RR deep learning cine compared to the standard cine sequence (45.5 ± 13.8 s vs. 218.3 ± 44.8 s; P < 0.001). No significant differences in biventricular volumetrics were found. Left ventricular (LV) mass was increased in the deep learning cine compared with the standard cine sequence (71.4 ± 33.1 g vs. 69.9 ± 32.5 g; P < 0.05). All volumetric measurements had an excellent agreement with ICC > 0.9 except for ejection fraction (EF) (LVEF 0.81, RVEF 0.73). The image quality of deep learning cine images was decreased for end-diastolic and end-systolic contours, papillary muscles, and valve depiction (2.9 ± 0.5 vs. 3.5 ± 0.4; P < 0.05). CONCLUSION Deep learning cine volumetrics did not differ significantly from standard cine results except for LV mass, which was slightly overestimated with deep learning cine. Deep learning cine sequences result in a significant reduction in scan time with only slightly lower image quality.
Collapse
Affiliation(s)
- Melina Koechli
- Department of Diagnostic Imaging, University Children's Hospital Zurich, Zurich, Switzerland
- Children's Research Center, University Children's Hospital Zurich, Zurich, Switzerland
| | - Fraser M Callaghan
- Children's Research Center, University Children's Hospital Zurich, Zurich, Switzerland
- Center for MR-Research, University Children's Hospital Zurich, Zurich, Switzerland
| | - Barbara E U Burkhardt
- Children's Research Center, University Children's Hospital Zurich, Zurich, Switzerland
- Pediatric Heart Center, University Children's Hospital Zurich, Zurich, Switzerland
| | | | | | - Beate Rücker
- Children's Research Center, University Children's Hospital Zurich, Zurich, Switzerland
- Pediatric Heart Center, University Children's Hospital Zurich, Zurich, Switzerland
| | - Emanuela R Valsangiacomo Buechel
- Children's Research Center, University Children's Hospital Zurich, Zurich, Switzerland
- Pediatric Heart Center, University Children's Hospital Zurich, Zurich, Switzerland
| | - Christian J Kellenberger
- Department of Diagnostic Imaging, University Children's Hospital Zurich, Zurich, Switzerland
- Children's Research Center, University Children's Hospital Zurich, Zurich, Switzerland
| | - Julia Geiger
- Department of Diagnostic Imaging, University Children's Hospital Zurich, Zurich, Switzerland.
- Children's Research Center, University Children's Hospital Zurich, Zurich, Switzerland.
| |
Collapse
|
4
|
Yan C, Liu Y, Wang C, Fan W, Zhu Y. Accelerated cardiac cine magnetic resonance imaging using deep low-rank plus sparse network: validation in patients. Quant Imaging Med Surg 2024; 14:5131-5143. [PMID: 39022294 PMCID: PMC11250298 DOI: 10.21037/qims-24-17] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2024] [Accepted: 06/03/2024] [Indexed: 07/20/2024]
Abstract
Background Accurate and reproducible assessment of left ventricular (LV) volumes is important in managing various cardiac conditions. However, patients are required to hold their breath multiple times during data acquisition, which may result in discomfort and restrict cardiac motion, potentially compromising the accuracy of the detected results. Accelerated imaging techniques can help reduce the number of breath holds needed, potentially improving patient comfort and the reliability of the LV assessment. This study aimed to prospectively evaluate the feasibility and accuracy of LV assessment with a model-based low-rank plus sparse network (L+S-Net) for accelerated magnetic resonance (MR) cine imaging. Methods Fourty-one patients with different cardiac conditions were recruited in this study. Both accelerated MR cine imaging with L+S-Net and traditional electrocardiogram (ECG)-gated segmented cine were performed for each patient. Subjective image quality (IQ) score and quantitative LV volume function parameters were measured and compared between L+S-Net and traditional standards. The IQ score and LV volume measurements of cardiovascular magnetic resonance (CMR) images reconstructed by L+S-Net and standard cine were compared by paired t-test. The acquisition time of the two methods was also calculated. Results In a quantitative analysis, L+S-Net and standard cine yielded similar measurements for all parameters of LV function (ejection fraction: 35±22 for standard vs. 33±23 for L+S-Net), although L+S-Net had slightly lower IQ scores than standard cine CMR (4.2±0.5 for L+S-Net vs. 4.8±0.4 for standard cine; P<0.001). The mean acquisition time of L+S-Net and standard cine was 0.83±0.08 vs. 6.35±0.78 s per slice (P<0.001). Conclusions Assessment of LV function with L+S-Net at 3.0 T yields comparable results to the reference standard, albeit with a reduced acquisition time. This feature enhances the clinical applicability of the L+S-Net approach, helping alleviate patient discomfort and motion artifacts that may arise due to prolonged acquisition time.
Collapse
Affiliation(s)
- Chenyuan Yan
- Paul C. Lauterbur Research Center for Biomedical Imaging, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen, China
| | - Yuanyuan Liu
- Paul C. Lauterbur Research Center for Biomedical Imaging, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen, China
| | - Che Wang
- Paul C. Lauterbur Research Center for Biomedical Imaging, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen, China
| | - Weixiong Fan
- Department of Magnetic Resonance, Guangdong Provincial Key Laboratory of Precision Medicine and Clinical Translational Research of Hakka Population, Meizhou People’s Hospital, Meizhou, China
| | - Yanjie Zhu
- Paul C. Lauterbur Research Center for Biomedical Imaging, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen, China
| |
Collapse
|
5
|
Guensch DP, Utz CD, Jung B, Dozio S, Huettenmoser SP, Friess JO, Terbeck S, Erdoes G, Huber AT, Eberle B, Fischer K. Introducing a free-breathing MRI method to assess peri-operative myocardial oxygenation and function: A volunteer cohort study. Eur J Anaesthesiol 2024; 41:480-489. [PMID: 38323332 PMCID: PMC11155273 DOI: 10.1097/eja.0000000000001964] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2024]
Abstract
BACKGROUND Induction of general anaesthesia has many potential triggers for peri-operative myocardial ischaemia including the acute disturbance of blood gases that frequently follows alterations in breathing and ventilation patterns. Free-breathing oxygenation-sensitive cardiovascular magnetic resonance (OS-CMR) imaging may provide the opportunity to continuously quantify the impact of such triggers on myocardial oxygenation. OBJECTIVE To investigate the impact of breathing patterns that simulate induction of general anaesthesia on myocardial oxygenation in awake healthy adults using continuous OS-CMR imaging. DESIGN Prospective observational study. SETTING Single-centre university hospital. Recruitment from August 2020 to January 2022. PARTICIPANTS Thirty-two healthy volunteers younger than 45 years old were recruited. Data were analysed from n = 29 (69% male individuals). INTERVENTION Participants performed a simulated induction breathing manoeuvre consisting of 2.5 min paced breathing with a respiration rate of 14 breaths per minute, followed by 5 deep breaths, then apnoea for up to 60s inside a magnetic resonance imaging scanner (MRI). Cardiac images were acquired with the traditional OS-CMR sequence (OS bh-cine ), which requires apnoea for acquisition and with two free-breathing OS-CMR sequences: a high-resolution single-shot sequence (OS fb-ss ) and a real-time cine sequence (OS fb-rtcine ). MAIN OUTCOME MEASURES Myocardial oxygenation response at the end of the paced breathing period and at the 30 s timepoint during the subsequent apnoea, reflecting the time of successful intubation in a clinical setting. RESULTS The paced breathing followed by five deep breaths significantly reduced myocardial oxygenation, which was observed with all three techniques (OS bh-cine -6.0 ± 2.6%, OS fb-ss -12.0 ± 5.9%, OS fb-rtcine -5.4 ± 7.0%, all P < 0.05). The subsequent vasodilating stimulus of apnoea then significantly increased myocardial oxygenation (OS bh-cine 6.8 ± 3.1%, OS fb-ss 8.4 ± 5.6%, OS fb-rtcine 15.7 ± 10.0%, all P < 0.01). The free-breathing sequences were reproducible and were not inferior to the original sequence for any stage. CONCLUSION Breathing manoeuvres simulating induction of general anaesthesia cause dynamic alterations of myocardial oxygenation in young volunteers, which can be quantified continuously with free-breathing OS-CMR. Introducing these new imaging techniques into peri-operative studies may throw new light into the mechanisms of peri-operative perturbations of myocardial tissue oxygenation and ischaemia. VISUAL ABSTRACT http://links.lww.com/EJA/A922.
Collapse
Affiliation(s)
- Dominik P Guensch
- From the Department of Anaesthesiology and Pain Medicine (DPG, CDU, JOF, ST, GE, BE, KF) and Department of Diagnostic, Interventional and Paediatric Radiology, Inselspital, Bern University Hospital, University of Bern, Bern, Switzerland (DPG, BJ, SD, SPH, ATH)
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
6
|
Zhang Q, Fotaki A, Ghadimi S, Wang Y, Doneva M, Wetzl J, Delfino JG, O'Regan DP, Prieto C, Epstein FH. Improving the efficiency and accuracy of cardiovascular magnetic resonance with artificial intelligence-review of evidence and proposition of a roadmap to clinical translation. J Cardiovasc Magn Reson 2024; 26:101051. [PMID: 38909656 PMCID: PMC11331970 DOI: 10.1016/j.jocmr.2024.101051] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2024] [Revised: 06/09/2024] [Accepted: 06/18/2024] [Indexed: 06/25/2024] Open
Abstract
BACKGROUND Cardiovascular magnetic resonance (CMR) is an important imaging modality for the assessment of heart disease; however, limitations of CMR include long exam times and high complexity compared to other cardiac imaging modalities. Recently advancements in artificial intelligence (AI) technology have shown great potential to address many CMR limitations. While the developments are remarkable, translation of AI-based methods into real-world CMR clinical practice remains at a nascent stage and much work lies ahead to realize the full potential of AI for CMR. METHODS Herein we review recent cutting-edge and representative examples demonstrating how AI can advance CMR in areas such as exam planning, accelerated image reconstruction, post-processing, quality control, classification and diagnosis. RESULTS These advances can be applied to speed up and simplify essentially every application including cine, strain, late gadolinium enhancement, parametric mapping, 3D whole heart, flow, perfusion and others. AI is a unique technology based on training models using data. Beyond reviewing the literature, this paper discusses important AI-specific issues in the context of CMR, including (1) properties and characteristics of datasets for training and validation, (2) previously published guidelines for reporting CMR AI research, (3) considerations around clinical deployment, (4) responsibilities of clinicians and the need for multi-disciplinary teams in the development and deployment of AI in CMR, (5) industry considerations, and (6) regulatory perspectives. CONCLUSIONS Understanding and consideration of all these factors will contribute to the effective and ethical deployment of AI to improve clinical CMR.
Collapse
Affiliation(s)
- Qiang Zhang
- Oxford Centre for Clinical Magnetic Resonance Research, Division of Cardiovascular Medicine, Radcliffe Department of Medicine, University of Oxford, Oxford, UK; Big Data Institute, University of Oxford, Oxford, UK.
| | - Anastasia Fotaki
- School of Biomedical Engineering and Imaging Sciences, King's College London, London, UK; Royal Brompton Hospital, Guy's and St Thomas' NHS Foundation Trust, London, UK.
| | - Sona Ghadimi
- Department of Biomedical Engineering, University of Virginia, Charlottesville, VA, USA.
| | - Yu Wang
- Department of Biomedical Engineering, University of Virginia, Charlottesville, VA, USA.
| | | | - Jens Wetzl
- Siemens Healthineers AG, Erlangen, Germany.
| | - Jana G Delfino
- US Food and Drug Administration, Center for Devices and Radiological Health (CDRH), Office of Science and Engineering Laboratories (OSEL), Silver Spring, MD, USA.
| | - Declan P O'Regan
- MRC Laboratory of Medical Sciences, Imperial College London, London, UK.
| | - Claudia Prieto
- School of Biomedical Engineering and Imaging Sciences, King's College London, London, UK; School of Engineering, Pontificia Universidad Católica de Chile, Santiago, Chile.
| | - Frederick H Epstein
- Department of Biomedical Engineering, University of Virginia, Charlottesville, VA, USA.
| |
Collapse
|
7
|
Bhatt N, Orbach A, Biswas L, Strauss BH, Connelly K, Ghugre NR, Wright GA, Roifman I. Evaluating a novel accelerated free-breathing late gadolinium enhancement imaging sequence for assessment of myocardial injury. Magn Reson Imaging 2024; 108:40-46. [PMID: 38309379 DOI: 10.1016/j.mri.2024.01.020] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2023] [Revised: 01/31/2024] [Accepted: 01/31/2024] [Indexed: 02/05/2024]
Abstract
INTRODUCTION Cardiac magnetic resonance imaging (MRI), including late gadolinium enhancement (LGE), plays an important role in the diagnosis and prognostication of ischemic and non-ischemic myocardial injury. Conventional LGE sequences require patients to perform multiple breath-holds and require long acquisition times. In this study, we compare image quality and assessment of myocardial LGE using an accelerated free-breathing sequence to the conventional standard-of-care sequence. METHODS In this prospective cohort study, a total of 41 patients post Coronavirus 2019 (COVID-19) infection were included. Studies were performed on a 1.5 Tesla scanner with LGE imaging acquired using a conventional inversion recovery rapid gradient echo (conventional LGE) sequence followed by the novel accelerated free-breathing (FB-LGE) sequence. Image quality was visually scored (ordinal scale from 1 to 5) and compared between conventional and free-breathing sequences using the Wilcoxon rank sum test. Presence of per-segment LGE was identified according to the American Heart Association 16-segment myocardial model and compared across both conventional LGE and FB-LGE sequences using a two-sided chi-square test. The perpatient LGE extent was also evaluated using both sequences and compared using the Wilcoxon rank sum test. Interobserver variability in detection of per-segment LGE and per-patient LGE extent was evaluated using Cohen's kappa statistic and interclass correlation (ICC), respectively. RESULTS The mean acquisition time for the FB-LGE sequence was 17 s compared to 413 s for the conventional LGE sequence (P < 0.001). Assessment of image quality was similar between both sequences (P = 0.19). There were no statistically significant differences in LGE assessed using the FB-LGE versus conventional LGE on a per-segment (P = 0.42) and per-patient (P = 0.06) basis. Interobserver variability in LGE assessment for FB-LGE was good for per-segment (= 0.71) and per-patient extent (ICC = 0.92) analyses. CONCLUSIONS The accelerated FB-LGE sequence performed comparably to the conventional standard-of-care LGE sequence in a cohort of patients post COVID-19 infection in a fraction of the time and without the need for breath-holding. Such a sequence could impact clinical practice by increasing cardiac MRI throughput and accessibility for frail or acutely ill patients unable to perform breath-holding.
Collapse
Affiliation(s)
- Nitish Bhatt
- Faculty of Medicine, University of Toronto, Toronto, ON, Canada
| | - Ady Orbach
- Schulich Heart Program, Sunnybrook Health Sciences Centre, Toronto, ON, Canada
| | - Labonny Biswas
- Schulich Heart Program, Sunnybrook Health Sciences Centre, Toronto, ON, Canada
| | - Bradley H Strauss
- Schulich Heart Program, Sunnybrook Health Sciences Centre, Toronto, ON, Canada
| | - Kim Connelly
- Division of Cardiology, St. Michael's Hospital, Toronto, ON, Canada
| | - Nilesh R Ghugre
- Schulich Heart Program, Sunnybrook Health Sciences Centre, Toronto, ON, Canada; Physical Sciences Platform, Sunnybrook Research Institute, Toronto, ON, Canada; Department of Medical Biophysics, University of Toronto, Toronto, ON, Canada
| | - Graham A Wright
- Schulich Heart Program, Sunnybrook Health Sciences Centre, Toronto, ON, Canada; Physical Sciences Platform, Sunnybrook Research Institute, Toronto, ON, Canada; Department of Medical Biophysics, University of Toronto, Toronto, ON, Canada
| | - Idan Roifman
- Schulich Heart Program, Sunnybrook Health Sciences Centre, Toronto, ON, Canada.
| |
Collapse
|
8
|
Xu K, Xu R, Xu HY, Xie LJ, Yang ZG, Fu H, Bai W, Zhang L, Zhou XY, Guo YK. Free-Breathing Compressed Sensing Cine Cardiac MRI for Assessment of Left Ventricular Strain by Feature Tracking in Children. J Magn Reson Imaging 2024; 59:1832-1840. [PMID: 37681476 DOI: 10.1002/jmri.29003] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2023] [Revised: 08/22/2023] [Accepted: 08/24/2023] [Indexed: 09/09/2023] Open
Abstract
BACKGROUND Cardiac MRI feature-tracking (FT) with breath-holding (BH) cine balanced steady state free precession (bSSFP) imaging is well established. It is unclear whether FT-strain measurements can be reliably derived from free-breathing (FB) compressed sensing (CS) bSSFP imaging. PURPOSE To compare left ventricular (LV) strain analysis and image quality of an FB CS bSSFP cine sequence with that of a conventional BH bSSFP sequence in children. STUDY TYPE Prospective. SUBJECTS 40 children able to perform BHs (cohort 1 [12.1 ± 2.2 years]) and 17 children unable to perform BHs (cohort 2 [5.2 ± 1.8 years]). FIELD STRENGTH/SEQUENCE 3T, bSSFP sequence with and without CS. ASSESSMENT Acquisition times and image quality were assessed. LV myocardial deformation parameters were compared between BH cine and FB CS cine studies in cohort 1. Strain indices and image quality of FB CS cine studies were also assessed in cohort 2. Intraobserver and interobserver variability of strain parameters was determined. STATISTICAL TESTS Paired t-test, Wilcoxon signed-rank test, intraclass correlation coefficient (ICC), and Bland-Altman analysis. A P-value <0.05 was considered statistically significant. RESULTS In cohort 1, the mean acquisition time of the FB CS cine study was significantly lower than for conventional BH cine study (15.6 s vs. 209.4 s). No significant difference were found in global circumferential strain rate (P = 0.089), global longitudinal strain rate (P = 0.366) and EuroCMR image quality scores (P = 0.128) between BH and FB sequences in cohort 1. The overall image quality score of FB CS cine in cohort 2 was 3.5 ± 0.5 with acquisition time of 14.7 ± 2.1 s. Interobserver and intraobserver variabilities were good to excellent (ICC = 0.810 to 0.943). DATA CONCLUSION FB CS cine imaging may be a promising alternative technique for strain assessment in pediatric patients with poor BH ability. LEVEL OF EVIDENCE 1 TECHNICAL EFFICACY: Stage 1.
Collapse
Affiliation(s)
- Ke Xu
- Department of Radiology, Key Laboratory of Obstetric and Gynecologic and Pediatric Diseases and Birth Defects of Ministry of Education, West China Second University Hospital, Sichuan University, Chengdu, China
| | - Rong Xu
- Department of Radiology, Key Laboratory of Obstetric and Gynecologic and Pediatric Diseases and Birth Defects of Ministry of Education, West China Second University Hospital, Sichuan University, Chengdu, China
| | - Hua-Yan Xu
- Department of Radiology, Key Laboratory of Obstetric and Gynecologic and Pediatric Diseases and Birth Defects of Ministry of Education, West China Second University Hospital, Sichuan University, Chengdu, China
| | - Lin-Jun Xie
- Department of Radiology, Key Laboratory of Obstetric and Gynecologic and Pediatric Diseases and Birth Defects of Ministry of Education, West China Second University Hospital, Sichuan University, Chengdu, China
| | - Zhi-Gang Yang
- Department of Radiology, West China Hospital, Sichuan University, Chengdu, China
| | - Hang Fu
- Department of Radiology, Key Laboratory of Obstetric and Gynecologic and Pediatric Diseases and Birth Defects of Ministry of Education, West China Second University Hospital, Sichuan University, Chengdu, China
| | - Wei Bai
- Department of Radiology, Key Laboratory of Obstetric and Gynecologic and Pediatric Diseases and Birth Defects of Ministry of Education, West China Second University Hospital, Sichuan University, Chengdu, China
| | - Lu Zhang
- Department of Radiology, Key Laboratory of Obstetric and Gynecologic and Pediatric Diseases and Birth Defects of Ministry of Education, West China Second University Hospital, Sichuan University, Chengdu, China
| | - Xiao-Yue Zhou
- Siemens Healthineers Digital Technology (Shanghai) Co., Ltd., Shanghai, China
| | - Ying-Kun Guo
- Department of Radiology, Key Laboratory of Obstetric and Gynecologic and Pediatric Diseases and Birth Defects of Ministry of Education, West China Second University Hospital, Sichuan University, Chengdu, China
| |
Collapse
|
9
|
Yan X, Luo Y, Chen X, Chen EZ, Liu Q, Zou L, Bao Y, Huang L, Xia L. From Compressed-Sensing to Deep Learning MR: Comparative Biventricular Cardiac Function Analysis in a Patient Cohort. J Magn Reson Imaging 2024; 59:1231-1241. [PMID: 37435633 DOI: 10.1002/jmri.28899] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2023] [Revised: 06/26/2023] [Accepted: 06/27/2023] [Indexed: 07/13/2023] Open
Abstract
BACKGROUND Conventional segmented, retrospectively gated cine (Conv-cine) is challenged in patients with breath-hold difficulties. Compressed sensing (CS) has shown values in cine imaging but generally requires long reconstruction time. Recent artificial intelligence (AI) has demonstrated potential in fast cine imaging. PURPOSE To compare CS-cine and AI-cine with Conv-cine in quantitative biventricular functions, image quality, and reconstruction time. STUDY TYPE Prospective human studies. SUBJECTS 70 patients (age, 39 ± 15 years, 54.3% male). FIELD STRENGTH/SEQUENCE 3T; balanced steady state free precession gradient echo sequences. ASSESSMENT Biventricular functional parameters of CS-, AI-, and Conv-cine were measured by two radiologists independently and compared. The scan and reconstruction time were recorded. Subjective scores of image quality were compared by three radiologists. STATISTICAL TESTS Paired t-test and two related-samples Wilcoxon sign test were used to compare biventricular functional parameters between CS-, AI-, and Conv-cine. Intraclass correlation coefficient (ICC), Bland-Altman analysis, and Kendall's W method were applied to evaluate agreement of biventricular functional parameters and image quality of these three sequences. A P-value <0.05 was considered statistically significant, and standardized mean difference (SMD) < 0. 100 was considered no significant difference. RESULTS Compared to Conv-cine, no statistically significant differences were identified in CS- and AI-cine function results (all P > 0.05), except for very small differences in left ventricle end-diastole volumes of 2.5 mL (SMD = 0.082) and 4.1 mL (SMD = 0.096), respectively. Bland-Altman scatter plots revealed that biventricular function results were mostly distributed within the 95% confidence interval. All parameters had acceptable to excellent interobserver agreements (ICC: 0.748-0.989). Compared with Conv-cine (84 ± 13 sec), both CS (14 ± 2 sec) and AI (15 ± 2 sec) techniques reduced scan time. Compared with CS-cine (304 ± 17 sec), AI-cine (24 ± 4 sec) reduced reconstruction time. CS-cine demonstrated significantly lower quality scores than Conv-cine, while AI-cine demonstrated similar scores (P = 0.634). CONCLUSION CS- and AI-cine can achieve whole-heart cardiac cine imaging in a single breath-hold. Both CS- and AI-cine have the potential to supplement the gold standard Conv-cine in studying biventricular functions and benefit patients having difficulties with breath-holds. LEVEL OF EVIDENCE 1 TECHNICAL EFFICACY STAGE: 1.
Collapse
Affiliation(s)
- Xianghu Yan
- Department of Radiology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Yi Luo
- Department of Radiology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Xiao Chen
- United Imaging Intelligence, Cambridge, Massachusetts, USA
| | - Eric Z Chen
- United Imaging Intelligence, Cambridge, Massachusetts, USA
| | - Qi Liu
- UIH America, Inc., Houston, Texas, USA
| | - Lixian Zou
- Paul C. Lauterbur Research Centre for Biomedical Imaging, Shenzhen Institute of Advanced Technology, Chinese Academy of Science, Shenzhen, Guangdong, China
| | - Yuwei Bao
- Department of Ultrasound, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Lu Huang
- Department of Radiology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Liming Xia
- Department of Radiology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| |
Collapse
|
10
|
Peng P, Yue X, Tang L, Wu X, Deng Q, Wu T, Cai L, Liu Q, Xu J, Huang X, Chen Y, Diao K, Sun J. Feasibility of Free-Breathing, Non-ECG-Gated, Black-Blood Cine Magnetic Resonance Images With Multitasking in Measuring Left Ventricular Function Indices. Korean J Radiol 2023; 24:1221-1231. [PMID: 38016681 PMCID: PMC10700987 DOI: 10.3348/kjr.2023.0377] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2023] [Revised: 09/21/2023] [Accepted: 09/25/2023] [Indexed: 11/30/2023] Open
Abstract
OBJECTIVE To clinically validate the feasibility and accuracy of cine images acquired through the multitasking method, with no electrocardiogram gating and free-breathing, in measuring left ventricular (LV) function indices by comparing them with those acquired through the balanced steady-state free precession (bSSFP) method, with multiple breath-holds and electrocardiogram gating. MATERIALS AND METHODS Forty-three healthy volunteers (female:male, 30:13; mean age, 23.1 ± 2.3 years) and 36 patients requiring an assessment of LV function for various clinical indications (female:male, 22:14; 57.8 ± 11.3 years) were enrolled in this prospective study. Each participant underwent cardiac magnetic resonance imaging (MRI) using the multiple breath-hold bSSFP method and free-breathing multitasking method. LV function parameters were measured for both MRI methods. Image quality was assessed through subjective image quality scores (1 to 5) and calculation of the contrast-to-noise ratio (CNR) between the myocardium and blood pool. Differences between the two MRI methods were analyzed using the Bland-Altman plot, paired t-test, or Wilcoxon signed-rank test, as appropriate. RESULTS LV ejection fraction (LVEF) was not significantly different between the two MRI methods (P = 0.222 in healthy volunteers and P = 0.343 in patients). LV end-diastolic mass was slightly overestimated with multitasking in both healthy volunteers (multitasking vs. bSSFP, 60.5 ± 10.7 g vs. 58.0 ± 10.4 g, respectively; P < 0.001) and patients (69.4 ± 18.1 g vs. 66.8 ± 18.0 g, respectively; P = 0.003). Acceptable and comparable image quality was achieved for both MRI methods (multitasking vs. bSSFP, 4.5 ± 0.7 vs. 4.6 ± 0.6, respectively; P = 0.203). The CNR between the myocardium and blood pool showed no significant differences between the two MRI methods (18.89 ± 6.65 vs. 18.19 ± 5.83, respectively; P = 0.480). CONCLUSION Multitasking-derived cine images obtained without electrocardiogram gating and breath-holding achieved similar image quality and accurate quantification of LVEF in healthy volunteers and patients.
Collapse
Affiliation(s)
- Pengfei Peng
- Department of Radiology, West China Hospital, Sichuan University, Chengdu, Sichuan, China
| | - Xun Yue
- Department of Radiology, West China Hospital, Sichuan University, Chengdu, Sichuan, China
| | - Lu Tang
- Department of Radiology, West China Hospital, Sichuan University, Chengdu, Sichuan, China
| | - Xi Wu
- Department of Radiology, West China Hospital, Sichuan University, Chengdu, Sichuan, China
| | - Qiao Deng
- Department of Radiology, West China Hospital, Sichuan University, Chengdu, Sichuan, China
| | - Tao Wu
- Department of Radiology, West China Hospital, Sichuan University, Chengdu, Sichuan, China
| | - Lei Cai
- Department of Radiology, West China Hospital, Sichuan University, Chengdu, Sichuan, China
| | - Qi Liu
- UIH America, Inc., Houston, TX, USA
| | - Jian Xu
- UIH America, Inc., Houston, TX, USA
| | - Xiaoqi Huang
- Department of Radiology and Huaxi MR Research Center (HMRRC), Functional and Molecular lmaging Key Laboratory of Sichuan Province, West China Hospital, Sichuan University, Chengdu, Sichuan, China
- Research Unit of Psychoradiology, Chinese Academy of Medical Sciences, Chengdu, Sichuan, China
| | - Yucheng Chen
- Department of Cardiology, West China Hospital, Sichuan University, Chengdu, Sichuan, China
| | - Kaiyue Diao
- Department of Radiology, West China Hospital, Sichuan University, Chengdu, Sichuan, China.
| | - Jiayu Sun
- Department of Radiology, West China Hospital, Sichuan University, Chengdu, Sichuan, China.
| |
Collapse
|
11
|
Zhang J, Xiong Z, Tian D, Hu S, Song Q, Li Z. Compressed sensing cine imaging with higher temporal resolution for analysis of left atrial strain and strain rate by cardiac magnetic resonance feature tracking. Jpn J Radiol 2023; 41:1084-1093. [PMID: 37067751 DOI: 10.1007/s11604-023-01433-y] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2022] [Accepted: 04/10/2023] [Indexed: 04/18/2023]
Abstract
PURPOSE Cardiac magnetic resonance (CMR) feature tracking (FT) is more widely used in the measurement of left atrial (LA) strain and strain rate (SR). However, in recent years, researchers have attempted to improve the low temporal resolution of CMR-FT to better capture the subtle deformations of the myocardium. The technique of compressed sensing (CS) has been applied clinically, reducing scan time while increasing temporal resolution. The purpose of this study was to explore the effect of the increased temporal resolution of CS cine sequences on the analysis of LA longitudinal strain and SR. MATERIALS AND METHODS Twenty-nine healthy subjects were included in the study. They underwent CMR with a reference steady-state free precession cine sequence of conventional temporal resolution (standard SSFP sequence), a cine sequence of higher temporal resolution (HT sequence), and an HT cine sequence with CS (CS HT sequence) (temporal resolution: 22.1-44.3/24.9-47.1 ms, 11.1-19.4 ms, and 8.3-19.4 ms, respectively). The standard SSFP sequence, HT sequence, and CS HT sequence were acquired in all subjects during the same scanning session. LA longitudinal strain and SR, reflecting LA reservoir, conduit, and contraction booster-pump function, were measured by CMR-FT and compared among the three sequences. RESULTS The measurements of LASR reservoir, conduit, and booster-pump were significantly higher on the HT and CS HT sequences than on the standard SSFP sequence. The standard SSFP sequence was correlated significantly with the HT and CS HT sequences in terms of LA strain and SR analysis, respectively. The LA strain and SR measurements also showed excellent agreement between the HT and CS HT sequences. CONCLUSION Higher temporal resolution led to significantly higher measured LASR values in CMR-FT. Furthermore, the addition of CS reduced scan time and did not affect LA longitudinal strain or SR analysis.
Collapse
Affiliation(s)
- Jingyu Zhang
- Department of Radiology, The First Affiliated Hospital of Dalian Medical University, 222 Zhongshan Road, Xigang District, Dalian, 116011, China
| | - Ziqi Xiong
- Department of Radiology, The First Affiliated Hospital of Dalian Medical University, 222 Zhongshan Road, Xigang District, Dalian, 116011, China
| | - Di Tian
- Department of Radiology, The First Affiliated Hospital of Dalian Medical University, 222 Zhongshan Road, Xigang District, Dalian, 116011, China
| | - Shuai Hu
- Department of Radiology, The First Affiliated Hospital of Dalian Medical University, 222 Zhongshan Road, Xigang District, Dalian, 116011, China
| | - Qingwei Song
- Department of Radiology, The First Affiliated Hospital of Dalian Medical University, 222 Zhongshan Road, Xigang District, Dalian, 116011, China
| | - Zhiyong Li
- Department of Radiology, The First Affiliated Hospital of Dalian Medical University, 222 Zhongshan Road, Xigang District, Dalian, 116011, China.
| |
Collapse
|
12
|
Craft J, Li Y, Nashta NF, Weber J. Comparison between compressed sensing and segmented cine cardiac magnetic resonance: a meta-analysis. BMC Cardiovasc Disord 2023; 23:473. [PMID: 37735355 PMCID: PMC10512640 DOI: 10.1186/s12872-023-03426-1] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2023] [Accepted: 08/01/2023] [Indexed: 09/23/2023] Open
Abstract
PURPOSE Highly accelerated compressed sensing cine has allowed for quantification of ventricular function in a single breath hold. However, compared to segmented breath hold techniques, there may be underestimation or overestimation of LV volumes. Furthermore, a heterogeneous sample of techniques have been used in volunteers and patients for pre-clinical and clinical use. This can complicate individual comparisons where small, but statistically significant differences exist in left ventricular morphological and/or functional parameters. This meta-analysis aims to provide a comparison of conventional cine versus compressed sensing based reconstruction techniques in patients and volunteers. METHODS Two investigators performed systematic searches for eligible studies using PubMed/MEDLINE and Web of Science to identify studies published 1/1/2010-3/1/2021. Ultimately, 15 studies were included for comparison between compressed sensing cine and conventional imaging. RESULTS Compared to conventional cine, there were small, statistically significant overestimation of LV mass, underestimation of stroke volume and LV end diastolic volume (mean difference 2.65 g [CL 0.57-4.73], 2.52 mL [CL 0.73-4.31], and 2.39 mL [CL 0.07-4.70], respectively). Attenuated differences persisted across studies using prospective gating (underestimated stroke volume) and non-prospective gating (underestimation of stroke volume, overestimation of mass). There were no significant differences in LV volumes or LV mass with high or low acceleration subgroups in reference to conventional cine except slight underestimation of ejection fraction among high acceleration studies. Reduction in breath hold acquisition time ranged from 33 to 64%, while reduction in total scan duration ranged from 43 to 97%. CONCLUSION LV volume and mass assessment using compressed sensing CMR is accurate compared to conventional parallel imaging cine.
Collapse
Affiliation(s)
- Jason Craft
- DeMatteis Cardiovascular Institute, St. Francis Hospital & Heart Center, 100 Port Washington Blvd, Roslyn, NY, 11576, USA.
| | - Yulee Li
- DeMatteis Cardiovascular Institute, St. Francis Hospital & Heart Center, 100 Port Washington Blvd, Roslyn, NY, 11576, USA
| | - Niloofar Fouladi Nashta
- Sol Price School of Public Policy and Leonard D. Schaeffer Center for Health Policy and Economics, University of Southern California, Los Angeles, CA, USA
| | - Jonathan Weber
- DeMatteis Cardiovascular Institute, St. Francis Hospital & Heart Center, 100 Port Washington Blvd, Roslyn, NY, 11576, USA
| |
Collapse
|
13
|
Kim D, Coll-Font J, Lobos RA, Stäb D, Pang J, Foster A, Garrett T, Bi X, Speier P, Haldar JP, Nguyen C. Single breath-hold CINE imaging with combined simultaneous multislice and region-optimized virtual coils. Magn Reson Med 2023; 90:222-230. [PMID: 36864561 PMCID: PMC10315014 DOI: 10.1002/mrm.29620] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2022] [Revised: 02/02/2023] [Accepted: 02/03/2023] [Indexed: 03/04/2023]
Abstract
PURPOSE To investigate the feasibility of combining simultaneous multislice (SMS) and region-optimized virtual coils (ROVir) for single breath-hold CINE imaging. METHOD ROVir is a recent virtual coil approach that allows reduced-field of view (FOV) imaging by localizing the signal from a region-of-interest (ROI) and/or suppressing the signal from unwanted spatial regions. In this work, ROVir is used for reduced-FOV SMS bSSFP CINE imaging, which enables whole heart CINE with a single breath-hold acquisition. RESULTS Reduced-FOV CINE with either SMS-only or ROVir-only resulted in significant aliasing, with severely reduced image quality when compared to the full FOV reference CINE, while the visual appearance of aliasing was substantially reduced with the proposed SMS+ROVir. The end diastolic volume, end systolic volume, and ejection fraction obtained using the proposed approach were similar to the clinical reference (correlations of 0.92, 0.94, and 0.88, respectively withp < 0 . 05 $$ p<0.05 $$ in each case, and biases of 0.1, 1.6 mL, and- 0 . 6 % $$ -0.6\% $$ , respectively). No statistically significant differences for these parameters were found with a Wilcoxon rank test (p = 0.96, 0.20, and 0.40, respectively). CONCLUSION We demonstrated that reduced-FOV CINE imaging with SMS+ROVir enables single breath-hold whole-heart imaging without compromising visual image quality or quantitative cardiac function parameters.
Collapse
Affiliation(s)
- Daeun Kim
- Ming Hsieh Department of Electrical and Computer Engineering, University of Southern California, Los Angeles, CA
| | - Jaume Coll-Font
- Cardiovascular Research Center and Martinos Center for Biomedical Imaging, Massachusetts General Hospital and Harvard Medical School, Charlestown, MA
| | - Rodrigo A. Lobos
- Ming Hsieh Department of Electrical and Computer Engineering, University of Southern California, Los Angeles, CA
| | - Daniel Stäb
- MR Research Collaborations, Siemens Healthcare Limited, Melbourne, Australia
| | - Jianing Pang
- Siemens Medical Solutions USA Inc., Los Angeles, CA
| | - Anna Foster
- Cardiovascular Research Center and Martinos Center for Biomedical Imaging, Massachusetts General Hospital and Harvard Medical School, Charlestown, MA
| | - Thomas Garrett
- Cardiovascular Research Center and Martinos Center for Biomedical Imaging, Massachusetts General Hospital and Harvard Medical School, Charlestown, MA
| | - Xiaoming Bi
- Siemens Medical Solutions USA Inc., Los Angeles, CA
| | | | - Justin P. Haldar
- Ming Hsieh Department of Electrical and Computer Engineering, University of Southern California, Los Angeles, CA
| | - Christopher Nguyen
- Cardiovascular Research Center and Martinos Center for Biomedical Imaging, Massachusetts General Hospital and Harvard Medical School, Charlestown, MA
- Division of Health Science Technology, Harvard-Massachusetts Institute of Technology, Cambridge, MA
- Cardiovascular Innovation Research Center, Heart, Vascular, and Thoracic Institute, Cleveland Clinic, Cleveland, OH
| |
Collapse
|
14
|
Neofytou AP, Neji R, Kowalik GT, Mooiweer R, Wong J, Fotaki A, Ferreira J, Evans C, Bosio F, Mughal N, Razavi R, Pushparajah K, Roujol S. Retrospective motion correction through multi-average k-space data elimination (REMAKE) for free-breathing cardiac cine imaging. Magn Reson Med 2023; 89:2242-2254. [PMID: 36763898 PMCID: PMC10952356 DOI: 10.1002/mrm.29613] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2022] [Revised: 01/06/2023] [Accepted: 01/20/2023] [Indexed: 02/12/2023]
Abstract
PURPOSE To develop a motion-robust reconstruction technique for free-breathing cine imaging with multiple averages. METHOD Retrospective motion correction through multiple average k-space data elimination (REMAKE) was developed using iterative removal of k-space segments (from individual k-space samples) that contribute most to motion corruption while combining any remaining segments across multiple signal averages. A variant of REMAKE, termed REMAKE+, was developed to address any losses in SNR due to k-space information removal. With REMAKE+, multiple reconstructions using different initial conditions were performed, co-registered, and averaged. Both techniques were validated against clinical "standard" signal averaging reconstruction in a static phantom (with simulated motion) and 15 patients undergoing free-breathing cine imaging with multiple averages. Quantitative analysis of myocardial sharpness, blood/myocardial SNR, myocardial-blood contrast-to-noise ratio (CNR), as well as subjective assessment of image quality and rate of diagnostic quality images were performed. RESULTS In phantom, motion artifacts using "standard" (RMS error [RMSE]: 2.2 ± 0.5) were substantially reduced using REMAKE/REMAKE+ (RMSE: 1.5 ± 0.4/1.0 ± 0.4, p < 0.01). In patients, REMAKE/REMAKE+ led to higher myocardial sharpness (0.79 ± 0.09/0.79 ± 0.1 vs. 0.74 ± 0.12 for "standard", p = 0.004/0.04), higher image quality (1.8 ± 0.2/1.9 ± 0.2 vs. 1.6 ± 0.4 for "standard", p = 0.02/0.008), and a higher rate of diagnostic quality images (99%/100% vs. 94% for "standard"). Blood/myocardial SNR for "standard" (94 ± 30/33 ± 10) was higher vs. REMAKE (80 ± 25/28 ± 8, p = 0.002/0.005) and tended to be lower vs. REMAKE+ (105 ± 33/36 ± 12, p = 0.02/0.06). Myocardial-blood CNR for "standard" (61 ± 22) was higher vs. REMAKE (53 ± 19, p = 0.003) and lower vs. REMAKE+ (69 ± 24, p = 0.007). CONCLUSIONS Compared to "standard" signal averaging reconstruction, REMAKE and REMAKE+ provide improved myocardial sharpness, image quality, and rate of diagnostic quality images.
Collapse
Affiliation(s)
- Alexander Paul Neofytou
- School of Biomedical Engineering and Imaging Sciences, Faculty of Life Sciences and MedicineKing's College LondonLondonUK
| | - Radhouene Neji
- School of Biomedical Engineering and Imaging Sciences, Faculty of Life Sciences and MedicineKing's College LondonLondonUK
- MR Research CollaborationsSiemens Healthcare LimitedNewton House, Sir William Siemens Square, Frimley, CamberleySurreyUK
| | - Grzegorz Tomasz Kowalik
- School of Biomedical Engineering and Imaging Sciences, Faculty of Life Sciences and MedicineKing's College LondonLondonUK
| | - Ronald Mooiweer
- School of Biomedical Engineering and Imaging Sciences, Faculty of Life Sciences and MedicineKing's College LondonLondonUK
- MR Research CollaborationsSiemens Healthcare LimitedNewton House, Sir William Siemens Square, Frimley, CamberleySurreyUK
| | - James Wong
- Department of Paediatric CardiologyEvelina London Children's HospitalLondonUK
| | - Anastasia Fotaki
- School of Biomedical Engineering and Imaging Sciences, Faculty of Life Sciences and MedicineKing's College LondonLondonUK
| | - Joana Ferreira
- School of Biomedical Engineering and Imaging Sciences, Faculty of Life Sciences and MedicineKing's College LondonLondonUK
| | - Carl Evans
- School of Biomedical Engineering and Imaging Sciences, Faculty of Life Sciences and MedicineKing's College LondonLondonUK
| | - Filippo Bosio
- School of Biomedical Engineering and Imaging Sciences, Faculty of Life Sciences and MedicineKing's College LondonLondonUK
| | - Nabila Mughal
- School of Biomedical Engineering and Imaging Sciences, Faculty of Life Sciences and MedicineKing's College LondonLondonUK
| | - Reza Razavi
- School of Biomedical Engineering and Imaging Sciences, Faculty of Life Sciences and MedicineKing's College LondonLondonUK
| | - Kuberan Pushparajah
- School of Biomedical Engineering and Imaging Sciences, Faculty of Life Sciences and MedicineKing's College LondonLondonUK
- Department of Paediatric CardiologyEvelina London Children's HospitalLondonUK
| | - Sébastien Roujol
- School of Biomedical Engineering and Imaging Sciences, Faculty of Life Sciences and MedicineKing's College LondonLondonUK
| |
Collapse
|
15
|
Kravchenko D, Isaak A, Zhang S, Katemann C, Mesropyan N, Bischoff LM, Pieper CC, Kuetting D, Attenberger U, Weber O, Hart C, Luetkens JA. Free-breathing pseudo-golden-angle bSSFP cine cardiac MRI for biventricular functional assessment in congenital heart disease. Eur J Radiol 2023; 163:110831. [PMID: 37059004 DOI: 10.1016/j.ejrad.2023.110831] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2023] [Revised: 03/23/2023] [Accepted: 04/07/2023] [Indexed: 04/16/2023]
Abstract
PURPOSE To compare standard breath-hold (BH) cine imaging to a radial pseudo-golden-angle free-breathing (FB) technique in congenital heart disease (CHD). METHODS In this prospective study, short-axis and 4-chamber BH and FB cardiac MRI sequences of 25 participants with CHD acquired at 1.5 Tesla, were quantitatively compared regarding ventricular volumes, function, interventricular septum thickness (IVSD), apparent signal to noise ratio (aSNR), and estimated contrast to noise ratio (eCNR). For qualitative comparison, three image quality criteria (contrast, endocardial edge definition, and artefacts) were rated on a 5-point Likert scale (5: excellent, 1: non-diagnostic). Paired t-Test was used for group comparisons, Bland-Altman analysis for agreement between techniques. Inter-reader agreement was compared using intraclass correlation coefficient. RESULTS IVSD (BH 7.4 ± 2.1 mm vs FB 7.4 ± 1.9 mm, p =.71), biventricular ejection fraction (left ventricle [LV]: 56.4 ± 10.8% vs 56.1 ± 9.3%, p =.83; right ventricle [RV]: 49.5 ± 8.6% vs 49.7 ± 10.1%, p =.83), and biventricular end diastolic volume (LV: 176.3 ± 63.9 ml vs 173.9 ± 64.9 ml, p =.90; RV: 185.4 ± 63.8 ml vs 189.6 ± 66.6 ml, p =.34) were comparable. Mean measurement time for FB short-axis sequences was 8.1 ± 1.3 compared to 4.4 ± 1.3 min for BH (p <.001). Subjective image quality between sequences was deemed comparable, (4.6 ± 0.6 vs 4.5 ± 0.6, p =.26, for 4-chamber views) with a significant difference regarding short-axis views (4.9 ± 0.3 vs 4.5 ± 0.6, p =.008). aSNR was similar (BH 25.8 ± 11.2 vs FB 22.2 ± 9.5, p =.24), while eCNR was higher for BH (89.1 ± 36.1 vs 68.5 ± 32.1, p =.03). CONCLUSION FB sequences yielded comparable results to BH regarding image quality, biventricular volumetry, and function, though measurement times were longer. The FB sequence described might be clinically valuable when BHs are insufficiently performed.
Collapse
Affiliation(s)
- Dmitrij Kravchenko
- Department of Diagnostic and Interventional Radiology, University Hospital Bonn, Bonn, Germany; Quantitative Imaging Lab Bonn (QILaB), Germany
| | - Alexander Isaak
- Department of Diagnostic and Interventional Radiology, University Hospital Bonn, Bonn, Germany; Quantitative Imaging Lab Bonn (QILaB), Germany
| | - Shuo Zhang
- Philips GmbH Market DACH, Hamburg, Germany
| | | | - Narine Mesropyan
- Department of Diagnostic and Interventional Radiology, University Hospital Bonn, Bonn, Germany; Quantitative Imaging Lab Bonn (QILaB), Germany
| | - Leon M Bischoff
- Department of Diagnostic and Interventional Radiology, University Hospital Bonn, Bonn, Germany; Quantitative Imaging Lab Bonn (QILaB), Germany
| | - Claus C Pieper
- Department of Diagnostic and Interventional Radiology, University Hospital Bonn, Bonn, Germany
| | - Daniel Kuetting
- Department of Diagnostic and Interventional Radiology, University Hospital Bonn, Bonn, Germany; Quantitative Imaging Lab Bonn (QILaB), Germany
| | - Ulrike Attenberger
- Department of Diagnostic and Interventional Radiology, University Hospital Bonn, Bonn, Germany
| | | | - Christopher Hart
- Department of Diagnostic and Interventional Radiology, University Hospital Bonn, Bonn, Germany; Department of Pediatric Cardiology, University Hospital Bonn, Bonn, Germany
| | - Julian A Luetkens
- Department of Diagnostic and Interventional Radiology, University Hospital Bonn, Bonn, Germany; Quantitative Imaging Lab Bonn (QILaB), Germany.
| |
Collapse
|
16
|
Free-breathing cardiac cine MRI with compressed sensing real-time imaging and retrospective motion correction: clinical feasibility and validation. Eur Radiol 2023; 33:2289-2300. [PMID: 36357691 DOI: 10.1007/s00330-022-09210-7] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2022] [Revised: 08/04/2022] [Accepted: 09/30/2022] [Indexed: 11/12/2022]
Abstract
OBJECTIVES To prospectively evaluate the feasibility and biventricular assessment accuracy of a free-breathing cardiac cine imaging technique (RTCSCineMoCo) combined with highly accelerated real-time (RT) acquisition, compressed sensing (CS) reconstruction, and fully automated non-rigid respiratory motion correction. METHODS We evaluated 80 patients scheduled for clinical cardiac MRI. Cardiac cine images of the same long-axis and short-axis stacks were acquired using three techniques: (1) SegBH: standard segmented cine with breath-hold; (2) RTCSCineMoCo; (3) RTCSCine: single-shot RT CS cine at 3.0 T. Image quality (IQ) was evaluated using a qualitative 5-point Likert scale and the European CMR registry standardized criteria. Quantitative parameters including left (LV) and right ventricular (RV) ejection fractions (EF), end-diastolic volumes (EDV), end-systolic volumes (ESV), stroke volumes (SV), and LV mass (LVM) were measured and compared. RESULTS RTCSCineMoCo and SegBH had equivalent IQ scores (4.4 ± 0.7 vs. 4.2 ± 0.8, p = 0.066), while RTCSCine had a significantly lower IQ score than SegBH (4.0 ± 0.8 vs. 4.2 ± 0.8, p = 0.031). In a quantitative analysis, RTCSCineMoCo and SegBH yielded similar measurements for all parameters, while the majority of RTCSCine parameters were significantly different compared with SegBH, except for LVEDV. CONCLUSION RTCSCineMoCo is a promising method for robust free-breathing cardiac cine imaging, achieving better IQ and more precise quantitative analysis results for both ventricles compared with RTCSCine. KEY POINTS • RTCSCineMoCo is a promising method for free-breathing cardiac MR cine imaging in daily practice. • RTCSCineMoCo provided better IQ and more precise quantitative measurements compared with RTCSCine, by extending RT data acquisition to multiple heartbeats, performing non-rigid respiratory motion correction, and signal averaging. • RTCSCineMoCo may be suitable for routine clinical use for vulnerable patients who may otherwise pose a challenge to image successfully with the conventional segmented cine technique.
Collapse
|
17
|
Free-breathing cardiovascular cine magnetic resonance imaging using compressed-sensing and retrospective motion correction: accurate assessment of biventricular volume at 3T. Jpn J Radiol 2023; 41:142-152. [PMID: 36227459 PMCID: PMC9889435 DOI: 10.1007/s11604-022-01344-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2022] [Accepted: 09/26/2022] [Indexed: 02/04/2023]
Abstract
PURPOSE We applied a combination of compressed-sensing (CS) and retrospective motion correction to free-breathing cine magnetic resonance (MR) (FBCS cine MoCo). We validated FBCS cine MoCo by comparing it with breath-hold (BH) conventional cine MR. MATERIALS AND METHODS Thirty-five volunteers underwent both FBCS cine MoCo and BH conventional cine MR imaging. Twelve consecutive short-axis cine images were obtained. We compared the examination time, image quality and biventricular volumetric assessments between the two cine MR. RESULTS FBCS cine MoCo required a significantly shorter examination time than BH conventional cine (135 s [110-143 s] vs. 198 s [186-349 s], p < 0.001). The image quality scores were not significantly different between the two techniques (End-diastole: FBCS cine MoCo; 4.7 ± 0.5 vs. BH conventional cine; 4.6 ± 0.6; p = 0.77, End-systole: FBCS cine MoCo; 4.5 ± 0.5 vs. BH conventional cine; 4.5 ± 0.6; p = 0.52). No significant differences were observed in all biventricular volumetric assessments between the two techniques. The mean differences with 95% confidence interval (CI), based on Bland-Altman analysis, were - 0.3 mL (- 8.2 - 7.5 mL) for LVEDV, 0.2 mL (- 5.6 - 5.9 mL) for LVESV, - 0.5 mL (- 6.3 - 5.2 mL) for LVSV, - 0.3% (- 3.5 - 3.0%) for LVEF, - 0.1 g (- 8.5 - 8.3 g) for LVED mass, 1.4 mL (- 15.5 - 18.3 mL) for RVEDV, 2.1 mL (- 11.2 - 15.3 mL) for RVESV, - 0.6 mL (- 9.7 - 8.4 mL) for RVSV, - 1.0% (- 6.5 - 4.6%) for RVEF. CONCLUSION FBCS cine MoCo can potentially replace multiple BH conventional cine MR and improve the clinical utility of cine MR.
Collapse
|
18
|
Weberling LD, Lossnitzer D, Frey N, André F. Coronary Computed Tomography vs. Cardiac Magnetic Resonance Imaging in the Evaluation of Coronary Artery Disease. Diagnostics (Basel) 2022; 13:diagnostics13010125. [PMID: 36611417 PMCID: PMC9818886 DOI: 10.3390/diagnostics13010125] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2022] [Revised: 12/23/2022] [Accepted: 12/28/2022] [Indexed: 01/04/2023] Open
Abstract
Coronary artery disease (CAD) represents a widespread burden to both individual and public health, steadily rising across the globe. The current guidelines recommend non-invasive anatomical or functional testing prior to invasive procedures. Both coronary computed tomography angiography (cCTA) and stress cardiac magnetic resonance imaging (CMR) are appropriate imaging modalities, which are increasingly used in these patients. Both exhibit excellent safety profiles and high diagnostic accuracy. In the last decade, cCTA image quality has improved, radiation exposure has decreased and functional information such as CT-derived fractional flow reserve or perfusion can complement anatomic evaluation. CMR has become more robust and faster, and advances have been made in functional assessment and tissue characterization allowing for earlier and better risk stratification. This review compares both imaging modalities regarding their strengths and weaknesses in the assessment of CAD and aims to give physicians rationales to select the most appropriate modality for individual patients.
Collapse
Affiliation(s)
- Lukas D. Weberling
- Department of Cardiology, Angiology and Pneumology, University Hospital Heidelberg, Im Neuenheimer Feld 410, 69120 Heidelberg, Germany
- DZHK (German Centre for Cardiovascular Research), Partner Site Heidelberg/Mannheim, 69120 Heidelberg, Germany
- Correspondence: ; Tel.: +49-6221-8676
| | - Dirk Lossnitzer
- Department of Cardiology, Angiology and Pneumology, University Hospital Heidelberg, Im Neuenheimer Feld 410, 69120 Heidelberg, Germany
| | - Norbert Frey
- Department of Cardiology, Angiology and Pneumology, University Hospital Heidelberg, Im Neuenheimer Feld 410, 69120 Heidelberg, Germany
- DZHK (German Centre for Cardiovascular Research), Partner Site Heidelberg/Mannheim, 69120 Heidelberg, Germany
| | - Florian André
- Department of Cardiology, Angiology and Pneumology, University Hospital Heidelberg, Im Neuenheimer Feld 410, 69120 Heidelberg, Germany
- DZHK (German Centre for Cardiovascular Research), Partner Site Heidelberg/Mannheim, 69120 Heidelberg, Germany
| |
Collapse
|
19
|
Zou Q, Ahmed AH, Nagpal P, Priya S, Schulte RF, Jacob M. Variational Manifold Learning From Incomplete Data: Application to Multislice Dynamic MRI. IEEE TRANSACTIONS ON MEDICAL IMAGING 2022; 41:3552-3561. [PMID: 35816534 PMCID: PMC10210580 DOI: 10.1109/tmi.2022.3189905] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/27/2023]
Abstract
Current deep learning-based manifold learning algorithms such as the variational autoencoder (VAE) require fully sampled data to learn the probability density of real-world datasets. However, fully sampled data is often unavailable in a variety of problems, including the recovery of dynamic and high-resolution magnetic resonance imaging (MRI). We introduce a novel variational approach to learn a manifold from undersampled data. The VAE uses a decoder fed by latent vectors, drawn from a conditional density estimated from the fully sampled images using an encoder. Since fully sampled images are not available in our setting, we approximate the conditional density of the latent vectors by a parametric model whose parameters are estimated from the undersampled measurements using back-propagation. We use the framework for the joint alignment and recovery of multi-slice free breathing and ungated cardiac MRI data from highly undersampled measurements. Experimental results demonstrate the utility of the proposed scheme in dynamic imaging alignment and reconstructions.
Collapse
|
20
|
Gröschel J, Ammann C, Zange L, Viezzer D, Forman C, Schmidt M, Blaszczyk E, Schulz-Menger J. Fast acquisition of left and right ventricular function parameters applying cardiovascular magnetic resonance in clinical routine - validation of a 2-shot compressed sensing cine sequence. SCAND CARDIOVASC J 2022; 56:266-275. [PMID: 35836407 DOI: 10.1080/14017431.2022.2099010] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 10/17/2022]
Abstract
Objectives. To evaluate if cine sequences accelerated by compressed sensing (CS) are feasible in clinical routine and yield equivalent cardiac morphology in less time. Design. We evaluated 155 consecutive patients with various cardiac diseases scanned during our clinical routine. LV and RV short axis (SAX) cine images were acquired by conventional and prototype 2-shot CS sequences on a 1.5 T CMR. The 2-shot prototype captures the entire heart over a period of 3 beats making the acquisition potentially even faster. Both scans were performed with identical slice parameters and positions. We compared LV and RV morphology with Bland-Altmann plots and weighted the results in relation to pre-defined tolerance intervals. Subjective and objective image quality was evaluated using a 4-point score and adapted standardized criteria. Scan times were evaluated for each sequence. Results. In total, no acquisitions were lost due to non-diagnostic image quality in the subjective image score. Objective image quality analysis showed no statistically significant differences. The scan time of the CS cines was significantly shorter (p < .001) with mean scan times of 178 ± 36 s compared to 313 ± 65 s for the conventional cine. All cardiac function parameters showed excellent correlation (r 0.978-0.996). Both sequences were considered equivalent for the assessment of LV and RV morphology. Conclusions. The 2-shot CS SAX cines can be used in clinical routine to acquire cardiac morphology in less time compared to the conventional method, with no total loss of acquisitions due to nondiagnostic quality. TRIAL REGISTRATION ISRCTN12344380. Registered 20 November 2020, retrospectively registered.
Collapse
Affiliation(s)
- Jan Gröschel
- Charité - Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin, Humboldt-Universität zu Berlin, and Berlin Institute of Health, Working Group on Cardiovascular Magnetic Resonance, Experimental and Clinical Research Center, a Joint Cooperation Between the Charité Medical Faculty and the Max-Delbrück Center for Molecular Medicine Charité Campus Buch, Berlin, Germany.,DZHK (German Centre for Cardiovascular Research), Partner Site Berlin, Berlin, Germany
| | - Clemens Ammann
- Charité - Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin, Humboldt-Universität zu Berlin, and Berlin Institute of Health, Working Group on Cardiovascular Magnetic Resonance, Experimental and Clinical Research Center, a Joint Cooperation Between the Charité Medical Faculty and the Max-Delbrück Center for Molecular Medicine Charité Campus Buch, Berlin, Germany.,DZHK (German Centre for Cardiovascular Research), Partner Site Berlin, Berlin, Germany
| | - Leonora Zange
- Charité - Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin, Humboldt-Universität zu Berlin, and Berlin Institute of Health, Working Group on Cardiovascular Magnetic Resonance, Experimental and Clinical Research Center, a Joint Cooperation Between the Charité Medical Faculty and the Max-Delbrück Center for Molecular Medicine Charité Campus Buch, Berlin, Germany.,Department of Cardiology and Nephrology, HELIOS Hospital Berlin-Buch, Berlin, Germany
| | - Darian Viezzer
- Charité - Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin, Humboldt-Universität zu Berlin, and Berlin Institute of Health, Working Group on Cardiovascular Magnetic Resonance, Experimental and Clinical Research Center, a Joint Cooperation Between the Charité Medical Faculty and the Max-Delbrück Center for Molecular Medicine Charité Campus Buch, Berlin, Germany.,DZHK (German Centre for Cardiovascular Research), Partner Site Berlin, Berlin, Germany
| | | | | | - Edyta Blaszczyk
- Charité - Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin, Humboldt-Universität zu Berlin, and Berlin Institute of Health, Working Group on Cardiovascular Magnetic Resonance, Experimental and Clinical Research Center, a Joint Cooperation Between the Charité Medical Faculty and the Max-Delbrück Center for Molecular Medicine Charité Campus Buch, Berlin, Germany.,DZHK (German Centre for Cardiovascular Research), Partner Site Berlin, Berlin, Germany
| | - Jeanette Schulz-Menger
- Charité - Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin, Humboldt-Universität zu Berlin, and Berlin Institute of Health, Working Group on Cardiovascular Magnetic Resonance, Experimental and Clinical Research Center, a Joint Cooperation Between the Charité Medical Faculty and the Max-Delbrück Center for Molecular Medicine Charité Campus Buch, Berlin, Germany.,DZHK (German Centre for Cardiovascular Research), Partner Site Berlin, Berlin, Germany.,Department of Cardiology and Nephrology, HELIOS Hospital Berlin-Buch, Berlin, Germany
| |
Collapse
|
21
|
Velasco C, Fletcher TJ, Botnar RM, Prieto C. Artificial intelligence in cardiac magnetic resonance fingerprinting. Front Cardiovasc Med 2022; 9:1009131. [PMID: 36204566 PMCID: PMC9530662 DOI: 10.3389/fcvm.2022.1009131] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2022] [Accepted: 08/30/2022] [Indexed: 11/13/2022] Open
Abstract
Magnetic resonance fingerprinting (MRF) is a fast MRI-based technique that allows for multiparametric quantitative characterization of the tissues of interest in a single acquisition. In particular, it has gained attention in the field of cardiac imaging due to its ability to provide simultaneous and co-registered myocardial T1 and T2 mapping in a single breath-held cardiac MRF scan, in addition to other parameters. Initial results in small healthy subject groups and clinical studies have demonstrated the feasibility and potential of MRF imaging. Ongoing research is being conducted to improve the accuracy, efficiency, and robustness of cardiac MRF. However, these improvements usually increase the complexity of image reconstruction and dictionary generation and introduce the need for sequence optimization. Each of these steps increase the computational demand and processing time of MRF. The latest advances in artificial intelligence (AI), including progress in deep learning and the development of neural networks for MRI, now present an opportunity to efficiently address these issues. Artificial intelligence can be used to optimize candidate sequences and reduce the memory demand and computational time required for reconstruction and post-processing. Recently, proposed machine learning-based approaches have been shown to reduce dictionary generation and reconstruction times by several orders of magnitude. Such applications of AI should help to remove these bottlenecks and speed up cardiac MRF, improving its practical utility and allowing for its potential inclusion in clinical routine. This review aims to summarize the latest developments in artificial intelligence applied to cardiac MRF. Particularly, we focus on the application of machine learning at different steps of the MRF process, such as sequence optimization, dictionary generation and image reconstruction.
Collapse
Affiliation(s)
- Carlos Velasco
- School of Biomedical Engineering and Imaging Sciences, King's College London, London, United Kingdom
- *Correspondence: Carlos Velasco
| | - Thomas J. Fletcher
- School of Biomedical Engineering and Imaging Sciences, King's College London, London, United Kingdom
| | - René M. Botnar
- School of Biomedical Engineering and Imaging Sciences, King's College London, London, United Kingdom
- Institute for Biological and Medical Engineering, Pontificia Universidad Católica de Chile, Santiago, Chile
- Millennium Institute for Intelligent Healthcare Engineering, Santiago, Chile
| | - Claudia Prieto
- School of Biomedical Engineering and Imaging Sciences, King's College London, London, United Kingdom
- Institute for Biological and Medical Engineering, Pontificia Universidad Católica de Chile, Santiago, Chile
- Millennium Institute for Intelligent Healthcare Engineering, Santiago, Chile
| |
Collapse
|
22
|
Chen X, Pan J, Hu Y, Hu H, Pan Y. Feasibility of one breath-hold cardiovascular magnetic resonance compressed sensing cine for left ventricular strain analysis. Front Cardiovasc Med 2022; 9:903203. [PMID: 36035944 PMCID: PMC9411808 DOI: 10.3389/fcvm.2022.903203] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2022] [Accepted: 07/25/2022] [Indexed: 11/13/2022] Open
Abstract
ObjectiveTo investigate the feasibility of 3D left ventricular global and regional strain by using one breath-hold (BH) compressed sensing cine (CSC) protocol and determine the agreement between CSC and conventional cine (CC) protocols.MethodsA total of 30 volunteers were enrolled in this study. Cardiovascular magnetic resonance (CMR) images were acquired using a 1.436 T magnetic resonance imaging (MRI) system. The CSC protocols included one BH CSC and the shortest BH CSC protocols with different parameters and were only performed in short-axis (SA) view following CC protocols. Left ventricular (LV) end-diastole volume (EDV), end-systole volume (ESV), stroke volume (SV), and ejection fraction (EF) global and regional strain were calculated by CC, one BH CSC, and shortest BH CSC protocols. The intraclass correlation coefficient (ICC) and coefficient of variance (CV) of these parameters were used to determine the agreement between different acquisitions.ResultsThe agreement of all volumetric variables and EF between the CC protocol and one BH CSC protocol was excellent (ICC > 0.9). EDV, ESV, and SV between CC and shortest BH CSC protocols also had a remarkable coherence (ICC > 0.9). The agreement of 3D LV global strain assessment between CC protocol and one BH CSC protocol was good (ICC > 0.8). Most CVs of variables were also good (CV < 15%). ICCs of all variables were lower than 0.8. CVs of all parameters were higher than 15% except global longitudinal strain (GLS) between CC and shortest BH CSC protocols. The agreement of regional strain between CC and BH CSC protocols was heterogeneous (-0.2 < ICC < 0.7). Many variables of CVs were poor.ConclusionNotably, one BH CSC protocol can be used for 3D global strain analysis, along with a good correlation with the CC protocol. The regional strain should continue to be computed by the CC protocol due to poor agreement and a remarkable variation between the protocols. The shortest BH CSC protocol was insufficient to replace the CC protocol for 3D global and regional strain.
Collapse
Affiliation(s)
- Xiaorong Chen
- Affiliated Jinhua Hospital, Zhejiang University School of Medicine, Jinhua, China
- *Correspondence: Xiaorong Chen,
| | - Jiangfeng Pan
- Affiliated Jinhua Hospital, Zhejiang University School of Medicine, Jinhua, China
- Jiangfeng Pan,
| | - Yi Hu
- Affiliated Jinhua Hospital, Zhejiang University School of Medicine, Jinhua, China
| | - Hongjie Hu
- Sir Run Run Shaw Hospital, Hangzhou, China
| | - Yonghao Pan
- Affiliated Jinhua Hospital, Zhejiang University School of Medicine, Jinhua, China
| |
Collapse
|
23
|
Kleineisel J, Heidenreich JF, Eirich P, Petri N, Köstler H, Petritsch B, Bley TA, Wech T. Real-time cardiac MRI using an undersampled spiral k-space trajectory and a reconstruction based on a variational network. Magn Reson Med 2022; 88:2167-2178. [PMID: 35692042 DOI: 10.1002/mrm.29357] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2021] [Revised: 05/17/2022] [Accepted: 05/20/2022] [Indexed: 11/06/2022]
Abstract
PURPOSE Cardiac MRI represents the gold standard to determine myocardial function. However, the current clinical standard protocol, a segmented Cartesian acquisition, is time-consuming and can lead to compromised image quality in the case of arrhythmia or dyspnea. In this article, a machine learning-based reconstruction of undersampled spiral k-space data is presented to enable free breathing real-time cardiac MRI with good image quality and short reconstruction times. METHODS Data were acquired in free breathing with a 2D spiral trajectory corrected by the gradient system transfer function. Undersampled data were reconstructed by a variational network (VN), which was specifically adapted to the non-Cartesian sampling pattern. The network was trained with data from 11 subjects. Subsequently, the imaging technique was validated in 14 subjects by quantifying the difference to a segmented reference acquisition, an expert reader study, and by comparing derived volumes and functional parameters with values obtained using the current clinical gold standard. RESULTS The scan time for the entire heart was below 1 min. The VN reconstructed data in about 0.9 s per image, which is considerably shorter than conventional model-based approaches. The VN furthermore performed better than a U-Net and not inferior to a low-rank plus sparse model in terms of achieved image quality. Functional parameters agreed, on average, with reference data. CONCLUSIONS The proposed VN method enables real-time cardiac imaging with both high spatial and temporal resolution in free breathing and with short reconstruction time.
Collapse
Affiliation(s)
- Jonas Kleineisel
- Department of Diagnostic and Interventional Radiology, University Hospital Würzburg, Würzburg, Germany
| | - Julius F Heidenreich
- Department of Diagnostic and Interventional Radiology, University Hospital Würzburg, Würzburg, Germany
| | - Philipp Eirich
- Department of Diagnostic and Interventional Radiology, University Hospital Würzburg, Würzburg, Germany.,Comprehensive Heart Failure Center, University Hospital Würzburg, Würzburg, Germany
| | - Nils Petri
- Department of Internal Medicine I, University Hospital Würzburg, Würzburg, Germany
| | - Herbert Köstler
- Department of Diagnostic and Interventional Radiology, University Hospital Würzburg, Würzburg, Germany
| | - Bernhard Petritsch
- Department of Diagnostic and Interventional Radiology, University Hospital Würzburg, Würzburg, Germany
| | - Thorsten A Bley
- Department of Diagnostic and Interventional Radiology, University Hospital Würzburg, Würzburg, Germany
| | - Tobias Wech
- Department of Diagnostic and Interventional Radiology, University Hospital Würzburg, Würzburg, Germany
| |
Collapse
|
24
|
Puricelli F, Voges I, Gatehouse P, Rigby M, Izgi C, Pennell DJ, Krupickova S. Performance of Cardiac MRI in Pediatric and Adult Patients with Fontan Circulation. Radiol Cardiothorac Imaging 2022; 4:e210235. [PMID: 35833165 PMCID: PMC9274315 DOI: 10.1148/ryct.210235] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2021] [Revised: 04/11/2022] [Accepted: 04/18/2022] [Indexed: 06/15/2023]
Abstract
Cardiac MRI has become a widely accepted standard for anatomic and functional assessment of complex Fontan physiology, because it is noninvasive and suitable for comprehensive follow-up evaluation after Fontan completion. The use of cardiac MRI in pediatric and adult patients after completion of the Fontan procedure are described, and a practical and experience-based cardiac MRI protocol for evaluating these patients is provided. The current approach and study protocol in use at the authors' institution are presented, which address technical considerations concerning sequences, planning, and optimal image acquisition in patients with Fontan circulation. Additionally, for each sequence, the information that can be obtained and guidance on how to integrate it into clinical decision-making is discussed. Keywords: Pediatrics, MRI, MRI Functional Imaging, Heart, Congenital © RSNA, 2022.
Collapse
|
25
|
Yin G, Cui C, An J, Zhao K, Yang K, Li S, Yang X, Wang J, Dong Z, Yu S, He J, Chen X, Lu M, Zhao S. Assessment of Left Ventricular Systolic Function by Cardiovascular Magnetic Resonance Compressed Sensing Real-Time Cine Imaging Combined With Area-Length Method in Normal Sinus Rhythm and Atrial Fibrillation. Front Cardiovasc Med 2022; 9:896816. [PMID: 35711346 PMCID: PMC9197321 DOI: 10.3389/fcvm.2022.896816] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2022] [Accepted: 05/03/2022] [Indexed: 11/30/2022] Open
Abstract
Background The most-commonly used multi-slice Simpson's method employed with routine two-dimensional segmented cine images makes it difficult to evaluate left ventricular (LV) volume and function due to endocardial border blurring and beat-to-beat variation during atrial fibrillation (AF) status. Objectives To assess the feasibility of compressed sensing real-time (CSRT) cine imaging combined with an area-length method for quantification of LV systolic function in normal sinus rhythm (NSR) and AF. Methods The CSRT cine sequence and routine segmented balanced Steady-State-Free-Precession cine sequence were performed in 71 patients with NSR (n = 36) or AF (n = 35). Image quality and edge sharpness for both sequences were assessed. The LV functional measurements in patients with NSR included end-diastolic volume (EDV), end-systolic volume (ESV), stroke volume (SV), ejection fraction (EF), cardiac output (CO), cardiac index (CI), and LV mass (LVM); all were assessed using segmented cine with Simpson's rule in short axis (SegSA_Simpson, as a reference standard) and area-length (AL) method in the two chamber (Seg2CH_AL) or four chamber (Seg4CH_AL) and CSRT cine with AL method in the two chamber (CSRT2CH_AL) or four chamber (CSRT4CH_AL). Finally, the mean, maximum, and minimum values of each LV functional parameter [EDV/ESV/SV/EF/CO/CI/LVM/heart rate (HR)] from 4~5 consecutive heartbeats were measured using CSRT2CH_AL in patients with AF. Results In patients with NSR, measurements of EDV (p > 0.05), ESV (p > 0.05), SV (p > 0.05), EF (p > 0.05), and LVM (p > 0.05) assessed with CSRT2CH_AL did not differ significantly from those obtained with SegSA_Simpson. In patients with AF, CSRT image quality score (p < 0.001) and edge sharpness (p < 0.001) both were significantly higher than those obtained from segmented cine. The CSRT2CH_AL provided significantly different results among mean, maximum, and minimum values of each LV parameter from 4~5 consecutive heartbeats (all p < 0.001) with strong inter- and intra-observer agreement in AF. Conclusions The CSRT cine sequence combined with two chamber area-length analysis accurately assessed LV systolic function in NSR. This approach is expected to permit the assessment of multiple parameters in consecutive heartbeats with good inter- and intra-observer reproducibility for beat-to-beat analysis of LV function in AF.
Collapse
Affiliation(s)
- Gang Yin
- MR Center, Stata Key Laboratory of Cardiovascular Disease, National Center for Cardiovascular Diseases of China, Chinese Academy of Medical Sciences and Peking Union Medical College, Fuwai Hospital, Beijing, China
| | - Chen Cui
- MR Center, Stata Key Laboratory of Cardiovascular Disease, National Center for Cardiovascular Diseases of China, Chinese Academy of Medical Sciences and Peking Union Medical College, Fuwai Hospital, Beijing, China
| | - Jing An
- Siemens Shenzhen Magnetic Resonance Ltd., Siemens MRI Center, Shenzhen, China
| | - Kankan Zhao
- Paul C. Lauterbur Research Center for Biomedical Imaging, Shenzhen Institutes of Advanced Technology, Chinese Academy of Sciences, SZ University Town, Shenzhen, China
| | - Kai Yang
- MR Center, Stata Key Laboratory of Cardiovascular Disease, National Center for Cardiovascular Diseases of China, Chinese Academy of Medical Sciences and Peking Union Medical College, Fuwai Hospital, Beijing, China
| | - Shuang Li
- MR Center, Stata Key Laboratory of Cardiovascular Disease, National Center for Cardiovascular Diseases of China, Chinese Academy of Medical Sciences and Peking Union Medical College, Fuwai Hospital, Beijing, China
| | - Xinling Yang
- MR Center, Stata Key Laboratory of Cardiovascular Disease, National Center for Cardiovascular Diseases of China, Chinese Academy of Medical Sciences and Peking Union Medical College, Fuwai Hospital, Beijing, China
| | - Jiaxin Wang
- MR Center, Stata Key Laboratory of Cardiovascular Disease, National Center for Cardiovascular Diseases of China, Chinese Academy of Medical Sciences and Peking Union Medical College, Fuwai Hospital, Beijing, China
| | - Zhixiang Dong
- MR Center, Stata Key Laboratory of Cardiovascular Disease, National Center for Cardiovascular Diseases of China, Chinese Academy of Medical Sciences and Peking Union Medical College, Fuwai Hospital, Beijing, China
| | - Shiqin Yu
- MR Center, Stata Key Laboratory of Cardiovascular Disease, National Center for Cardiovascular Diseases of China, Chinese Academy of Medical Sciences and Peking Union Medical College, Fuwai Hospital, Beijing, China
| | - Jian He
- MR Center, Stata Key Laboratory of Cardiovascular Disease, National Center for Cardiovascular Diseases of China, Chinese Academy of Medical Sciences and Peking Union Medical College, Fuwai Hospital, Beijing, China
| | - Xiuyu Chen
- MR Center, Stata Key Laboratory of Cardiovascular Disease, National Center for Cardiovascular Diseases of China, Chinese Academy of Medical Sciences and Peking Union Medical College, Fuwai Hospital, Beijing, China
| | - Minjie Lu
- MR Center, Stata Key Laboratory of Cardiovascular Disease, National Center for Cardiovascular Diseases of China, Chinese Academy of Medical Sciences and Peking Union Medical College, Fuwai Hospital, Beijing, China
| | - Shihua Zhao
- MR Center, Stata Key Laboratory of Cardiovascular Disease, National Center for Cardiovascular Diseases of China, Chinese Academy of Medical Sciences and Peking Union Medical College, Fuwai Hospital, Beijing, China
- *Correspondence: Shihua Zhao
| |
Collapse
|
26
|
Argentiero A, Muscogiuri G, Rabbat MG, Martini C, Soldato N, Basile P, Baggiano A, Mushtaq S, Fusini L, Mancini ME, Gaibazzi N, Santobuono VE, Sironi S, Pontone G, Guaricci AI. The Applications of Artificial Intelligence in Cardiovascular Magnetic Resonance-A Comprehensive Review. J Clin Med 2022; 11:jcm11102866. [PMID: 35628992 PMCID: PMC9147423 DOI: 10.3390/jcm11102866] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2022] [Revised: 05/13/2022] [Accepted: 05/16/2022] [Indexed: 12/11/2022] Open
Abstract
Cardiovascular disease remains an integral field on which new research in both the biomedical and technological fields is based, as it remains the leading cause of mortality and morbidity worldwide. However, despite the progress of cardiac imaging techniques, the heart remains a challenging organ to study. Artificial intelligence (AI) has emerged as one of the major innovations in the field of diagnostic imaging, with a dramatic impact on cardiovascular magnetic resonance imaging (CMR). AI will be increasingly present in the medical world, with strong potential for greater diagnostic efficiency and accuracy. Regarding the use of AI in image acquisition and reconstruction, the main role was to reduce the time of image acquisition and analysis, one of the biggest challenges concerning magnetic resonance; moreover, it has been seen to play a role in the automatic correction of artifacts. The use of these techniques in image segmentation has allowed automatic and accurate quantification of the volumes and masses of the left and right ventricles, with occasional need for manual correction. Furthermore, AI can be a useful tool to directly help the clinician in the diagnosis and derivation of prognostic information of cardiovascular diseases. This review addresses the applications and future prospects of AI in CMR imaging, from image acquisition and reconstruction to image segmentation, tissue characterization, diagnostic evaluation, and prognostication.
Collapse
Affiliation(s)
- Adriana Argentiero
- University Cardiology Unit, Cardio-Thoracic Department, Policlinic University Hospital, 70121 Bari, Italy; (A.A.); (N.S.); (P.B.); (V.E.S.)
| | - Giuseppe Muscogiuri
- School of Medicine and Surgery, University of Milano-Bicocca, 20126 Milan, Italy; (G.M.); (S.S.)
- Department of Radiology, IRCCS Istituto Auxologico Italiano, San Luca Hospital, 20149 Milan, Italy
| | - Mark G. Rabbat
- Division of Cardiology, Loyola University of Chicago, Chicago, IL 60660, USA;
| | - Chiara Martini
- Radiologic Sciences, Department of Medicine and Surgery, University of Parma, 43126 Parma, Italy;
| | - Nicolò Soldato
- University Cardiology Unit, Cardio-Thoracic Department, Policlinic University Hospital, 70121 Bari, Italy; (A.A.); (N.S.); (P.B.); (V.E.S.)
| | - Paolo Basile
- University Cardiology Unit, Cardio-Thoracic Department, Policlinic University Hospital, 70121 Bari, Italy; (A.A.); (N.S.); (P.B.); (V.E.S.)
| | - Andrea Baggiano
- Perioperative and Cardiovascular Imaging Department, Centro Cardiologico Monzino IRCCS, 20138 Milan, Italy; (A.B.); (S.M.); (L.F.); (M.E.M.); (G.P.)
| | - Saima Mushtaq
- Perioperative and Cardiovascular Imaging Department, Centro Cardiologico Monzino IRCCS, 20138 Milan, Italy; (A.B.); (S.M.); (L.F.); (M.E.M.); (G.P.)
| | - Laura Fusini
- Perioperative and Cardiovascular Imaging Department, Centro Cardiologico Monzino IRCCS, 20138 Milan, Italy; (A.B.); (S.M.); (L.F.); (M.E.M.); (G.P.)
| | - Maria Elisabetta Mancini
- Perioperative and Cardiovascular Imaging Department, Centro Cardiologico Monzino IRCCS, 20138 Milan, Italy; (A.B.); (S.M.); (L.F.); (M.E.M.); (G.P.)
| | - Nicola Gaibazzi
- Department of Cardiology, Azienda Ospedaliero-Universitaria, 43126 Parma, Italy;
| | - Vincenzo Ezio Santobuono
- University Cardiology Unit, Cardio-Thoracic Department, Policlinic University Hospital, 70121 Bari, Italy; (A.A.); (N.S.); (P.B.); (V.E.S.)
| | - Sandro Sironi
- School of Medicine and Surgery, University of Milano-Bicocca, 20126 Milan, Italy; (G.M.); (S.S.)
- Department of Radiology, ASST Papa Giovanni XXIII Hospital, 24127 Bergamo, Italy
| | - Gianluca Pontone
- Perioperative and Cardiovascular Imaging Department, Centro Cardiologico Monzino IRCCS, 20138 Milan, Italy; (A.B.); (S.M.); (L.F.); (M.E.M.); (G.P.)
| | - Andrea Igoren Guaricci
- University Cardiology Unit, Cardio-Thoracic Department, Policlinic University Hospital, 70121 Bari, Italy; (A.A.); (N.S.); (P.B.); (V.E.S.)
- Department of Emergency and Organ Transplantation, University of Bari, 70121 Bari, Italy
- Correspondence:
| |
Collapse
|
27
|
Nita N, Kersten J, Pott A, Weber F, Tesfay T, Benea MT, Metze P, Li H, Rottbauer W, Rasche V, Buckert D. Real-Time Spiral CMR Is Superior to Conventional Segmented Cine-Imaging for Left-Ventricular Functional Assessment in Patients with Arrhythmia. J Clin Med 2022; 11:jcm11082088. [PMID: 35456181 PMCID: PMC9025940 DOI: 10.3390/jcm11082088] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2022] [Revised: 03/29/2022] [Accepted: 04/06/2022] [Indexed: 02/04/2023] Open
Abstract
(1) Background: Segmented Cartesian Cardiovascular magnetic resonance (CMR) often fails to deliver robust assessment of cardiac function in patients with arrhythmia. We aimed to assess the performance of a tiny golden-angle spiral real-time CMR sequence at 1.5 T for left-ventricular (LV) volumetry in patients with irregular heart rhythm; (2) Methods: We validated the real-time sequence against the standard breath-hold segmented Cartesian sequence in 32 patients, of whom 11 presented with arrhythmia. End-diastolic volume (EDV), end-systolic volume (ESV), stroke volume (SV), and ejection fraction (EF) were assessed. In arrhythmic patients, real-time and standard Cartesian acquisitions were compared against a reference echocardiographic modality; (3) Results: In patients with sinus rhythm, good agreements and correlations were found between the segmented and real-time methods, with only minor, non-significant underestimation of EDV for the real-time sequence (135.95 ± 30 mL vs. 137.15 ± 31, p = 0.164). In patients with arrhythmia, spiral real-time CMR yielded superior image quality to the conventional segmented imaging, allowing for excellent agreement with the reference echocardiographic volumetry. In contrast, in this cohort, standard Cartesian CMR showed significant underestimation of LV-ESV (106.72 ± 63.51 mL vs. 125.47 ± 72.41 mL, p = 0.026) and overestimation of LVEF (42.96 ± 10.81% vs. 39.02 ± 11.72%, p = 0.039); (4) Conclusions: Real-time spiral CMR improves image quality in arrhythmic patients, allowing reliable assessment of LV volumetry.
Collapse
Affiliation(s)
- Nicoleta Nita
- Department of Internal Medicine II, University Medical Center, 89081 Ulm, Germany; (J.K.); (A.P.); (F.W.); (T.T.); (P.M.); (H.L.); (W.R.); (V.R.); (D.B.)
- Correspondence:
| | - Johannes Kersten
- Department of Internal Medicine II, University Medical Center, 89081 Ulm, Germany; (J.K.); (A.P.); (F.W.); (T.T.); (P.M.); (H.L.); (W.R.); (V.R.); (D.B.)
| | - Alexander Pott
- Department of Internal Medicine II, University Medical Center, 89081 Ulm, Germany; (J.K.); (A.P.); (F.W.); (T.T.); (P.M.); (H.L.); (W.R.); (V.R.); (D.B.)
| | - Fabian Weber
- Department of Internal Medicine II, University Medical Center, 89081 Ulm, Germany; (J.K.); (A.P.); (F.W.); (T.T.); (P.M.); (H.L.); (W.R.); (V.R.); (D.B.)
| | - Temsgen Tesfay
- Department of Internal Medicine II, University Medical Center, 89081 Ulm, Germany; (J.K.); (A.P.); (F.W.); (T.T.); (P.M.); (H.L.); (W.R.); (V.R.); (D.B.)
| | | | - Patrick Metze
- Department of Internal Medicine II, University Medical Center, 89081 Ulm, Germany; (J.K.); (A.P.); (F.W.); (T.T.); (P.M.); (H.L.); (W.R.); (V.R.); (D.B.)
| | - Hao Li
- Department of Internal Medicine II, University Medical Center, 89081 Ulm, Germany; (J.K.); (A.P.); (F.W.); (T.T.); (P.M.); (H.L.); (W.R.); (V.R.); (D.B.)
| | - Wolfgang Rottbauer
- Department of Internal Medicine II, University Medical Center, 89081 Ulm, Germany; (J.K.); (A.P.); (F.W.); (T.T.); (P.M.); (H.L.); (W.R.); (V.R.); (D.B.)
| | - Volker Rasche
- Department of Internal Medicine II, University Medical Center, 89081 Ulm, Germany; (J.K.); (A.P.); (F.W.); (T.T.); (P.M.); (H.L.); (W.R.); (V.R.); (D.B.)
| | - Dominik Buckert
- Department of Internal Medicine II, University Medical Center, 89081 Ulm, Germany; (J.K.); (A.P.); (F.W.); (T.T.); (P.M.); (H.L.); (W.R.); (V.R.); (D.B.)
| |
Collapse
|
28
|
Assessment of Non-contrast-enhanced Dixon Water-fat Separation Compressed Sensing Whole-heart Coronary MR Angiography at 3.0 T: A Single-center Experience. Acad Radiol 2022; 29 Suppl 4:S82-S90. [PMID: 34127363 DOI: 10.1016/j.acra.2021.05.009] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2021] [Revised: 05/08/2021] [Accepted: 05/11/2021] [Indexed: 11/23/2022]
Abstract
RATIONALE AND OBJECTIVES The clinical utility of Dixon water-fat separation coronary MR angiography (CMRA) with compressed sensing (CS) reconstruction has not been determined in a patient population. This study was designed to evaluate the performance of 3.0 T non-contrast-enhanced Dixon water-fat separation CS whole-heart CMRA sequence in vitro and in vivo. MATERIALS AND METHODS In vitro phantom MRI, we compared key parameters of the SENSE and CS images. And in this prospective in vivo study, from November 2019 to October 2020, 94 participants were recruited for 3.0 T non-contrast-enhanced Dixon water-fat separation CS whole-heart CMRA. The accuracy of CMRA for detecting a ≥ 50% reduction in diameter was determined using X-ray coronary angiography (CA) as the reference method. RESULTS Compared with SENSE, CS with an appropriate acceleration factor offers both higher SNR/CNR (p < 0.05) and a shortened acquisition. Fifty-eight patients successfully completed the CMRA and CA. The sensitivity, specificity, positive predictive values, negative predictive values, and accuracy of 3.0 T non-contrast-enhanced Dixon water-fat separation CS whole-heart CMRA according to a patient-based analysis were 96.4%, 66.7%, 73.0%, 95.2% and 81.0%, respectively. The area under the receiver-operator characteristic (ROC) curve (AUC) of 3.0 T non-contrast-enhanced Dixon water-fat separation CS whole-heart CMRA for detecting significant coronary artery stenosis is 0.908, 0.895, and 0.904 in patient-, vessel-, and segment-based analyses respectively. CONCLUSION 3.0 T non-contrast-enhanced Dixon water-fat separation whole-heart CMRA using appropriate CS is a promising noninvasive and radiation-free technique to detect clinically significant coronary stenosis on patients with suspected CAD.
Collapse
|
29
|
Hirschberg K, Braun SM, Paul O, Ochs M, Riffel J, Andre F, Salatzki J, Lebel J, Luu J, Hillier E, Finster M, Vago H, Merkely B, Katus HA, Friedrich MG. The diagnostic accuracy of truncated cardiovascular MR protocols for detecting non-ischemic cardiomyopathies. Int J Cardiovasc Imaging 2022; 38:841-852. [PMID: 34751885 PMCID: PMC11129993 DOI: 10.1007/s10554-021-02462-2] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/02/2021] [Accepted: 10/27/2021] [Indexed: 11/28/2022]
Abstract
Cardiovascular magnetic resonance imaging is one of the most important diagnostic modalities in the evaluation of cardiomyopathies. However, significant limitations are the complex and time-consuming workflows and the need of contrast agents. The aim of this multi-center retrospective study was to assess workflows and diagnostic value of a short, contrast agent-free cardiac magnetic resonance protocol. 160 patients from Heidelberg, Germany and 119 patients from Montreal, Canada with suspected cardiomyopathy and 20 healthy volunteers have been enrolled. Scans were performed at a 1.5Tesla or 3Tesla scanner in Heidelberg and at a 3Tesla scanner in Montreal. We used single-slice T1 map only. A stepwise analysis of images has been performed. The possible differential diagnosis after each step has been defined. T1-values and color-encoded T1 maps significantly contributed to the differential diagnosis in 54% of the cases (161/299); the final diagnosis has been done without late gadolinium enhancement images in 83% of healthy individuals, in 99% of patients with dilated cardiomyopathy, in 93% of amyloidosis patients, in 94% of patients with hypertrophic cardiomyopathy and in 85% of patients with hypertensive heart disease, respectively. Comparing the scan time with (48 ± 7 min) vs. without contrast agent (23 ± 5 min), significant time saving could be reached by the short protocol. Subgroup analysis showed the most additional diagnostic value of T1 maps in amyloidosis and hypertrophic cardiomyopathy or in confirmation of normal findings. In patients with unclear left ventricular hypertrophy, a short, non-contrast protocol can be used for diagnostic decision-making, if the quality of the T1 map is diagnostic, even if only one slice is available.
Collapse
Affiliation(s)
- K Hirschberg
- Heart and Vascular Center, Semmelweis University, Városmajor utca 68, Budapest, 1122, Hungary.
- Department of Cardiology, Angiology and Pneumonology, University Hospital Heidelberg, Heidelberg, Germany.
| | - Sz M Braun
- Heart and Vascular Center, Semmelweis University, Városmajor utca 68, Budapest, 1122, Hungary
- Department of Cardiology, Angiology and Pneumonology, University Hospital Heidelberg, Heidelberg, Germany
| | - O Paul
- Department of Cardiology, Angiology and Pneumonology, University Hospital Heidelberg, Heidelberg, Germany
| | - M Ochs
- Department of Cardiology, Angiology and Pneumonology, University Hospital Heidelberg, Heidelberg, Germany
| | - J Riffel
- Department of Cardiology, Angiology and Pneumonology, University Hospital Heidelberg, Heidelberg, Germany
| | - F Andre
- Department of Cardiology, Angiology and Pneumonology, University Hospital Heidelberg, Heidelberg, Germany
| | - J Salatzki
- Department of Cardiology, Angiology and Pneumonology, University Hospital Heidelberg, Heidelberg, Germany
| | - J Lebel
- Departments of Medicine and Diagnostic Radiology, McGill University Health Centre, Montreal, Canada
| | - J Luu
- Departments of Medicine and Diagnostic Radiology, McGill University Health Centre, Montreal, Canada
| | - E Hillier
- Departments of Medicine and Diagnostic Radiology, McGill University Health Centre, Montreal, Canada
| | - M Finster
- Heart and Vascular Center, Semmelweis University, Városmajor utca 68, Budapest, 1122, Hungary
| | - H Vago
- Heart and Vascular Center, Semmelweis University, Városmajor utca 68, Budapest, 1122, Hungary
| | - B Merkely
- Heart and Vascular Center, Semmelweis University, Városmajor utca 68, Budapest, 1122, Hungary
| | - H A Katus
- Department of Cardiology, Angiology and Pneumonology, University Hospital Heidelberg, Heidelberg, Germany
| | - M G Friedrich
- Department of Cardiology, Angiology and Pneumonology, University Hospital Heidelberg, Heidelberg, Germany
- Departments of Medicine and Diagnostic Radiology, McGill University Health Centre, Montreal, Canada
| |
Collapse
|
30
|
Curione D, Ciliberti P, Monti CB, Capra D, Bordonaro V, Ciancarella P, Santangelo TP, Napolitano C, Ferrara D, Perrone MA, Secchi F, Secinaro A. Compressed Sensing Cardiac Cine Imaging Compared with Standard Balanced Steady-State Free Precession Cine Imaging in a Pediatric Population. Radiol Cardiothorac Imaging 2022; 4:e210109. [PMID: 35506130 DOI: 10.1148/ryct.210109] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2021] [Revised: 03/21/2022] [Accepted: 03/29/2022] [Indexed: 11/11/2022]
Abstract
Purpose To compare real-time compressed sensing (CS) and standard balanced steady-state free precession (bSSFP) cardiac cine imaging in children. Materials and Methods Twenty children (mean age, 15 years ± 5 [SD], range, 7-21 years; 10 male participants) with biventricular congenital heart disease (n = 11) or cardiomyopathy (n = 9) were prospectively included. Examinations were performed with 1.5-T imagers by using both bSSFP and CS sequences in all participants. Quantification of ventricular volumes and function was performed for all images by two readers blinded to patient diagnosis and type of sequence. Values were correlated with phase-contrast flow measurements by one reader. Intra- and interreader agreement were analyzed. Results There were no significant differences between ventricular parameters measured on CS compared with those of bSSFP (P > .05) for reader 1. Only ejection fraction showed a significant difference (P = .02) for reader 2. Intrareader agreement was considerable for both sequences (bSSFP: mean difference range, +1 to -2.6; maximum CI, +7.9, -13; bias range, 0.1%-4.1%; intraclass correlation coefficient [ICC] range, 0.931-0.997. CS: mean difference range, +7.4 to -5.6; maximum CI, +37.2, -48.8; bias range, 0.5%-7.5%; ICC range, 0.717-0.997). Interreader agreement was acceptable but less robust, especially for CS (bSSFP: mean difference range, +2.6 to -5.6; maximum CI, +60.7, -65.3; bias range, 1.6%-6.2%; ICC range, 0.726-0.951. CS: mean difference range, +10.7 to -9.1; maximum CI, +87.5, -84.6; bias range, 1.1%-17.3%; ICC range, 0.509-0.849). The mean acquisition time was shorter for CS (20 seconds; range, 17-25 seconds) compared with that for bSSFP (160 seconds; range, 130-190 seconds) (P < .001). Conclusion CS cardiac cine imaging provided equivalent ventricular volume and function measurements with shorter acquisition times compared with those of bSSFP and may prove suitable for the pediatric population.Keywords: Compressed Sensing, Balanced Steady-State Free Precession, Cine Imaging, Cardiovascular MRI, Pediatrics, Cardiac, Heart, Cardiomyopathies, Congenital, Segmentation© RSNA, 2022.
Collapse
Affiliation(s)
- Davide Curione
- Advanced Cardiovascular Radiology Unit, Department of Radiology and Bioimaging (D. Curione, V.B., P. Ciancarella, T.P.S., C.N., A.S.), and Department of Pediatric Cardiology and Cardiac Surgery (P. Ciliberti, M.A.P.), Bambino Gesù Children's Hospital IRCCS, Piazza Sant'Onofrio 4, 00165 Rome, Italy; Department of Biomedical Sciences for Health, Università degli Studi di Milano, Milan, Italy (C.B.M., D. Capra, F.S.); Department of Radiology, Santobono-Pausilipon Children's Hospital, Naples, Italy (D.F.); and Unit of Radiology, IRCCS Policlinco San Donato, San Donato Milanese, Italy (F.S.)
| | - Paolo Ciliberti
- Advanced Cardiovascular Radiology Unit, Department of Radiology and Bioimaging (D. Curione, V.B., P. Ciancarella, T.P.S., C.N., A.S.), and Department of Pediatric Cardiology and Cardiac Surgery (P. Ciliberti, M.A.P.), Bambino Gesù Children's Hospital IRCCS, Piazza Sant'Onofrio 4, 00165 Rome, Italy; Department of Biomedical Sciences for Health, Università degli Studi di Milano, Milan, Italy (C.B.M., D. Capra, F.S.); Department of Radiology, Santobono-Pausilipon Children's Hospital, Naples, Italy (D.F.); and Unit of Radiology, IRCCS Policlinco San Donato, San Donato Milanese, Italy (F.S.)
| | - Caterina Beatrice Monti
- Advanced Cardiovascular Radiology Unit, Department of Radiology and Bioimaging (D. Curione, V.B., P. Ciancarella, T.P.S., C.N., A.S.), and Department of Pediatric Cardiology and Cardiac Surgery (P. Ciliberti, M.A.P.), Bambino Gesù Children's Hospital IRCCS, Piazza Sant'Onofrio 4, 00165 Rome, Italy; Department of Biomedical Sciences for Health, Università degli Studi di Milano, Milan, Italy (C.B.M., D. Capra, F.S.); Department of Radiology, Santobono-Pausilipon Children's Hospital, Naples, Italy (D.F.); and Unit of Radiology, IRCCS Policlinco San Donato, San Donato Milanese, Italy (F.S.)
| | - Davide Capra
- Advanced Cardiovascular Radiology Unit, Department of Radiology and Bioimaging (D. Curione, V.B., P. Ciancarella, T.P.S., C.N., A.S.), and Department of Pediatric Cardiology and Cardiac Surgery (P. Ciliberti, M.A.P.), Bambino Gesù Children's Hospital IRCCS, Piazza Sant'Onofrio 4, 00165 Rome, Italy; Department of Biomedical Sciences for Health, Università degli Studi di Milano, Milan, Italy (C.B.M., D. Capra, F.S.); Department of Radiology, Santobono-Pausilipon Children's Hospital, Naples, Italy (D.F.); and Unit of Radiology, IRCCS Policlinco San Donato, San Donato Milanese, Italy (F.S.)
| | - Veronica Bordonaro
- Advanced Cardiovascular Radiology Unit, Department of Radiology and Bioimaging (D. Curione, V.B., P. Ciancarella, T.P.S., C.N., A.S.), and Department of Pediatric Cardiology and Cardiac Surgery (P. Ciliberti, M.A.P.), Bambino Gesù Children's Hospital IRCCS, Piazza Sant'Onofrio 4, 00165 Rome, Italy; Department of Biomedical Sciences for Health, Università degli Studi di Milano, Milan, Italy (C.B.M., D. Capra, F.S.); Department of Radiology, Santobono-Pausilipon Children's Hospital, Naples, Italy (D.F.); and Unit of Radiology, IRCCS Policlinco San Donato, San Donato Milanese, Italy (F.S.)
| | - Paolo Ciancarella
- Advanced Cardiovascular Radiology Unit, Department of Radiology and Bioimaging (D. Curione, V.B., P. Ciancarella, T.P.S., C.N., A.S.), and Department of Pediatric Cardiology and Cardiac Surgery (P. Ciliberti, M.A.P.), Bambino Gesù Children's Hospital IRCCS, Piazza Sant'Onofrio 4, 00165 Rome, Italy; Department of Biomedical Sciences for Health, Università degli Studi di Milano, Milan, Italy (C.B.M., D. Capra, F.S.); Department of Radiology, Santobono-Pausilipon Children's Hospital, Naples, Italy (D.F.); and Unit of Radiology, IRCCS Policlinco San Donato, San Donato Milanese, Italy (F.S.)
| | - Teresa Pia Santangelo
- Advanced Cardiovascular Radiology Unit, Department of Radiology and Bioimaging (D. Curione, V.B., P. Ciancarella, T.P.S., C.N., A.S.), and Department of Pediatric Cardiology and Cardiac Surgery (P. Ciliberti, M.A.P.), Bambino Gesù Children's Hospital IRCCS, Piazza Sant'Onofrio 4, 00165 Rome, Italy; Department of Biomedical Sciences for Health, Università degli Studi di Milano, Milan, Italy (C.B.M., D. Capra, F.S.); Department of Radiology, Santobono-Pausilipon Children's Hospital, Naples, Italy (D.F.); and Unit of Radiology, IRCCS Policlinco San Donato, San Donato Milanese, Italy (F.S.)
| | - Carmela Napolitano
- Advanced Cardiovascular Radiology Unit, Department of Radiology and Bioimaging (D. Curione, V.B., P. Ciancarella, T.P.S., C.N., A.S.), and Department of Pediatric Cardiology and Cardiac Surgery (P. Ciliberti, M.A.P.), Bambino Gesù Children's Hospital IRCCS, Piazza Sant'Onofrio 4, 00165 Rome, Italy; Department of Biomedical Sciences for Health, Università degli Studi di Milano, Milan, Italy (C.B.M., D. Capra, F.S.); Department of Radiology, Santobono-Pausilipon Children's Hospital, Naples, Italy (D.F.); and Unit of Radiology, IRCCS Policlinco San Donato, San Donato Milanese, Italy (F.S.)
| | - Dolores Ferrara
- Advanced Cardiovascular Radiology Unit, Department of Radiology and Bioimaging (D. Curione, V.B., P. Ciancarella, T.P.S., C.N., A.S.), and Department of Pediatric Cardiology and Cardiac Surgery (P. Ciliberti, M.A.P.), Bambino Gesù Children's Hospital IRCCS, Piazza Sant'Onofrio 4, 00165 Rome, Italy; Department of Biomedical Sciences for Health, Università degli Studi di Milano, Milan, Italy (C.B.M., D. Capra, F.S.); Department of Radiology, Santobono-Pausilipon Children's Hospital, Naples, Italy (D.F.); and Unit of Radiology, IRCCS Policlinco San Donato, San Donato Milanese, Italy (F.S.)
| | - Marco Alfonso Perrone
- Advanced Cardiovascular Radiology Unit, Department of Radiology and Bioimaging (D. Curione, V.B., P. Ciancarella, T.P.S., C.N., A.S.), and Department of Pediatric Cardiology and Cardiac Surgery (P. Ciliberti, M.A.P.), Bambino Gesù Children's Hospital IRCCS, Piazza Sant'Onofrio 4, 00165 Rome, Italy; Department of Biomedical Sciences for Health, Università degli Studi di Milano, Milan, Italy (C.B.M., D. Capra, F.S.); Department of Radiology, Santobono-Pausilipon Children's Hospital, Naples, Italy (D.F.); and Unit of Radiology, IRCCS Policlinco San Donato, San Donato Milanese, Italy (F.S.)
| | - Francesco Secchi
- Advanced Cardiovascular Radiology Unit, Department of Radiology and Bioimaging (D. Curione, V.B., P. Ciancarella, T.P.S., C.N., A.S.), and Department of Pediatric Cardiology and Cardiac Surgery (P. Ciliberti, M.A.P.), Bambino Gesù Children's Hospital IRCCS, Piazza Sant'Onofrio 4, 00165 Rome, Italy; Department of Biomedical Sciences for Health, Università degli Studi di Milano, Milan, Italy (C.B.M., D. Capra, F.S.); Department of Radiology, Santobono-Pausilipon Children's Hospital, Naples, Italy (D.F.); and Unit of Radiology, IRCCS Policlinco San Donato, San Donato Milanese, Italy (F.S.)
| | - Aurelio Secinaro
- Advanced Cardiovascular Radiology Unit, Department of Radiology and Bioimaging (D. Curione, V.B., P. Ciancarella, T.P.S., C.N., A.S.), and Department of Pediatric Cardiology and Cardiac Surgery (P. Ciliberti, M.A.P.), Bambino Gesù Children's Hospital IRCCS, Piazza Sant'Onofrio 4, 00165 Rome, Italy; Department of Biomedical Sciences for Health, Università degli Studi di Milano, Milan, Italy (C.B.M., D. Capra, F.S.); Department of Radiology, Santobono-Pausilipon Children's Hospital, Naples, Italy (D.F.); and Unit of Radiology, IRCCS Policlinco San Donato, San Donato Milanese, Italy (F.S.)
| |
Collapse
|
31
|
Taking It Personally: 3D Bioprinting a Patient-Specific Cardiac Patch for the Treatment of Heart Failure. Bioengineering (Basel) 2022; 9:bioengineering9030093. [PMID: 35324782 PMCID: PMC8945185 DOI: 10.3390/bioengineering9030093] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2022] [Revised: 02/18/2022] [Accepted: 02/24/2022] [Indexed: 11/17/2022] Open
Abstract
Despite a massive global preventative effort, heart failure remains the major cause of death globally. The number of patients requiring a heart transplant, the eventual last treatment option, far outnumbers the available donor hearts, leaving many to deteriorate or die on the transplant waiting list. Treating heart failure by transplanting a 3D bioprinted patient-specific cardiac patch to the infarcted region on the myocardium has been investigated as a potential future treatment. To date, several studies have created cardiac patches using 3D bioprinting; however, testing the concept is still at a pre-clinical stage. A handful of clinical studies have been conducted. However, moving from animal studies to human trials will require an increase in research in this area. This review covers key elements to the design of a patient-specific cardiac patch, divided into general areas of biological design and 3D modelling. It will make recommendations on incorporating anatomical considerations and high-definition motion data into the process of 3D-bioprinting a patient-specific cardiac patch.
Collapse
|
32
|
Menacho KD, Ramirez S, Perez A, Dragonetti L, Perez de Arenaza D, Katekaru D, Illatopa V, Munive S, Rodriguez B, Shimabukuro A, Cupe K, Bansal R, Bhargava V, Rodriguez I, Seraphim A, Knott K, Abdel-Gadir A, Guerrero S, Lazo M, Uscamaita D, Rivero M, Amaya N, Sharma S, Peix A, Treibel T, Manisty C, Mohiddin S, Litt H, Han Y, Fernandes J, Jacob R, Westwood M, Ntusi N, Herrey A, Walker JM, Moon J. Improving cardiovascular magnetic resonance access in low- and middle-income countries for cardiomyopathy assessment: rapid cardiovascular magnetic resonance. Eur Heart J 2022; 43:2496-2507. [PMID: 35139531 PMCID: PMC9259377 DOI: 10.1093/eurheartj/ehac035] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/31/2021] [Revised: 11/30/2021] [Accepted: 01/18/2022] [Indexed: 02/01/2023] Open
Abstract
AIMS To evaluate the impact of a simplified, rapid cardiovascular magnetic resonance (CMR) protocol embedded in care and supported by a partner education programme on the management of cardiomyopathy (CMP) in low- and middle-income countries (LMICs). METHODS AND RESULTS Rapid CMR focused particularly on CMP was implemented in 11 centres, 7 cities, 5 countries, and 3 continents linked to training courses for local professionals. Patients were followed up for 24 months to assess impact. The rate of subsequent adoption was tracked. Five CMR conferences were delivered (920 attendees-potential referrers, radiographers, reporting cardiologists, or radiologists) and five new centres starting CMR. Six hundred and one patients were scanned. Cardiovascular magnetic resonance indications were 24% non-contrast T2* scans [myocardial iron overload (MIO)] and 72% suspected/known cardiomyopathies (including ischaemic and viability). Ninety-eighty per cent of studies were of diagnostic quality. The average scan time was 22 ± 6 min (contrast) and 12 ± 4 min (non-contrast), a potential cost/throughput reduction of between 30 and 60%. Cardiovascular magnetic resonance findings impacted management in 62%, including a new diagnosis in 22% and MIO detected in 30% of non-contrast scans. Nine centres continued using rapid CMR 2 years later (typically 1-2 days per week, 30 min slots). CONCLUSIONS Rapid CMR of diagnostic quality can be delivered using available technology in LMICs. When embedded in care and a training programme, costs are lower, care is improved, and services can be sustained over time.
Collapse
Affiliation(s)
- Katia Devorha Menacho
- Institute of Cardiovascular Science, University College London, London, UK,St Bartholomew’s Hospital, Barts Heart Centre, London EC1A 7BE, UK
| | | | - Aylen Perez
- Cardiology and Cardiovascular Surgery National Institute, La Havana, Cuba
| | | | | | - Diana Katekaru
- Military National Hospital, Cardiac Imaging Department, Lima, Peru
| | | | - Sara Munive
- National Cardiovascular Institute—INCOR, Lima, Peru
| | | | - Ana Shimabukuro
- Guillermo Almenara Irigoyen Hospital, National Hospital, Lima, Peru
| | - Kelly Cupe
- Guillermo Almenara Irigoyen Hospital, National Hospital, Lima, Peru
| | - Rajiv Bansal
- Santokba Durlabhji Memorial Hospital Cum Medical Research Institute, Jaipur, India
| | | | | | - Andreas Seraphim
- Institute of Cardiovascular Science, University College London, London, UK,St Bartholomew’s Hospital, Barts Heart Centre, London EC1A 7BE, UK
| | - Kris Knott
- Institute of Cardiovascular Science, University College London, London, UK,St Bartholomew’s Hospital, Barts Heart Centre, London EC1A 7BE, UK
| | - Amna Abdel-Gadir
- Institute of Cardiovascular Science, University College London, London, UK
| | | | - Marco Lazo
- Ramiro Priale National Hospital, Huancayo, Peru
| | - David Uscamaita
- Edgardo Rebagliati Hospital, MRI and CT Department, Lima, Peru
| | | | - Neil Amaya
- Edgardo Rebagliati Hospital, MRI and CT Department, Lima, Peru
| | - Sanjiv Sharma
- AlI India Institute of Medical Sciences, New Delhi, India
| | - Amelia Peix
- Cardiology and Cardiovascular Surgery National Institute, La Havana, Cuba
| | - Thomas Treibel
- Institute of Cardiovascular Science, University College London, London, UK,St Bartholomew’s Hospital, Barts Heart Centre, London EC1A 7BE, UK
| | - Charlotte Manisty
- Institute of Cardiovascular Science, University College London, London, UK,St Bartholomew’s Hospital, Barts Heart Centre, London EC1A 7BE, UK
| | - Sam Mohiddin
- Institute of Cardiovascular Science, University College London, London, UK,St Bartholomew’s Hospital, Barts Heart Centre, London EC1A 7BE, UK
| | - Harold Litt
- Department of Medicine (Cardiovascular Division), Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA,Department of Radiology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - Yuchi Han
- Department of Medicine (Cardiovascular Division), Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA,Department of Radiology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | | | - Ron Jacob
- Lancaster General Health Hospital, Lancaster, USA
| | - Mark Westwood
- St Bartholomew’s Hospital, Barts Heart Centre, London EC1A 7BE, UK
| | - Ntobeko Ntusi
- Department of Medicine, University of Cape Town, Cape Town, South Africa
| | - Anna Herrey
- Institute of Cardiovascular Science, University College London, London, UK,St Bartholomew’s Hospital, Barts Heart Centre, London EC1A 7BE, UK
| | - John Malcolm Walker
- Institute of Cardiovascular Science, University College London, London, UK,The Hatter Cardiovascular Institute, University College London Hospital, London, UK
| | - James Moon
- Corresponding author. Tel: +44 203 8870566,
| |
Collapse
|
33
|
Röwer LM, Radke KL, Hußmann J, Malik H, Uelwer T, Voit D, Frahm J, Wittsack HJ, Harmeling S, Pillekamp F, Klee D. Comparison of cardiac volumetry using real-time MRI during free-breathing with standard cine MRI during breath-hold in children. Pediatr Radiol 2022; 52:1462-1475. [PMID: 35353211 PMCID: PMC9271116 DOI: 10.1007/s00247-022-05327-5] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/14/2021] [Revised: 01/13/2022] [Accepted: 02/16/2022] [Indexed: 01/18/2023]
Abstract
BACKGROUND Cardiac real-time magnetic resonance imaging (RT-MRI) provides high-quality images even during free-breathing. Difficulties in post-processing impede its use in clinical routine. OBJECTIVE To demonstrate the feasibility of quantitative analysis of cardiac free-breathing RT-MRI and to compare image quality and volumetry during free-breathing RT-MRI in pediatric patients to standard breath-hold cine MRI. MATERIALS AND METHODS Pediatric patients (n = 22) received cardiac RT-MRI volumetry during free breathing (1.5 T; short axis; 30 frames per s) in addition to standard breath-hold cine imaging in end-expiration. Real-time images were binned retrospectively based on electrocardiography and respiratory bellows. Image quality and volumetry were compared using the European Cardiovascular Magnetic Resonance registry score, structure visibility rating, linear regression and Bland-Altman analyses. RESULTS Additional time for binning of real-time images was 2 min. For both techniques, image quality was rated good to excellent. RT-MRI was significantly more robust against artifacts (P < 0.01). Linear regression revealed good correlations for the ventricular volumes. Bland-Altman plots showed a good limit of agreement (LoA) for end-diastolic volume (left ventricle [LV]: LoA -0.1 ± 2.7 ml/m2, right ventricle [RV]: LoA -1.9 ± 3.4 ml/m2), end-systolic volume (LV: LoA 0.4 ± 1.9 ml/m2, RV: LoA 0.6 ± 2.0 ml/m2), stroke volume (LV: LoA -0.5 ± 2.3 ml/m2, RV: LoA -2.6 ± 3.3 ml/m2) and ejection fraction (LV: LoA -0.5 ± 1.6%, RV: LoA -2.1 ± 2.8%). CONCLUSION Compared to standard cine MRI with breath hold, RT-MRI during free breathing with retrospective respiratory binning offers good image quality, reduced image artifacts enabling fast quantitative evaluations of ventricular volumes in clinical practice under physiological conditions.
Collapse
Affiliation(s)
- Lena Maria Röwer
- Department of General Pediatrics, Neonatology and Pediatric Cardiology, University Children's Hospital, Moorenstr. 5, 40225, Dusseldorf, Germany.
- Department of Diagnostic and Interventional Radiology, Medical Faculty, Heinrich Heine University, Dusseldorf, Germany.
| | - Karl Ludger Radke
- Department of Diagnostic and Interventional Radiology, Medical Faculty, Heinrich Heine University, Dusseldorf, Germany
| | - Janina Hußmann
- Department of General Pediatrics, Neonatology and Pediatric Cardiology, University Children's Hospital, Moorenstr. 5, 40225, Dusseldorf, Germany
- Department of Diagnostic and Interventional Radiology, Medical Faculty, Heinrich Heine University, Dusseldorf, Germany
| | - Halima Malik
- Department of General Pediatrics, Neonatology and Pediatric Cardiology, University Children's Hospital, Moorenstr. 5, 40225, Dusseldorf, Germany
- Department of Diagnostic and Interventional Radiology, Medical Faculty, Heinrich Heine University, Dusseldorf, Germany
| | - Tobias Uelwer
- Department of Computer Science, Heinrich Heine University, Dusseldorf, Germany
| | - Dirk Voit
- Biomedizinische NMR, Max-Planck-Institut für biophysikalische Chemie, Göttingen, Germany
- DZHK (German Centre for Cardiovascular Research), Göttingen, Germany
| | - Jens Frahm
- Biomedizinische NMR, Max-Planck-Institut für biophysikalische Chemie, Göttingen, Germany
- DZHK (German Centre for Cardiovascular Research), Göttingen, Germany
| | - Hans-Joerg Wittsack
- Department of Diagnostic and Interventional Radiology, Medical Faculty, Heinrich Heine University, Dusseldorf, Germany
| | - Stefan Harmeling
- Department of Computer Science, Heinrich Heine University, Dusseldorf, Germany
| | - Frank Pillekamp
- Department of General Pediatrics, Neonatology and Pediatric Cardiology, University Children's Hospital, Moorenstr. 5, 40225, Dusseldorf, Germany
| | - Dirk Klee
- Department of Diagnostic and Interventional Radiology, Medical Faculty, Heinrich Heine University, Dusseldorf, Germany
| |
Collapse
|
34
|
Hong S, Hong K, Culver AE, Pathrose A, Allen BD, Wilcox JE, Lee DC, Kim D. Highly Accelerated Real-Time Free-Breathing Cine CMR for Patients With a Cardiac Implantable Electronic Device. Acad Radiol 2021; 28:1779-1786. [PMID: 32888766 DOI: 10.1016/j.acra.2020.07.041] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2020] [Revised: 07/29/2020] [Accepted: 07/30/2020] [Indexed: 01/03/2023]
Abstract
RATIONALE AND OBJECTIVES To develop a 16-fold accelerated real-time, free-breathing cine cardiovascular magnetic resonance (CMR) pulse sequence with compressed sensing reconstruction and test whether it is capable of producing clinically acceptable summed visual scores (SVS) and accurate left ventricular ejection fraction (LVEF) in patients with a cardiac implantable electronic device (CIED). MATERIALS AND METHODS A 16-fold accelerated real-time cine CMR pulse sequence was developed using gradient echo readout, Cartesian k-space sampling, and compressed sensing. We scanned 13 CIED patients (mean age = 59 years; 9/4 males/females) using clinical standard, breath-hold cine and real-time, free-breathing cine. Two clinical readers performed a visual assessment of image quality in four categories (conspicuity of endocardial wall at end diastole, temporal fidelity of wall motion, any artifact level on the heart, noise) using a five-point Likert scale (1: worst; 3: clinically acceptable; 5: best). SVS was calculated as the sum of 4 individual scores, where 12 was defined as clinical acceptable. The Wilcoxon signed-rank test was performed to compare SVS, and the Bland-Altman analysis was conducted to evaluate the agreement of LVEF. RESULTS Median scan time was 3.7 times shorter for real-time (3.5 heartbeats per slice) than clinical standard (13 heartbeats per slice, excluding nonscanning time between successive breath-hold acquisitions). Median SVS was not significantly different between clinical standard (15.0) and real-time (14.5). The mean difference in LVEF was -2% (4.7% of mean), and the limits of agreement was 5.8% (13.5% of mean). CONCLUSION This study demonstrates that the proposed real-time cine method produces clinically acceptable SVS and relatively accurate LVEF in CIED patients.
Collapse
|
35
|
Longère B, Allard PE, Gkizas CV, Coisne A, Hennicaux J, Simeone A, Schmidt M, Forman C, Toupin S, Montaigne D, Pontana F. Compressed Sensing Real-Time Cine Reduces CMR Arrhythmia-Related Artifacts. J Clin Med 2021; 10:jcm10153274. [PMID: 34362058 PMCID: PMC8348071 DOI: 10.3390/jcm10153274] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2021] [Revised: 07/21/2021] [Accepted: 07/21/2021] [Indexed: 01/07/2023] Open
Abstract
Background and objective: Cardiac magnetic resonance (CMR) is a key tool for cardiac work-up. However, arrhythmia can be responsible for arrhythmia-related artifacts (ARA) and increased scan time using segmented sequences. The aim of this study is to evaluate the effect of cardiac arrhythmia on image quality in a comparison of a compressed sensing real-time (CSrt) cine sequence with the reference prospectively gated segmented balanced steady-state free precession (Cineref) technique regarding ARA. Methods: A total of 71 consecutive adult patients (41 males; mean age = 59.5 ± 20.1 years (95% CI: 54.7–64.2 years)) referred for CMR examination with concomitant irregular heart rate (defined by an RR interval coefficient of variation >10%) during scanning were prospectively enrolled. For each patient, two cine sequences were systematically acquired: first, the reference prospectively triggered multi-breath-hold Cineref sequence including a short-axis stack, one four-chamber slice, and a couple of two-chamber slices; second, an additional single breath-hold CSrt sequence providing the same slices as the reference technique. Two radiologists independently assessed ARA and image quality (overall, acquisition, and edge sharpness) for both techniques. Results: The mean heart rate was 71.8 ± 19.0 (SD) beat per minute (bpm) (95% CI: 67.4–76.3 bpm) and its coefficient of variation was 25.0 ± 9.4 (SD) % (95% CI: 22.8–27.2%). Acquisition was significantly faster with CSrt than with Cineref (Cineref: 556.7 ± 145.4 (SD) s (95% CI: 496.7–616.7 s); CSrt: 23.9 ± 7.9 (SD) s (95% CI: 20.6–27.1 s); p < 0.0001). A total of 599 pairs of cine slices were evaluated (median: 8 (range: 6–14) slices per patient). The mean proportion of ARA-impaired slices per patient was 85.9 ± 22.7 (SD) % using Cineref, but this was figure was zero using CSrt (p < 0.0001). The European CMR registry artifact score was lower with CSrt (median: 1 (range: 0–5)) than with Cineref (median: 3 (range: 0–3); p < 0.0001). Subjective image quality was higher in CSrt than in Cineref (median: 3 (range: 1–3) versus 2 (range: 1–4), respectively; p < 0.0001). In line, edge sharpness was higher on CSrt cine than on Cineref images (0.054 ± 0.016 pixel−1 (95% CI: 0.050–0.057 pixel−1) versus 0.042 ± 0.022 pixel−1 (95% CI: 0.037–0.047 pixel−1), respectively; p = 0.0001). Conclusion: Compressed sensing real-time cine drastically reduces arrhythmia-related artifacts and thus improves cine image quality in patients with arrhythmia.
Collapse
Affiliation(s)
- Benjamin Longère
- University of Lille, Inserm, CHU Lille, Institut Pasteur Lille, U1011—European Genomic Institute for Diabetes (EGID), F-59000 Lille, France; (A.C.); (D.M.); (F.P.)
- Correspondence:
| | - Paul-Edouard Allard
- CHU Lille, Department of Cardiovascular Radiology, F-59000 Lille, France; (P.-E.A.); (C.V.G.); (J.H.); (A.S.)
| | - Christos V Gkizas
- CHU Lille, Department of Cardiovascular Radiology, F-59000 Lille, France; (P.-E.A.); (C.V.G.); (J.H.); (A.S.)
| | - Augustin Coisne
- University of Lille, Inserm, CHU Lille, Institut Pasteur Lille, U1011—European Genomic Institute for Diabetes (EGID), F-59000 Lille, France; (A.C.); (D.M.); (F.P.)
| | - Justin Hennicaux
- CHU Lille, Department of Cardiovascular Radiology, F-59000 Lille, France; (P.-E.A.); (C.V.G.); (J.H.); (A.S.)
| | - Arianna Simeone
- CHU Lille, Department of Cardiovascular Radiology, F-59000 Lille, France; (P.-E.A.); (C.V.G.); (J.H.); (A.S.)
| | - Michaela Schmidt
- MR Product Innovation and Definition, Magnetic Resonance, Siemens Healthcare GmbH, 91052 Erlangen, Germany; (M.S.); (C.F.)
| | - Christoph Forman
- MR Product Innovation and Definition, Magnetic Resonance, Siemens Healthcare GmbH, 91052 Erlangen, Germany; (M.S.); (C.F.)
| | - Solenn Toupin
- Scientific Partnerships, Siemens Healthcare France, 93200 Saint-Denis, France;
| | - David Montaigne
- University of Lille, Inserm, CHU Lille, Institut Pasteur Lille, U1011—European Genomic Institute for Diabetes (EGID), F-59000 Lille, France; (A.C.); (D.M.); (F.P.)
| | - François Pontana
- University of Lille, Inserm, CHU Lille, Institut Pasteur Lille, U1011—European Genomic Institute for Diabetes (EGID), F-59000 Lille, France; (A.C.); (D.M.); (F.P.)
| |
Collapse
|
36
|
Zou Q, Xu HY, Fu C, Zhou XY, Xu R, Yang MX, Yang ZG, Guo YK. Utility of single-shot compressed sensing cardiac magnetic resonance cine imaging for assessment of biventricular function in free-breathing and arrhythmic pediatric patients. Int J Cardiol 2021; 338:258-264. [PMID: 34181995 DOI: 10.1016/j.ijcard.2021.06.043] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/23/2020] [Revised: 06/11/2021] [Accepted: 06/23/2021] [Indexed: 02/05/2023]
Abstract
BACKGROUND This study aimed to explore the feasibility and accuracy of single-shot compressed-sensing (CS) cardiac magnetic resonance cine technology for the assessment of biventricular function and morphology in free-breathing (FB) pediatrics, especially those with arrhythmia. METHODS Seventy consecutive pediatric participants (6.27 ± 3.8 years, range:0.5-14 years) were enrolled between August 2019 and July 2020. Single-shot CS and conventional balanced steady-state free-precession (bSSFP) cine were obtained. The total scanning time, image quality and biventricular function parameters were compared for both sequences. RESULTS Single-shot CS cine had shorter acquisition time compared with the conventional bSSFP cine (all P < 0.001). The single-shot CS cine also had fewer artifacts than conventional bSSFP cine (breath-hold (BH): 4.6 ± 0.6 vs. 4.3 ± 0.6; FB without ongoing arrhythmia: 4.5 ± 0.6 vs. 3.6 ± 0.9; FB with ongoing arrhythmia: 4.7 ± 0.5 vs. 2.6 ± 1.1; all P < 0.05). No statistical difference of left ventricular parameters and right ventricular end-systolic volume/ejection fraction were found between the single-shot CS and conventional bSSFP cine in both BH and FB without ongoing arrhythmia group. There was an excellent correlation (R2 = 0.60-0.98, all P < 0.001) and good intra-(range: R2 = 0.57-0.99, P < 0.001)/inter-observer agreements (range: R2 = 0.76-1, P < 0.001) for single-shot CS cine images in terms of biventricular function parameters. CONCLUSIONS The single-shot CS cine can significantly reduce the image acquisition time, offering reliable quantification of biventricular function in free breathing condition for arrhythmic patients.
Collapse
Affiliation(s)
- Qing Zou
- Department of Radiology, West China Second University Hospital, Sichuan University, 20# Section 3 South Renmin Road, Chengdu, Sichuan 610041, China; Department of Radiology, Deyang People's Hospital, 173# Section 3 Tai Shan Road, Deyang, Sichuan 618400, China
| | - Hua-Yan Xu
- Department of Radiology, West China Second University Hospital, Sichuan University, 20# Section 3 South Renmin Road, Chengdu, Sichuan 610041, China
| | - Chuan Fu
- Department of Radiology, West China Second University Hospital, Sichuan University, 20# Section 3 South Renmin Road, Chengdu, Sichuan 610041, China
| | - Xiao-Yue Zhou
- MR Collaboration, Siemens Healthineers Ltd., Shanghai, China
| | - Rong Xu
- Department of Radiology, West China Second University Hospital, Sichuan University, 20# Section 3 South Renmin Road, Chengdu, Sichuan 610041, China
| | - Meng-Xi Yang
- Key Laboratory of Birth Defects and Related Diseases of Women and Children of Ministry of Education, West China Second University Hospital, Sichuan University, Chengdu 610041, China
| | - Zhi-Gang Yang
- Department of Radiology, West China Hospital, Sichuan University, 37# Guo Xue Xiang, Chengdu, Sichuan 610041, China
| | - Ying-Kun Guo
- Department of Radiology, West China Second University Hospital, Sichuan University, 20# Section 3 South Renmin Road, Chengdu, Sichuan 610041, China.
| |
Collapse
|
37
|
Use of compressed sensing to reduce scan time and breath-holding for cardiac cine balanced steady-state free precession magnetic resonance imaging in children and young adults. Pediatr Radiol 2021; 51:1192-1201. [PMID: 33566124 DOI: 10.1007/s00247-020-04952-2] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/04/2020] [Revised: 08/31/2020] [Accepted: 12/20/2020] [Indexed: 11/27/2022]
Abstract
BACKGROUND Conventional pediatric volumetric MRI acquisitions of a short-axis stack typically require multiple breath-holds under anesthesia. OBJECTIVE Here, we aimed to validate a vendor-optimized compressed-sensing approach to reduce scan time during short-axis balanced steady-state free precession (bSSFP) cine imaging. MATERIALS AND METHODS Imaging was performed in 28 patients (16±9 years) in this study on a commercial 3-tesla (T) scanner using retrospective electrocardiogram-gated cine bSSFP. Cine short-axis images covering both ventricles were acquired with conventional parallel imaging and a vendor-optimized parallel imaging/compressed-sensing approach. Qualitative Likert scoring for blood-myocardial contrast, edge definition, and presence of artifact was performed by two experienced radiologists. Quantitative comparisons were performed including biventricular size and function. A paired t-test was used to detect significant differences (P<0.05). RESULTS Scan duration was 7±2 s/slice for conventional imaging (147±33 s total) vs. 4±2 s/slice for compressed sensing (83±28 s total). No significant differences were found with qualitative image scores for blood-myocardial contrast, edge definition, and presence of artifact. No significant differences were found in volumetric analysis between the two sequences. The number of breath-holds was 10±4 for conventional imaging and 5±3 for compressed sensing. CONCLUSION Compressed sensing allowed for a 50% reduction in the number of breath-holds and a 43% reduction in the total scan time without differences in the qualitative or quantitative measurements as compared to the conventional technique.
Collapse
|
38
|
60-S Retrogated Compressed Sensing 2D Cine of the Heart: Sharper Borders and Accurate Quantification. J Clin Med 2021; 10:jcm10112417. [PMID: 34072464 PMCID: PMC8199407 DOI: 10.3390/jcm10112417] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2021] [Revised: 05/24/2021] [Accepted: 05/26/2021] [Indexed: 12/28/2022] Open
Abstract
Background and objective: Real-time compressed sensing cine (CSrt) provides reliable quantification for both ventricles but may alter image quality. The aim of this study was to assess image quality and the accuracy of left (LV) and right ventricular (RV) volumes, ejection fraction and mass quantifications based on a retrogated segmented compressed sensing 2D cine sequence (CSrg). Methods: Thirty patients were enrolled. Each patient underwent the reference retrogated segmented steady-state free precession cine sequence (SSFPref), the real-time CSrt cine and the segmented retrogated prototype CSrg sequence providing the same slices. Functional parameters quantification and image quality rating were performed on SSFPref and CSrg images sets. The edge sharpness, which is an estimate of the edge spread function, was assessed for the three sequences. Results: The mean scan time was: SSFPref = 485.4 ± 83.3 (SD) s (95% CI: 454.3–516.5) and CSrg = 58.3 ± 15.1 (SD) s (95% CI: 53.7–64.2) (p < 0.0001). CSrg subjective image quality score (median: 4; range: 2–4) was higher than the one provided by CSrt (median: 3; range: 2–4; p = 0.0008) and not different from SSFPref overall quality score (median: 4; range: 2–4; p = 0.31). CSrg provided similar LV and RV functional parameters to those assessed with SSFPref (p > 0.05). Edge sharpness was significantly better with CSrg (0.083 ± 0.013 (SD) pixel−1; 95% CI: 0.078–0.087) than with CSrt (0.070 ± 0.011 (SD) pixel−1; 95% CI: 0.066–0.074; p = 0.0004) and not different from the reference technique (0.075 ± 0.016 (SD) pixel−1; 95% CI: 0.069–0.081; p = 0.0516). Conclusions: CSrg cine provides in one minute an accurate quantification of LV and RV functional parameters without compromising subjective and objective image quality.
Collapse
|
39
|
Menacho Medina K, Seraphim A, Katekaru D, Abdel-Gadir A, Han Y, Westwood M, Walker JM, Moon JC, Herrey AS. Noninvasive rapid cardiac magnetic resonance for the assessment of cardiomyopathies in low-middle income countries. Expert Rev Cardiovasc Ther 2021; 19:387-398. [PMID: 33836619 DOI: 10.1080/14779072.2021.1915130] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 10/21/2022]
Abstract
Introduction: Cardiac Magnetic Resonance (CMR) is a crucial diagnostic imaging test that redefines diagnosis and enables targeted therapies, but the access to CMR is limited in low-middle Income Countries (LMICs) even though cardiovascular disease is an emergent primary cause of mortality in LMICs. New abbreviated CMR protocols can be less expensive, faster, whilst maintaining accuracy, potentially leading to a higher utilization in LMICs.Areas covered: This article will review cardiovascular disease in LMICs and the current role of CMR in cardiac diagnosis and enable targeted therapy, discussing the main obstacles to prevent the adoption of CMR in LMICs. We will then review the potential utility of abbreviated, cost-effective CMR protocols to improve cardiac diagnosis and care, the clinical indications of the exam, current evidence and future directions.Expert opinion: Rapid CMR protocols, provided that they are utilized in potentially high yield cases, could reduce cost and increase effectiveness. The adoption of these protocols, their integration into care pathways, and prioritizing key treatable diagnoses can potentially improve patient care. Several LMIC countries are now pioneering these approaches and the application of rapid CMR protocols appears to have a bright future if delivered effectively.
Collapse
Affiliation(s)
- Katia Menacho Medina
- Institute of Cardiovascular Science, University College London, London, UK.,Barts Heart Centre, Saint Bartholomew's Hospital, London, UK
| | - Andreas Seraphim
- Institute of Cardiovascular Science, University College London, London, UK.,Barts Heart Centre, Saint Bartholomew's Hospital, London, UK
| | | | - Amna Abdel-Gadir
- Institute of Cardiovascular Science, University College London, London, UK
| | - Yuchi Han
- Departments of Medicine (Cardiovascular Division) and Radiology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - Mark Westwood
- Barts Heart Centre, Saint Bartholomew's Hospital, London, UK
| | - J Malcolm Walker
- Institute of Cardiovascular Science, University College London, London, UK.,Cardiology Department, University College London Hospitals NHS Foundation Trust, London, UK.,The Hatter Cardiovascular Institute, University College London Hospital, London, UK
| | - James C Moon
- Institute of Cardiovascular Science, University College London, London, UK.,Barts Heart Centre, Saint Bartholomew's Hospital, London, UK
| | - Anna S Herrey
- Institute of Cardiovascular Science, University College London, London, UK.,Barts Heart Centre, Saint Bartholomew's Hospital, London, UK
| |
Collapse
|
40
|
Right Ventricular Volume and Function Assessment in Congenital Heart Disease Using CMR Compressed-Sensing Real-Time Cine Imaging. J Clin Med 2021; 10:jcm10091930. [PMID: 33947025 PMCID: PMC8125206 DOI: 10.3390/jcm10091930] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2021] [Revised: 04/16/2021] [Accepted: 04/20/2021] [Indexed: 11/18/2022] Open
Abstract
Background and objective: To evaluate the reliability of compressed-sensing (CS) real-time single-breath-hold cine imaging for quantification of right ventricular (RV) function and volumes in congenital heart disease (CHD) patients in comparison with the standard multi-breath-hold technique. Methods: Sixty-one consecutive CHD patients (mean age = 22.2 ± 9.0 (SD) years) were prospectively evaluated during either the initial work-up or after repair. For each patient, two series of cine images were acquired: first, the reference segmented multi-breath-hold steady-state free-precession sequence (SSFPref), including a short-axis stack, one four-chamber slice, and one long-axis slice; then, an additional real-time compressed-sensing single-breath-hold sequence (CSrt) providing the same slices. Two radiologists independently assessed the image quality and RV volumes for both techniques, which were compared using the Wilcoxon test and paired Student’s t test, Bland–Altman, and linear regression analyses. The visualization of wall-motion disorders and tricuspid-regurgitation-related signal voids were also analyzed. Results: The mean acquisition time for CSrt was 22.4 ± 6.2 (SD) s (95% CI: 20.8–23.9 s) versus 442.2 ± 89.9 (SD) s (95% CI: 419.2–465.2 s) for SSFPref (p < 0.001). The image quality of CSrt was diagnostic in all examinations and was mostly rated as good (n = 49/61; 80.3%). There was a high correlation between SSFPref and CSrt images regarding RV ejection fraction (49.8 ± 7.8 (SD)% (95% CI: 47.8–51.8%) versus 48.7 ± 8.6 (SD)% (95% CI: 46.5–50.9%), respectively; r = 0.94) and RV end-diastolic volume (192.9 ± 60.1 (SD) mL (95% CI: 177.5–208.3 mL) versus 194.9 ± 62.1 (SD) mL (95% CI: 179.0–210.8 mL), respectively; r = 0.98). In CSrt images, tricuspid-regurgitation and wall-motion disorder visualization was good (area under receiver operating characteristic curve (AUC) = 0.87) and excellent (AUC = 1), respectively. Conclusions: Compressed-sensing real-time cine imaging enables, in one breath hold, an accurate assessment of RV function and volumes in CHD patients in comparison with standard SSFPref, allowing a substantial improvement in time efficiency.
Collapse
|
41
|
Kido T, Hirai K, Ogawa R, Tanabe Y, Nakamura M, Kawaguchi N, Kurata A, Watanabe K, Schmidt M, Forman C, Mochizuki T, Kido T. Comparison between conventional and compressed sensing cine cardiovascular magnetic resonance for feature tracking global circumferential strain assessment. J Cardiovasc Magn Reson 2021; 23:10. [PMID: 33618722 PMCID: PMC7898736 DOI: 10.1186/s12968-021-00708-5] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2020] [Accepted: 01/06/2021] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND Feature tracking (FT) has become an established tool for cardiovascular magnetic resonance (CMR)-based strain analysis. Recently, the compressed sensing (CS) technique has been applied to cine CMR, which has drastically reduced its acquisition time. However, the effects of CS imaging on FT strain analysis need to be carefully studied. This study aimed to investigate the use of CS cine CMR for FT strain analysis compared to conventional cine CMR. METHODS Sixty-five patients with different left ventricular (LV) pathologies underwent both retrospective conventional cine CMR and prospective CS cine CMR using a prototype sequence with the comparable temporal and spatial resolution at 3 T. Eight short-axis cine images covering the entire LV were obtained and used for LV volume assessment and FT strain analysis. Prospective CS cine CMR data over 1.5 heartbeats were acquired to capture the complete end-diastolic data between the first and second heartbeats. LV volume assessment and FT strain analysis were performed using a dedicated software (ci42; Circle Cardiovasacular Imaging, Calgary, Canada), and the global circumferential strain (GCS) and GCS rate were calculated from both cine CMR sequences. RESULTS There were no significant differences in the GCS (- 17.1% [- 11.7, - 19.5] vs. - 16.1% [- 11.9, - 19.3; p = 0.508) and GCS rate (- 0.8 [- 0.6, - 1.0] vs. - 0.8 [- 0.7, - 1.0]; p = 0.587) obtained using conventional and CS cine CMR. The GCS obtained using both methods showed excellent agreement (y = 0.99x - 0.24; r = 0.95; p < 0.001). The Bland-Altman analysis revealed that the mean difference in the GCS between the conventional and CS cine CMR was 0.1% with limits of agreement between -2.8% and 3.0%. No significant differences were found in all LV volume assessment between both types of cine CMR. CONCLUSION CS cine CMR could be used for GCS assessment by CMR-FT as well as conventional cine CMR. This finding further enhances the clinical utility of high-speed CS cine CMR imaging.
Collapse
Affiliation(s)
- Tomoyuki Kido
- Department of Radiology, Ehime University Graduate School of Medicine, Hitsukawa, Toon, Ehime, 791-0295, Japan.
| | - Kuniaki Hirai
- Department of Radiology, Uwajima City Hospital, Uwajima, Japan
| | - Ryo Ogawa
- Department of Radiology, Ehime University Graduate School of Medicine, Hitsukawa, Toon, Ehime, 791-0295, Japan
| | - Yuki Tanabe
- Department of Radiology, Ehime University Graduate School of Medicine, Hitsukawa, Toon, Ehime, 791-0295, Japan
| | - Masashi Nakamura
- Department of Radiology, Ehime University Graduate School of Medicine, Hitsukawa, Toon, Ehime, 791-0295, Japan
| | - Naoto Kawaguchi
- Department of Radiology, Ehime University Graduate School of Medicine, Hitsukawa, Toon, Ehime, 791-0295, Japan
| | - Akira Kurata
- Department of Radiology, Ehime University Graduate School of Medicine, Hitsukawa, Toon, Ehime, 791-0295, Japan
| | - Kouki Watanabe
- Department of Cardiology, Saiseikai Matsuyama Hospital, Matsuyama, Japan
| | | | | | - Teruhito Mochizuki
- Department of Radiology, Yoshino Hospital, Imabari, Japan
- Department of Radiology, I.M. Sechenov First Moscow State Medical University, Moscow, Russia
| | - Teruhito Kido
- Department of Radiology, Ehime University Graduate School of Medicine, Hitsukawa, Toon, Ehime, 791-0295, Japan
| |
Collapse
|
42
|
Muser D, Santangeli P, Nucifora G. Procainamide for the Rapid Suppression of Premature Ventricular Contractions: An (Almost) Forgotten Tool in the Cardiologist's Armamentarium. Diagnostics (Basel) 2021; 11:diagnostics11020357. [PMID: 33672729 PMCID: PMC7924344 DOI: 10.3390/diagnostics11020357] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2021] [Revised: 02/17/2021] [Accepted: 02/18/2021] [Indexed: 12/12/2022] Open
Affiliation(s)
- Daniele Muser
- Cardiac Electrophysiology, Cardiovascular Medicine Division, Hospital of the University of Pennsylvania, Philadelphia, PA 3400, USA; (D.M.); (P.S.)
| | - Pasquale Santangeli
- Cardiac Electrophysiology, Cardiovascular Medicine Division, Hospital of the University of Pennsylvania, Philadelphia, PA 3400, USA; (D.M.); (P.S.)
| | - Gaetano Nucifora
- Cardiac Imaging Unit, NorthWest Heart Centre, Manchester University NHS Foundation Trust, Manchester M23 9LT, UK
- Correspondence: or
| |
Collapse
|
43
|
Chen Y, Qian W, Liu W, Zhu Y, Zhou X, Xu Y, Zhu X. Feasibility of single-shot compressed sensing cine imaging for analysis of left ventricular function and strain in cardiac MRI. Clin Radiol 2021; 76:471.e1-471.e7. [PMID: 33563412 DOI: 10.1016/j.crad.2020.12.024] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2020] [Accepted: 12/24/2020] [Indexed: 10/22/2022]
Abstract
AIM To compare single-shot compressed sensing (CS) cine imaging with conventional segmented cine imaging for reliable quantification of left ventricular (LV) volume and strain assessment during cardiac magnetic resonance imaging (CMRI). MATERIALS AND METHODS Thirty-seven participants underwent both single-shot CS and conventional segmented cines that covered the entire LV. LV volumetric and strain values were obtained. LV volumes, global strain, the standard deviation of time to peak strain (SD-TPS) in the radial, longitudinal, and circumferential directions were compared using the Student's t-test and intraclass correlation coefficient (ICC). Interobserver and intra-observer variabilities of the LV strain values for the two cines method were determined using ICC. RESULTS Single-shot CS cine-derived LV volumes and myocardial mass measurements correlated strongly with segmented cines (ICC >0.798) and minor systematic end-systolic volume overestimations resulting in ejection fraction underestimations. Single-shot CS cine-derived global strain and SD-TPS were poorly to moderately correlated with segmented cines (ICC from 0.045-0.706). All global strain values derived from single-shot CS cines were underestimated compared with segmented cine-derived values; however, no significant differences in radial and longitudinal SD-TPS between the two cines were found. Among the patient-related factors, heart rate was a strong predictive factor of global longitudinal strain underestimations (p=0.039) in the CS cines. Inter- and intra-observer LV strain variabilities derived from CS and segmented cines were good to excellent. CONCLUSION Single-shot CS cine CMRI is feasible for the quantitative assessment of LV function. Currently, strain values derived from the two techniques are not interchangeable.
Collapse
Affiliation(s)
- Y Chen
- Department of Radiology, The First Affiliated Hospital of Nanjing Medical University, No 300, Guangzhou Road, Nanjing, Jiangsu, 210029, China
| | - W Qian
- Department of Radiology, The First Affiliated Hospital of Nanjing Medical University, No 300, Guangzhou Road, Nanjing, Jiangsu, 210029, China
| | - W Liu
- Department of Radiology, The First Affiliated Hospital of Nanjing Medical University, No 300, Guangzhou Road, Nanjing, Jiangsu, 210029, China
| | - Y Zhu
- Department of Radiology, The First Affiliated Hospital of Nanjing Medical University, No 300, Guangzhou Road, Nanjing, Jiangsu, 210029, China
| | - X Zhou
- MR Collaboration, Siemens Healthineers, Shanghai, China
| | - Y Xu
- Department of Radiology, The First Affiliated Hospital of Nanjing Medical University, No 300, Guangzhou Road, Nanjing, Jiangsu, 210029, China.
| | - X Zhu
- Department of Radiology, The First Affiliated Hospital of Nanjing Medical University, No 300, Guangzhou Road, Nanjing, Jiangsu, 210029, China.
| |
Collapse
|
44
|
Tomita H, Deguchi Y, Fukuchi H, Fujikawa A, Kurihara Y, Kitsukawa K, Mimura H, Kobayashi Y. Combination of compressed sensing and parallel imaging for T2-weighted imaging of the oral cavity in healthy volunteers: comparison with parallel imaging. Eur Radiol 2021; 31:6305-6311. [PMID: 33517492 DOI: 10.1007/s00330-021-07699-y] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2020] [Revised: 12/08/2020] [Accepted: 01/19/2021] [Indexed: 10/22/2022]
Abstract
OBJECTIVE Compressed sensing (CS) and parallel imaging (PI) are magnetic resonance (MR) imaging acceleration techniques. Image quality of two-dimensional fast spin echo imaging of the oral cavity using CS or combined CS and PI has not been evaluated. The aim of this study was to compare the acquisition time and image quality between T2-weighted imaging (T2WI) with CS and PI (CSPI-T2WI) and T2WI with PI (PI-T2WI) of the oral cavity. MATERIALS AND METHODS Twenty healthy volunteers who underwent CSPI-T2WI and PI-T2WI of the oral cavity on a 3 T MR scanner were enrolled in the study. Contrast ratios of fat/muscle and bone/muscle on CSPI-T2WI and PI-T2WI were measured. Overall image quality, 4 kinds of artifacts, and visualization of 18 anatomical structures were independently evaluated by two radiologists with grading scales. The quantitative and qualitative measurements were compared between CSPI-T2WI and PI-T2WI by using the Wilcoxon signed-rank test. RESULTS Mean acquisition time of CSPI-T2WI and PI-T2WI was 72 s and 136 s, respectively (p < .001). CSPI-T2WI showed a significantly higher contrast ratio of fat/muscle than PI-T2WI (p < .01). There were no significant differences in the overall image quality, artifacts, and visualization of anatomical structures between CSPI-T2WI and PI-T2WI. CONCLUSIONS CSPI-T2WI of the oral cavity in healthy volunteers can provide a reduction in acquisition time without impaired image quality compared to PI-T2WI. KEY POINTS • The acquisition time of T2WI with the combined CS and PI provided a 47% reduction in acquisition time compared with T2WI with PI. • T2WI with the combined CS and PI did not show impaired image quality compared with T2WI with PI. • Combined CS and PI can be a useful technology to evaluate the oral cavity with high-speed acquisition.
Collapse
Affiliation(s)
- Hayato Tomita
- Department of Radiology, St. Marianna University School of Medicine, 2-16-1 Sugao, Miyamae-ku, Kawasaki, Kanagawa, 216-8511, Japan.
| | - Yuki Deguchi
- Department of Radiology, St. Marianna University School of Medicine, 2-16-1 Sugao, Miyamae-ku, Kawasaki, Kanagawa, 216-8511, Japan
| | - Hirofumi Fukuchi
- Department of Radiology, St. Marianna University School of Medicine, 2-16-1 Sugao, Miyamae-ku, Kawasaki, Kanagawa, 216-8511, Japan
| | - Atsuko Fujikawa
- Department of Radiology, St. Marianna University School of Medicine, 2-16-1 Sugao, Miyamae-ku, Kawasaki, Kanagawa, 216-8511, Japan
| | - Yoshiko Kurihara
- Department of Radiology, Machida Municipal Hospital, 2-15-41 Asahi-cho, Machida, Tokyo, 194-0023, Japan
| | - Kaoru Kitsukawa
- Department of Radiology, St. Marianna University School of Medicine, 2-16-1 Sugao, Miyamae-ku, Kawasaki, Kanagawa, 216-8511, Japan
| | - Hidefumi Mimura
- Department of Radiology, St. Marianna University School of Medicine, 2-16-1 Sugao, Miyamae-ku, Kawasaki, Kanagawa, 216-8511, Japan
| | - Yasuyuki Kobayashi
- Department of Advanced Biomedical Imaging Informatics, St. Marianna University School of Medicine, 2-16-1 Sugao, Miyamae-ku, Kawasaki, Kanagawa, 216-8511, Japan
| |
Collapse
|
45
|
Bolus Intravenous Procainamide in Patients with Frequent Ventricular Ectopics during Cardiac Magnetic Resonance Scanning: A Way to Ensure High Quality Imaging. Diagnostics (Basel) 2021; 11:diagnostics11020178. [PMID: 33513676 PMCID: PMC7911068 DOI: 10.3390/diagnostics11020178] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/27/2020] [Revised: 01/22/2021] [Accepted: 01/23/2021] [Indexed: 01/15/2023] Open
Abstract
Acquiring high-quality cardiac magnetic resonance (CMR) images in patients with frequent ventricular arrhythmias remains a challenge. We examined the safety and efficacy of procainamide when administered on the scanner table prior to CMR scanning to suppress ventricular ectopy and acquire high-quality images. Fifty consecutive patients (age 53.0 [42.0–58.0]; 52% female, left ventricular ejection fraction 55 ± 9%) were scanned in a 1.5 T scanner using a standard cardiac protocol. Procainamide was administered at intermittent intravenous bolus doses of 50 mg every minute until suppression of the ectopics or a maximum dose of 10 mg/kg. The average dose of procainamide was 567 ± 197 mg. Procainamide successfully suppressed premature ventricular contractions (PVCs) in 82% of patients, resulting in high-quality images. The baseline blood pressure (BP) was mildly reduced (mean change systolic BP −12 ± 9 mmHg; diastolic BP −4 ± 9 mmHg), while the baseline heart rate (HR) remained relatively unchanged (mean HR change −1 ± 6 bpm). None of the patients developed proarrhythmic changes. Bolus intravenous administration of procainamide prior to CMR scanning is a safe and effective alternative approach for suppressing PVCs and acquiring high-quality images in patients with frequent PVCs and normal or only mildly reduced systolic function.
Collapse
|
46
|
Sandino CM, Lai P, Vasanawala SS, Cheng JY. Accelerating cardiac cine MRI using a deep learning-based ESPIRiT reconstruction. Magn Reson Med 2021; 85:152-167. [PMID: 32697891 PMCID: PMC7722220 DOI: 10.1002/mrm.28420] [Citation(s) in RCA: 83] [Impact Index Per Article: 20.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2019] [Revised: 06/17/2020] [Accepted: 06/18/2020] [Indexed: 12/29/2022]
Abstract
PURPOSE To propose a novel combined parallel imaging and deep learning-based reconstruction framework for robust reconstruction of highly accelerated 2D cardiac cine MRI data. METHODS We propose DL-ESPIRiT, an unrolled neural network architecture that utilizes an extended coil sensitivity model to address SENSE-related field-of-view (FOV) limitations in previously proposed deep learning-based reconstruction frameworks. Additionally, we propose a novel neural network design based on (2+1)D spatiotemporal convolutions to produce more accurate dynamic MRI reconstructions than conventional 3D convolutions. The network is trained on fully sampled 2D cardiac cine datasets collected from 11 healthy volunteers with IRB approval. DL-ESPIRiT is compared against a state-of-the-art parallel imaging and compressed sensing method known as l 1 -ESPIRiT. The reconstruction accuracy of both methods is evaluated on retrospectively undersampled datasets (R = 12) with respect to standard image quality metrics as well as automatic deep learning-based segmentations of left ventricular volumes. Feasibility of DL-ESPIRiT is demonstrated on two prospectively undersampled datasets acquired in a single heartbeat per slice. RESULTS The (2+1)D DL-ESPIRiT method produces higher fidelity image reconstructions when compared to l 1 -ESPIRiT reconstructions with respect to standard image quality metrics (P < .001). As a result of improved image quality, segmentations made from (2+1)D DL-ESPIRiT images are also more accurate than segmentations from l 1 -ESPIRiT images. CONCLUSIONS DL-ESPIRiT synergistically combines a robust parallel imaging model and deep learning-based priors to produce high-fidelity reconstructions of retrospectively undersampled 2D cardiac cine data acquired with reduced FOV. Although a proof-of-concept is shown, further experiments are necessary to determine the efficacy of DL-ESPIRiT in prospectively undersampled data.
Collapse
Affiliation(s)
| | - Peng Lai
- Applied Sciences Laboratory, GE Healthcare, Menlo Park, CA, USA
| | | | - Joseph Y Cheng
- Department of Radiology, Stanford University, Stanford, CA, USA
| |
Collapse
|
47
|
Longère B, Chavent MH, Coisne A, Gkizas C, Pagniez J, Simeone A, Silvestri V, Schmidt M, Forman C, Montaigne D, Pontana F. Single breath-hold compressed sensing real-time cine imaging to assess left ventricular motion in myocardial infarction. Diagn Interv Imaging 2020; 102:297-303. [PMID: 33308957 DOI: 10.1016/j.diii.2020.11.012] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2020] [Revised: 11/24/2020] [Accepted: 11/25/2020] [Indexed: 12/14/2022]
Abstract
PURPOSE To evaluate the reliability of a real-time compressed sensing (CS) cine sequence for the detection of left ventricular wall motion disorders after myocardial infarction in comparison with the reference steady-state free precession cine sequence. MATERIALS AND METHODS One hundred consecutive adult patients referred for either initial work-up or follow-up by cardiac magnetic resonance (CMR) in the context of myocardial infarction were prospectively included. There were 77 men and 23 women with a mean age of 63.12±11.3 (SD) years (range: 29-89 years). Each patient underwent the reference segmented multi-breath-hold steady-state free precession cine sequence including one short-axis stack and both vertical and horizontal long-axis slices (SSFPref) and the CS real-time single-breath-hold evaluated sequence (CSrt) providing the same slices. Wall motion disorders were independently and blindly assessed with both sequences by two radiologists, using the American Heart Association left ventricle segmentation. Paired Wilcoxon signed-rank test was used to search for differences in wall motion disorders conspicuity between both sequences and receiver operating characteristic curve (ROC) analysis was performed to assess the diagnosis performance of CSrt sequence using SSFPref as the reference method. RESULTS Each patient had at least one cardiac segment with wall motion abnormality on SSFPref and CSrt images. The 1700 segments analyzed with SSFPref were classified as normokinetic (360/1700; 21.2%), hypokinetic (783/1700; 46.1%), akinetic (526/1700; 30.9%) or dyskinetic (31/1700; 1.8%). Sensitivity and specificity of the CS sequence were 99.6% (95% CI: 99.1-99.9%) and 99.7% (95% CI: 98.5-100%), respectively. Area under ROC of CSrt diagnosis performance was 0.997 (95% CI: 0.993-0.999). CONCLUSION CS real-time cine imaging significantly reduces acquisition time without compromising the conspicuity of left ventricular -wall motion disorders in the context of myocardial infarction.
Collapse
Affiliation(s)
- Benjamin Longère
- Department of Cardiovascular Radiology, Institut Cœur-Poumon, CHU de Lille, Boulevard du Pr Jules Leclercq, 59037 Lille Cedex, France; INSERM UMR 1011, Institut Pasteur de Lille, EGID (European Genomic Institute for Diabetes), FR3508, Univ. Lille, 59000 Lille, France
| | - Marc-Henry Chavent
- Department of Cardiovascular Radiology, Institut Cœur-Poumon, CHU de Lille, Boulevard du Pr Jules Leclercq, 59037 Lille Cedex, France
| | - Augustin Coisne
- INSERM UMR 1011, Institut Pasteur de Lille, EGID (European Genomic Institute for Diabetes), FR3508, Univ. Lille, 59000 Lille, France; Department of Clinical Physiology and Echocardiography, CHU de Lille, Lille, France
| | - Christos Gkizas
- Department of Cardiovascular Radiology, Institut Cœur-Poumon, CHU de Lille, Boulevard du Pr Jules Leclercq, 59037 Lille Cedex, France
| | - Julien Pagniez
- Department of Cardiovascular Radiology, Institut Cœur-Poumon, CHU de Lille, Boulevard du Pr Jules Leclercq, 59037 Lille Cedex, France
| | - Arianna Simeone
- Department of Cardiovascular Radiology, Institut Cœur-Poumon, CHU de Lille, Boulevard du Pr Jules Leclercq, 59037 Lille Cedex, France
| | - Valentina Silvestri
- Department of Cardiovascular Radiology, Institut Cœur-Poumon, CHU de Lille, Boulevard du Pr Jules Leclercq, 59037 Lille Cedex, France
| | | | | | - David Montaigne
- INSERM UMR 1011, Institut Pasteur de Lille, EGID (European Genomic Institute for Diabetes), FR3508, Univ. Lille, 59000 Lille, France; Department of Clinical Physiology and Echocardiography, CHU de Lille, Lille, France
| | - François Pontana
- Department of Cardiovascular Radiology, Institut Cœur-Poumon, CHU de Lille, Boulevard du Pr Jules Leclercq, 59037 Lille Cedex, France; INSERM UMR 1011, Institut Pasteur de Lille, EGID (European Genomic Institute for Diabetes), FR3508, Univ. Lille, 59000 Lille, France.
| |
Collapse
|
48
|
Yan C, Hu J, Li Y, Xie X, Zou Z, Deng Q, Zhou X, Bi X, Zeng M, Liu J. Motion-corrected free-breathing late gadolinium enhancement combined with a gadolinium contrast agent with a high relaxation rate: an optimized cardiovascular magnetic resonance examination protocol. J Int Med Res 2020; 48:300060520964664. [PMID: 33111603 PMCID: PMC7605004 DOI: 10.1177/0300060520964664] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022] Open
Abstract
OBJECTIVE This prospective study investigated the feasibility of an optimized cardiovascular magnetic resonance (CMR) examination protocol using the motion-corrected (MOCO), balanced steady-state free precession (bSSFP), phase-sensitive inversion recovery (PSIR) sequence combined with a gadolinium contrast agent with a high relaxation rate in patients who cannot hold their breath. METHODS Fifty-one patients with heart disease underwent CMR examinations twice and these were performed with different late gadolinium enhancement (LGE) imaging sequences (fast low-angle shot [FLASH] sequence vs. MOCO sequence) and different gadolinium contrast agents (gadopentetate dimeglumine vs. gadobenate dimeglumine) with a 48-hour interval. LGE image quality, total time spent in the whole study, and time taken to perform LGE imaging were compared for the two CMR examinations. RESULTS LGE images with the MOCO bSSFP PSIR sequence showed significantly higher image quality compared with those with the segmented FLASH PSIR sequence. There was a significant difference between the total scan time for the two examinations and different LGE sequences. CONCLUSIONS The MOCO bSSFP PSIR sequence effectively improves the quality of LGE images. Changing the CMR scanning protocol by combining the MOCO bSSFP PSIR sequence with a gadolinium contrast agent with a high relaxation rate effectively shortens the scan time.Clinical trial registration number: ChiCTR-ROC-17013978.
Collapse
Affiliation(s)
- Cui Yan
- Department of Radiology, Second Xiangya Hospital of Central South University, Changsha, China
| | - Junjiao Hu
- Department of Radiology, Second Xiangya Hospital of Central South University, Changsha, China
| | - Yanyu Li
- Department of Radiology, Second Xiangya Hospital of Central South University, Changsha, China
| | - Xingzhi Xie
- Department of Radiology, Second Xiangya Hospital of Central South University, Changsha, China
| | - Zhimin Zou
- Department of Radiology, Second Xiangya Hospital of Central South University, Changsha, China
| | - Qiyu Deng
- Department of Radiology, Second Xiangya Hospital of Central South University, Changsha, China
| | - Xiaoyue Zhou
- MR Collaboration, Siemens Healthineers Ltd., Shanghai, China
| | - Xiaoming Bi
- MR Research and Development, Siemens Medical Solutions, USA Inc., Los Angeles, CA, USA
| | - Mu Zeng
- Department of Radiology, Second Xiangya Hospital of Central South University, Changsha, China
| | - Jun Liu
- Department of Radiology, Second Xiangya Hospital of Central South University, Changsha, China
| |
Collapse
|
49
|
Abstract
Classification of heart failure is based on the left ventricular ejection fraction (EF): preserved EF, midrange EF, and reduced EF. There remains an unmet need for further heart failure phenotyping of ventricular structure-function relationships. Because of high spatiotemporal resolution, cardiac magnetic resonance (CMR) remains the reference modality for quantification of ventricular contractile function. The authors aim to highlight novel frameworks, including theranostic use of ferumoxytol, to enable more efficient evaluation of ventricular function in heart failure patients who are also frequently anemic, and to discuss emerging quantitative CMR approaches for evaluation of ventricular structure-function relationships in heart failure.
Collapse
|
50
|
El-Rewaidy H, Fahmy AS, Pashakhanloo F, Cai X, Kucukseymen S, Csecs I, Neisius U, Haji-Valizadeh H, Menze B, Nezafat R. Multi-domain convolutional neural network (MD-CNN) for radial reconstruction of dynamic cardiac MRI. Magn Reson Med 2020; 85:1195-1208. [PMID: 32924188 DOI: 10.1002/mrm.28485] [Citation(s) in RCA: 21] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2020] [Revised: 07/26/2020] [Accepted: 07/29/2020] [Indexed: 02/06/2023]
Abstract
PURPOSE Cardiac MR cine imaging allows accurate and reproducible assessment of cardiac function. However, its long scan time not only limits the spatial and temporal resolutions but is challenging in patients with breath-holding difficulty or non-sinus rhythms. To reduce scan time, we propose a multi-domain convolutional neural network (MD-CNN) for fast reconstruction of highly undersampled radial cine images. METHODS MD-CNN is a complex-valued network that processes MR data in k-space and image domains via k-space interpolation and image-domain subnetworks for residual artifact suppression. MD-CNN exploits spatio-temporal correlations across timeframes and multi-coil redundancies to enable high acceleration. Radial cine data were prospectively collected in 108 subjects (50 ± 17 y, 72 males) using retrospective-gated acquisition with 80%:20% split for training/testing. Images were reconstructed by MD-CNN and k-t Radial Sparse-Sense(kt-RASPS) using an undersampled dataset (14 of 196 acquired views; relative acceleration rate = 14). MD-CNN images were evaluated quantitatively using mean-squared-error (MSE) and structural similarity index (SSIM) relative to reference images, and qualitatively by three independent readers for left ventricular (LV) border sharpness and temporal fidelity using 5-point Likert-scale (1-non-diagnostic, 2-poor, 3-fair, 4-good, and 5-excellent). RESULTS MD-CNN showed improved MSE and SSIM compared to kt-RASPS (0.11 ± 0.10 vs. 0.61 ± 0.51, and 0.87 ± 0.07 vs. 0.72 ± 0.07, respectively; P < .01). Qualitatively, MD-CCN significantly outperformed kt-RASPS in LV border sharpness (3.87 ± 0.66 vs. 2.71 ± 0.58 at end-diastole, and 3.57 ± 0.6 vs. 2.56 ± 0.6 at end-systole, respectively; P < .01) and temporal fidelity (3.27 ± 0.65 vs. 2.59 ± 0.59; P < .01). CONCLUSION MD-CNN reduces the scan time of cine imaging by a factor of 23.3 and provides superior image quality compared to kt-RASPS.
Collapse
Affiliation(s)
- Hossam El-Rewaidy
- Department of Medicine (Cardiovascular Division), Beth Israel Deaconess Medical Center and Harvard Medical School, Boston, Massachusetts, USA.,Department of Computer Science, Technical University of Munich, Munich, Germany
| | - Ahmed S Fahmy
- Department of Medicine (Cardiovascular Division), Beth Israel Deaconess Medical Center and Harvard Medical School, Boston, Massachusetts, USA
| | - Farhad Pashakhanloo
- Department of Medicine (Cardiovascular Division), Beth Israel Deaconess Medical Center and Harvard Medical School, Boston, Massachusetts, USA
| | - Xiaoying Cai
- Department of Medicine (Cardiovascular Division), Beth Israel Deaconess Medical Center and Harvard Medical School, Boston, Massachusetts, USA.,Siemens Medical Solutions USA, Inc., Cary, North Carolina, USA
| | - Selcuk Kucukseymen
- Department of Medicine (Cardiovascular Division), Beth Israel Deaconess Medical Center and Harvard Medical School, Boston, Massachusetts, USA
| | - Ibolya Csecs
- Department of Medicine (Cardiovascular Division), Beth Israel Deaconess Medical Center and Harvard Medical School, Boston, Massachusetts, USA
| | - Ulf Neisius
- Department of Medicine (Cardiovascular Division), Beth Israel Deaconess Medical Center and Harvard Medical School, Boston, Massachusetts, USA
| | - Hassan Haji-Valizadeh
- Department of Medicine (Cardiovascular Division), Beth Israel Deaconess Medical Center and Harvard Medical School, Boston, Massachusetts, USA
| | - Bjoern Menze
- Department of Computer Science, Technical University of Munich, Munich, Germany
| | - Reza Nezafat
- Department of Medicine (Cardiovascular Division), Beth Israel Deaconess Medical Center and Harvard Medical School, Boston, Massachusetts, USA
| |
Collapse
|