1
|
Makanae Y, Ato S, Kouzaki K, Tamura Y, Nakazato K. Acute high-intensity muscle contraction moderates AChR gene expression independent of rapamycin-sensitive mTORC1 pathway in rat skeletal muscle. Exp Physiol 2025; 110:127-146. [PMID: 39501426 DOI: 10.1113/ep091006] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2022] [Accepted: 09/24/2024] [Indexed: 01/02/2025]
Abstract
The relationship between mechanistic target of rapamycin complex 1 (mTORC1) activation after resistance exercise and acetylcholine receptor (AChR) subunit gene expression remains largely unknown. Therefore, we aimed to investigate the effect of electrical stimulation-induced intense muscle contraction, which mimics acute resistance exercise, on the mRNA expression of AChR genes and the signalling pathways involved in neuromuscular junction (NMJ) maintenance, such as mTORC1 and muscle-specific kinase (MuSK). The gastrocnemius muscle of male adult Sprague-Dawley rats was isometrically exercised. Upon completion of muscle contraction, the rats were euthanized in the early (after 0, 1, 3, 6 or 24 h) and late (after 48 or 72 h) recovery phases and the gastrocnemius muscles were removed. Non-exercised control animals were euthanized in the basal state (control group). In the early recovery phase, Agrn gene expression increased whereas LRP4 decreased without any change in the protein and gene expression of AChR gene subunits. In the late recovery phase, Agrn, Musk, Chrnb1, Chrnd and Chrne gene expression were altered and agrin and MuSK protein expression increased. Moreover, mTORC1 and protein kinase B/Akt-histone deacetylase 4 (HDAC) were activated in the early phase but not in the late recovery phase. Furthermore, rapamycin, an inhibitor of mTORC1, did not disturb changes in AChR subunit gene expression after muscle contraction. However, rapamycin addition slightly increased AChR gene expression, while insulin did not impact it in rat L6 myotube. These results suggest that changes in the AChR subunits after muscle contraction are independent of the rapamycin-sensitive mTORC1 pathway.
Collapse
Affiliation(s)
- Yuhei Makanae
- Department of Physical Education, National Defence Academy, Yokosuka, Japan
| | - Satoru Ato
- Department of Life Science and Applied Chemistry, Nagoya Institute of Technology, Nagoya, Japan
- Japan Society for the Promotion of Science, Tokyo, Japan
- Healty Food Science Research Group, Cellular and Molecular Biotechnology Research Institute, Industrial Science and Technology (AIST), Tsukuba, Japan
- Faculty of Health and Sports Sciences, Toyo University, Tokyo, Japan
| | - Karina Kouzaki
- Faculty of Medical Science, Nippon Sport Science University, Tokyo, Japan
- Graduate School of Health and Sport Science, Nippon Sport Science University, Tokyo, Japan
| | - Yuki Tamura
- Graduate School of Health and Sport Science, Nippon Sport Science University, Tokyo, Japan
| | - Koichi Nakazato
- Graduate School of Health and Sport Science, Nippon Sport Science University, Tokyo, Japan
| |
Collapse
|
2
|
Wang Q, Weng H, Xu Y, Ye H, Liang Y, Wang L, Zhang Y, Gao Y, Wang J, Xu Y, Sun Z, Xu G. Anti-osteoporosis mechanism of resistance exercise in ovariectomized rats based on transcriptome analysis: a pilot study. Front Endocrinol (Lausanne) 2023; 14:1162415. [PMID: 37664852 PMCID: PMC10470051 DOI: 10.3389/fendo.2023.1162415] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/09/2023] [Accepted: 07/06/2023] [Indexed: 09/05/2023] Open
Abstract
Postmenopausal osteoporosis is the main cause of fractures in women. Resistance exercise has a positive effect on bone mineral density in postmenopausal osteoporosis patients, but its mechanism is unclear. The purpose of this study was to explore the mechanism of resistance exercise in improving ovariectomized osteoporotic rats based on the transcriptome sequencing technique. Eighteen female Sprague-Dawley rats were randomly divided into the sham-operated group, the non-exercise group, and the resistance exercise group. The rat model of postmenopausal osteoporosis was established by bilateral ovariectomy. Ten weeks after the operation, the resistance exercise group received 2 weeks of adaptive training, and 12 weeks of resistance exercise began in the 13th week. The rats were trained 5 days per week, in 4 sets of 3 repetitions per day. After the intervention, all rats were sacrificed, and the body weight, bone mineral density, trabecular bone microarchitecture, and bone biomechanics were examined. At the same time, RNA-seq and enrichment analysis of gene ontology and Kyoto Encyclopedia of Genes and Genomes were performed on the left tibias, followed by Elisa and RT-qPCR verification. It had been found that resistance exercise can effectively counteract the weight gain of ovariectomized osteoporotic rats, and has a good effect on bone mineral density and trabecular bone microarchitecture. Enrichment analysis showed that regulation of gene expression and osteoclast differentiation is the most closely related biological process and signaling pathway shared by RE/Ovx and NE/Ovx groups. Our results revealed that resistance exercise can play a role in inhibiting osteoclast activation and preventing the enhancement of osteoclast bone resorption function in ovariectomized osteoporotic rats by inhibiting Fos/Fosb-regulated TRAP activation and relieving Calcr inhibition, which has important application value in preventing bone loss caused by estrogen deficiency.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | | | | | | | - Zhiling Sun
- School of Nursing, Nanjing University of Chinese Medicine, Nanjing, China
| | - Guihua Xu
- School of Nursing, Nanjing University of Chinese Medicine, Nanjing, China
| |
Collapse
|
3
|
Ren Y, Frank T, Meyer G, Lei J, Grebenc JR, Slaughter R, Gao YG, Kinghorn AD. Potential Benefits of Black Chokeberry ( Aronia melanocarpa) Fruits and Their Constituents in Improving Human Health. Molecules 2022; 27:molecules27227823. [PMID: 36431924 PMCID: PMC9696386 DOI: 10.3390/molecules27227823] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2022] [Revised: 11/09/2022] [Accepted: 11/10/2022] [Indexed: 11/16/2022] Open
Abstract
Aronia berry (black chokeberry) is a shrub native to North America, of which the fresh fruits are used in the food industry to produce different types of dietary products. The fruits of Aronia melanocarpa (Aronia berries) have been found to show multiple bioactivities potentially beneficial to human health, including antidiabetic, anti-infective, antineoplastic, antiobesity, and antioxidant activities, as well as heart-, liver-, and neuroprotective effects. Thus far, phenolic compounds, such as anthocyanins, cyanidins, phenolic acids, proanthocyanidins, triterpenoids, and their analogues have been identified as the major active components of Aronia berries. These natural products possess potent antioxidant activity, which contributes to the majority of the other bioactivities observed for Aronia berries. The chemical components and the potential pharmaceutical or health-promoting effects of Aronia berries have been summarized previously. The present review article focuses on the molecular targets of extracts of Aronia berries and the examples of promising lead compounds isolated from these berries, including cyanidin-3-O-galactoside, chlorogenic acid, quercetin, and ursolic acid. In addition, presented herein are clinical trial investigations for Aronia berries and their major components, including cancer clinical trials for chlorogenic acid and COVID-19 trial studies for quercetin. Additionally, the possible development of Aronia berries and their secondary metabolites as potential therapeutic agents is discussed. It is hoped that this contribution will help stimulate future investigations on Aronia berries for the continual improvement of human health.
Collapse
Affiliation(s)
- Yulin Ren
- Division of Medicinal Chemistry and Pharmacognosy, College of Pharmacy, The Ohio State University, Columbus, OH 43210, USA
- Correspondence: (Y.R.); (A.D.K.)
| | - Tyler Frank
- Division of Medicinal Chemistry and Pharmacognosy, College of Pharmacy, The Ohio State University, Columbus, OH 43210, USA
| | - Gunnar Meyer
- Division of Medicinal Chemistry and Pharmacognosy, College of Pharmacy, The Ohio State University, Columbus, OH 43210, USA
| | - Jizhou Lei
- Division of Medicinal Chemistry and Pharmacognosy, College of Pharmacy, The Ohio State University, Columbus, OH 43210, USA
| | - Jessica R. Grebenc
- Division of Medicinal Chemistry and Pharmacognosy, College of Pharmacy, The Ohio State University, Columbus, OH 43210, USA
| | - Ryan Slaughter
- OSU South Centers, The Ohio State University, Columbus, OH 43210, USA
- Department of Horticulture and Crop Science, College of Food, Agricultural, and Environmental Sciences, The Ohio State University, Columbus, OH 43210, USA
| | - Yu G. Gao
- OSU South Centers, The Ohio State University, Columbus, OH 43210, USA
- Department of Horticulture and Crop Science, College of Food, Agricultural, and Environmental Sciences, The Ohio State University, Columbus, OH 43210, USA
| | - A. Douglas Kinghorn
- Division of Medicinal Chemistry and Pharmacognosy, College of Pharmacy, The Ohio State University, Columbus, OH 43210, USA
- Correspondence: (Y.R.); (A.D.K.)
| |
Collapse
|
4
|
Patel A, Rasheed A, Reilly I, Pareek Z, Hansen M, Haque Z, Simon-Fajardo D, Davies C, Tummala A, Reinhardt K, Bustabad A, Shaw M, Robins J, Vera Gomez K, Suphakorn T, Camacho Gemelgo M, Law A, Lin K, Hospedales E, Haley H, Perez Martinez JP, Khan S, DeCanio J, Padgett M, Abramov A, Nanjundan M. Modulation of Cytoskeleton, Protein Trafficking, and Signaling Pathways by Metabolites from Cucurbitaceae, Ericaceae, and Rosaceae Plant Families. Pharmaceuticals (Basel) 2022; 15:1380. [PMID: 36355554 PMCID: PMC9698530 DOI: 10.3390/ph15111380] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2022] [Revised: 11/04/2022] [Accepted: 11/07/2022] [Indexed: 10/22/2023] Open
Abstract
One promising frontier within the field of Medical Botany is the study of the bioactivity of plant metabolites on human health. Although plant metabolites are metabolic byproducts that commonly regulate ecological interactions and biochemical processes in plant species, such metabolites also elicit profound effects on the cellular processes of human and other mammalian cells. In this regard, due to their potential as therapeutic agents for a variety of human diseases and induction of toxic cellular responses, further research advances are direly needed to fully understand the molecular mechanisms induced by these agents. Herein, we focus our investigation on metabolites from the Cucurbitaceae, Ericaceae, and Rosaceae plant families, for which several plant species are found within the state of Florida in Hillsborough County. Specifically, we compare the molecular mechanisms by which metabolites and/or plant extracts from these plant families modulate the cytoskeleton, protein trafficking, and cell signaling to mediate functional outcomes, as well as a discussion of current gaps in knowledge. Our efforts to lay the molecular groundwork in this broad manner hold promise in supporting future research efforts in pharmacology and drug discovery.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | - Meera Nanjundan
- Department of Cell Biology, Microbiology and Molecular Biology, University of South Florida, 4202 East Fowler Avenue, Tampa, FL 33620, USA
| |
Collapse
|
5
|
Loquat Leaf Extract Enhances Muscle Contraction-Induced Activation of Protein Synthesis Signaling in Rat Skeletal Muscle. EVIDENCE-BASED COMPLEMENTARY AND ALTERNATIVE MEDICINE 2022; 2022:2234118. [PMID: 35783523 PMCID: PMC9249488 DOI: 10.1155/2022/2234118] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/05/2021] [Revised: 04/22/2022] [Accepted: 06/13/2022] [Indexed: 11/19/2022]
Abstract
Loquat (Eriobotrya japonica (Thunb.) Lindl.) leaves are traditionally used to improve muscle weakness, but their effects on muscle protein synthesis require further research. Therefore, we aimed to investigate whether loquat leaf extract (LLE) enhances muscle contraction-induced activation of muscle protein synthesis signaling. Male Wistar rats (12 weeks old, n = 6/group) were categorized into water treatment (CON) and LLE treatment (LLE) groups. The rats were administered distilled water or LLE (1.5 g/kg/day) once a day by oral gavage for 7 days. On day 7, at 3 h post-LLE administration, the gastrocnemius muscle in the right leg of each rat was stimulated by electrical muscle stimulation (EMS) (100 Hz, 30 V) through five sets of 10 isometric contractions (7 s contraction, 3 s rest) with 3 min interset intervals. The rats were then sacrificed, and the gastrocnemius muscles of both legs were excised at 3 h post-EMS. The phosphorylation levels of mammalian target of rapamycin complex 1 (mTORC1) signaling pathway molecules (Akt, mTOR, and p70S6K) were determined by Western blotting. Regarding the muscle contraction-induced protein synthesis signaling pathway, Akt phosphorylation at Ser473 was not significantly different between the CON and LLE groups. mTOR phosphorylation at Ser2448 was increased by EMS but did not show a significant difference between the CON and LLE groups. p70S6K phosphorylation at Thr389 was significantly increased in response to EMS, whereas the LLE group showed significantly higher p70S6K phosphorylation at Thr389 than that in the CON group. This suggests that LLE enhances muscle contraction-induced activation of p70S6K phosphorylation in rat skeletal muscles.
Collapse
|
6
|
Yun CE, So HK, Vuong TA, Na MW, Anh S, Lee HK, Kim KH, Kang JS, Bae GU, Lee SJ. Aronia Upregulates Myogenic Differentiation and Augments Muscle Mass and Function Through Muscle Metabolism. Front Nutr 2021; 8:753643. [PMID: 34888337 PMCID: PMC8650690 DOI: 10.3389/fnut.2021.753643] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2021] [Accepted: 10/11/2021] [Indexed: 11/16/2022] Open
Abstract
Black chokeberry or aronia (the fruit of Aronia melanocarpa) has been reported to having pharmacological activities against metabolic syndrome, such as hypertension, obesity, diabetes, and pro-inflammatory conditions. However, the effects of aronia on myogenic differentiation and muscle homoeostasis are uncharacterized. In this study, we investigated the effects of aronia (black chokeberry) on myogenic differentiation and muscle metabolic functions in young mice. Aronia extract (AR) promotes myogenic differentiation and elevates the formation of multinucleated myotubes through Akt activation. AR protects dexamethasone (DEX)-induced myotube atrophy through inhibition of muscle-specific ubiquitin ligases mediated by Akt activation. The treatment with AR increases muscle mass and strength in mice without cardiac hypertrophy. AR treatment enhances both oxidative and glycolytic myofibers and muscle metabolism with elevated mitochondrial genes and glucose metabolism-related genes. Furthermore, AR-fed muscle fibers display increased levels of total OxPHOS and myoglobin proteins. Taken together, AR enhances myogenic differentiation and improves muscle mass and function, suggesting that AR has a promising potential as a nutraceutical remedy to intervene in muscle weakness and atrophy.
Collapse
Affiliation(s)
- Chae-Eun Yun
- Department of Molecular Cell Biology, Single Cell Network Research Center, Sungkyunkwan University School of Medicine, Suwon, South Korea.,Single Cell Network Research Center, Sungkyunkwan University School of Medicine, Suwon, South Korea
| | - Hyun-Kyung So
- Department of Molecular Cell Biology, Single Cell Network Research Center, Sungkyunkwan University School of Medicine, Suwon, South Korea.,Single Cell Network Research Center, Sungkyunkwan University School of Medicine, Suwon, South Korea.,Research Institute of Aging Related Disease, AniMusCure Inc., Suwon, South Korea
| | - Tuan Anh Vuong
- Research Institute of Aging Related Disease, AniMusCure Inc., Suwon, South Korea
| | - Myung Woo Na
- School of Pharmacy, Sungkyunkwan University, Suwon, South Korea
| | - Subin Anh
- Department of Molecular Cell Biology, Single Cell Network Research Center, Sungkyunkwan University School of Medicine, Suwon, South Korea.,Single Cell Network Research Center, Sungkyunkwan University School of Medicine, Suwon, South Korea
| | - Hyo-Keun Lee
- Gyeonwoo Korean Medical Center, Seoul, South Korea
| | - Ki Hyun Kim
- School of Pharmacy, Sungkyunkwan University, Suwon, South Korea
| | - Jong-Sun Kang
- Department of Molecular Cell Biology, Single Cell Network Research Center, Sungkyunkwan University School of Medicine, Suwon, South Korea.,Single Cell Network Research Center, Sungkyunkwan University School of Medicine, Suwon, South Korea
| | - Gyu-Un Bae
- Drug Information Research Institute, College of Pharmacy, Sookmyung Women's University, Seoul, South Korea
| | - Sang-Jin Lee
- Research Institute of Aging Related Disease, AniMusCure Inc., Suwon, South Korea
| |
Collapse
|
7
|
Ato S, Mori T, Fujita Y, Mishima T, Ogasawara R. Short-term high-fat diet induces muscle fiber type-selective anabolic resistance to resistance exercise. J Appl Physiol (1985) 2021; 131:442-453. [PMID: 34138646 DOI: 10.1152/japplphysiol.00889.2020] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023] Open
Abstract
Chronic obesity and insulin resistance are considered to inhibit contraction-induced muscle hypertrophy, through impairment of mammalian target of rapamycin complex 1 (mTORC1) and muscle protein synthesis (MPS). A high-fat diet is known to rapidly induce obesity and insulin resistance within a month. However, the influence of a short-term high-fat diet on the response of mTORC1 activation and MPS to acute resistance exercise (RE) is unclear. Thus the purpose of this study was to investigate the effect of a short-term high-fat diet on the response of mTORC1 activation and MPS to acute RE. Male Sprague-Dawley rats were randomly assigned to groups and fed a normal diet, high-fat diet, or pair feed for 4 wk. After dietary habituation, acute RE was performed on the gastrocnemius muscle via percutaneous electrical stimulation. The results showed that 4 wk of a high fat-diet induced intramuscular lipid accumulation and insulin resistance, without affecting basal mTORC1 activity or MPS. The response of RE-induced mTORC1 activation and MPS was not altered by a high-fat diet. On the other hand, analysis of each fiber type demonstrated that response of MPS to an acute RE was disappeared specifically in type I and IIa fiber. These results indicate that a short-term high-fat diet causes anabolic resistance to acute RE, depending on the fiber type.NEW & NOTEWORTHY A high-fat diet is known to rapidly induce obesity, insulin resistance, and anabolic resistance to nutrition within a month. However, the influence of a short-term high-fat diet on the response of muscle protein synthesis to acute resistance exercise is unclear. We observed that a short-term high-fat diet causes obesity, insulin resistance, intramuscular lipid droplet accumulation, and anabolic resistance to resistance exercise specifically in type I and IIa fibers.
Collapse
Affiliation(s)
- Satoru Ato
- Department of Life Science and Applied Chemistry, Nagoya Institute of Technology, Nagoya, Japan
| | - Takahiro Mori
- Department of Life Science and Applied Chemistry, Nagoya Institute of Technology, Nagoya, Japan
| | - Yuki Fujita
- Department of Life Science and Applied Chemistry, Nagoya Institute of Technology, Nagoya, Japan
| | - Taiga Mishima
- Department of Life Science and Applied Chemistry, Nagoya Institute of Technology, Nagoya, Japan
| | - Riki Ogasawara
- Department of Life Science and Applied Chemistry, Nagoya Institute of Technology, Nagoya, Japan
| |
Collapse
|