1
|
Shim B, Ciryam P, Tosun C, Serra R, Tsymbalyuk N, Keledjian K, Gerzanich V, Simard JM. RiboTag RNA Sequencing Identifies Local Translation of HSP70 In Astrocyte Endfeet After Cerebral Ischemia. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.10.08.617236. [PMID: 39416227 PMCID: PMC11482819 DOI: 10.1101/2024.10.08.617236] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/19/2024]
Abstract
Brain ischemia causes disruption in cerebral blood flow and blood-brain barrier (BBB) integrity which are normally maintained by the astrocyte endfeet. Emerging evidence points to dysregulation of the astrocyte translatome during ischemia, but its effects on the endfoot translatome are unknown. In this study, we aimed to investigate the early effects of ischemia on the astrocyte endfoot translatome in a rodent model of cerebral ischemia-reperfusion. To do so, we immunoprecipitated astrocyte-specific tagged ribosomes (RiboTag IP) from mechanically isolated brain microvessels. In mice subjected to middle cerebral artery occlusion and reperfusion and contralateral controls, we sequenced ribosome-bound RNAs from perivascular astrocyte endfeet and identified 205 genes that were differentially expressed in the translatome after ischemia. Pathways associated with the differential expressions included proteostasis, inflammation, cell cycle, and metabolism. Transcription factors whose targets were enriched amongst upregulated translating genes included HSF1, the master regulator of the heat shock response. The most highly upregulated genes in the translatome were HSF1-dependent Hspa1a and Hspa1b , which encode the inducible HSP70. We found that HSP70 is upregulated in astrocyte endfeet after ischemia, coinciding with an increase in ubiquitination across the proteome. These findings suggest a robust proteostasis response to proteotoxic stress in the endfoot translatome after ischemia. Modulating proteostasis in endfeet may be a strategy to preserve endfeet function and BBB integrity after ischemic stroke.
Collapse
|
2
|
Zhang ZZ, Nasir A, Li D, Khan S, Bai Q, Yuan F. Effect of dexmedetomidine on ncRNA and mRNA profiles of cerebral ischemia-reperfusion injury in transient middle cerebral artery occlusion rats model. Front Pharmacol 2024; 15:1437445. [PMID: 39170713 PMCID: PMC11335533 DOI: 10.3389/fphar.2024.1437445] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2024] [Accepted: 07/18/2024] [Indexed: 08/23/2024] Open
Abstract
Ischemic stroke poses a significant global health burden, with rapid revascularization treatments being crucial but often insufficient to mitigate ischemia-reperfusion (I/R) injury. Dexmedetomidine (DEX) has shown promise in reducing cerebral I/R injury, but its potential molecular mechanism, particularly its interaction with non-coding RNAs (ncRNAs), remains unclear. This study investigates DEX's therapeutic effect and potential molecular mechanisms in reducing cerebral I/R injury. A transient middle cerebral artery obstruction (tMACO) model was established to simulate cerebral I/R injury in adult rats. DEX was administered pre-ischemia and post-reperfusion. RNA sequencing and bioinformatic analyses were performed on the ischemic cerebral cortex to identify differentially expressed non-coding RNAs (ncRNAs) and mRNAs. The sequencing results showed 6,494 differentially expressed (DE) mRNA and 2698 DE circRNA between the sham and tMCAO (I/R) groups. Additionally, 1809 DE lncRNA, 763 DE mRNA, and 2795 DE circRNA were identified between the I/R group and tMCAO + DEX (I/R + DEX) groups. Gene ontology (GO) analysis indicated significant enrichment in multicellular biogenesis, plasma membrane components, and protein binding. KEGG analysis further highlighted the potential mechanism of DEX action in reducing cerebral I/R injury, with hub genes involved in inflammatory pathways. This study demonstrates DEX's efficacy in reducing cerebral I/R injury and offers insights into its brain-protective effects, especially in ischemic stroke. Further research is warranted to fully understand DEX's neuroprotective mechanisms and its clinical applications.
Collapse
Affiliation(s)
- Zhen Zhen Zhang
- Department of Anesthesiology, the Second Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan, China
| | - Abdul Nasir
- Department of Anesthesiology, the Second Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan, China
- Medical Research Center, the Second Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan, China
| | - Dong Li
- Department of Anesthesiology, the Second Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan, China
| | - Suliman Khan
- Medical Research Center, the Second Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan, China
| | - Qian Bai
- Department of Anesthesiology, the Second Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan, China
- Medical Research Center, the Second Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan, China
| | - Feng Yuan
- Department of Anesthesiology, the Second Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan, China
| |
Collapse
|
3
|
Rao S, Madhu LN, Babu RS, Nagarajan A, Upadhya R, Narvekar E, Shetty AK. Extracellular Vesicles from hiPSC-derived NSCs Protect Human Neurons against Aβ-42 Oligomers Induced Neurodegeneration, Mitochondrial Dysfunction and Tau Phosphorylation. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.07.11.603159. [PMID: 39071270 PMCID: PMC11275725 DOI: 10.1101/2024.07.11.603159] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/30/2024]
Abstract
Background One of the hallmarks of Alzheimer's disease (AD) is the buildup of amyloid beta-42 (Aβ-42) in the brain, which leads to various adverse effects. Therefore, therapeutic interventions proficient in reducing Aβ-42-induced toxicity in AD are of great interest. One promising approach is to use extracellular vesicles from human induced pluripotent stem cell-derived neural stem cells (hiPSC-NSC-EVs) because they carry multiple therapeutic miRNAs and proteins capable of protecting neurons against Aβ-42-induced pathological changes. Therefore, this in vitro study investigated the proficiency of hiPSC-NSC-EVs to protect human neurons derived from two distinct hiPSC lines from Aβ-42o-induced neurodegeneration. Methods We isolated hiPSC-NSC-EVs using chromatographic methods and characterized their size, ultrastructure, expression of EV-specific markers and proficiency in getting incorporated into mature human neurons. Next, mature human neurons differentiated from two different hiPSC lines were exposed to 1 µM Aβ-42 oligomers (Aβ-42o) alone or with varying concentrations of hiPSC-NSC-EVs. The protective effects of hiPSC-NSC-EVs against Aβ-42o-induced neurodegeneration, increased oxidative stress, mitochondrial dysfunction, impaired autophagy, and tau phosphorylation were ascertained using multiple measures and one-way ANOVA with Newman-Keuls multiple comparisons post hoc tests. Results Significant neurodegeneration was observed when human neurons were exposed to Aβ-42o alone. Notably, neurodegeneration was associated with elevated levels of oxidative stress markers malondialdehyde (MDA) and protein carbonyls (PCs), increased expression of proapoptotic Bax and Bad genes and proteins, reduced expression of the antiapoptotic gene and protein Bcl-2, increased expression of genes encoding mitochondrial complex proteins, decreased expression of autophagy-related proteins Beclin-1 and microtubule-associated protein 1 light chain 3B, and increased phosphorylation of tau. However, the addition of an optimal dose of hiPSC-NSC-EVs (6 x 10 9 EVs) to human neuronal cultures exposed to Aβ-42o significantly reduced the extent of neurodegeneration, along with diminished levels of MDA and PCs, normalized expressions of Bax, Bad, and Bcl-2, and genes linked to mitochondrial complex proteins, and reduced tau phosphorylation. Conclusions The findings demonstrate that an optimal dose of hiPSC-NSC-EVs could significantly decrease the degeneration of human neurons induced by Aβ-42o. The results also support further research into the effectiveness of hiPSC-NSC-EVs in AD, particularly their proficiency in preserving neurons and slowing disease progression.
Collapse
|
4
|
Xu W, Goreczny GJ, Forsythe I, Brennan G, Stowell T, Brock K, Capella B, Turner CE. Hic-5 regulates extracellular matrix-associated gene expression and cytokine secretion in cancer associated fibroblasts. Exp Cell Res 2024; 435:113930. [PMID: 38237846 PMCID: PMC10923124 DOI: 10.1016/j.yexcr.2024.113930] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2023] [Revised: 01/08/2024] [Accepted: 01/12/2024] [Indexed: 01/26/2024]
Abstract
The focal adhesion protein, Hic-5 plays a key role in promoting extracellular matrix deposition and remodeling by cancer associated fibroblasts within the tumor stroma to promote breast tumor cell invasion. However, whether stromal matrix gene expression is regulated by Hic-5 is still unknown. Utilizing a constitutive Hic-5 knockout, Mouse Mammary Tumor Virus-Polyoma Middle T-Antigen spontaneous breast tumor mouse model, bulk RNAseq analysis was performed on cancer associated fibroblasts isolated from Hic-5 knockout mammary tumors. Functional network analysis highlighted a key role for Hic-5 in extracellular matrix organization, with both structural matrix genes, as well as matrix remodeling genes being differentially expressed in relation to Hic-5 expression. The subcellular distribution of the MRTF-A transcription factor and expression of a subset of MRTF-A responsive genes was also impacted by Hic-5 expression. Additionally, cytokine array analysis of conditioned media from the Hic-5 and Hic-5 knockout cancer associated fibroblasts revealed that Hic-5 is important for the secretion of several key factors that are associated with matrix remodeling, angiogenesis and immune evasion. Together, these data provide further evidence of a central role for Hic-5 expression in cancer associated fibroblasts in regulating the composition and organization of the tumor stroma microenvironment to promote breast tumor progression.
Collapse
Affiliation(s)
- Weiyi Xu
- Department of Cell and Developmental Biology, State University of New York Upstate Medical University, Syracuse, NY, USA; Department of Cell Biology, Harvard Medical School, Boston, MA, USA
| | - Gregory J Goreczny
- Department of Cell and Developmental Biology, State University of New York Upstate Medical University, Syracuse, NY, USA; Jnana Therapeutics, Boston, MA, USA
| | - Ian Forsythe
- Department of Cell and Developmental Biology, State University of New York Upstate Medical University, Syracuse, NY, USA; Zymo Research Corp, Huntington Beach, CA, USA
| | - Grant Brennan
- Department of Cell and Developmental Biology, State University of New York Upstate Medical University, Syracuse, NY, USA
| | - Theresa Stowell
- Department of Cell and Developmental Biology, State University of New York Upstate Medical University, Syracuse, NY, USA
| | - Katia Brock
- Department of Cell and Developmental Biology, State University of New York Upstate Medical University, Syracuse, NY, USA
| | - Benjamin Capella
- Department of Cell and Developmental Biology, State University of New York Upstate Medical University, Syracuse, NY, USA
| | - Christopher E Turner
- Department of Cell and Developmental Biology, State University of New York Upstate Medical University, Syracuse, NY, USA.
| |
Collapse
|
5
|
Ye X, Wang Z, Lei W, Shen M, Tang J, Xu X, Yang Y, Zhang H. Pentraxin 3: A promising therapeutic target for cardiovascular diseases. Ageing Res Rev 2024; 93:102163. [PMID: 38092307 DOI: 10.1016/j.arr.2023.102163] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2023] [Revised: 11/23/2023] [Accepted: 12/07/2023] [Indexed: 12/18/2023]
Abstract
Cardiovascular disease (CVD) is the primary global cause of death, and inflammation is a crucial factor in the development of CVDs. The acute phase inflammatory protein pentraxin 3 (PTX3) is a biomarker reflecting the immune response. Recent research indicates that PTX3 plays a vital role in CVDs and has been investigated as a possible biomarker for CVD in clinical trials. PTX3 is implicated in the progression of CVDs through mechanisms such as exacerbating vascular endothelial dysfunction, affecting angiogenesis, and regulating inflammation and oxidative stress. This review summarized the structure and function of PTX3, focusing on its multifaceted effects on CVDs, such as atherosclerosis, myocardial infarction, and hypertension. This may help in explaining the varying PTX3 functions and usage, as well as in utilizing target organs to manage diseases. Moreover, elucidating the opposite role of PTX3 in the cardiovascular system will demonstrate the therapeutic and predictive potential in human diseases.
Collapse
Affiliation(s)
- Xingyan Ye
- Department of Cardiology, Xi'an No.3 Hospital, The Affiliated Hospital of Northwest University. Faculty of Life Sciences and Medicine, Northwest University, 10 Fengcheng Three Road, Xi'an, China; Xi'an Key Laboratory of Innovative Drug Research for Heart Failure, Faculty of Life Sciences and Medicine, Northwest University, 229 Taibai North Road, Xi'an, China
| | - Zheng Wang
- Department of Cardiothoracic Surgery, Central Theater Command General Hospital of Chinese People's Liberation Army, 627 Wuluo Road, Wuhan, China
| | - Wangrui Lei
- Department of Cardiology, Xi'an No.3 Hospital, The Affiliated Hospital of Northwest University. Faculty of Life Sciences and Medicine, Northwest University, 10 Fengcheng Three Road, Xi'an, China
| | - Mingzhi Shen
- Department of General Medicine, Hainan Hospital of Chinese People's Liberation Army (PLA) General Hospital, 80 Jianglin Road, Hainan, China
| | - Jiayou Tang
- Department of Cardiovascular Surgery, Xijing Hospital, The Fourth Military Medical University, 127 Changle West Road, Xi'an, China
| | - Xuezeng Xu
- Department of Cardiovascular Surgery, Xijing Hospital, The Fourth Military Medical University, 127 Changle West Road, Xi'an, China
| | - Yang Yang
- Department of Cardiology, Xi'an No.3 Hospital, The Affiliated Hospital of Northwest University. Faculty of Life Sciences and Medicine, Northwest University, 10 Fengcheng Three Road, Xi'an, China; Xi'an Key Laboratory of Innovative Drug Research for Heart Failure, Faculty of Life Sciences and Medicine, Northwest University, 229 Taibai North Road, Xi'an, China.
| | - Huan Zhang
- Department of Cardiology, Xi'an No.3 Hospital, The Affiliated Hospital of Northwest University. Faculty of Life Sciences and Medicine, Northwest University, 10 Fengcheng Three Road, Xi'an, China; Xi'an Key Laboratory of Innovative Drug Research for Heart Failure, Faculty of Life Sciences and Medicine, Northwest University, 229 Taibai North Road, Xi'an, China.
| |
Collapse
|
6
|
Silva RCMC, Travassos LH, Dutra FF. The dichotomic role of single cytokines: Fine-tuning immune responses. Cytokine 2024; 173:156408. [PMID: 37925788 DOI: 10.1016/j.cyto.2023.156408] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2023] [Revised: 10/19/2023] [Accepted: 10/23/2023] [Indexed: 11/07/2023]
Abstract
Cytokines are known for their pleiotropic effects. They can be classified by their function as pro-inflammatory, such as tumor necrosis factor (TNF), interleukin (IL) 1 and IL-12, or anti-inflammatory, like IL-10, IL-35 and transforming growth factor β (TGF-β). Though this type of classification is an important simplification for the understanding of the general cytokine's role, it can be misleading. Here, we discuss recent studies that show a dichotomic role of the so-called pro and anti-inflammatory cytokines, highlighting that their function can be dependent on the microenvironment and their concentrations. Furthermore, we discuss how the back-and-forth interplay between cytokines and immunometabolism can influence the dichotomic role of inflammatory responses as an important target to complement cytokine-based therapies.
Collapse
Affiliation(s)
| | - Leonardo Holanda Travassos
- Laboratório de Receptores e Sinalização intracelular, Instituto de Biofísica Carlos Chagas Filho, UFRJ, Rio de Janeiro, Brazil
| | - Fabianno Ferreira Dutra
- Laboratório de Imunologia e Inflamação, Instituto de Microbiologia Paulo de Góes, UFRJ, Rio de Janeiro, Brazil
| |
Collapse
|
7
|
Ayyubova G, Kodali M, Upadhya R, Madhu LN, Attaluri S, Somayaji Y, Shuai B, Rao S, Shankar G, Shetty AK. Extracellular vesicles from hiPSC-NSCs can prevent peripheral inflammation-induced cognitive dysfunction with inflammasome inhibition and improved neurogenesis in the hippocampus. J Neuroinflammation 2023; 20:297. [PMID: 38087314 PMCID: PMC10717852 DOI: 10.1186/s12974-023-02971-y] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2023] [Accepted: 11/25/2023] [Indexed: 12/18/2023] Open
Abstract
Extracellular vesicles (EVs) released by human induced pluripotent stem cell-derived neural stem cells (hiPSC-NSCs) are enriched with miRNAs and proteins capable of mediating robust antiinflammatory activity. The lack of tumorigenic and immunogenic properties and ability to permeate the entire brain to incorporate into microglia following intranasal (IN) administrations makes them an attractive biologic for curtailing chronic neuroinflammation in neurodegenerative disorders. We tested the hypothesis that IN administrations of hiPSC-NSC-EVs can alleviate chronic neuroinflammation and cognitive impairments induced by the peripheral lipopolysaccharide (LPS) challenge. Adult male, C57BL/6J mice received intraperitoneal injections of LPS (0.75 mg/kg) for seven consecutive days. Then, the mice received either vehicle (VEH) or hiPSC-NSC-EVs (~ 10 × 109 EVs/administration, thrice over 6 days). A month later, mice in all groups were investigated for cognitive function with behavioral tests and euthanized for histological and biochemical studies. Mice receiving VEH after LPS displayed deficits in associative recognition memory, temporal pattern processing, and pattern separation. Such impairments were associated with an increased incidence of activated microglia presenting NOD-, LRR-, and pyrin domain containing 3 (NLRP3) inflammasomes, elevated levels of NLRP3 inflammasome mediators and end products, and decreased neurogenesis in the hippocampus. In contrast, the various cognitive measures in mice receiving hiPSC-NSC-EVs after LPS were closer to naive mice. Significantly, these mice displayed diminished microglial activation, NLRP3 inflammasomes, proinflammatory cytokines, and a level of neurogenesis matching age-matched naïve controls. Thus, IN administrations of hiPSC-NSC-EVs are an efficacious approach to reducing chronic neuroinflammation-induced cognitive impairments.
Collapse
Affiliation(s)
- Gunel Ayyubova
- Institute for Regenerative Medicine, Department of Cell Biology and Genetics, School of Medicine, Texas A&M Health Science Center, 1114 TAMU, 206 Olsen Boulevard, College Station, TX, 77843, USA
| | - Maheedhar Kodali
- Institute for Regenerative Medicine, Department of Cell Biology and Genetics, School of Medicine, Texas A&M Health Science Center, 1114 TAMU, 206 Olsen Boulevard, College Station, TX, 77843, USA
| | - Raghavendra Upadhya
- Institute for Regenerative Medicine, Department of Cell Biology and Genetics, School of Medicine, Texas A&M Health Science Center, 1114 TAMU, 206 Olsen Boulevard, College Station, TX, 77843, USA
| | - Leelavathi N Madhu
- Institute for Regenerative Medicine, Department of Cell Biology and Genetics, School of Medicine, Texas A&M Health Science Center, 1114 TAMU, 206 Olsen Boulevard, College Station, TX, 77843, USA
| | - Sahithi Attaluri
- Institute for Regenerative Medicine, Department of Cell Biology and Genetics, School of Medicine, Texas A&M Health Science Center, 1114 TAMU, 206 Olsen Boulevard, College Station, TX, 77843, USA
| | - Yogish Somayaji
- Institute for Regenerative Medicine, Department of Cell Biology and Genetics, School of Medicine, Texas A&M Health Science Center, 1114 TAMU, 206 Olsen Boulevard, College Station, TX, 77843, USA
| | - Bing Shuai
- Institute for Regenerative Medicine, Department of Cell Biology and Genetics, School of Medicine, Texas A&M Health Science Center, 1114 TAMU, 206 Olsen Boulevard, College Station, TX, 77843, USA
| | - Shama Rao
- Institute for Regenerative Medicine, Department of Cell Biology and Genetics, School of Medicine, Texas A&M Health Science Center, 1114 TAMU, 206 Olsen Boulevard, College Station, TX, 77843, USA
| | - Goutham Shankar
- Institute for Regenerative Medicine, Department of Cell Biology and Genetics, School of Medicine, Texas A&M Health Science Center, 1114 TAMU, 206 Olsen Boulevard, College Station, TX, 77843, USA
| | - Ashok K Shetty
- Institute for Regenerative Medicine, Department of Cell Biology and Genetics, School of Medicine, Texas A&M Health Science Center, 1114 TAMU, 206 Olsen Boulevard, College Station, TX, 77843, USA.
| |
Collapse
|
8
|
Zhang W, Wang X, Li X, Yan H, Song Y, Li X, Zhang W, Ma G. Effects of acute moderate-intensity aerobic exercise on cognitive function in E-athletes: A randomized controlled trial. Medicine (Baltimore) 2023; 102:e35108. [PMID: 37800783 PMCID: PMC10553036 DOI: 10.1097/md.0000000000035108] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/01/2023] [Accepted: 08/16/2023] [Indexed: 10/07/2023] Open
Abstract
BACKGROUND E-sports require athletes to have high-speed reflexes and excellent memory skills. Whereas a single session of aerobic exercise has been shown to improve cognitive function, this paper aims is to investigate the effects of acute moderate-intensity aerobic exercise on the cognitive function of e-sports players and its time-course characteristics. METHODS Thirty-four E-athletes were divided into 2 groups according to a random number table method, and 2 trials in a quiet physical fitness gym. The duration of each trial was approximately 1 hour. In the first trial: exercise group (64-76% of maximum heart rate for 30 minutes power cycling) and control group, cognitive function was tested, and results were automatically recorded before, immediately after, and 30 minutes after exercise using the human benchmark website (https://humanbenchmark.com). The second trial crossed and swapped the interventions of the 2 groups, and the other test protocols were the same as the first. RESULTS In both trials, the exercise intervention group showed significant improvements in speed accuracy (P < .001, Cohen's d = 1.406, 95% CI: 0.717-2.072; P = .005, Cohen's d = 0.782, 95% CI: 0.227-1.319), visual memory (P < .001, Cohen's d = 1.416, 95% CI: 0.725-2.086; P = .015, Cohen's d = 0.662, 95% CI: 0.127-1.181), and reaction time (P < .001, Cohen's d = 1.265, 95% CI: 0.610-1.898; P<.001, Cohen's d = 0.979, 95% CI: 0.386-1.551) immediately after exercise compared to baseline. The exercise intervention group also showed significant improvement in speed accuracy 30 minutes after exercise compared to baseline (P = .002 Cohen's d = 0.869, 95% CI: 0.298-1.421; P = .009, Cohen's d = 0.722, 95% CI: 0.177-1.249). In the first trial, the exercise intervention group showed significant improvements in visual memory and reaction time immediately after exercise compared to the control group (P = .013, Cohen's d = 0.904, 95% CI: 0.190-1.605; P = .027, Cohen's d = 0.796, 95% CI: 0.090-1.490). The exercise intervention group also showed significant improvement in reaction time 30 minutes after exercise compared to baseline (P = .009, Cohen's d = 0.719, 95% CI: 0.174-1.246). There was no effect of exercise on sequence memory or the chimp test in both trials (P > .05). Sequence effect analysis showed no influence on the order of the exercise intervention in both trials (P = .912; P = .111; P = .226). CONCLUSION Acute moderate-intensity aerobic exercise significantly enhanced the speed accuracy, visual reaction time, and instantaneous memory of eSports players, and the effect could be extended up to 30 minutes after exercise.
Collapse
Affiliation(s)
- Weichao Zhang
- Faculty of Postgraduate Education, Shandong Sport University, Jinan City, China
| | - Xiaoqiang Wang
- College of Sports and Health, Shandong Sport University, Jinan City, China
| | - Xun Li
- College of Sports and Health, Shandong Sport University, Jinan City, China
| | - Hongqiao Yan
- Department of E-sports, Shandong Sport University, Jinan City, China
| | - Yuanyuan Song
- Faculty of Postgraduate Education, Shandong Sport University, Jinan City, China
| | - Xinying Li
- Faculty of Postgraduate Education, Shandong Sport University, Jinan City, China
| | - Wenhua Zhang
- Faculty of Postgraduate Education, Shandong Sport University, Jinan City, China
| | - Guoao Ma
- Faculty of Postgraduate Education, Shandong Sport University, Jinan City, China
| |
Collapse
|
9
|
Reid MM, Kautzmann MAI, Andrew G, Obenaus A, Mukherjee PK, Khoutorova L, Ji JX, Roque CR, Oria RB, Habeb BF, Belayev L, Bazan NG. NPD1 Plus RvD1 Mediated Ischemic Stroke Penumbra Protection Increases Expression of Pro-homeostatic Microglial and Astrocyte Genes. Cell Mol Neurobiol 2023; 43:3555-3573. [PMID: 37270727 PMCID: PMC10477115 DOI: 10.1007/s10571-023-01363-3] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2023] [Accepted: 05/13/2023] [Indexed: 06/05/2023]
Abstract
Neuroprotection to attenuate or block the ischemic cascade and salvage neuronal damage has been extensively explored for treating ischemic stroke. However, despite increasing knowledge of the physiologic, mechanistic, and imaging characterizations of the ischemic penumbra, no effective neuroprotective therapy has been found. This study focuses on the neuroprotective bioactivity of docosanoid mediators: Neuroprotectin D1 (NPD1), Resolvin D1 (RvD1), and their combination in experimental stroke. Molecular targets of NPD1 and RvD1 are defined by following dose-response and therapeutic window. We demonstrated that treatment with NPD1, RvD1, and combination therapy provides high-grade neurobehavioral recovery and decreases ischemic core and penumbra volumes even when administered up to 6 h after stroke. The expression of the following genes was salient: (a) Cd163, an anti-inflammatory stroke-associated gene, was the most differentially expressed gene by NPD1+RvD1, displaying more than a 123-fold upregulation in the ipsilesional penumbra (Lisi et al., Neurosci Lett 645:106-112, 2017); (b) 100-fold upregulation takes place in astrocyte gene PTX3, a key regulator of neurogenesis and angiogenesis after cerebral ischemia (. Rodriguez-Grande et al., J Neuroinflammation 12:15, 2015); and (c) Tmem119 and P2y12, two markers of homeostatic microglia, were found to be enhanced by ten- and fivefold, respectively (Walker et al. Int J Mol Sci 21:678, 2020). Overall, we uncovered that protection after middle cerebral artery occlusion (MCAo) by the lipid mediators elicits expression of microglia and astrocyte-specific genes (Tmem119, Fcrls, Osmr, Msr1, Cd68, Cd163, Amigo2, Thbs1, and Tm4sf1) likely participating in enhancing homeostatic microglia, modulating neuroinflammation, promoting DAMP clearance, activating NPC differentiation and maturation, synapse integrity and contributing to cell survival.
Collapse
Affiliation(s)
- Madigan M Reid
- Neuroscience Center of Excellence, School of Medicine, Louisiana State University Health Sciences Center, New Orleans, LA, 70112, USA
| | - Marie-Audrey I Kautzmann
- Neuroscience Center of Excellence, School of Medicine, Louisiana State University Health Sciences Center, New Orleans, LA, 70112, USA
| | - Gethein Andrew
- Neuroscience Center of Excellence, School of Medicine, Louisiana State University Health Sciences Center, New Orleans, LA, 70112, USA
| | - Andre Obenaus
- Department of Pediatrics, School of Medicine, University of California, Irvine, CA, 92618, USA
| | - Pranab K Mukherjee
- Neuroscience Center of Excellence, School of Medicine, Louisiana State University Health Sciences Center, New Orleans, LA, 70112, USA
| | - Larissa Khoutorova
- Neuroscience Center of Excellence, School of Medicine, Louisiana State University Health Sciences Center, New Orleans, LA, 70112, USA
| | - Jeff X Ji
- Neuroscience Center of Excellence, School of Medicine, Louisiana State University Health Sciences Center, New Orleans, LA, 70112, USA
| | - Cassia R Roque
- Laboratory of the Biology of Tissue Healing, Ontogeny and Nutrition, Department of Morphology and Institute of Biomedicine, School of Medicine, Federal University of Ceara, Fortaleza, Brazil
| | - Reinaldo B Oria
- Laboratory of the Biology of Tissue Healing, Ontogeny and Nutrition, Department of Morphology and Institute of Biomedicine, School of Medicine, Federal University of Ceara, Fortaleza, Brazil
| | - Bola F Habeb
- Neuroscience Center of Excellence, School of Medicine, Louisiana State University Health Sciences Center, New Orleans, LA, 70112, USA
| | - Ludmila Belayev
- Neuroscience Center of Excellence, School of Medicine, Louisiana State University Health Sciences Center, New Orleans, LA, 70112, USA.
- Neuroscience Center of Excellence, School of Medicine, Louisiana State University Health New Orleans, 2020 Gravier St, Suite 9B16, Room 935A, New Orleans, LA, 70112, USA.
| | - Nicolas G Bazan
- Neuroscience Center of Excellence, School of Medicine, Louisiana State University Health Sciences Center, New Orleans, LA, 70112, USA.
- Neuroscience Center of Excellence, School of Medicine, Louisiana State University Health New Orleans, Neuroscience Center of Excellence, 2020 Gravier Street, Suite D, New Orleans, LA, 70112, USA.
| |
Collapse
|
10
|
Fang J, Wang Z, Miao CY. Angiogenesis after ischemic stroke. Acta Pharmacol Sin 2023; 44:1305-1321. [PMID: 36829053 PMCID: PMC10310733 DOI: 10.1038/s41401-023-01061-2] [Citation(s) in RCA: 16] [Impact Index Per Article: 16.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2022] [Accepted: 02/01/2023] [Indexed: 02/26/2023] Open
Abstract
Owing to its high disability and mortality rates, stroke has been the second leading cause of death worldwide. Since the pathological mechanisms of stroke are not fully understood, there are few clinical treatment strategies available with an exception of tissue plasminogen activator (tPA), the only FDA-approved drug for the treatment of ischemic stroke. Angiogenesis is an important protective mechanism that promotes neural regeneration and functional recovery during the pathophysiological process of stroke. Thus, inducing angiogenesis in the peri-infarct area could effectively improve hemodynamics, and promote vascular remodeling and recovery of neurovascular function after ischemic stroke. In this review, we summarize the cellular and molecular mechanisms affecting angiogenesis after cerebral ischemia registered in PubMed, and provide pro-angiogenic strategies for exploring the treatment of ischemic stroke, including endothelial progenitor cells, mesenchymal stem cells, growth factors, cytokines, non-coding RNAs, etc.
Collapse
Affiliation(s)
- Jie Fang
- Department of Pharmacology, Second Military Medical University / Naval Medical University, Shanghai, 200433, China
| | - Zhi Wang
- Department of Pharmacology, Second Military Medical University / Naval Medical University, Shanghai, 200433, China
| | - Chao-Yu Miao
- Department of Pharmacology, Second Military Medical University / Naval Medical University, Shanghai, 200433, China.
| |
Collapse
|
11
|
Manzarinejad M, Vahidi Z, Boostani R, Khadem-Rezaiyan M, Rafatpanah H, Zemorshidi F. Pentraxin 3, a serum biomarker in human T-cell lymphotropic virus type-1-associated myelopathy patients and asymptomatic carriers. Med Microbiol Immunol 2023:10.1007/s00430-023-00770-z. [PMID: 37278849 DOI: 10.1007/s00430-023-00770-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2023] [Accepted: 05/27/2023] [Indexed: 06/07/2023]
Abstract
Human T-cell lymphotropic virus type 1 (HTLV-1) can induce a neuroinflammatory condition that leads to myelopathy. Pentraxin 3 (PTX3) is an acute-phase protein that its plasma concentration increases during inflammation. We aimed to determine whether PTX3 serum level is elevated in HTLV-1-associated myelopathy/tropical spastic paraparesis (HAM/TSP) patients and HTLV-1 asymptomatic carriers (ACs) and evaluate its association with proviral load and clinical features. The serum level of PTX3 was measured using an enzyme-linked immunosorbent assay in 30 HAM patients, 30 HTLV-1 ACs, and 30 healthy controls. Also, the HTLV-1 proviral load was determined via real-time PCR technique. The findings showed that PTX3 serum level was significantly higher in HAM patients than in both asymptomatic carriers and healthy controls (p values < 0.0001). No correlation between PTX3 and the proviral load was observed in HAM patients and asymptomatic carriers (r = - 0.238, p = 0.205 and r = - 0.078, p = 0.681, respectively). The findings showed that there was no significant correlation between PTX3 and motor disability grading (MDG) (r = - 0.155, p = 0.41) nor urinary disturbance score (UDS) (r = - 0.238, p = 0.20). Higher levels of PTX3 are associated with HTLV-1-associated myelopathy compared to asymptomatic carriers. This finding may support the idea that PTX3 has the potential as a diagnostic biomarker.
Collapse
Affiliation(s)
| | - Zohreh Vahidi
- Immunology Research Center, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Reza Boostani
- Department of Neurology, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Majid Khadem-Rezaiyan
- Department of Community Medicine, School of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Houshang Rafatpanah
- Rheumatic Disease Research Center, Faculty of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Fariba Zemorshidi
- Department of Neurology, Mashhad University of Medical Sciences, Mashhad, Iran.
| |
Collapse
|
12
|
Bonetto V, Grilli M. Neural stem cell-derived extracellular vesicles: mini players with key roles in neurogenesis, immunomodulation, neuroprotection and aging. Front Mol Biosci 2023; 10:1187263. [PMID: 37228583 PMCID: PMC10203560 DOI: 10.3389/fmolb.2023.1187263] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2023] [Accepted: 04/17/2023] [Indexed: 05/27/2023] Open
Abstract
Neural stem/progenitor cells (NSPCs) are self-renewing and multipotent cells of the central nervous system where they give rise to neurons, astrocytes and oligodendrocytes both during embryogenesis and throughout adulthood, although only in a few discrete niches. NSPC can integrate and send a plethora of signals not only within the local microenvironment but also at distance, including the systemic macroenvironment. Extracellular vesicles (EVs) are currently envisioned as main players in cell-cell communication in basic and translational neuroscience where they are emerging as an acellular alternative in regenerative medicine. At present NSPC-derived EVs represent a largely unexplored area compared to EVs from other neural sources and EVs from other stem cells, i.e., mesenchymal stem cells. On the other hand, available data suggest that NSPC-derived EVs can play key roles on neurodevelopmental and adult neurogenesis, and they are endowed with neuroprotective and immunomodulatory properties, and even endocrine functions. In this review we specifically highlight major neurogenic and "non-neurogenic" properties of NSPC-EVs, the current knowledge on their peculiar cargos and their potential translational value.
Collapse
|
13
|
Thurgur H, Penny J, Pinteaux E. Endothelial cell activation by interleukin-1 and extracellular matrix laminin-10 occurs via the YAP signalling pathway. J Neuroimmunol 2022; 373:577993. [PMID: 36327619 DOI: 10.1016/j.jneuroim.2022.577993] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2022] [Revised: 09/29/2022] [Accepted: 10/23/2022] [Indexed: 11/06/2022]
Abstract
Laminin-10 (LM-10) is a key regulator of blood-brain barrier (BBB) repair after hypoxia and inflammation. Here we investigated the signalling mechanisms regulated by LM-10 in human brain endothelial cell line hCMEC/D3 in response to interleukin(IL)-1beta(β) in vitro. LM-10 promoted endothelial proliferation and repair of an endothelial monolayer after scratch injury, and upregulated IL-1β-induced ICAM-1 and VCAM-1 expression. IL-1β and LM-10 regulated YAP signalling pathway in endothelial cells leading to differential expression of YAP target genes, ctgf and serpine-1, providing evidence that the YAP signalling pathway could be a new therapeutic target for the treatment of BBB dysfunction in CNS diseases.
Collapse
Affiliation(s)
- Hannah Thurgur
- Geoffrey Jefferson Brain Research Centre, The Manchester Academic Health Science Centre, Northern Care Alliance NHS Group, Manchester, United Kingdom; Division of Neuroscience, Faculty of Biology, Medicine and Health; A.V. Hill Building, University of Manchester, Oxford Road, Manchester M13 9PT, United Kingdom
| | - Jeffrey Penny
- Division of Pharmacy and Optometry, Faculty of Biology, Medicine and Health, Stopford Building, University of Manchester, Oxford Road, Manchester M13 9PT, United Kingdom
| | - Emmanuel Pinteaux
- Geoffrey Jefferson Brain Research Centre, The Manchester Academic Health Science Centre, Northern Care Alliance NHS Group, Manchester, United Kingdom; Division of Neuroscience, Faculty of Biology, Medicine and Health; A.V. Hill Building, University of Manchester, Oxford Road, Manchester M13 9PT, United Kingdom.
| |
Collapse
|
14
|
Su X, Liu Y, ElKashty O, Seuntjens J, Yamada K, Tran S. Human Bone Marrow Cell Extracts Mitigate Radiation Injury to Salivary Gland. J Dent Res 2022; 101:1645-1653. [PMID: 36408969 PMCID: PMC9693900 DOI: 10.1177/00220345221112332] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/29/2023] Open
Abstract
Mitigation of irradiation injury to salivary glands was previously reported using a cell-free extract from mouse bone marrow. However, to bring this potential therapy a step closer to clinical application, a human bone marrow cell extract (BMCE) needs to be tested. Here, we report that irradiation-induced injury of salivary glands in immunocompetent mice treated with human BMCE secreted 50% more saliva than saline-injected mice, and BMCE did not cause additional acute inflammatory reaction. In addition, to identify the cell fraction in BMCE with the most therapeutic activity, we sorted human bone marrow into 3 cell fractions (mononuclear, granulocyte, and red blood cells) and tested their respective cell extracts. We identified that the mononuclear cell extract (MCE) provided the best therapeutic efficacy. It increased salivary flow 50% to 73% for 16 wk, preserved salivary parenchymal and stromal cells, and doubled cell proliferation rates while producing less inflammatory response. In contrast, the cell extract of granulocytes was of shorter efficacy and induced an acute inflammatory response, while that from red blood cells was not therapeutically effective for salivary function. Several proangiogenic (MMP-8, MMP-9, VEGF, uPA) and antiangiogenic factors (TSP-1, PF4, TIMP-1, PAI-1) were identified in MCE. Added advantages of BMCE and MCE for potential clinical use were that cell extracts from both male and female donors were comparably bioactive and that cell extracts could be stored and transported much more conveniently than cells. These findings suggest human BMCE, specifically the MCE fraction, is a promising therapy against irradiation-induced salivary hypofunction.
Collapse
Affiliation(s)
- X. Su
- McGill Craniofacial Tissue Engineering and Stem Cells Laboratory, Faculty of Dental Medicine and Oral Health Sciences, McGill University, Montreal, Canada
- Sun Yat-sen University, Guanghua School of Stomatology, Department of Operative Dentistry and Endodontics, Guangdong Provincial Key Laboratory of Stomatology, Guangzhou, China
| | - Y. Liu
- McGill Craniofacial Tissue Engineering and Stem Cells Laboratory, Faculty of Dental Medicine and Oral Health Sciences, McGill University, Montreal, Canada
| | - O. ElKashty
- McGill Craniofacial Tissue Engineering and Stem Cells Laboratory, Faculty of Dental Medicine and Oral Health Sciences, McGill University, Montreal, Canada
- Department of Oral Pathology, Faculty of Dentistry, Mansoura University, Mansoura, Egypt
| | - J. Seuntjens
- Gerald Bronfman Department of Oncology, Medical Physics Unit, McGill University, Montreal, Canada
| | - K.M. Yamada
- Cell Biology Section, National Institute of Dental and Craniofacial Research, National Institutes of Health, Bethesda, MD, USA
| | - S.D. Tran
- McGill Craniofacial Tissue Engineering and Stem Cells Laboratory, Faculty of Dental Medicine and Oral Health Sciences, McGill University, Montreal, Canada
| |
Collapse
|
15
|
Paro MR, Chakraborty AR, Angelo S, Nambiar S, Bulsara KR, Verma R. Molecular mediators of angiogenesis and neurogenesis after ischemic stroke. Rev Neurosci 2022; 34:425-442. [PMID: 36073599 DOI: 10.1515/revneuro-2022-0049] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2022] [Accepted: 07/22/2022] [Indexed: 11/15/2022]
Abstract
The mechanisms governing neurological and functional recovery after ischemic stroke are incompletely understood. Recent advances in knowledge of intrinsic repair processes of the CNS have so far translated into minimal improvement in outcomes for stroke victims. Better understanding of the processes underlying neurological recovery after stroke is necessary for development of novel therapeutic approaches. Angiogenesis and neurogenesis have emerged as central mechanisms of post-stroke recovery and potential targets for therapeutics. Frameworks have been developed for conceptualizing cerebral angiogenesis and neurogenesis at the tissue and cellular levels. These models highlight that angiogenesis and neurogenesis are linked to each other and to functional recovery. However, knowledge of the molecular framework linking angiogenesis and neurogenesis after stroke is limited. Studies of potential therapeutics typically focus on one mediator or pathway with minimal discussion of its role within these multifaceted biochemical processes. In this article, we briefly review the current understanding of the coupled processes of angiogenesis and neurogenesis after stroke. We then identify the molecular mediators and signaling pathways found in pre-clinical studies to upregulate both processes after stroke and contextualizes them within the current framework. This report thus contributes to a more-unified understanding of the molecular mediators governing angiogenesis and neurogenesis after stroke, which we hope will help guide the development of novel therapeutic approaches for stroke survivors.
Collapse
Affiliation(s)
- Mitch R Paro
- University of Connecticut School of Medicine, 200 Academic Way, Farmington, CT 06032, USA.,Department of Neuroscience, University of Connecticut School of Medicine, 263 Farmington Avenue, Farmington, CT 06032, USA
| | - Arijit R Chakraborty
- University of Connecticut School of Medicine, 200 Academic Way, Farmington, CT 06032, USA
| | - Sophia Angelo
- University of Connecticut School of Medicine, 200 Academic Way, Farmington, CT 06032, USA
| | - Shyam Nambiar
- University of Connecticut, 75 North Eagleville Rd, Storrs, CT 06269, USA
| | - Ketan R Bulsara
- University of Connecticut School of Medicine, 200 Academic Way, Farmington, CT 06032, USA.,Division of Neurosurgery, University of Connecticut Health, 135 Dowling Way, Farmington, CT 06030, USA
| | - Rajkumar Verma
- University of Connecticut School of Medicine, 200 Academic Way, Farmington, CT 06032, USA.,Department of Neuroscience, University of Connecticut School of Medicine, 263 Farmington Avenue, Farmington, CT 06032, USA
| |
Collapse
|
16
|
Molecular insight into pentraxin-3: update advances in innate immunity, inflammation, tissue remodeling, diseases, and drug role. Biomed Pharmacother 2022; 156:113783. [DOI: 10.1016/j.biopha.2022.113783] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2022] [Revised: 09/28/2022] [Accepted: 09/28/2022] [Indexed: 11/20/2022] Open
|
17
|
Coltrini D, Chandran AMK, Belleri M, Poliani PL, Cominelli M, Pagani F, Capra M, Calza S, Prioni S, Mauri L, Prinetti A, Kofler JK, Escolar ML, Presta M. β-Galactosylceramidase Deficiency Causes Upregulation of Long Pentraxin-3 in the Central Nervous System of Krabbe Patients and Twitcher Mice. Int J Mol Sci 2022; 23:ijms23169436. [PMID: 36012705 PMCID: PMC9409448 DOI: 10.3390/ijms23169436] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2022] [Revised: 08/17/2022] [Accepted: 08/18/2022] [Indexed: 11/28/2022] Open
Abstract
Globoid cell leukodystrophy (GLD), or Krabbe disease, is a neurodegenerative sphingolipidosis caused by genetic deficiency of lysosomal β-galactosylceramidase (GALC), characterized by neuroinflammation and demyelination of the central (CNS) and peripheral nervous system. The acute phase protein long pentraxin-3 (PTX3) is a soluble pattern recognition receptor and a regulator of innate immunity. Growing evidence points to the involvement of PTX3 in neurodegeneration. However, the expression and role of PTX3 in the neurodegenerative/neuroinflammatory processes that characterize GLD remain unexplored. Here, immunohistochemical analysis of brain samples from Krabbe patients showed that macrophages and globoid cells are intensely immunoreactive for PTX3. Accordingly, Ptx3 expression increases throughout the course of the disease in the cerebrum, cerebellum, and spinal cord of GALC-deficient twitcher (Galctwi/twi) mice, an authentic animal model of GLD. This was paralleled by the upregulation of proinflammatory genes and M1-polarized macrophage/microglia markers and of the levels of PTX3 protein in CNS and plasma of twitcher animals. Crossing of Galctwi/twi mice with transgenic PTX3 overexpressing animals (hPTX3 mice) demonstrated that constitutive PTX3 overexpression reduced the severity of clinical signs and the upregulation of proinflammatory genes in the spinal cord of P35 hPTX3/Galctwi/twi mice when compared to Galctwi/twi littermates, leading to a limited increase of their life span. However, this occurred in the absence of a significant impact on the histopathological findings and on the accumulation of the neurotoxic metabolite psychosine when evaluated at this late time point of the disease. In conclusion, our results provide the first evidence that PTX3 is produced in the CNS of GALC-deficient Krabbe patients and twitcher mice. PTX3 may exert a protective role by reducing the neuroinflammatory response that occurs in the spinal cord of GALC-deficient animals.
Collapse
Affiliation(s)
- Daniela Coltrini
- Department of Molecular and Translational Medicine, School of Medicine, University of Brescia, 25123 Brescia, Italymarco.prestanibs.it (M.P.)
| | - Adwaid Manu Krishna Chandran
- Department of Molecular and Translational Medicine, School of Medicine, University of Brescia, 25123 Brescia, Italymarco.prestanibs.it (M.P.)
| | - Mirella Belleri
- Department of Molecular and Translational Medicine, School of Medicine, University of Brescia, 25123 Brescia, Italymarco.prestanibs.it (M.P.)
| | - Pietro L. Poliani
- Department of Molecular and Translational Medicine, School of Medicine, University of Brescia, 25123 Brescia, Italymarco.prestanibs.it (M.P.)
| | - Manuela Cominelli
- Department of Molecular and Translational Medicine, School of Medicine, University of Brescia, 25123 Brescia, Italymarco.prestanibs.it (M.P.)
| | - Francesca Pagani
- Department of Molecular and Translational Medicine, School of Medicine, University of Brescia, 25123 Brescia, Italymarco.prestanibs.it (M.P.)
| | - Miriam Capra
- Department of Molecular and Translational Medicine, School of Medicine, University of Brescia, 25123 Brescia, Italymarco.prestanibs.it (M.P.)
| | - Stefano Calza
- Department of Molecular and Translational Medicine, School of Medicine, University of Brescia, 25123 Brescia, Italymarco.prestanibs.it (M.P.)
| | - Simona Prioni
- Department of Medical Biotechnology and Translational Medicine, University of Milan, 20133 Milan, Italy
| | - Laura Mauri
- Department of Medical Biotechnology and Translational Medicine, University of Milan, 20133 Milan, Italy
| | - Alessandro Prinetti
- Department of Medical Biotechnology and Translational Medicine, University of Milan, 20133 Milan, Italy
| | - Julia K. Kofler
- Department of Pediatrics, University of Pittsburgh School of Medicine, Pittsburgh, PA 15224-1334, USA
| | - Maria L. Escolar
- Department of Pediatrics, University of Pittsburgh School of Medicine, Pittsburgh, PA 15224-1334, USA
| | - Marco Presta
- Department of Molecular and Translational Medicine, School of Medicine, University of Brescia, 25123 Brescia, Italymarco.prestanibs.it (M.P.)
- Correspondence:
| |
Collapse
|
18
|
Park SY, Kim DS, Kim HM, Lee JK, Hwang DY, Kim TH, You S, Han DK. Human Mesenchymal Stem Cell-Derived Extracellular Vesicles Promote Neural Differentiation of Neural Progenitor Cells. Int J Mol Sci 2022; 23:ijms23137047. [PMID: 35806058 PMCID: PMC9267053 DOI: 10.3390/ijms23137047] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2022] [Revised: 06/20/2022] [Accepted: 06/22/2022] [Indexed: 02/07/2023] Open
Abstract
Mesenchymal stem cells (MSCs) have been adopted in various preclinical and clinical studies because of their multipotency and low immunogenicity. However, numerous obstacles relating to safety issues remain. Therefore, MSC-derived extracellular vesicles (EVs) have been recently employed. EVs are nano-sized endoplasmic reticulum particles generated and released in cells that have similar biological functions to their origin cells. EVs act as cargo for bioactive molecules such as proteins and genetic materials and facilitate tissue regeneration. EVs obtained from adipose-derived MSC (ADMSC) also have neuroprotective and neurogenesis effects. On the basis of the versatile effects of EVs, we aimed to enhance the neural differentiation ability of ADMSC-derived EVs by elucidating the neurogenic-differentiation process. ADMSC-derived EVs isolated from neurogenesis conditioned media (differentiated EVs, dEVs) increased neurogenic ability by altering innate microRNA expression and cytokine composition. Consequently, dEVs promoted neuronal differentiation of neural progenitor cells in vitro, suggesting that dEVs are a prospective candidate for EV-based neurological disorder regeneration therapy.
Collapse
Affiliation(s)
- So-Yeon Park
- Department of Biomedical Science, CHA University, 335 Pangyo-ro, Bundang-gu, Seongnam-si 13488, Korea; (S.-Y.P.); (D.-S.K.); (H.-M.K.); (J.-K.L.); (D.-Y.H.)
- Division of Biotechnology, College of Life Sciences and Biotechnology, Korea University, Seoul 02841, Korea
| | - Da-Seul Kim
- Department of Biomedical Science, CHA University, 335 Pangyo-ro, Bundang-gu, Seongnam-si 13488, Korea; (S.-Y.P.); (D.-S.K.); (H.-M.K.); (J.-K.L.); (D.-Y.H.)
- School of Integrative Engineering, Chung-Ang University, 84 Heukseok-ro, Seoul 06974, Korea;
| | - Hyun-Mun Kim
- Department of Biomedical Science, CHA University, 335 Pangyo-ro, Bundang-gu, Seongnam-si 13488, Korea; (S.-Y.P.); (D.-S.K.); (H.-M.K.); (J.-K.L.); (D.-Y.H.)
| | - Jun-Kyu Lee
- Department of Biomedical Science, CHA University, 335 Pangyo-ro, Bundang-gu, Seongnam-si 13488, Korea; (S.-Y.P.); (D.-S.K.); (H.-M.K.); (J.-K.L.); (D.-Y.H.)
| | - Dong-Youn Hwang
- Department of Biomedical Science, CHA University, 335 Pangyo-ro, Bundang-gu, Seongnam-si 13488, Korea; (S.-Y.P.); (D.-S.K.); (H.-M.K.); (J.-K.L.); (D.-Y.H.)
| | - Tae-Hyung Kim
- School of Integrative Engineering, Chung-Ang University, 84 Heukseok-ro, Seoul 06974, Korea;
| | - Seungkwon You
- Division of Biotechnology, College of Life Sciences and Biotechnology, Korea University, Seoul 02841, Korea
- Correspondence: (S.Y.); (D.K.H.)
| | - Dong Keun Han
- Department of Biomedical Science, CHA University, 335 Pangyo-ro, Bundang-gu, Seongnam-si 13488, Korea; (S.-Y.P.); (D.-S.K.); (H.-M.K.); (J.-K.L.); (D.-Y.H.)
- Correspondence: (S.Y.); (D.K.H.)
| |
Collapse
|
19
|
Upadhya R, Madhu LN, Rao S, Shetty AK. Proficiency of Extracellular Vesicles From hiPSC-Derived Neural Stem Cells in Modulating Proinflammatory Human Microglia: Role of Pentraxin-3 and miRNA-21-5p. Front Mol Neurosci 2022; 15:845542. [PMID: 35656007 PMCID: PMC9152457 DOI: 10.3389/fnmol.2022.845542] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2021] [Accepted: 03/22/2022] [Indexed: 12/05/2022] Open
Abstract
Extracellular vesicles (EVs) shed by human-induced pluripotent stem cell (hiPSC)-derived neural stem cells (hNSC-EVs) have shown potent antiinflammatory properties in a mouse macrophage assay and a mouse model of acute neuroinflammation. They can also quickly permeate the entire brain after intranasal administration, making them attractive as an autologous or allogeneic off-the-shelf product for treating neurodegenerative diseases. However, their ability to modulate activated human microglia and specific proteins and miRNAs mediating antiinflammatory effects of hNSC-EVs are unknown. We investigated the proficiency of hNSC-EVs to modulate activated human microglia and probed the role of the protein pentraxin 3 (PTX3) and the miRNA miR-21-5p within hNSC-EVs in mediating the antiinflammatory effects. Mature microglia generated from hiPSCs (iMicroglia) expressed multiple microglia-specific markers. They responded to lipopolysaccharide (LPS) or interferon-gamma challenge by upregulating tumor necrosis factor-alpha (TNF-α) and interleukin-1 beta (IL-1β) mRNA expression and protein release. iMicroglia also exhibited proficiency to phagocytose amyloid-beta (Aβ). The addition of hNSC-EVs decreased TNF-α and IL-1β mRNA expression and the release of TNF-α and IL-1β by LPS-stimulated iMicroglia (proinflammatory human Microglia). However, the antiinflammatory activity of hNSC-EVs on LPS-stimulated microglia was considerably diminished when the PTX3 or miR-21-5p concentration was reduced in EVs. The results demonstrate that hNSC-EVs are proficient for modulating the proinflammatory human microglia into non-inflammatory phenotypes, implying their utility to treat neuroinflammation in neurodegenerative diseases. Furthermore, the role of PTX3 and miR-21-5p in the antiinflammatory activity of hNSC-EVs provides a new avenue for improving the antiinflammatory effects of hNSC-EVs through PTX3 and/or miR-21-5p overexpression.
Collapse
|
20
|
Kutikhin AG, Shishkova DK, Velikanova EA, Sinitsky MY, Sinitskaya AV, Markova VE. Endothelial Dysfunction in the Context of Blood–Brain Barrier Modeling. J EVOL BIOCHEM PHYS+ 2022; 58:781-806. [PMID: 35789679 PMCID: PMC9243926 DOI: 10.1134/s0022093022030139] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2022] [Revised: 04/04/2022] [Accepted: 04/05/2022] [Indexed: 01/04/2023]
Abstract
Here, we discuss pathophysiological approaches to the defining
of endothelial dysfunction criteria (i.e., endothelial activation,
impaired endothelial mechanotransduction, endothelial-to-mesenchymal
transition, reduced nitric oxide release, compromised endothelial
integrity, and loss of anti-thrombogenic properties) in different
in vitro and in vivo models. The canonical definition of endothelial
dysfunction includes insufficient production of vasodilators, pro-thrombotic
and pro-inflammatory activation of endothelial cells, and pathologically
increased endothelial permeability. Among the clinical consequences
of endothelial dysfunction are arterial hypertension, macro- and
microangiopathy, and microalbuminuria. We propose to extend the definition
of endothelial dysfunction by adding altered endothelial mechanotransduction
and endothelial-to-mesenchymal transition to its criteria. Albeit
interleukin-6, interleukin-8, and MCP-1/CCL2 dictate the pathogenic
paracrine effects of dysfunctional endothelial cells and are therefore
reliable endothelial dysfunction biomarkers in vitro, they are non-specific
for endothelial cells and cannot be used for the diagnostics of
endothelial dysfunction in vivo. Conceptual improvements in the
existing methods to model endothelial dysfunction, specifically,
in relation to the blood–brain barrier, include endothelial cell
culturing under pulsatile flow, collagen IV coating of flow chambers,
and endothelial lysate collection from the blood vessels of laboratory
animals in situ for the subsequent gene and protein expression profiling.
Combined with the simulation of paracrine effects by using conditioned
medium from dysfunctional endothelial cells, these flow-sensitive
models have a high physiological relevance, bringing the experimental
conditions to the physiological scenario.
Collapse
Affiliation(s)
- A. G. Kutikhin
- Research Institute for Complex Issues of Cardiovascular Diseases, Kemerovo, Russia
| | - D. K. Shishkova
- Research Institute for Complex Issues of Cardiovascular Diseases, Kemerovo, Russia
| | - E. A. Velikanova
- Research Institute for Complex Issues of Cardiovascular Diseases, Kemerovo, Russia
| | - M. Yu. Sinitsky
- Research Institute for Complex Issues of Cardiovascular Diseases, Kemerovo, Russia
| | - A. V. Sinitskaya
- Research Institute for Complex Issues of Cardiovascular Diseases, Kemerovo, Russia
| | - V. E. Markova
- Research Institute for Complex Issues of Cardiovascular Diseases, Kemerovo, Russia
| |
Collapse
|
21
|
Zhang Y, Xu C. Effects of exosomes on adult hippocampal neurogenesis and neuropsychiatric disorders. Mol Biol Rep 2022; 49:6763-6777. [PMID: 35262819 DOI: 10.1007/s11033-022-07313-4] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2021] [Accepted: 03/01/2022] [Indexed: 12/19/2022]
Abstract
Exosomes are extracellular vesicles originating from the endosomal system, which are involved in intercellular substance transfer and cell waste elimination. Recent studies implicate the roles of exosomes in adult hippocampal neurogenesis, a process through which new granule cells are generated in the dentate gyrus, and which is closely related to mood and cognition, as well as psychiatric disorders. As such, exosomes are recognized as potential biomarkers of neurologic and psychiatric disorders. This review briefly introduces the synthesis and secretion mechanism of exosomes, and discuss the relationship between exosomes and hippocampal neurogenesis, and their roles in regulating depression, epilepsy and schizophrenia. Finally, we discuss the prospects of their application in diagnosing disorders of the central nervous system (CNS).
Collapse
Affiliation(s)
- Ying Zhang
- School of Basic Medicine and Clinical Pharmacy, China Pharmaceutical University, 24 Tong Jia Xiang, Nanjing, 210009, China
| | - Chi Xu
- School of Basic Medicine and Clinical Pharmacy, China Pharmaceutical University, 24 Tong Jia Xiang, Nanjing, 210009, China. .,Key Laboratory of Acupuncture and Neurology of Zhejiang Province, Department of Neurobiology and Acupuncture Research, The Third Clinical Medical College, Zhejiang Chinese Medical University, Hangzhou, 310053, China.
| |
Collapse
|
22
|
Ren J, Lu X, Hall G, Privratsky JR, Robson MJ, Blakely RD, Crowley SD. IL-1 receptor signaling in podocytes limits susceptibility to glomerular damage. Am J Physiol Renal Physiol 2022; 322:F164-F174. [PMID: 34894725 PMCID: PMC8782651 DOI: 10.1152/ajprenal.00353.2021] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2021] [Revised: 11/22/2021] [Accepted: 12/07/2021] [Indexed: 02/03/2023] Open
Abstract
Interleukin (IL)-1 receptor type 1 (IL-1R1) activation triggers a proinflammatory signaling cascade that can exacerbate kidney injury. However, the functions of podocyte IL-1R1 in glomerular disease remain unclear. To study the role of IL-1R1 signaling in podocytes, we selectively ablated podocyte IL-1R1 in mice (PKO mice). We then subjected PKO mice and wild-type controls to two glomerular injury models: nephrotoxic serum (NTS)- and adriamycin-induced nephropathy. Surprisingly, we found that IL-1R1 activation in podocytes limited albuminuria and podocyte injury during NTS- and adriamycin-induced nephropathy. Moreover, deletion of IL-1R1 in podocytes drove podocyte apoptosis and glomerular injury through diminishing Akt activation. Activation of Akt signaling abrogated the differences in albuminuria and podocyte injury between wild-type and PKO mice during NTS. Thus, IL-1R1 signaling in podocytes limits susceptibility to glomerular injury via an Akt-dependent signaling pathway. These data identify an unexpected protective role for IL-1R1 signaling in podocytes in the pathogenesis of glomerular disease.NEW & NOTEWORTHY The present study establishes that activation of the receptor for interleukin-1 limits susceptibility to damage to the kidney glomerulus in preclinical mouse models by stimulating Akt signaling cascades inside the podocyte.
Collapse
Affiliation(s)
- Jiafa Ren
- Division of Nephrology, Department of Medicine, Durham Veterans Affairs and Duke University Medical Centers, Durham, North Carolina
- Department of Nephrology, The First Affiliated Hospital of Nanjing Medical University, Nanjing Medical University, Nanjing, People's Republic of China
| | - Xiaohan Lu
- Division of Nephrology, Department of Medicine, Durham Veterans Affairs and Duke University Medical Centers, Durham, North Carolina
| | - Gentzon Hall
- Division of Nephrology, Department of Medicine, Durham Veterans Affairs and Duke University Medical Centers, Durham, North Carolina
| | - Jamie R Privratsky
- Department of Anesthesiology, Durham Veterans Affairs and Duke University Medical Centers, Durham, North Carolina
| | - Matthew J Robson
- Division of Pharmaceutical Sciences, James L. Winkle College of Pharmacy, University of Cincinnati, Cincinnati, Ohio
| | - Randy D Blakely
- Department of Biomedical Science, Charles E. Schmidt College of Medicine and FAU Brain Institute, Jupiter, Florida
| | - Steven D Crowley
- Division of Nephrology, Department of Medicine, Durham Veterans Affairs and Duke University Medical Centers, Durham, North Carolina
| |
Collapse
|
23
|
Wesley UV, Sutton I, Clark PA, Cunningham K, Larrain C, Kuo JS, Dempsey RJ. Enhanced expression of pentraxin-3 in glioblastoma cells correlates with increased invasion and IL8-VEGF signaling axis. Brain Res 2021; 1776:147752. [PMID: 34906547 DOI: 10.1016/j.brainres.2021.147752] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2021] [Revised: 11/13/2021] [Accepted: 12/07/2021] [Indexed: 02/07/2023]
Abstract
Glioblastoma (GB) is highly invasive and resistant to multimodal treatment partly due to distorted vasculature and exacerbated inflammation. The aggressiveness of brain tumors may be attributed to the dysregulated release of angiogenic and inflammatory factors. The glycoprotein pentraxin-3 (PTX3) is correlated with the severity of some cancers. However, the mechanism responsible for the invasive oncogenic role of PTX3 in GB malignancy remains unclear. In this study, we examined the role of PTX3 in GB growth, angiogenesis, and invasion using in vitro and in vivo GB models, proteomic profiling, molecular and biochemical approaches. Under in vitro conditions, PTX3 over-expression in U87 cells correlated with cell cycle progression, increased migratory potential, and proliferation under hypoxic conditions. Conditioned media containing PTX3 enhanced the angiogenic potential of endothelial cells. While silencing of PTX3 by siRNA decreased the proliferation, migration, and angiogenic potential of U87 cells in vitro. Importantly, PTX3 over-expression increased tumor growth, angiogenesis, and invasion in an orthotopic mouse model. Higher levels of PTX3 in these tumors were associated with the upregulation of inflammatory and angiogenic markers including interleukin-8 (IL-8) and vascular endothelial growth factor (VEGF), but decreased levels of thrombospondin-1, an anti-angiogenic factor. Mechanistically, exogenous production of PTX3 triggered an IKK/NFκB signaling pathway that enhances the expression of the motility genes AHGEF7 and Rac1. Taken together, PTX3 expression is dysregulated in GB. PTX3 may augment invasion through enhanced angiogenesis in the GB microenvironment through the IL8-VEGF axis. Thus, PTX3 may represent a potential therapeutic target to mitigate the aggressive behavior of gliomas.
Collapse
Affiliation(s)
- Umadevi V Wesley
- Department of Neurosurgery, University of Wisconsin, Madison, WI 53792, United States.
| | - Ian Sutton
- Department of Neurosurgery, University of Wisconsin, Madison, WI 53792, United States
| | - Paul A Clark
- Department of Neurosurgery, University of Wisconsin, Madison, WI 53792, United States; Department of Human Oncology, University of Wisconsin, Madison, WI 53792, United States
| | - Katelin Cunningham
- Department of Neurosurgery, University of Wisconsin, Madison, WI 53792, United States
| | - Carolina Larrain
- Department of Neurosurgery, University of Wisconsin, Madison, WI 53792, United States
| | - John S Kuo
- Department of Neurosurgery, University of Wisconsin, Madison, WI 53792, United States; Department of Neurosurgery, Dell Medical School, The University of Texas at Austin, Austin, TX 78712, United States; Graduate Institute of Biomedical Sciences, China Medical University, Taichung, TAIWAN
| | - Robert J Dempsey
- Department of Neurosurgery, University of Wisconsin, Madison, WI 53792, United States.
| |
Collapse
|
24
|
Ha SS, Kim JH, Savitri C, Choi D, Park K. Nano-Sized Extracellular Matrix Particles Lead to Therapeutic Improvement for Cutaneous Wound and Hindlimb Ischemia. Int J Mol Sci 2021; 22:ijms222413265. [PMID: 34948061 PMCID: PMC8705579 DOI: 10.3390/ijms222413265] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2021] [Revised: 11/19/2021] [Accepted: 12/06/2021] [Indexed: 11/25/2022] Open
Abstract
Cell-derived matrix (CDM) has proven its therapeutic potential and been utilized as a promising resource in tissue regeneration. In this study, we prepared a human fibroblast-derived matrix (FDM) by decellularization of in vitro cultured cells and transformed the FDM into a nano-sized suspended formulation (sFDM) using ultrasonication. The sFDM was then homogeneously mixed with Pluronic F127 and hyaluronic acid (HA), to effectively administer sFDM into target sites. Both sFDM and sFDM containing hydrogel (PH/sFDM) were characterized via immunofluorescence, sol–gel transition, rheological analysis, and biochemical factors array. We found that PH/sFDM hydrogel has biocompatible, mechanically stable, injectable properties and can be easily administered into the external and internal target regions. sFDM itself holds diverse bioactive molecules. Interestingly, sFDM-containing serum-free media helped maintain the metabolic activity of endothelial cells significantly better than those in serum-free condition. PH/sFDM also promoted vascular endothelial growth factor (VEGF) secretion from monocytes in vitro. Moreover, when we evaluated therapeutic effects of PH/sFDM via the murine full-thickness skin wound model, regenerative potential of PH/sFDM was supported by epidermal thickness, significantly more neovessel formation, and enhanced mature collagen deposition. The hindlimb ischemia model also found some therapeutic improvements, as assessed by accelerated blood reperfusion and substantially diminished necrosis and fibrosis in the gastrocnemius and tibialis muscles. Together, based on sFDM holding a strong therapeutic potential, our engineered hydrogel (PH/sFDM) should be a promising candidate in tissue engineering and regenerative medicine.
Collapse
Affiliation(s)
- Sang Su Ha
- Center for Biomaterials, Korea Institute of Science and Technology (KIST), Seoul 02792, Korea; (S.S.H.); (C.S.)
| | - Jung-Hyun Kim
- Division of Cardiology, Department of Internal Medicine, Severance Cardiovascular Hospital, Yonsei University College of Medicine, Seoul 03722, Korea;
| | - Cininta Savitri
- Center for Biomaterials, Korea Institute of Science and Technology (KIST), Seoul 02792, Korea; (S.S.H.); (C.S.)
- Division of Bio-Medical Science and Technology, KIST School, University of Science and Technology (UST), Seoul 02792, Korea
| | - Donghoon Choi
- Division of Cardiology, Department of Internal Medicine, Severance Cardiovascular Hospital, Yonsei University College of Medicine, Seoul 03722, Korea;
- Correspondence: (D.C.); (K.P.)
| | - Kwideok Park
- Center for Biomaterials, Korea Institute of Science and Technology (KIST), Seoul 02792, Korea; (S.S.H.); (C.S.)
- Division of Bio-Medical Science and Technology, KIST School, University of Science and Technology (UST), Seoul 02792, Korea
- Correspondence: (D.C.); (K.P.)
| |
Collapse
|
25
|
Zhao M, Jiang XF, Zhang HQ, Sun JH, Pei H, Ma LN, Cao Y, Li H. Interactions between glial cells and the blood-brain barrier and their role in Alzheimer's disease. Ageing Res Rev 2021; 72:101483. [PMID: 34610479 DOI: 10.1016/j.arr.2021.101483] [Citation(s) in RCA: 39] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2021] [Revised: 09/14/2021] [Accepted: 09/30/2021] [Indexed: 12/11/2022]
Abstract
Alzheimer's disease (AD), which is an irreversible neurodegenerative disorder characterized by senile plaques and neurofibrillary tangles, is the most common form of dementia worldwide. However, currently, there are no satisfying curative therapies for AD. The blood-brain barrier (BBB) acts as a selective physical barrier and plays protective roles in maintaining brain homeostasis. BBB dysfunction as an upstream or downstream event promotes the onset and progression of AD. Moreover, the pathogenesis of AD caused by BBB injury hasn't been well elucidated. Glial cells, BBB compartments and neurons form a minimal functional unit called the neurovascular unit (NVU). Emerging evidence suggests that glial cells are regulators in maintaining the BBB integrity and neuronal function. Illustrating the regulatory mechanism of glial cells in the BBB assists us in drawing a glial-vascular coupling diagram of AD, which may offer new insight into the pathogenesis of AD and early intervention strategies for AD. This review aims to summarize our current knowledge of glial-BBB interactions and their pathological implications in AD and to provide new therapeutic potentials for future investigations.
Collapse
|
26
|
Khrunin AV, Khvorykh GV, Rozhkova AV, Koltsova EA, Petrova EA, Kimelfeld EI, Limborska SA. Examination of Genetic Variants Revealed from a Rat Model of Brain Ischemia in Patients with Ischemic Stroke: A Pilot Study. Genes (Basel) 2021; 12:genes12121938. [PMID: 34946887 PMCID: PMC8701352 DOI: 10.3390/genes12121938] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2021] [Revised: 11/26/2021] [Accepted: 11/28/2021] [Indexed: 11/16/2022] Open
Abstract
Although there has been great progress in understanding the genetic bases of ischemic stroke (IS), many of its aspects remain underexplored. These include the genetics of outcomes, as well as problems with the identification of real causative loci and their functional annotations. Therefore, analysis of the results obtained from animal models of brain ischemia could be helpful. We have developed a bioinformatic approach exploring single nucleotide polymorphisms (SNPs) in human orthologues of rat genes expressed differentially under conditions of induced brain ischemia. Using this approach, we identified and analyzed nine SNPs in 553 Russian individuals (331 patients with IS and 222 controls). We explored the association of SNPs with both IS outcomes and with the risk of IS. SNP rs66782529 (LGALS3) was associated with negative IS outcomes (p = 0.048). SNPs rs62278647 and rs2316710 (PTX3) were associated significantly with IS (p = 0.000029 and p = 0.0025, respectively). These correlations for rs62278647 and rs2316710 were found only in women, which suggests a sex-specific association of the PTX3 polymorphism. Thus, this research not only reveals some new genetic associations with IS and its outcomes but also shows how exploring variations in genes from a rat model of brain ischemia can be of use in searching for human genetic markers of this disorder.
Collapse
Affiliation(s)
- Andrey V. Khrunin
- Institute of Molecular Genetics of National Research Center “Kurchatov Institute”, Kurchatov Sq. 2, 123182 Moscow, Russia; (G.V.K.); (A.V.R.); (S.A.L.)
- Correspondence: ; Tel.: +7-499-1961851
| | - Gennady V. Khvorykh
- Institute of Molecular Genetics of National Research Center “Kurchatov Institute”, Kurchatov Sq. 2, 123182 Moscow, Russia; (G.V.K.); (A.V.R.); (S.A.L.)
| | - Alexandra V. Rozhkova
- Institute of Molecular Genetics of National Research Center “Kurchatov Institute”, Kurchatov Sq. 2, 123182 Moscow, Russia; (G.V.K.); (A.V.R.); (S.A.L.)
| | - Evgeniya A. Koltsova
- Department of Neurology, Neurosurgery and Medical Genetics, Pirogov Russian National Research Medical University, 117997 Moscow, Russia; (E.A.K.); (E.A.P.); (E.I.K.)
| | - Elizaveta A. Petrova
- Department of Neurology, Neurosurgery and Medical Genetics, Pirogov Russian National Research Medical University, 117997 Moscow, Russia; (E.A.K.); (E.A.P.); (E.I.K.)
| | - Ekaterina I. Kimelfeld
- Department of Neurology, Neurosurgery and Medical Genetics, Pirogov Russian National Research Medical University, 117997 Moscow, Russia; (E.A.K.); (E.A.P.); (E.I.K.)
| | - Svetlana A. Limborska
- Institute of Molecular Genetics of National Research Center “Kurchatov Institute”, Kurchatov Sq. 2, 123182 Moscow, Russia; (G.V.K.); (A.V.R.); (S.A.L.)
| |
Collapse
|
27
|
Cheng CY, Huang HC, Kao ST, Lee YC. Angelica sinensis extract promotes neuronal survival by enhancing p38 MAPK-mediated hippocampal neurogenesis and dendritic growth in the chronic phase of transient global cerebral ischemia in rats. JOURNAL OF ETHNOPHARMACOLOGY 2021; 278:114301. [PMID: 34090910 DOI: 10.1016/j.jep.2021.114301] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/29/2020] [Revised: 05/05/2021] [Accepted: 06/02/2021] [Indexed: 06/12/2023]
Abstract
ETHNOPHARMACOLOGICAL RELEVANCE Angelica sinensis (Oliv.) Diels (ASD), commonly known as Dang Gui, is a popular Chinese herb that has long been used to treat ischemic stroke. However, the effects of ASD in chronic cerebral ischemia and its underlying mechanisms still remain unclear. AIM OF THE STUDY This study aimed to determine the effects of the ASD extract on hippocampal neuronal survival at 28 d after transient global cerebral ischemia (GCI) and to investigate the precise mechanisms underlying the p38 mitogen-activated protein kinase (MAPK)-related signaling pathway's involvement in hippocampal neurogenesis. MATERIALS AND METHODS Rats underwent 25 min of four-vessel occlusion. The ASD extract was intragastrically administered at doses of 0.25 g/kg (ASD-0.25 g), 0.5 g/kg (ASD-0.5 g), 1 g/kg (ASD-1 g), 1 g/kg after dimethyl sulfoxide administration (D + ASD-1 g), or 1 g/kg after SB203580 (a p38 MAPK inhibitor) administration (SB + ASD-1 g) at 1, 3, 7, 10, 14, 17, 21, and 24 d after transient GCI. RESULTS ASD-0.5 g, ASD-1 g, and D + ASD-1 g treatments had the following effects: upregulation of bromodeoxyuridine (BrdU) and Ki67 expression, and BrdU/neuronal nuclei (NeuN) and Ki67/nestin co-expression in the hippocampal dentate gyrus (DG); upregulation of microtubule-associated protein 2/NeuN co-expression, and NeuN and glial fibrillary acidic protein (GFAP) expression, and downregulation of tumor necrosis factor-α/GFAP co-expression in the hippocampal CA1 region; upregulation of phospho-p38 MAPK (p-p38 MAPK), phospho-cAMP response element-binding protein (p-CREB), brain-derived neurotrophic factor (BDNF), glial cell line-derived neurotrophic factor (GDNF), and vascular endothelial growth factor A (VEGF-A) expression in the hippocampus. SB + ASD-1 g treatment abrogated the effects of ASD-1 g on the expression of these proteins. CONCLUSIONS ASD-0.5 g and ASD-1 g treatments promotes neuronal survival by enhancing hippocampal neurogenesis. The effects of the ASD extract on astrocyte-associated hippocampal neurogenesis and dendritic growth are caused by the activation of p38 MAPK-mediated CREB/BDNF, GDNF, and VEGF-A signaling pathways in the hippocampus at 28 d after transient GCI.
Collapse
Affiliation(s)
- Chin-Yi Cheng
- School of Post-baccalaureate Chinese Medicine, College of Chinese Medicine, China Medical University, Taichung, 40402, Taiwan; Department of Chinese Medicine, Hui-Sheng Hospital, Taichung, 42056, Taiwan.
| | - Hui-Chi Huang
- Department of Chinese Pharmaceutical Sciences and Chinese Medicine Resources, College of Chinese Medicine, China Medical University, Taichung, 40402, Taiwan.
| | - Shung-Te Kao
- School of Chinese Medicine, College of Chinese Medicine, China Medical University, Taichung, 40402, Taiwan.
| | - Yu-Chen Lee
- Department of Chinese Medicine, China Medical University Hospital, Taichung, 42056, Taiwan; Research Center for Chinese Medicine & Acupuncture, China Medical University, Taichung, 40402, Taiwan; Graduate Institute of Acupuncture Science, China Medical University, Taichung, 40402, Taiwan.
| |
Collapse
|
28
|
Wang L, Liu J, Xu J, Zhang W, Wang R. Coupling of GPR30 mediated neurogenesis and protection with astroglial Aromatase-STAT3 signaling in rat hippocampus after global cerebral ischemia. Mol Cell Endocrinol 2021; 535:111394. [PMID: 34274445 DOI: 10.1016/j.mce.2021.111394] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/27/2021] [Revised: 07/09/2021] [Accepted: 07/11/2021] [Indexed: 11/28/2022]
Abstract
Our previous study revealed that G-protein-coupled estrogen receptor-30 (GPR30) agonist G1 serves as a viable alternative neuroprotectant of 17β-estradiol (E2) to attenuate neuroinflammation and improve cognitive function after global cerebral ischemia (GCI). Aromatase, the key enzyme of E2 biosynthesis, is widely expressed in animal and human brain, and its expression and activity are mediated by selective estrogen receptor modulators. In the present study, we explored the long-term protective and reparative effects of G1 in ovariectomized rats after GCI. We used the aromatase inhibitor letrozole to elucidate whether G1 and brain-derived E2 together induce beneficial effects. Our results showed that G1 administration for 28 days a) significantly increased neurogenesis in the hippocampal sub-granular zone and CA1 regions; b) declined CA1 neuronal impairment in a long-term fashion; c) enhanced expression of synaptic proteins and cognitive function; d) and prevented reactive astrocytes loss, wherein aromatase and brain-derived estrogen levels were markedly increased. Additionally, expression and activation of transducer and activator of transcription 3 (STAT3) were increased in CA1 astrocytes of G1-treated animals. Letrozole abolished all of the observed benefits of G1. Our results suggest that GPR30 activation mediates long-term neuroprotection and neurogenesis in the hippocampus following GCI, with potential mechanism coupling with the activation of astroglial aromatase-STAT3 signaling.
Collapse
Affiliation(s)
- Lu Wang
- School of Public Health of North China University of Science and Technology, Tangshan, Hebei, 063210, China; Dementia and Dyscognitive Key Lab, Tangshan, Hebei, 063000, China; International Science & Technology Cooperation Base of Geriatric Medicine, Tangshan, Hebei, 063000, China
| | - Jiahao Liu
- School of Public Health of North China University of Science and Technology, Tangshan, Hebei, 063210, China; Dementia and Dyscognitive Key Lab, Tangshan, Hebei, 063000, China; International Science & Technology Cooperation Base of Geriatric Medicine, Tangshan, Hebei, 063000, China
| | - Jing Xu
- Dementia and Dyscognitive Key Lab, Tangshan, Hebei, 063000, China; International Science & Technology Cooperation Base of Geriatric Medicine, Tangshan, Hebei, 063000, China; School of Basic Medical Sciences, North China University of Science and Technology, Tangshan, Hebei, 063210, China
| | - Wenli Zhang
- School of Public Health of North China University of Science and Technology, Tangshan, Hebei, 063210, China; Dementia and Dyscognitive Key Lab, Tangshan, Hebei, 063000, China; International Science & Technology Cooperation Base of Geriatric Medicine, Tangshan, Hebei, 063000, China
| | - Ruimin Wang
- School of Public Health of North China University of Science and Technology, Tangshan, Hebei, 063210, China; Dementia and Dyscognitive Key Lab, Tangshan, Hebei, 063000, China; International Science & Technology Cooperation Base of Geriatric Medicine, Tangshan, Hebei, 063000, China; School of Basic Medical Sciences, North China University of Science and Technology, Tangshan, Hebei, 063210, China.
| |
Collapse
|
29
|
Herman S, Fishel I, Offen D. Intranasal delivery of mesenchymal stem cells-derived extracellular vesicles for the treatment of neurological diseases. Stem Cells 2021; 39:1589-1600. [PMID: 34520591 DOI: 10.1002/stem.3456] [Citation(s) in RCA: 37] [Impact Index Per Article: 12.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2021] [Accepted: 09/02/2021] [Indexed: 12/22/2022]
Abstract
Neurological disorders are diseases of the central nervous system (CNS), characterized by a progressive degeneration of cells and deficiencies in neural functions. Mesenchymal stem cells (MSCs) are a promising therapy for diseases and disorders of the CNS. Increasing evidence suggests that their beneficial abilities can be attributed to their paracrine secretion of extracellular vesicles (EVs). Administration of EVs that contain a mixture of proteins, lipids, and nucleic acids, resembling the secretome of MSCs, has been shown to mimic most of the effects of the parental cells. Moreover, the small size and safety profile of EVs provide a number of advantages over cell transplantation. Intranasal (IN) administration of EVs has been established as an effective and reliable way to bypass the blood-brain barrier (BBB) and deliver drugs to the CNS. In addition to pharmacological drugs, EVs can be loaded with a diverse range of cargo designed to modulate gene expression and protein functions in recipient cells, and lead to immunomodulation, neurogenesis, neuroprotection, and degradation of protein aggregates. In this review, we will explore the proposed physiological pathways by which EVs migrate through the nasal route to the CNS where they can actively target a region of injury or inflammation and exert their therapeutic effects. We will summarize the functional outcomes observed in animal models of neurological diseases following IN treatment with MSC-derived EVs. We will also examine key mechanisms that have been suggested to mediate the beneficial effects of EV-based therapy.
Collapse
Affiliation(s)
- Shay Herman
- Department of Human Molecular Genetics and Biochemistry, Sackler School of Medicine, Felsenstein Medical Research Center, Tel Aviv University, Tel Aviv, Israel
| | - Idan Fishel
- Department of Human Molecular Genetics and Biochemistry, Sackler School of Medicine, Felsenstein Medical Research Center, Tel Aviv University, Tel Aviv, Israel
| | - Daniel Offen
- Department of Human Molecular Genetics and Biochemistry, Sackler School of Medicine, Felsenstein Medical Research Center, Tel Aviv University, Tel Aviv, Israel
| |
Collapse
|
30
|
Fan YY, Huo J. A1/A2 astrocytes in central nervous system injuries and diseases: Angels or devils? Neurochem Int 2021; 148:105080. [PMID: 34048845 DOI: 10.1016/j.neuint.2021.105080] [Citation(s) in RCA: 105] [Impact Index Per Article: 35.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2021] [Revised: 05/07/2021] [Accepted: 05/22/2021] [Indexed: 02/07/2023]
Abstract
Astrocytes play a pivotal role in maintaining the central nervous system (CNS) homeostasis and function. In response to CNS injuries and diseases, reactive astrocytes are triggered. By purifying and genetically profiling reactive astrocytes, it has been now found that astrocytes can be activated into two polarization states: the neurotoxic or pro-inflammatory phenotype (A1) and the neuroprotective or anti-inflammatory phenotype (A2). Although the simple dichotomy of the A1/A2 phenotypes does not reflect the wide range of astrocytic phenotypes, it facilitates our understanding of the reactive state of astrocytes in various CNS disorders. This article reviews the recent evidences regarding A1/A2 astrocytes, including (a) the specific markers and morphological characteristics, (b) the effects of A1/A2 astrocytes on the neurovascular unit, and (c) the molecular mechanisms involved in the phenotypic switch of astrocytes. Although many questions remain, a deeper understanding of different phenotypic astrocytes will eventually help us to explore effective strategies for neurological disorders by targeting astrocytes.
Collapse
Affiliation(s)
- Yan-Ying Fan
- Department of Pharmacology, Basic Medical Sciences Center, Shanxi Medical University, Taiyuan, 030001, China; Key Laboratory of Cellular Physiology, Ministry of Education, Shanxi Medical University, Taiyuan, 030001, China.
| | - Jing Huo
- Department of Pharmacology, Basic Medical Sciences Center, Shanxi Medical University, Taiyuan, 030001, China; Shanxi Provincial People's Hospital, Shanxi Medical University, Taiyuan, 030001, China
| |
Collapse
|
31
|
Oggioni M, Mercurio D, Minuta D, Fumagalli S, Popiolek-Barczyk K, Sironi M, Ciechanowska A, Ippati S, De Blasio D, Perego C, Mika J, Garlanda C, De Simoni MG. Long pentraxin PTX3 is upregulated systemically and centrally after experimental neurotrauma, but its depletion leaves unaltered sensorimotor deficits or histopathology. Sci Rep 2021; 11:9616. [PMID: 33953334 PMCID: PMC8100171 DOI: 10.1038/s41598-021-89032-7] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2021] [Accepted: 04/13/2021] [Indexed: 02/03/2023] Open
Abstract
Long pentraxin PTX3, a pattern recognition molecule involved in innate immune responses, is upregulated by pro-inflammatory stimuli, contributors to secondary damage in traumatic brain injury (TBI). We analyzed PTX3 involvement in mice subjected to controlled cortical impact, a clinically relevant TBI mouse model. We measured PTX3 mRNA and protein in the brain and its circulating levels at different time point post-injury, and assessed behavioral deficits and brain damage progression in PTX3 KO mice. PTX3 circulating levels significantly increased 1-3 weeks after injury. In the brain, PTX3 mRNA was upregulated in different brain areas starting from 24 h and up to 5 weeks post-injury. PTX3 protein significantly increased in the brain cortex up to 3 weeks post-injury. Immunohistochemical analysis showed that, 48 h after TBI, PTX3 was localized in proximity of neutrophils, likely on neutrophils extracellular traps (NETs), while 1- and 2- weeks post-injury PTX3 co-localized with fibrin deposits. Genetic depletion of PTX3 did not affect sensorimotor deficits up to 5 weeks post-injury. At this time-point lesion volume and neuronal count, axonal damage, collagen deposition, astrogliosis, microglia activation and phagocytosis were not different in KO compared to WT mice. Members of the long pentraxin family, neuronal pentraxin 1 (nPTX1) and pentraxin 4 (PTX4) were also over-expressed in the traumatized brain, but not neuronal pentraxin 2 (nPTX2) or short pentraxins C-reactive protein (CRP) and serum amyloid P-component (SAP). The long-lasting pattern of activation of PTX3 in brain and blood supports its specific involvement in TBI. The lack of a clear-cut phenotype in PTX3 KO mice may depend on the different roles of this protein, possibly involved in inflammation early after injury and in repair processes later on, suggesting distinct functions in acute phases versus sub-acute or chronic phases. Brain long pentraxins, such as PTX4-shown here to be overexpressed in the brain after TBI-may compensate for PTX3 absence.
Collapse
Affiliation(s)
- Marco Oggioni
- grid.4527.40000000106678902Istituto Di Ricerche Farmacologiche Mario Negri IRCCS, Via Mario Negri 2, 20156 Milan, Italy
| | - Domenico Mercurio
- grid.4527.40000000106678902Istituto Di Ricerche Farmacologiche Mario Negri IRCCS, Via Mario Negri 2, 20156 Milan, Italy
| | - Denise Minuta
- grid.4527.40000000106678902Istituto Di Ricerche Farmacologiche Mario Negri IRCCS, Via Mario Negri 2, 20156 Milan, Italy ,grid.18887.3e0000000417581884Present Address: San Raffaele Telethon Institute for Gene Therapy (SR-Tiget), San Raffaele Hospital, 20132 Milan, Italy
| | - Stefano Fumagalli
- grid.4527.40000000106678902Istituto Di Ricerche Farmacologiche Mario Negri IRCCS, Via Mario Negri 2, 20156 Milan, Italy
| | - Katarzyna Popiolek-Barczyk
- grid.418903.70000 0001 2227 8271Department of Pain Pharmacology, Maj Institute of Pharmacology Polish Academy of Sciences, Krakow, Poland
| | - Marina Sironi
- Humanitas Clinical and Research Center – IRCCS, via Manzoni 56, Rozzano - Milan, 20089 Italy
| | - Agata Ciechanowska
- grid.418903.70000 0001 2227 8271Department of Pain Pharmacology, Maj Institute of Pharmacology Polish Academy of Sciences, Krakow, Poland
| | - Stefania Ippati
- grid.4527.40000000106678902Istituto Di Ricerche Farmacologiche Mario Negri IRCCS, Via Mario Negri 2, 20156 Milan, Italy ,grid.18887.3e0000000417581884Present Address: San Raffaele Scientific Institute, San Raffaele Hospital, 20132 Milan, Italy
| | - Daiana De Blasio
- grid.4527.40000000106678902Istituto Di Ricerche Farmacologiche Mario Negri IRCCS, Via Mario Negri 2, 20156 Milan, Italy
| | - Carlo Perego
- grid.4527.40000000106678902Istituto Di Ricerche Farmacologiche Mario Negri IRCCS, Via Mario Negri 2, 20156 Milan, Italy
| | - Joanna Mika
- grid.418903.70000 0001 2227 8271Department of Pain Pharmacology, Maj Institute of Pharmacology Polish Academy of Sciences, Krakow, Poland
| | - Cecilia Garlanda
- Humanitas Clinical and Research Center – IRCCS, via Manzoni 56, Rozzano - Milan, 20089 Italy ,grid.452490.eHumanitas University, Department of Biomedical Sciences, Via Rita Levi Montalcini 4, Pieve Emanuele – Milan, 20090 Italy
| | - Maria-Grazia De Simoni
- grid.4527.40000000106678902Istituto Di Ricerche Farmacologiche Mario Negri IRCCS, Via Mario Negri 2, 20156 Milan, Italy
| |
Collapse
|
32
|
Wen X, Hou R, Xu K, Han Y, Hu J, Zhang Y, Su Y, Gao J, Zhang G, Zhang L. Pentraxin 3 is more accurate than C-reactive protein for Takayasu arteritis activity assessment: A systematic review and meta-analysis. PLoS One 2021; 16:e0245612. [PMID: 33529185 PMCID: PMC7853471 DOI: 10.1371/journal.pone.0245612] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2020] [Accepted: 01/04/2021] [Indexed: 02/07/2023] Open
Abstract
Aims Whether the circulating levels of pentraxin 3 (PTX3), an acute phase reactant (APR), are higher in active Takayasu arteritis (TAK), and if so, whether PTX3 is more accurate than C-reactive protein (CRP) in TAK activity assessment has been investigated in this study. Study design Research works such as PubMed, Embase, ScienceDirect, Cochrane Library, and two Chinese literature databases (CNKI and WanFang) were searched for studies conducted till August 30th, 2019. Two investigators searched the studies independently, who evaluated the quality of the study using the Newcastle–Ottawa scale (NOS) and extracted data. Pooled standard mean difference (SMD) and diagnostic indexes, with a 95% confidence interval (CI), were calculated using a random-effect model. Results Totally, 8 studies involving 473 TAK (208 active and 265 inactive TAK) patients and 252 healthy controls were eventually included in the meta-analysis. PTX3 level in the blood in active TAK patients were found to be higher than that in dormant TAK with pooled SMD of 0.761 (95% CI = 0.38–1.14, p<0.0001; I2 = 68%, p of Q test = 0.003). And there was no publication bias. Among the 8 studies, 5 studies identified active TAK with both PTX3 and CRP. The pooled sensitivity, specificity, and AUC values of PTX3 in active TAK diagnosis were higher than those of CRP (0.78 [95% CI = 0.65–0.87] vs. 0.66 [95% CI = 0.53–0.77], p = 0.012; 0.85 [95% CI = 0.77–0.90] vs. 0.77 [95% CI = 0.56–0.90], p = 0.033; 0.88 [95% CI = 0.85–0.90] vs. 0.75 [95% CI = 0.71–0.79], p < 0.0001). It showed potential publication bias using Egger’s test (p of PTX3 = 0.031 and p of CRP = 0.047). Conclusions PTX3 might be better than CRP in the assessment of TAK activity. Yet, it should be cautious before clinical use for moderate heterogeneity and potential publication bias of the meta-analysis.
Collapse
Affiliation(s)
- Xiaoting Wen
- Department of Rheumatology, Shanxi Bethune Hospital, Shanxi Academy of Medical Sciences, Taiyuan, Shanxi, China
| | - Ruihong Hou
- Department of Rheumatology, Shanxi Bethune Hospital, Shanxi Academy of Medical Sciences, Taiyuan, Shanxi, China
| | - Ke Xu
- Department of Rheumatology, Shanxi Bethune Hospital, Shanxi Academy of Medical Sciences, Taiyuan, Shanxi, China
| | - Yunxia Han
- Department of Rheumatology, Shanxi Bethune Hospital, Shanxi Academy of Medical Sciences, Taiyuan, Shanxi, China
- Department of Rheumatology, Shanxi Bethune Hospital Affiliated to Shanxi Medical University, Taiyuan, Shanxi, China
| | - Junping Hu
- Department of Rheumatology, Shanxi Bethune Hospital, Shanxi Academy of Medical Sciences, Taiyuan, Shanxi, China
- Department of Rheumatology, Shanxi Bethune Hospital Affiliated to Shanxi Medical University, Taiyuan, Shanxi, China
| | - Yan Zhang
- Department of Clinical Laboratory, Shanxi Bethune Hospital, Shanxi Academy of Medical Sciences, Taiyuan, Shanxi, China
| | - Yazhen Su
- Department of Rheumatology, Shanxi Bethune Hospital, Shanxi Academy of Medical Sciences, Taiyuan, Shanxi, China
| | - Jinfang Gao
- Department of Rheumatology, Shanxi Bethune Hospital, Shanxi Academy of Medical Sciences, Taiyuan, Shanxi, China
| | - Gailian Zhang
- Department of Rheumatology, Shanxi Bethune Hospital, Shanxi Academy of Medical Sciences, Taiyuan, Shanxi, China
| | - Liyun Zhang
- Department of Rheumatology, Shanxi Bethune Hospital, Shanxi Academy of Medical Sciences, Taiyuan, Shanxi, China
- * E-mail:
| |
Collapse
|
33
|
Rahman AA, Amruta N, Pinteaux E, Bix GJ. Neurogenesis After Stroke: A Therapeutic Perspective. Transl Stroke Res 2021; 12:1-14. [PMID: 32862401 PMCID: PMC7803692 DOI: 10.1007/s12975-020-00841-w] [Citation(s) in RCA: 79] [Impact Index Per Article: 26.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2020] [Revised: 08/14/2020] [Accepted: 08/17/2020] [Indexed: 12/14/2022]
Abstract
Stroke is a major cause of death and disability worldwide. Yet therapeutic strategies available to treat stroke are very limited. There is an urgent need to develop novel therapeutics that can effectively facilitate functional recovery. The injury that results from stroke is known to induce neurogenesis in penumbra of the infarct region. There is considerable interest in harnessing this response for therapeutic purposes. This review summarizes what is currently known about stroke-induced neurogenesis and the factors that have been identified to regulate it. Additionally, some key studies in this field have been highlighted and their implications on future of stroke therapy have been discussed. There is a complex interplay between neuroinflammation and neurogenesis that dictates stroke outcome and possibly recovery. This highlights the need for a better understanding of the neuroinflammatory process and how it affects neurogenesis, as well as the need to identify new mechanisms and potential modulators. Neuroinflammatory processes and their impact on post-stroke repair have therefore also been discussed.
Collapse
Affiliation(s)
- Abir A Rahman
- Clinical Neuroscience Research Center, Department of Neurosurgery, Tulane University School of Medicine, Room 1349, 131 S. Robertson, Ste 1300, New Orleans, LA, 70112, USA
| | - Narayanappa Amruta
- Clinical Neuroscience Research Center, Department of Neurosurgery, Tulane University School of Medicine, Room 1349, 131 S. Robertson, Ste 1300, New Orleans, LA, 70112, USA
| | - Emmanuel Pinteaux
- Faculty of Biology, Medicine and Health, University of Manchester, A.V. Hill Building, Oxford Road, Manchester, M13 9PT, UK
| | - Gregory J Bix
- Clinical Neuroscience Research Center, Department of Neurosurgery, Tulane University School of Medicine, Room 1349, 131 S. Robertson, Ste 1300, New Orleans, LA, 70112, USA.
- Tulane Brain Institute, Tulane University, New Orleans, LA, 70112, USA.
| |
Collapse
|
34
|
Shindo A, Takase H, Hamanaka G, Chung KK, Mandeville ET, Egawa N, Maki T, Borlongan M, Takahashi R, Lok J, Tomimoto H, Lo EH, Arai K. Biphasic roles of pentraxin 3 in cerebrovascular function after white matter stroke. CNS Neurosci Ther 2020; 27:60-70. [PMID: 33314664 PMCID: PMC7804900 DOI: 10.1111/cns.13510] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2020] [Revised: 10/24/2020] [Accepted: 10/25/2020] [Indexed: 12/14/2022] Open
Abstract
Recent clinical studies suggest that pentraxin 3 (PTX3), which is known as an acute-phase protein that is produced rapidly at local sites of inflammation, may be a new biomarker of disease risk for central nervous system disorders, including stroke. However, the effects of PTX3 on cerebrovascular function in the neurovascular unit (NVU) after stroke are mostly unknown, and the basic research regarding the roles of PTX3 in NVU function is still limited. In this reverse translational study, we prepared mouse models of white matter stroke by vasoconstrictor (ET-1 or L-Nio) injection into the corpus callosum region to examine the roles of PTX3 in the pathology of cerebral white matter stroke. PTX3 expression was upregulated in GFAP-positive astrocytes around the affected region in white matter for at least 21 days after vasoconstrictor injection. When PTX3 expression was reduced by PTX3 siRNA, blood-brain barrier (BBB) damage at day 3 after white matter stroke was exacerbated. In contrast, when PTX3 siRNA was administered at day 7 after white matter stroke, compensatory angiogenesis at day 21 was promoted. In vitro cell culture experiments confirmed the inhibitory effect of PTX3 in angiogenesis, that is, recombinant PTX3 suppressed the tube formation of cultured endothelial cells in a Matrigel-based in vitro angiogenesis assay. Taken together, our findings may support a novel concept that astrocyte-derived PTX3 plays biphasic roles in cerebrovascular function after white matter stroke; additionally, it may also provide a proof-of-concept that PTX3 could be a therapeutic target for white matter-related diseases, including stroke.
Collapse
Affiliation(s)
- Akihiro Shindo
- Neuroprotection Research Laboratory, Departments of Radiology and Neurology, Massachusetts General Hospital and Harvard Medical School, Charlestown, MA, USA.,Department of Neurology, Mie University Graduate School of Medicine, Tsu, Japan
| | - Hajime Takase
- Neuroprotection Research Laboratory, Departments of Radiology and Neurology, Massachusetts General Hospital and Harvard Medical School, Charlestown, MA, USA
| | - Gen Hamanaka
- Neuroprotection Research Laboratory, Departments of Radiology and Neurology, Massachusetts General Hospital and Harvard Medical School, Charlestown, MA, USA
| | - Kelly K Chung
- Neuroprotection Research Laboratory, Departments of Radiology and Neurology, Massachusetts General Hospital and Harvard Medical School, Charlestown, MA, USA
| | - Emiri T Mandeville
- Neuroprotection Research Laboratory, Departments of Radiology and Neurology, Massachusetts General Hospital and Harvard Medical School, Charlestown, MA, USA
| | - Naohiro Egawa
- Neuroprotection Research Laboratory, Departments of Radiology and Neurology, Massachusetts General Hospital and Harvard Medical School, Charlestown, MA, USA.,Department of Neurology, Kyoto University Graduate School of Medicine, Kyoto, Japan
| | - Takakuni Maki
- Neuroprotection Research Laboratory, Departments of Radiology and Neurology, Massachusetts General Hospital and Harvard Medical School, Charlestown, MA, USA.,Department of Neurology, Kyoto University Graduate School of Medicine, Kyoto, Japan
| | - Mia Borlongan
- Neuroprotection Research Laboratory, Departments of Radiology and Neurology, Massachusetts General Hospital and Harvard Medical School, Charlestown, MA, USA
| | - Ryosuke Takahashi
- Department of Neurology, Kyoto University Graduate School of Medicine, Kyoto, Japan
| | - Josephine Lok
- Neuroprotection Research Laboratory, Departments of Radiology and Neurology, Massachusetts General Hospital and Harvard Medical School, Charlestown, MA, USA.,Pediatric Critical Care Medicine, Massachusetts General Hospital, Boston, MA, USA
| | - Hidekazu Tomimoto
- Department of Neurology, Mie University Graduate School of Medicine, Tsu, Japan
| | - Eng H Lo
- Neuroprotection Research Laboratory, Departments of Radiology and Neurology, Massachusetts General Hospital and Harvard Medical School, Charlestown, MA, USA
| | - Ken Arai
- Neuroprotection Research Laboratory, Departments of Radiology and Neurology, Massachusetts General Hospital and Harvard Medical School, Charlestown, MA, USA
| |
Collapse
|
35
|
Popiolek-Barczyk K, Ciechanowska A, Ciapała K, Pawlik K, Oggioni M, Mercurio D, De Simoni MG, Mika J. The CCL2/CCL7/CCL12/CCR2 pathway is substantially and persistently upregulated in mice after traumatic brain injury, and CCL2 modulates the complement system in microglia. Mol Cell Probes 2020; 54:101671. [PMID: 33160071 DOI: 10.1016/j.mcp.2020.101671] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2020] [Revised: 10/15/2020] [Accepted: 11/01/2020] [Indexed: 12/28/2022]
Abstract
Traumatic brain injury (TBI) is the leading cause of death in the global population. Disturbed inflammatory processes after TBI exacerbate secondary brain injury and contribute to unfavorable outcomes. Multiple inflammatory events that accompany brain trauma, such as glial activation, chemokine release, or the initiation of the complement system cascade, have been identified as potential targets for TBI treatment. However, the participation of chemokines in the complement activation remains unknown. Our studies sought to determine the changes in the expression of the molecules involved in the CCL2/CCL7/CCL12/CCR2 pathway in the injured brain and the effect of CCL2, CCL7, and CCL12 (10, 100, and 500 ng/mL) on the classic and lectin complement pathways and inflammatory factors in microglial cell cultures. Brain injury in mice was modeled by controlled cortical impact (CCI). Our findings indicate a time-dependent upregulation of CCL2, CCL7, and CCL12 at the mRNA and protein levels within the cortex, striatum, and/or thalamus beginning 24 h after the trauma. The analysis of the expression of the receptor of the tested chemokines, CCR2, revealed its substantial upregulation within the injured brain areas mainly on the mRNA level. Using primary cortical microglial cell cultures, we observed a substantial increase in the expression of CCL2, CCL7, and CCL12 after 24 h of LPS (100 ng/mL) treatment. CCL2 stimulation of microglia increased the level of IL-1β mRNA but did not influence the expression of IL-18, IL-6, and IL-10. Moreover, CCL2 significantly increased the expression of Iba1, a marker of microglia activation. CCL2 and CCL12 upregulated the expression of C1qa but did not influence the expression of C1ra and C1s1 (classical pathway); moreover, CCL2 increased ficolin A expression and reduced collectin 11 expression (lectin pathway). Additionally, we observed the downregulation of pentraxin 3, a modulator of the complement cascade, after CCL2 and CCL12 treatment. We did not detect the expression of ficolin B, Mbl1, and Mbl2 in microglial cells. Our data identify CCL2 as a modulator of the classical and lectin complement pathways suggesting that CCL2 may be a promising target for pharmacological intervention after brain injury. Moreover, our study provides evidence that CCL2 and two other CCR2 ligands may play a role in the development of changes in TBI.
Collapse
Affiliation(s)
- Katarzyna Popiolek-Barczyk
- Maj Institute of Pharmacology, Polish Academy of Sciences, Department of Pain Pharmacology, 12 Smetna Str, 31-343, Krakow, Poland
| | - Agata Ciechanowska
- Maj Institute of Pharmacology, Polish Academy of Sciences, Department of Pain Pharmacology, 12 Smetna Str, 31-343, Krakow, Poland
| | - Katarzyna Ciapała
- Maj Institute of Pharmacology, Polish Academy of Sciences, Department of Pain Pharmacology, 12 Smetna Str, 31-343, Krakow, Poland
| | - Katarzyna Pawlik
- Maj Institute of Pharmacology, Polish Academy of Sciences, Department of Pain Pharmacology, 12 Smetna Str, 31-343, Krakow, Poland
| | - Marco Oggioni
- Department of Neuroscience, Istituto di Ricerche Farmacologiche Mario Negri IRCCS, Via Mario Negri 2, 20156, Milan, Italy
| | - Domenico Mercurio
- Department of Neuroscience, Istituto di Ricerche Farmacologiche Mario Negri IRCCS, Via Mario Negri 2, 20156, Milan, Italy
| | - Maria-Grazia De Simoni
- Department of Neuroscience, Istituto di Ricerche Farmacologiche Mario Negri IRCCS, Via Mario Negri 2, 20156, Milan, Italy
| | - Joanna Mika
- Maj Institute of Pharmacology, Polish Academy of Sciences, Department of Pain Pharmacology, 12 Smetna Str, 31-343, Krakow, Poland.
| |
Collapse
|
36
|
Co-Culture of Primary Human Coronary Artery and Internal Thoracic Artery Endothelial Cells Results in Mutually Beneficial Paracrine Interactions. Int J Mol Sci 2020; 21:ijms21218032. [PMID: 33126651 PMCID: PMC7663246 DOI: 10.3390/ijms21218032] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2020] [Revised: 10/21/2020] [Accepted: 10/27/2020] [Indexed: 12/12/2022] Open
Abstract
Although saphenous veins (SVs) are commonly used as conduits for coronary artery bypass grafting (CABG), internal thoracic artery (ITA) grafts have significantly higher long-term patency. As SVs and ITA endothelial cells (ECs) have a considerable level of heterogeneity, we suggested that synergistic paracrine interactions between CA and ITA ECs (HCAECs and HITAECs, respectively) may explain the increased resistance of ITA grafts and adjacent CAs to atherosclerosis and restenosis. In this study, we measured the gene and protein expression of the molecules responsible for endothelial homeostasis, pro-inflammatory response, and endothelial-to-mesenchymal transition in HCAECs co-cultured with either HITAECs or SV ECs (HSaVECs) for an ascending duration. Upon the co-culture, HCAECs and HITAECs showed augmented expression of endothelial nitric oxide synthase (eNOS) and reduced expression of endothelial-to-mesenchymal transition transcription factors Snail and Slug when compared to the HCAEC–HSaVEC model. HCAECs co-cultured with HITAECs demonstrated an upregulation of HES1, a master regulator of arterial specification, of which the expression was also exclusively induced in HSaVECs co-cultured with HCAECs, suggestive of their arterialisation. In addition, co-culture of HCAECs and HITAECs promoted the release of pro-angiogenic molecules. To conclude, co-culture of HCAECs and HITAECs results in reciprocal and beneficial paracrine interactions that might contribute to the better performance of ITA grafts upon CABG.
Collapse
|
37
|
Pentraxin 3 inhibits fibroblast growth factor 2 induced osteoclastogenesis in rheumatoid arthritis. Biomed Pharmacother 2020; 131:110628. [PMID: 32890968 DOI: 10.1016/j.biopha.2020.110628] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2020] [Revised: 07/29/2020] [Accepted: 08/08/2020] [Indexed: 12/17/2022] Open
Abstract
BACKGROUND Synovial fibroblasts (SFs) act as key effector cells mediating synovial inflammation and joint destruction in rheumatoid arthritis (RA). Fibroblast growth factor 2 (FGF2) and its receptors (FGFRs) play important roles in RASF-mediated osteoclastogenesis. Pentraxin 3 (PTX3) is a soluble pattern recognition receptor with nonredundant roles in inflammation and innate immunity. PTX3 is produced by various cell types, including SFs and is highly expressed in RA. However, the role of PTX3 in FGF2-induced osteoclastogenesis in RA and the underlying mechanism have been poorly elucidated. METHODS We first determined the expression of FGF2 and RANKL in synovial tissue and synovial fluid of RA patients. We then examined the effect of PTX3 on RASF osteoclastogenesis induced by endogenous and exogenous FGF2 in isolated RASF cells treated with FGF2 and/or recombinant PTX3 (rPTX3). Thirdly, we analyzed the effect of PTX3 on FGF2 binding to FGFR-1 and HSPG receptors on RASFs. Lastly, we evaluated joint morphology after injection of rPTX3 into collagen-induced arthritis (CIA) mice. RESULTS FGF2 was confirmed to be highly expressed in both synovial tissue and synovial fluid of RA patients. FGF2 promoted cell proliferation and increased the expressions of RANKL and ICAM-1 and RANKL/OPG to induce osteoclastogenesis in RASF, while anti-FGF2 neutralized this effect. PTX3 significantly inhibited FGF2-induced RASF cell growth and osteoclastogenesis by preventing the interaction of 125I-FGF2 and FGFRs on the same cells. In addition, administration of rPTX3 significantly ameliorated cartilage and bone destruction in mice with CIA. CONCLUSIONS PTX3 exhibited an inhibitory effect on the autocrine and paracrine stimulation of FGF2 on SFs, and ameliorated bone destruction in CIA mice. PTX3 may be implicated in bone destruction in RA, which may provide theoretical evidence and potential therapeutic targets for RA treatment.
Collapse
|
38
|
Upadhya R, Madhu LN, Attaluri S, Gitaí DLG, Pinson MR, Kodali M, Shetty G, Zanirati G, Kumar S, Shuai B, Weintraub ST, Shetty AK. Extracellular vesicles from human iPSC-derived neural stem cells: miRNA and protein signatures, and anti-inflammatory and neurogenic properties. J Extracell Vesicles 2020; 9:1809064. [PMID: 32944193 PMCID: PMC7480597 DOI: 10.1080/20013078.2020.1809064] [Citation(s) in RCA: 92] [Impact Index Per Article: 23.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022] Open
Abstract
Grafting of neural stem cells (NSCs) derived from human induced pluripotent stem cells (hiPSCs) has shown promise for brain repair after injury or disease, but safety issues have hindered their clinical application. Employing nano-sized extracellular vesicles (EVs) derived from hiPSC-NSCs appears to be a safer alternative because they likely have similar neuroreparative properties as NSCs and are amenable for non-invasive administration as an autologous or allogeneic off-the-shelf product. However, reliable methods for isolation, characterization and testing the biological properties of EVs are critically needed for translation. We investigated signatures of miRNAs and proteins and the biological activity of EVs, isolated from hiPSC-NSCs through a combination of anion-exchange chromatography (AEC) and size-exclusion chromatography (SEC). AEC and SEC facilitated the isolation of EVs with intact ultrastructure and expressing CD9, CD63, CD81, ALIX and TSG 101. Small RNA sequencing, proteomic analysis, pathway analysis and validation of select miRNAs and proteins revealed that EVs were enriched with miRNAs and proteins involved in neuroprotective, anti-apoptotic, antioxidant, anti-inflammatory, blood-brain barrier repairing, neurogenic and Aβ reducing activities. Besides, EVs comprised miRNAs and/or proteins capable of promoting synaptogenesis, synaptic plasticity and better cognitive function. Investigations using an in vitro macrophage assay and a mouse model of status epilepticus confirmed the anti-inflammatory activity of EVs. Furthermore, the intranasal administration of EVs resulted in the incorporation of EVs by neurons, microglia and astrocytes in virtually all adult rat and mouse brain regions, and enhancement of hippocampal neurogenesis. Thus, biologically active EVs containing miRNAs and proteins relevant to brain repair could be isolated from hiPSC-NSC cultures, making them a suitable biologic for treating neurodegenerative disorders.
Collapse
Affiliation(s)
- Raghavendra Upadhya
- Institute for Regenerative Medicine, Department of Molecular and Cellular Medicine, Texas A&M University College of Medicine, College Station, Texas, USA
| | - Leelavathi N Madhu
- Institute for Regenerative Medicine, Department of Molecular and Cellular Medicine, Texas A&M University College of Medicine, College Station, Texas, USA
| | - Sahithi Attaluri
- Institute for Regenerative Medicine, Department of Molecular and Cellular Medicine, Texas A&M University College of Medicine, College Station, Texas, USA
| | - Daniel Leite Góes Gitaí
- Department of Cellular and Molecular Biology, Institute of Biological Sciences and Health, Federal University of Alagoas, Brazil
| | - Marisa R Pinson
- Institute for Regenerative Medicine, Department of Molecular and Cellular Medicine, Texas A&M University College of Medicine, College Station, Texas, USA
| | - Maheedhar Kodali
- Institute for Regenerative Medicine, Department of Molecular and Cellular Medicine, Texas A&M University College of Medicine, College Station, Texas, USA
| | - Geetha Shetty
- Institute for Regenerative Medicine, Department of Molecular and Cellular Medicine, Texas A&M University College of Medicine, College Station, Texas, USA
| | - Gabriele Zanirati
- Institute for Regenerative Medicine, Department of Molecular and Cellular Medicine, Texas A&M University College of Medicine, College Station, Texas, USA
| | - Smrithi Kumar
- Institute for Regenerative Medicine, Department of Molecular and Cellular Medicine, Texas A&M University College of Medicine, College Station, Texas, USA
| | - Bing Shuai
- Institute for Regenerative Medicine, Department of Molecular and Cellular Medicine, Texas A&M University College of Medicine, College Station, Texas, USA
| | - Susan T Weintraub
- Department of Biochemistry and Structural Biology, UT Health San Antonio, San Antonio, Texas, USA
| | - Ashok K Shetty
- Institute for Regenerative Medicine, Department of Molecular and Cellular Medicine, Texas A&M University College of Medicine, College Station, Texas, USA
| |
Collapse
|
39
|
Su X, Liu Y, Bakkar M, ElKashty O, El-Hakim M, Seuntjens J, Tran SD. Labial Stem Cell Extract Mitigates Injury to Irradiated Salivary Glands. J Dent Res 2020; 99:293-301. [PMID: 31937182 DOI: 10.1177/0022034519898138] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023] Open
Abstract
Stem cell-based therapies could provide a permanent treatment for salivary gland (SG) hypofunction caused by ionizing radiation (IR) injury. However, current challenges for SG stem cells to reach the clinic include surgical invasiveness, amount of tissue needed, cell delivery, and storage methods. The objective of this study was to develop a clinically less invasive method to isolate and expand human SG stem cells and then to obtain a cell-free extract to be used as a therapy for IR-injured SGs. Human labial glands were biopsied, and labial stem cells (LSCs) were expanded by explant culture. The LSC extract (LSCE) was obtained by releasing the cellular components after 3 freeze-thaw cycles and 17,000g force centrifugation. LSCE was injected intravenously into mice that had their SGs injured with 13-Gy IR. Positive (non-IR) and negative (IR) control mice received injections of saline (vehicle control). Three pieces of labial glands (0.1 g weight) could expand 1 to 2 million cells. LSCs had a doubling time of 18.8 h; could differentiate into osteocytes, adipocytes, and chondrocytes; and were positive for mesenchymal stem cell markers. Both angiogenic (FGF-1, FGF-2, KGF, angiopoietin, uPA, VEGF) and antiangiogenic factors (PAI-1, TIMP-1, TSP-1, CD26) were detected in LSCE. In addition, some angiogenic factors (PEDF, PTX3, VEGF) possessed neurotrophic functions. Mice treated with LSCE had 50% to 60% higher salivary flow rate than saline-treated mice at 8 and 12 wk post-IR. Saliva lag time measurements also confirmed that LSCE restored SG function. Histologic analyses of parotids and submandibular glands reported comparable numbers of acinar cells, blood vessels, and parasympathetic nerves and cell proliferation rates in sham IR and LSCE-treated mice, though significantly lower in saline-treated mice. An explant culture method can harvest a large number of LSCs from small pieces of labial glands. LSCE showed clinical potential to mitigate IR-injured SGs.
Collapse
Affiliation(s)
- X Su
- McGill Craniofacial Tissue Engineering and Stem Cells Laboratory, Faculty of Dentistry, McGill University, Montreal, QC, Canada
| | - Y Liu
- McGill Craniofacial Tissue Engineering and Stem Cells Laboratory, Faculty of Dentistry, McGill University, Montreal, QC, Canada
| | - M Bakkar
- McGill Craniofacial Tissue Engineering and Stem Cells Laboratory, Faculty of Dentistry, McGill University, Montreal, QC, Canada
| | - O ElKashty
- McGill Craniofacial Tissue Engineering and Stem Cells Laboratory, Faculty of Dentistry, McGill University, Montreal, QC, Canada
| | - M El-Hakim
- Department of Oral and Maxillofacial Surgery, McGill University, Montreal, QC, Canada
| | - J Seuntjens
- Gerald Bronfman Department of Oncology, Medical Physics Unit, McGill University, Montreal, Canada
| | - S D Tran
- McGill Craniofacial Tissue Engineering and Stem Cells Laboratory, Faculty of Dentistry, McGill University, Montreal, QC, Canada
| |
Collapse
|
40
|
Zhou C, Chen H, Zheng JF, Guo ZD, Huang ZJ, Wu Y, Zhong JJ, Sun XC, Cheng CJ. Pentraxin 3 contributes to neurogenesis after traumatic brain injury in mice. Neural Regen Res 2020; 15:2318-2326. [PMID: 32594056 PMCID: PMC7749468 DOI: 10.4103/1673-5374.285001] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022] Open
Abstract
Emerging evidence indicates that pentraxin 3 is an acute-phase protein that is linked with the immune response to inflammation. It is also a newly discovered marker of anti-inflammatory A2 reactive astrocytes, and potentially has multiple protective effects in stroke; however, its role in the adult brain after traumatic brain injury is unknown. In the present study, a moderate model of traumatic brain injury in mice was established using controlled cortical impact. The models were intraventricularly injected with recombinant pentraxin 3 (the recombinant pentraxin 3 group) or an equal volume of vehicle (the control group). The sham-operated mice underwent craniotomy, but did not undergo the controlled cortical impact. The potential neuroprotective and neuroregenerative roles of pentraxin 3 were investigated on days 14 and 21 after traumatic brain injury. Western blot assay showed that the expression of endogenous pentraxin 3 was increased after traumatic brain injury in mice. Furthermore, the neurological severity test and wire grip test revealed that recombinant pentraxin 3 treatment reduced the neurological severity score and increased the wire grip score, suggesting an improved recovery of sensory-motor functions. The Morris water maze results demonstrated that recombinant pentraxin 3 treatment reduced the latency to the platform, increased the time spent in the correct quadrant, and increased the number of times traveled across the platform, thus suggesting an improved recovery of cognitive function. In addition, to investigate the effects of pentraxin 3 on astrocytes, specific markers of A2 astrocytes were detected in primary astrocyte cultures in vitro using western blot assay. The results demonstrated that pentraxin 3 administration activates A2 astrocytes. To explore the protective mechanisms of pentraxin 3, immunofluorescence staining was used. Intraventricular injection of recombinant pentraxin 3 increased neuronal maintenance in the peri-injured cortex and ipsilateral hippocampus, increased the number of doublecortin-positive neural progenitor cells in the subventricular and subgranular zones, and increased the number of bromodeoxyuridine (proliferation) and neuronal nuclear antigen (mature neuron) double-labeled cells in the hippocampus and peri-injured cortex. Pentraxin 3 administration also increased the number of neurospheres and the number of bromodeoxyuridine and doublecortin double-labeled cells in neurospheres, and enhanced the proliferation of neural progenitor cells in primary neural progenitor cell cultures in vitro. In conclusion, recombinant pentraxin 3 administration activated A2 astrocytes, and consequently improved the recovery of neural function by increasing neuronal survival and enhancing neurogenesis. All experiments were approved by the Animal Ethics Committee of the First Affiliated Hospital of Chongqing Medical University, China on March 1, 2016.
Collapse
Affiliation(s)
- Chao Zhou
- Department of Neurosurgery, The First Affiliated Hospital of Chongqing Medical University, Chongqing, China
| | - Hong Chen
- Department of Neurosurgery, The First Affiliated Hospital of Chongqing Medical University, Chongqing, China
| | - Jian-Feng Zheng
- Department of Neurosurgery, The First Affiliated Hospital of Chongqing Medical University, Chongqing, China
| | - Zong-Duo Guo
- Department of Neurosurgery, The First Affiliated Hospital of Chongqing Medical University, Chongqing, China
| | - Zhi-Jian Huang
- Department of Neurosurgery, The First Affiliated Hospital of Chongqing Medical University, Chongqing, China
| | - Yue Wu
- Department of Neurosurgery, The First Affiliated Hospital of Chongqing Medical University, Chongqing, China
| | - Jian-Jun Zhong
- Department of Neurosurgery, The First Affiliated Hospital of Chongqing Medical University, Chongqing, China
| | - Xiao-Chuan Sun
- Department of Neurosurgery, The First Affiliated Hospital of Chongqing Medical University, Chongqing, China
| | - Chong-Jie Cheng
- Department of Neurosurgery, The First Affiliated Hospital of Chongqing Medical University, Chongqing, China
| |
Collapse
|
41
|
Lee NG, Jeung IC, Heo SC, Song J, Kim W, Hwang B, Kwon MG, Kim YG, Lee J, Park JG, Shin MG, Cho YL, Son MY, Bae KH, Lee SH, Kim JH, Min JK. Ischemia-induced Netrin-4 promotes neovascularization through endothelial progenitor cell activation via Unc-5 Netrin receptor B. FASEB J 2019; 34:1231-1246. [PMID: 31914695 DOI: 10.1096/fj.201900866rr] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2019] [Revised: 10/31/2019] [Accepted: 11/11/2019] [Indexed: 11/11/2022]
Abstract
Endothelial progenitor cells (EPCs) promote neovascularization and tissue repair by migrating to vascular injury sites; therefore, factors that enhance EPC homing to damaged tissues are of interest. Here, we provide evidence of the prominent role of the Netrin-4 (NTN4)-Unc-5 Netrin receptor B (UNC5B) axis in EPC-specific promotion of ischemic neovascularization. Our results showed that NTN4 promoted the proliferation, chemotactic migration, and paracrine effects of small EPCs (SEPCs) and significantly increased the incorporation of large EPCs (LEPCs) into tubule networks. Additionally, NTN4 prominently augmented neovascularization in mice with hindlimb ischemia by increasing the homing of exogenously transplanted EPCs to the ischemic limb and incorporating EPCs into vessels. Moreover, silencing of UNC5B, an NTN4 receptor, abrogated the NTN4-induced cellular activities of SEPCs in vitro and blood-flow recovery and neovascularization in vivo in ischemic muscle by reducing EPC homing and incorporation. These findings suggest NTN4 as an EPC-based therapy for treating angiogenesis-dependent diseases.
Collapse
Affiliation(s)
- Na Geum Lee
- Biotherapeutics Translational Research Center, Korea Research Institute of Bioscience and Biotechnology (KRIBB), Daejeon, South Korea.,Department of Biomolecular Science, KRIBB School of Bioscience, Korea University of Science and Technology, Daejeon, South Korea
| | - In Cheul Jeung
- Department of Obstetrics and Gynecology, College of Medicine, The Catholic University of Korea, Seoul, South Korea
| | - Soon Chul Heo
- Department of Physiology, Pusan National University Yangsan Hospital, Yangsan, South Korea
| | - Jinhoi Song
- Biotherapeutics Translational Research Center, Korea Research Institute of Bioscience and Biotechnology (KRIBB), Daejeon, South Korea
| | - Wooil Kim
- Biotherapeutics Translational Research Center, Korea Research Institute of Bioscience and Biotechnology (KRIBB), Daejeon, South Korea.,Department of Biomolecular Science, KRIBB School of Bioscience, Korea University of Science and Technology, Daejeon, South Korea
| | - Byungtae Hwang
- Biotherapeutics Translational Research Center, Korea Research Institute of Bioscience and Biotechnology (KRIBB), Daejeon, South Korea
| | - Min-Gi Kwon
- Biotherapeutics Translational Research Center, Korea Research Institute of Bioscience and Biotechnology (KRIBB), Daejeon, South Korea.,Department of Biomolecular Science, KRIBB School of Bioscience, Korea University of Science and Technology, Daejeon, South Korea
| | - Yeon-Gu Kim
- Biotherapeutics Translational Research Center, Korea Research Institute of Bioscience and Biotechnology (KRIBB), Daejeon, South Korea
| | - Jangwook Lee
- Biotherapeutics Translational Research Center, Korea Research Institute of Bioscience and Biotechnology (KRIBB), Daejeon, South Korea
| | - Jong-Gil Park
- Biotherapeutics Translational Research Center, Korea Research Institute of Bioscience and Biotechnology (KRIBB), Daejeon, South Korea
| | - Min-Gyeong Shin
- Biotherapeutics Translational Research Center, Korea Research Institute of Bioscience and Biotechnology (KRIBB), Daejeon, South Korea
| | - Young-Lai Cho
- Research Center for Metabolic Regulation, Korea Research Institute of Bioscience and Biotechnology (KRIBB), Daejeon, South Korea
| | - Mi-Young Son
- Stem Cell Research Center, Korea Research Institute of Bioscience and Biotechnology (KRIBB), Daejeon, South Korea
| | - Kwang-Hee Bae
- Research Center for Metabolic Regulation, Korea Research Institute of Bioscience and Biotechnology (KRIBB), Daejeon, South Korea
| | - Sang-Hyun Lee
- Biotherapeutics Translational Research Center, Korea Research Institute of Bioscience and Biotechnology (KRIBB), Daejeon, South Korea
| | - Jae Ho Kim
- Department of Physiology, Pusan National University Yangsan Hospital, Yangsan, South Korea
| | - Jeong-Ki Min
- Biotherapeutics Translational Research Center, Korea Research Institute of Bioscience and Biotechnology (KRIBB), Daejeon, South Korea.,Department of Biomolecular Science, KRIBB School of Bioscience, Korea University of Science and Technology, Daejeon, South Korea
| |
Collapse
|
42
|
Johnson TK, Zhao L, Zhu D, Wang Y, Xiao Y, Oguljahan B, Zhao X, Kirlin WG, Yin L, Chilian WM, Liu D. Exosomes derived from induced vascular progenitor cells promote angiogenesis in vitro and in an in vivo rat hindlimb ischemia model. Am J Physiol Heart Circ Physiol 2019; 317:H765-H776. [PMID: 31418583 DOI: 10.1152/ajpheart.00247.2019] [Citation(s) in RCA: 31] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
Induced vascular progenitor cells (iVPCs) were created as an ideal cell type for regenerative medicine and have been reported to positively promote collateral blood flow and improve cardiac function in a rat model of myocardial ischemia. Exosomes have emerged as a novel biomedicine that mimics the function of the donor cells. We investigated the angiogenic activity of exosomes from iPVCs (iVPC-Exo) as a cell-free therapeutic approach for ischemia. Exosomes from iVPCs and rat aortic endothelial cells (RAECs) were isolated using a combination of ultrafiltration and size-exclusion chromatography. Nanoparticle tracking analysis revealed that exosome isolates fell within the exosomal diameter (<150 nm). These exosomes contained known markers Alix and TSG101, and their morphology was validated using transmission electron microscopy. When compared with RAECs, iVPCs significantly increased the secretion of exosomes. Cardiac microvascular endothelial cells and aortic ring explants were pretreated with RAEC-Exo or iVPC-Exo, and basal medium was used as a control. iVPC-Exo exerted an in vitro angiogenic effect on the proliferation, tube formation, and migration of endothelial cells and stimulated microvessel sprouting in an ex vivo aortic ring assay. Additionally, iVPC-Exo increased blood perfusion in a hindlimb ischemia model. Proangiogenic proteins (pentraxin-3 and insulin-like growth factor-binding protein-3) and microRNAs (-143-3p, -291b, and -20b-5p) were found to be enriched in iVPC-Exo, which may mediate iVPC-Exo induced vascular growth. Our findings demonstrate that treatment with iVPC-Exo promotes angiogenesis in vitro, ex vivo, and in vivo. Collectively, these findings indicate a novel cell-free approach for therapeutic angiogenesis.NEW & NOTEWORTHY The results of this work demonstrate exosomes as a novel physiological mechanism by which induced vascular progenitor cells exert their angiogenic effect. Moreover, angiogenic cargo of proteins and microRNAs may define the biological contributors in activating endothelial cells to form a new capillary plexus for ischemic vascular diseases.
Collapse
Affiliation(s)
- Takerra K Johnson
- Cardiovascular Research Institute, Morehouse School of Medicine, Atlanta, Georgia
| | - Lina Zhao
- Cardiovascular Research Institute, Morehouse School of Medicine, Atlanta, Georgia
| | - Dihan Zhu
- Cardiovascular Research Institute, Morehouse School of Medicine, Atlanta, Georgia
| | - Yang Wang
- Cardiovascular Research Institute, Morehouse School of Medicine, Atlanta, Georgia
| | - Yan Xiao
- Cardiovascular Research Institute, Morehouse School of Medicine, Atlanta, Georgia
| | - Babayewa Oguljahan
- Cardiovascular Research Institute, Morehouse School of Medicine, Atlanta, Georgia
| | - Xueying Zhao
- Department of Physiology, Morehouse School of Medicine, Atlanta, Georgia
| | - Ward G Kirlin
- Department of Pharmacology and Toxicology, Morehouse School of Medicine, Atlanta, Georgia
| | - Liya Yin
- Department of Integrative Medical Sciences, Northeast Ohio Medical University, Rootstown, Ohio
| | - William M Chilian
- Department of Integrative Medical Sciences, Northeast Ohio Medical University, Rootstown, Ohio
| | - Dong Liu
- Cardiovascular Research Institute, Morehouse School of Medicine, Atlanta, Georgia.,Department of Physiology, Morehouse School of Medicine, Atlanta, Georgia
| |
Collapse
|
43
|
de Oliveira THC, Souza DG, Teixeira MM, Amaral FA. Tissue Dependent Role of PTX3 During Ischemia-Reperfusion Injury. Front Immunol 2019; 10:1461. [PMID: 31354697 PMCID: PMC6635462 DOI: 10.3389/fimmu.2019.01461] [Citation(s) in RCA: 22] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2018] [Accepted: 06/10/2019] [Indexed: 01/06/2023] Open
Abstract
Reperfusion of an ischemic tissue is the treatment of choice for several diseases, including myocardial infarction and stroke. However, reperfusion of an ischemic tissue causes injury, known as Ischemia and Reperfusion Injury (IRI), that limits the benefit of blood flow restoration. IRI also occurs during solid organ transplantation. During IRI, there is activation of the innate immune system, especially neutrophils, which contributes to the degree of injury. It has been shown that PTX3 can regulate multiple aspects of innate immunity and tissue inflammation during sterile injury, as observed during IRI. In humans, levels of PTX3 increase in blood and elevated levels associate with extent of IRI. In mice, there is also enhanced expression of PTX3 in tissues and plasma after IRI. In general, absence of PTX3, as seen in PTX3-deficient mice, results in worse outcome after IRI. On the contrary, increased expression of PTX3, as seen in PTX3 transgenic mice and after PTX3 administration, is associated with better outcome after IRI. The exception is the gut where PTX3 seems to have a clear deleterious role. Here, we discuss mechanisms by which PTX3 contributes to IRI and the potential of taming this system for the treatment of injuries associated with reperfusion of solid organs.
Collapse
Affiliation(s)
| | - Danielle G Souza
- Host-Microorganism Interaction Laboratory, Department of Microbiology, Universidade Federal de Minas Gerais, Belo Horizonte, Brazil
| | - Mauro Martins Teixeira
- Immunopharmacology Laboratory, Department of Biochemistry and Immunology, Universidade Federal de Minas Gerais, Belo Horizonte, Brazil
| | - Flávio Almeida Amaral
- Immunopharmacology Laboratory, Department of Biochemistry and Immunology, Universidade Federal de Minas Gerais, Belo Horizonte, Brazil
| |
Collapse
|
44
|
Fahey E, Doyle SL. IL-1 Family Cytokine Regulation of Vascular Permeability and Angiogenesis. Front Immunol 2019; 10:1426. [PMID: 31293586 PMCID: PMC6603210 DOI: 10.3389/fimmu.2019.01426] [Citation(s) in RCA: 160] [Impact Index Per Article: 32.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2019] [Accepted: 06/06/2019] [Indexed: 12/21/2022] Open
Abstract
The IL-1 family of cytokines are well-known for their primary role in initiating inflammatory responses both in response to and acting as danger signals. It has long been established that IL-1 is capable of simultaneously regulating inflammation and angiogenesis, indeed one of IL-1's earliest names was haemopoeitn-1 due to its pro-angiogenic effects. Other IL-1 family cytokines are also known to have roles in mediating angiogenesis, either directly or indirectly via induction of proangiogenic factors such as VEGF. Of note, some of these family members appear to have directly opposing effects in different tissues and pathologies. Here we will review what is known about how the various IL-1 family members regulate vascular permeability and angiogenic function in a range of different tissues, and describe some of the mechanisms employed to achieve these effects.
Collapse
Affiliation(s)
- Erin Fahey
- Department of Clinical Medicine, School of Medicine, Trinity College Dublin, Dublin, Ireland.,Trinity College Institute of Neuroscience, Trinity College Dublin, Dublin, Ireland
| | - Sarah L Doyle
- Department of Clinical Medicine, School of Medicine, Trinity College Dublin, Dublin, Ireland.,Trinity College Institute of Neuroscience, Trinity College Dublin, Dublin, Ireland.,Our Lady's Children's Hospital Crumlin, National Children's Research Centre, Dublin, Ireland
| |
Collapse
|
45
|
Hummitzsch L, Zitta K, Rusch R, Cremer J, Steinfath M, Gross J, Fandrich F, Berndt R, Albrecht M. Characterization of the Angiogenic Potential of Human Regulatory Macrophages (Mreg) after Ischemia/Reperfusion Injury In Vitro. Stem Cells Int 2019; 2019:3725863. [PMID: 31341483 PMCID: PMC6614961 DOI: 10.1155/2019/3725863] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2019] [Accepted: 06/03/2019] [Indexed: 12/15/2022] Open
Abstract
Ischemia/reperfusion- (I/R-) induced organ damage represents one of the main causes of death worldwide, and new strategies to reduce I/R injury are urgently needed. We have shown that programmable cells of monocytic origin (PCMO) respond to I/R with the release of angiogenic mediators and that transplantation of PCMO results in increased neovascularization. Human regulatory macrophages (Mreg), which are also of monocytic origin, have been successfully employed in clinical transplantation studies due to their immunomodulatory properties. Here, we investigated whether Mreg also possess angiogenic potential in vitro and could represent a treatment option for I/R-associated illnesses. Mreg were differentiated using peripheral blood monocytes from different donors (N = 14) by incubation with M-CSF and human AB serum and stimulation with INF-gamma. Mreg cultures were subjected to 3 h of hypoxia and 24 h of reoxygenation (resembling I/R) or the respective nonischemic control. Cellular resilience, expression of pluripotency markers, secretion of angiogenic proteins, and influence on endothelial tube formation as a surrogate marker for angiogenesis were investigated. Mreg showed resilience against I/R that did not lead to increased cell damage. Mreg express DHRS9 as well as IDO and display a moderate to low expression pattern of several pluripotency genes (e.g., NANOG, OCT-4, and SOX2). I/R resulted in an upregulation of IDO (p < 0.001) while C-MYC and KLF4 were downregulated (p < 0.001 and p < 0.05). Proteome profiling revealed the secretion of numerous angiogenic proteins by Mreg of which several were strongly upregulated by I/R (e.g., MIP-1alpha, 19.9-fold; GM-CSF, 19.2-fold; PTX3, 5.8-fold; IL-1β, 5.2-fold; and MCP-1, 4.7-fold). The angiogenic potential of supernatants from Mreg subjected to I/R remains inconclusive. While Mreg supernatants from 3 donors induced tube formation, 2 supernatants were not effective. We suggest that Mreg may prove beneficial as a cell therapy-based treatment option for I/R-associated illnesses. However, donor characteristics seem to crucially influence the effectiveness of Mreg treatment.
Collapse
Affiliation(s)
- Lars Hummitzsch
- Department of Anesthesiology and Intensive Care Medicine, University Hospital of Schleswig-Holstein, Kiel, Germany
| | - Karina Zitta
- Department of Anesthesiology and Intensive Care Medicine, University Hospital of Schleswig-Holstein, Kiel, Germany
| | - Rene Rusch
- Department of Cardiovascular Surgery, University Hospital of Schleswig-Holstein, Kiel, Germany
| | - Jochen Cremer
- Department of Cardiovascular Surgery, University Hospital of Schleswig-Holstein, Kiel, Germany
| | - Markus Steinfath
- Department of Anesthesiology and Intensive Care Medicine, University Hospital of Schleswig-Holstein, Kiel, Germany
| | - Justus Gross
- Clinic for Vascular Surgery, Bad Segeberg, Germany
| | - Fred Fandrich
- Department of Applied Cell Therapy, University Hospital of Schleswig-Holstein, Kiel, Germany
| | - Rouven Berndt
- Department of Cardiovascular Surgery, University Hospital of Schleswig-Holstein, Kiel, Germany
| | - Martin Albrecht
- Department of Anesthesiology and Intensive Care Medicine, University Hospital of Schleswig-Holstein, Kiel, Germany
| |
Collapse
|
46
|
Rajkovic I, Wong R, Lemarchand E, Rivers-Auty J, Rajkovic O, Garlanda C, Allan SM, Pinteaux E. Pentraxin 3 promotes long-term cerebral blood flow recovery, angiogenesis, and neuronal survival after stroke. J Mol Med (Berl) 2018; 96:1319-1332. [PMID: 30315331 PMCID: PMC6245246 DOI: 10.1007/s00109-018-1698-6] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2018] [Revised: 09/24/2018] [Accepted: 09/25/2018] [Indexed: 01/08/2023]
Abstract
Restoration of cerebral blood flow (CBF) and upregulation of angiogenesis are crucial for brain repair and functional recovery after cerebral ischaemia. Pentraxin 3 (PTX3) is a key regulator of angiogenesis and is emerging as a promising target for cerebrovascular repair after stroke. Here, we investigated for the first time the role of PTX3 in long-term CBF, angiogenesis, and neuronal viability after ischaemic stroke induced by transient middle cerebral artery occlusion (MCAo). Lack of PTX3 had no effect on early brain damage, but significantly impaired restoration of CBF, 14 and 28 days after MCAo, compared to wild-type (WT) mice. Immunohistochemical analysis revealed that PTX3 KO mice have significantly greater neuronal loss, significantly decreased vessel diameter, vessel proliferation, vascular density, and reactive astrocytes and decreased expression of vascular endothelial growth factor receptor 2 (VEGR2), vascular extracellular matrix (ECM)-proteins (collagen IV, laminin), and integrin-β, in the ipsilateral (stroke) hemisphere compared to WT mice, 28 days after MCAo. Therefore, PTX3 promotes sustained long-term recovery of CBF, angiogenesis, and neuronal viability after cerebral ischaemia. Collectively, these findings demonstrate the potential and clinical relevance of PTX3 as a promising therapeutic target, providing sustained long-term post-stroke neurovascular repair and reducing the loss of neurons. KEY MESSAGES: Pentraxin 3 (PTX3) is a key regulator of angiogenesis and is emerging as a promising target for cerebrovascular repair after stroke. Restoration of cerebral blood flow (CBF) and angiogenesis are crucial for brain repair and functional recovery after cerebral ischaemia. PTX3 promotes sustained long-term recovery of CBF, angiogenesis, and neuronal viability after cerebral ischaemia.
Collapse
Affiliation(s)
- Ivana Rajkovic
- Faculty of Biology, Medicine and Health, AV Hill Building, The University of Manchester, Oxford Road, Manchester, M13 9PL, UK
| | - Raymond Wong
- Faculty of Biology, Medicine and Health, AV Hill Building, The University of Manchester, Oxford Road, Manchester, M13 9PL, UK
| | - Eloise Lemarchand
- Faculty of Biology, Medicine and Health, AV Hill Building, The University of Manchester, Oxford Road, Manchester, M13 9PL, UK
| | - Jack Rivers-Auty
- Faculty of Biology, Medicine and Health, AV Hill Building, The University of Manchester, Oxford Road, Manchester, M13 9PL, UK
| | - Olivera Rajkovic
- Faculty of Biology, Medicine and Health, AV Hill Building, The University of Manchester, Oxford Road, Manchester, M13 9PL, UK
| | - Cecilia Garlanda
- Department of Immunology and Inflammation, Humanitas Clinical and Research Center, 20089, Rozzano, MI, Italy
| | - Stuart M Allan
- Faculty of Biology, Medicine and Health, AV Hill Building, The University of Manchester, Oxford Road, Manchester, M13 9PL, UK
| | - Emmanuel Pinteaux
- Faculty of Biology, Medicine and Health, AV Hill Building, The University of Manchester, Oxford Road, Manchester, M13 9PL, UK.
| |
Collapse
|
47
|
Vilà-González M, Kelaini S, Magee C, Caines R, Campbell D, Eleftheriadou M, Cochrane A, Drehmer D, Tsifaki M, O'Neill K, Pedrini E, Yang C, Medina R, McDonald D, Simpson D, Zampetaki A, Zeng L, Grieve D, Lois N, Stitt AW, Margariti A. Enhanced Function of Induced Pluripotent Stem Cell-Derived Endothelial Cells Through ESM1 Signaling. Stem Cells 2018; 37:226-239. [PMID: 30372556 PMCID: PMC6392130 DOI: 10.1002/stem.2936] [Citation(s) in RCA: 20] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2018] [Revised: 09/14/2018] [Accepted: 10/07/2018] [Indexed: 01/11/2023]
Abstract
The mortality rate for (cardio)‐vascular disease is one of the highest in the world, so a healthy functional endothelium is of outmost importance against vascular disease. In this study, human induced pluripotent stem (iPS) cells were reprogrammed from 1 ml blood of healthy donors and subsequently differentiated into endothelial cells (iPS‐ECs) with typical EC characteristics. This research combined iPS cell technologies and next‐generation sequencing to acquire an insight into the transcriptional regulation of iPS‐ECs. We identified endothelial cell‐specific molecule 1 (ESM1) as one of the highest expressed genes during EC differentiation, playing a key role in EC enrichment and function by regulating connexin 40 (CX40) and eNOS. Importantly, ESM1 enhanced the iPS‐ECs potential to improve angiogenesis and neovascularisation in in vivo models of angiogenesis and hind limb ischemia. These findings demonstrated for the first time that enriched functional ECs are derived through cell reprogramming and ESM1 signaling, opening the horizon for drug screening and cell‐based therapies for vascular diseases. Therefore, this study showcases a new approach for enriching and enhancing the function of induced pluripotent stem (iPS) cell‐derived ECs from a very small amount of blood through ESM1 signaling, which greatly enhances their functionality and increases their therapeutic potential. Stem Cells2019;37:226–239
Collapse
Affiliation(s)
- Marta Vilà-González
- Centre for Experimental Medicine, Queen's University Belfast, Belfast, Co Antrim, United Kingdom
| | - Sophia Kelaini
- Centre for Experimental Medicine, Queen's University Belfast, Belfast, Co Antrim, United Kingdom
| | - Corey Magee
- Centre for Experimental Medicine, Queen's University Belfast, Belfast, Co Antrim, United Kingdom
| | - Rachel Caines
- Centre for Experimental Medicine, Queen's University Belfast, Belfast, Co Antrim, United Kingdom
| | - David Campbell
- Centre for Experimental Medicine, Queen's University Belfast, Belfast, Co Antrim, United Kingdom
| | - Magdalini Eleftheriadou
- Centre for Experimental Medicine, Queen's University Belfast, Belfast, Co Antrim, United Kingdom
| | - Amy Cochrane
- Centre for Experimental Medicine, Queen's University Belfast, Belfast, Co Antrim, United Kingdom
| | - Daiana Drehmer
- Centre for Experimental Medicine, Queen's University Belfast, Belfast, Co Antrim, United Kingdom
| | - Marianna Tsifaki
- Centre for Experimental Medicine, Queen's University Belfast, Belfast, Co Antrim, United Kingdom
| | - Karla O'Neill
- Centre for Experimental Medicine, Queen's University Belfast, Belfast, Co Antrim, United Kingdom
| | - Edoardo Pedrini
- Centre for Experimental Medicine, Queen's University Belfast, Belfast, Co Antrim, United Kingdom
| | - Chunbo Yang
- Centre for Experimental Medicine, Queen's University Belfast, Belfast, Co Antrim, United Kingdom
| | - Reinhold Medina
- Centre for Experimental Medicine, Queen's University Belfast, Belfast, Co Antrim, United Kingdom
| | - Denise McDonald
- Centre for Experimental Medicine, Queen's University Belfast, Belfast, Co Antrim, United Kingdom
| | - David Simpson
- Centre for Experimental Medicine, Queen's University Belfast, Belfast, Co Antrim, United Kingdom
| | - Anna Zampetaki
- Cardiovascular Division, King's College London, London, United Kingdom
| | - Lingfang Zeng
- Cardiovascular Division, King's College London, London, United Kingdom
| | - David Grieve
- Centre for Experimental Medicine, Queen's University Belfast, Belfast, Co Antrim, United Kingdom
| | - Noemi Lois
- Centre for Experimental Medicine, Queen's University Belfast, Belfast, Co Antrim, United Kingdom
| | - Alan W Stitt
- Centre for Experimental Medicine, Queen's University Belfast, Belfast, Co Antrim, United Kingdom
| | - Andriana Margariti
- Centre for Experimental Medicine, Queen's University Belfast, Belfast, Co Antrim, United Kingdom
| |
Collapse
|
48
|
Cardoso AL, Fernandes A, Aguilar-Pimentel JA, de Angelis MH, Guedes JR, Brito MA, Ortolano S, Pani G, Athanasopoulou S, Gonos ES, Schosserer M, Grillari J, Peterson P, Tuna BG, Dogan S, Meyer A, van Os R, Trendelenburg AU. Towards frailty biomarkers: Candidates from genes and pathways regulated in aging and age-related diseases. Ageing Res Rev 2018; 47:214-277. [PMID: 30071357 DOI: 10.1016/j.arr.2018.07.004] [Citation(s) in RCA: 293] [Impact Index Per Article: 48.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2018] [Revised: 07/08/2018] [Accepted: 07/10/2018] [Indexed: 12/12/2022]
Abstract
OBJECTIVE Use of the frailty index to measure an accumulation of deficits has been proven a valuable method for identifying elderly people at risk for increased vulnerability, disease, injury, and mortality. However, complementary molecular frailty biomarkers or ideally biomarker panels have not yet been identified. We conducted a systematic search to identify biomarker candidates for a frailty biomarker panel. METHODS Gene expression databases were searched (http://genomics.senescence.info/genes including GenAge, AnAge, LongevityMap, CellAge, DrugAge, Digital Aging Atlas) to identify genes regulated in aging, longevity, and age-related diseases with a focus on secreted factors or molecules detectable in body fluids as potential frailty biomarkers. Factors broadly expressed, related to several "hallmark of aging" pathways as well as used or predicted as biomarkers in other disease settings, particularly age-related pathologies, were identified. This set of biomarkers was further expanded according to the expertise and experience of the authors. In the next step, biomarkers were assigned to six "hallmark of aging" pathways, namely (1) inflammation, (2) mitochondria and apoptosis, (3) calcium homeostasis, (4) fibrosis, (5) NMJ (neuromuscular junction) and neurons, (6) cytoskeleton and hormones, or (7) other principles and an extensive literature search was performed for each candidate to explore their potential and priority as frailty biomarkers. RESULTS A total of 44 markers were evaluated in the seven categories listed above, and 19 were awarded a high priority score, 22 identified as medium priority and three were low priority. In each category high and medium priority markers were identified. CONCLUSION Biomarker panels for frailty would be of high value and better than single markers. Based on our search we would propose a core panel of frailty biomarkers consisting of (1) CXCL10 (C-X-C motif chemokine ligand 10), IL-6 (interleukin 6), CX3CL1 (C-X3-C motif chemokine ligand 1), (2) GDF15 (growth differentiation factor 15), FNDC5 (fibronectin type III domain containing 5), vimentin (VIM), (3) regucalcin (RGN/SMP30), calreticulin, (4) PLAU (plasminogen activator, urokinase), AGT (angiotensinogen), (5) BDNF (brain derived neurotrophic factor), progranulin (PGRN), (6) α-klotho (KL), FGF23 (fibroblast growth factor 23), FGF21, leptin (LEP), (7) miRNA (micro Ribonucleic acid) panel (to be further defined), AHCY (adenosylhomocysteinase) and KRT18 (keratin 18). An expanded panel would also include (1) pentraxin (PTX3), sVCAM/ICAM (soluble vascular cell adhesion molecule 1/Intercellular adhesion molecule 1), defensin α, (2) APP (amyloid beta precursor protein), LDH (lactate dehydrogenase), (3) S100B (S100 calcium binding protein B), (4) TGFβ (transforming growth factor beta), PAI-1 (plasminogen activator inhibitor 1), TGM2 (transglutaminase 2), (5) sRAGE (soluble receptor for advanced glycosylation end products), HMGB1 (high mobility group box 1), C3/C1Q (complement factor 3/1Q), ST2 (Interleukin 1 receptor like 1), agrin (AGRN), (6) IGF-1 (insulin-like growth factor 1), resistin (RETN), adiponectin (ADIPOQ), ghrelin (GHRL), growth hormone (GH), (7) microparticle panel (to be further defined), GpnmB (glycoprotein nonmetastatic melanoma protein B) and lactoferrin (LTF). We believe that these predicted panels need to be experimentally explored in animal models and frail cohorts in order to ascertain their diagnostic, prognostic and therapeutic potential.
Collapse
|
49
|
Steineger J, Ueland T, Aukrust P, Michelsen A, Osnes T, Heimdal K, Dheyauldeen S. Pentraxin 3 level is elevated in hereditary hemorrhagic telangiectasia and reflects the severity of disease-associated epistaxis. Laryngoscope 2018; 129:E44-E49. [PMID: 30329172 DOI: 10.1002/lary.27548] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2018] [Revised: 08/06/2018] [Accepted: 08/16/2018] [Indexed: 01/05/2023]
Abstract
OBJECTIVES/HYPOTHESIS We aimed to investigate if vascular endothelial growth factor (VEGF) and other angiogenic and inflammatory factors correlated with the clinical presentation in hereditary hemorrhagic telangiectasia (HHT) patients, particularly in regard to the severity of epistaxis. STUDY DESIGN Prospective, comparative, single-center study. METHODS One hundred nine samples were collected from 75 HHT patients attending the ear, nose, and throat department at Oslo University Hospital from February 2012 to August 2013. For comparison, samples were collected from 16 healthy controls. Angiogenic and inflammatory factors related to endothelial cell activation were analyzed by enzyme immunoassays. The grade of epistaxis was evaluated using the Epistaxis Severity Score and epistaxis Intensity, Frequency, and Need for Blood Transfusion score at the day of blood sampling. The presence of internal organ manifestations in the HHT group was recorded. RESULTS Pentraxin 3 (PTX3) was the only factor that was significantly higher in the HHT patients than the controls and showed significant correlation to the epistaxis severity grade and the hemoglobin level. The VEGF level was higher in the HHT patients compared to controls but not to a significant degree. In addition, a significant correlation of the level of VEGF and the grade of epistaxis could not be observed. Also, no significant correlations were observed between the presence of internal organ manifestations and the level of angiogenic factors. CONCLUSIONS PTX3, at least partly reflecting vascular inflammation, can be a potential biomarker for the severity of HHT associated epistaxis. The serum level of VEGF was not correlated with the severity of epistaxis in the HHT patients. LEVEL OF EVIDENCE 2 Laryngoscope, 129:E44-E49, 2019.
Collapse
Affiliation(s)
- Johan Steineger
- Department of Otorhinolaryngology-Head and Neck Surgery, Division of Head and Neck and Reconstructive Surgery, Oslo University Hospital, Rikshospitalet, Oslo, Norway.,Institute of Clinical Medicine, Medical Faculty, University of Oslo, Oslo, Norway
| | - Thor Ueland
- Research Institute of Internal Medicine, Oslo University Hospital, Rikshospitalet, Oslo, Norway.,Section of Clinical Immunology and Infectious Diseases, Oslo University Hospital, Rikshospitalet, Oslo, Norway.,Institute of Clinical Medicine, Medical Faculty, University of Oslo, Oslo, Norway.,K. G. Jebsen Thrombosis Research and Expertise Center, University of Tromsø, Tromsø, Norway
| | - Pål Aukrust
- Research Institute of Internal Medicine, Oslo University Hospital, Rikshospitalet, Oslo, Norway.,Section of Clinical Immunology and Infectious Diseases, Oslo University Hospital, Rikshospitalet, Oslo, Norway.,Institute of Clinical Medicine, Medical Faculty, University of Oslo, Oslo, Norway.,K. G. Jebsen Thrombosis Research and Expertise Center, University of Tromsø, Tromsø, Norway
| | - Anikka Michelsen
- Research Institute of Internal Medicine, Oslo University Hospital, Rikshospitalet, Oslo, Norway
| | - Terje Osnes
- Department of Otorhinolaryngology-Head and Neck Surgery, Division of Head and Neck and Reconstructive Surgery, Oslo University Hospital, Rikshospitalet, Oslo, Norway.,Institute of Clinical Medicine, Medical Faculty, University of Oslo, Oslo, Norway
| | - Ketil Heimdal
- Department of Medical Genetics, Oslo University Hospital, Rikshospitalet, Oslo, Norway
| | - Sinan Dheyauldeen
- Department of Otorhinolaryngology-Head and Neck Surgery, Division of Head and Neck and Reconstructive Surgery, Oslo University Hospital, Rikshospitalet, Oslo, Norway.,Institute of Clinical Medicine, Medical Faculty, University of Oslo, Oslo, Norway
| |
Collapse
|
50
|
Reza-Zaldivar EE, Hernández-Sapiéns MA, Minjarez B, Gutiérrez-Mercado YK, Márquez-Aguirre AL, Canales-Aguirre AA. Potential Effects of MSC-Derived Exosomes in Neuroplasticity in Alzheimer's Disease. Front Cell Neurosci 2018; 12:317. [PMID: 30319358 PMCID: PMC6165870 DOI: 10.3389/fncel.2018.00317] [Citation(s) in RCA: 109] [Impact Index Per Article: 18.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2018] [Accepted: 08/30/2018] [Indexed: 12/23/2022] Open
Abstract
Alzheimer’s disease (AD) is the most common type of dementia affecting regions of the central nervous system that exhibit synaptic plasticity and are involved in higher brain functions such as learning and memory. AD is characterized by progressive cognitive dysfunction, memory loss and behavioral disturbances of synaptic plasticity and energy metabolism. Cell therapy has emerged as an alternative treatment of AD. The use of adult stem cells, such as neural stem cells and Mesenchymal Stem Cells (MSCs) from bone marrow and adipose tissue, have the potential to decrease cognitive deficits, possibly by reducing neuronal loss through blocking apoptosis, increasing neurogenesis, synaptogenesis and angiogenesis. These processes are mediated primarily by the secretion of many growth factors, anti-inflammatory proteins, membrane receptors, microRNAs (miRNA) and exosomes. Exosomes encapsulate and transfer several functional molecules like proteins, lipids and regulatory RNA which can modify cell metabolism. In the proteomic characterization of the content of MSC-derived exosomes, more than 730 proteins have been identified, some of which are specific cell type markers and others are involved in the regulation of binding and fusion of exosomes with adjacent cells. Furthermore, some factors were found that promote the recruitment, proliferation and differentiation of other cells like neural stem cells. Moreover, within exosomal cargo, a wide range of miRNAs were found, which can control functions related to neural remodeling as well as angiogenic and neurogenic processes. Taking this into consideration, the use of exosomes could be part of a strategy to promote neuroplasticity, improve cognitive impairment and neural replacement in AD. In this review, we describe how exosomes are involved in AD pathology and discuss the therapeutic potential of MSC-derived exosomes mediated by miRNA and protein cargo.
Collapse
Affiliation(s)
- Edwin E Reza-Zaldivar
- Unidad de Evaluación Preclínica, Biotecnología Médica y Farmacéutica, CONACYT Centro de Investigación y Asistencia en Tecnología y Diseño del Estado de Jalisco (CIATEJ), Guadalajara, Mexico
| | - Mercedes A Hernández-Sapiéns
- Unidad de Evaluación Preclínica, Biotecnología Médica y Farmacéutica, CONACYT Centro de Investigación y Asistencia en Tecnología y Diseño del Estado de Jalisco (CIATEJ), Guadalajara, Mexico
| | - Benito Minjarez
- Centro Universitario de Ciencias Biológicas y Agropecuarias (CUCBA), Universidad de Guadalajara, Guadalajara, Mexico
| | - Yanet K Gutiérrez-Mercado
- Unidad de Evaluación Preclínica, Biotecnología Médica y Farmacéutica, CONACYT Centro de Investigación y Asistencia en Tecnología y Diseño del Estado de Jalisco (CIATEJ), Guadalajara, Mexico
| | - Ana L Márquez-Aguirre
- Unidad de Evaluación Preclínica, Biotecnología Médica y Farmacéutica, CONACYT Centro de Investigación y Asistencia en Tecnología y Diseño del Estado de Jalisco (CIATEJ), Guadalajara, Mexico
| | - Alejandro A Canales-Aguirre
- Unidad de Evaluación Preclínica, Biotecnología Médica y Farmacéutica, CONACYT Centro de Investigación y Asistencia en Tecnología y Diseño del Estado de Jalisco (CIATEJ), Guadalajara, Mexico.,Profesor del programa de Maestría en Ciencias de la Salud Ambiental, Centro Universitario de Ciencias Biológicas y Agropecuarias (CUCBA), Universidad de Guadalajara, Guadalajara, Mexico
| |
Collapse
|