1
|
Zhou L, Xu Z, Lu H, Cho H, Xie Y, Lee G, Ri K, Duh EJ. Suppression of inner blood-retinal barrier breakdown and pathogenic Müller glia activation in ischemia retinopathy by myeloid cell depletion. J Neuroinflammation 2024; 21:210. [PMID: 39182142 PMCID: PMC11344463 DOI: 10.1186/s12974-024-03190-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2024] [Accepted: 07/29/2024] [Indexed: 08/27/2024] Open
Abstract
Ischemic retinopathies including diabetic retinopathy are major causes of vision loss. Inner blood-retinal barrier (BRB) breakdown with retinal vascular hyperpermeability results in macular edema. Although dysfunction of the neurovascular unit including neurons, glia, and vascular cells is now understood to underlie this process, there is a need for fuller elucidation of the underlying events in BRB dysfunction in ischemic disease, including a systematic analysis of myeloid cells and exploration of cellular cross-talk. We used an approach for microglia depletion with the CSF-1R inhibitor PLX5622 (PLX) in the retinal ischemia-reperfusion (IR) model. Under non-IR conditions, PLX treatment successfully depleted microglia in the retina. PLX suppressed the microglial activation response following IR as well as infiltration of monocyte-derived macrophages. This occurred in association with reduction of retinal expression of chemokines including CCL2 and the inflammatory adhesion molecule ICAM-1. In addition, there was a marked suppression of retinal neuroinflammation with reduction in expression of IL-1b, IL-6, Ptgs2, TNF-a, and Angpt2, a protein that regulates BRB permeability. PLX treatment significantly suppressed inner BRB breakdown following IR, without an appreciable effect on neuronal dysfunction. A translatomic analysis of Müller glial-specific gene expression in vivo using the Ribotag approach demonstrated a strong suppression of Müller cell expression of multiple pro-inflammatory genes following PLX treatment. Co-culture studies of Müller cells and microglia demonstrated that activated microglia directly upregulates Müller cell-expression of these inflammatory genes, indicating Müller cells as a downstream effector of myeloid cells in retinal IR. Co-culture studies of these two cell types with endothelial cells demonstrated the ability of both activated microglia and Müller cells to compromise EC barrier function. Interestingly, quiescent Müller cells enhanced EC barrier function in this co-culture system. Together this demonstrates a pivotal role for myeloid cells in inner BRB breakdown in the setting of ischemia-associated disease and indicates that myeloid cells play a major role in iBRB dysregulation, through direct and indirect effects, while Müller glia participate in amplifying the neuroinflammatory effect of myeloid cells.
Collapse
Affiliation(s)
- Lingli Zhou
- State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Guangdong Provincial Key Laboratory of Ophthalmology and Visual Science, Sun Yat-Sen University, Guangzhou, China
- Wilmer Eye Institute, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Zhenhua Xu
- Wilmer Eye Institute, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Haining Lu
- Wilmer Eye Institute, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Hongkwan Cho
- Wilmer Eye Institute, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Yangyiran Xie
- Wilmer Eye Institute, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Grace Lee
- Wilmer Eye Institute, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Kaoru Ri
- Wilmer Eye Institute, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Elia J Duh
- Wilmer Eye Institute, Johns Hopkins University School of Medicine, Baltimore, MD, USA.
| |
Collapse
|
2
|
Wu SY, Chu SJ, Tang SE, Pao HP, Huang KL, Liao WI. Monomethyl fumarate attenuates lung Ischemia/Reperfusion injury by disrupting the GAPDH/Siah1 signaling cascade. Int Immunopharmacol 2024; 137:112488. [PMID: 38889510 DOI: 10.1016/j.intimp.2024.112488] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2024] [Revised: 06/10/2024] [Accepted: 06/12/2024] [Indexed: 06/20/2024]
Abstract
Monomethyl fumarate (MMF), a potent anti-inflammatory agent used to treat multiple sclerosis, has demonstrated efficacy in various inflammatory and ischemia/reperfusion (IR) models; however, its impact on IR-induced acute lung injury (ALI) has not been explored. We investigated, for the first time, whether MMF attenuates lung IR injury through inhibition of the GAPDH/Siah1 signaling pathway. Rats were subjected to IR injury using an isolated perfused lung model, and proximity ligation assays were employed to evaluate the presence and distribution of the GAPDH/Siah1 complex. In vitro studies involved pretreating human primary alveolar epithelial cells (HPAECs) with MMF and/or inducing GAPDH overexpression or silencing, followed by exposure to hypoxia-reoxygenation. The findings revealed significantly reduced lung damage indicators, including edema, proinflammatory cytokines, oxidative stress and apoptosis, in MMF-treated rats. Notably, MMF treatment inhibited GAPDH/Siah1 complex formation and nuclear translocation, indicating that disruption of the GAPDH/Siah1 cascade was the primary cause of these improvements. Our in vitro studies on pretreated HPAECs corroborate these in vivo findings, further strengthening this interpretation. Our study results suggest that the protective effects of MMF against lung IR injury may be attributed, at least in part, to its ability to disrupt the GAPDH/Siah1 signaling cascade, thereby attenuating inflammatory and apoptotic responses. Given these encouraging results, MMF has emerged as a promising therapeutic candidate for the management of lung IR injury.
Collapse
Affiliation(s)
- Shu-Yu Wu
- Institute of Aerospace and Undersea Medicine, National Defense Medical Center, Taipei, Taiwan; School of Pharmacy, National Defense Medical Center, Taipei, Taiwan
| | - Shi-Jye Chu
- Division of Rheumatology, Immunology and Allergy, Department of Internal Medicine, Tri-Service General Hospital, National Defense Medical Center, Taipei, Taiwan
| | - Shih-En Tang
- Institute of Aerospace and Undersea Medicine, National Defense Medical Center, Taipei, Taiwan; Division of Pulmonary and Critical Care, Department of Internal Medicine, Tri-Service General Hospital, National Defense Medical Center, Taipei, Taiwan
| | - Hsin-Ping Pao
- The Graduate Institute of Medical Sciences, National Defense Medical Center, Taipei, Taiwan
| | - Kun-Lun Huang
- Institute of Aerospace and Undersea Medicine, National Defense Medical Center, Taipei, Taiwan; The Graduate Institute of Medical Sciences, National Defense Medical Center, Taipei, Taiwan
| | - Wen-I Liao
- Department of Emergency Medicine, Tri-Service General Hospital, National Defense Medical Center, Taipei, Taiwan.
| |
Collapse
|
3
|
Glorieux C, Enríquez C, González C, Aguirre-Martínez G, Buc Calderon P. The Multifaceted Roles of NRF2 in Cancer: Friend or Foe? Antioxidants (Basel) 2024; 13:70. [PMID: 38247494 PMCID: PMC10812565 DOI: 10.3390/antiox13010070] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2023] [Revised: 12/21/2023] [Accepted: 12/29/2023] [Indexed: 01/23/2024] Open
Abstract
Physiological concentrations of reactive oxygen species (ROS) play vital roles in various normal cellular processes, whereas excessive ROS generation is central to disease pathogenesis. The nuclear factor erythroid 2-related factor 2 (NRF2) is a critical transcription factor that regulates the cellular antioxidant systems in response to oxidative stress by governing the expression of genes encoding antioxidant enzymes that shield cells from diverse oxidative alterations. NRF2 and its negative regulator Kelch-like ECH-associated protein 1 (KEAP1) have been the focus of numerous investigations in elucidating whether NRF2 suppresses tumor promotion or conversely exerts pro-oncogenic effects. NRF2 has been found to participate in various pathological processes, including dysregulated cell proliferation, metabolic remodeling, and resistance to apoptosis. Herein, this review article will examine the intriguing role of phase separation in activating the NRF2 transcriptional activity and explore the NRF2 dual impacts on tumor immunology, cancer stem cells, metastasis, and long non-coding RNAs (LncRNAs). Taken together, this review aims to discuss the NRF2 multifaceted roles in both cancer prevention and promotion while also addressing the advantages, disadvantages, and limitations associated with modulating NRF2 therapeutically in cancer treatment.
Collapse
Affiliation(s)
- Christophe Glorieux
- State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Sun Yat-sen University Cancer Center, Guangzhou 510060, China
| | - Cinthya Enríquez
- Química y Farmacia, Facultad de Ciencias de la Salud, Universidad Arturo Prat, Iquique 1100000, Chile; (C.E.); (C.G.); (G.A.-M.)
- Programa de Magister en Ciencias Químicas y Farmacéuticas, Facultad de Ciencias de la Salud, Universidad Arturo Prat, Iquique 1100000, Chile
| | - Constanza González
- Química y Farmacia, Facultad de Ciencias de la Salud, Universidad Arturo Prat, Iquique 1100000, Chile; (C.E.); (C.G.); (G.A.-M.)
| | - Gabriela Aguirre-Martínez
- Química y Farmacia, Facultad de Ciencias de la Salud, Universidad Arturo Prat, Iquique 1100000, Chile; (C.E.); (C.G.); (G.A.-M.)
- Instituto de Química Medicinal, Universidad Arturo Prat, Iquique 1100000, Chile
| | - Pedro Buc Calderon
- Química y Farmacia, Facultad de Ciencias de la Salud, Universidad Arturo Prat, Iquique 1100000, Chile; (C.E.); (C.G.); (G.A.-M.)
- Instituto de Química Medicinal, Universidad Arturo Prat, Iquique 1100000, Chile
- Research Group in Metabolism and Nutrition, Louvain Drug Research Institute, Université Catholique de Louvain, 1200 Brussels, Belgium
| |
Collapse
|
4
|
Menger KE, Logan A, Luhmann UF, Smith AJ, Wright AF, Ali RR, Murphy MP. In vivo measurement of mitochondrial ROS production in mouse models of photoreceptor degeneration. REDOX BIOCHEMISTRY AND CHEMISTRY 2023; 5-6:None. [PMID: 38046619 PMCID: PMC10686909 DOI: 10.1016/j.rbc.2023.100007] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 06/22/2023] [Revised: 07/18/2023] [Accepted: 07/24/2023] [Indexed: 12/05/2023]
Abstract
Retinitis pigmentosa (RP) is a disease characterised by photoreceptor cell death. It can be initiated by mutations in a number of different genes, primarily affecting rods, which will die first, resulting in loss of night vision. The secondary death of cones then leads to loss of visual acuity and blindness. We set out to investigate whether increased mitochondrial reactive oxygen species (ROS) formation, plays a role in this sequential photoreceptor degeneration. To do this we measured mitochondrial H2O2 production within mouse eyes in vivo using the mass spectrometric probe MitoB. We found higher levels of mitochondrial ROS that preceded photoreceptor loss in four mouse models of RP: Pde6brd1/rd1; Prhp2rds/rds; RPGR-/-; Cln6nclf. In contrast, there was no increase in mitochondrial ROS in loss of function models of vision loss (GNAT-/-, OGC), or where vision loss was not due to photoreceptor death (Cln3). Upregulation of Nrf2 transcriptional activity with dimethylfumarate (DMF) lowered mitochondrial ROS in RPGR-/- mice. These findings have important implications for the mechanism and treatment of RP.
Collapse
Affiliation(s)
- Katja E. Menger
- UCL Institute of Ophthalmology, Bath St, London, EC1V 9EL, UK
| | - Angela Logan
- MRC-Mitochondrial Biology Unit, The Keith Peters Building, University of Cambridge, Cambridge, CB2 0XY, UK
| | | | | | - Alan F. Wright
- MRC Human Genetics Unit, Western General Hospital, University of Edinburgh, Edinburgh, EH4 2XU, UK
| | - Robin R. Ali
- UCL Institute of Ophthalmology, Bath St, London, EC1V 9EL, UK
| | - Michael P. Murphy
- MRC-Mitochondrial Biology Unit, The Keith Peters Building, University of Cambridge, Cambridge, CB2 0XY, UK
| |
Collapse
|
5
|
Böhm EW, Buonfiglio F, Voigt AM, Bachmann P, Safi T, Pfeiffer N, Gericke A. Oxidative stress in the eye and its role in the pathophysiology of ocular diseases. Redox Biol 2023; 68:102967. [PMID: 38006824 PMCID: PMC10701459 DOI: 10.1016/j.redox.2023.102967] [Citation(s) in RCA: 19] [Impact Index Per Article: 19.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2023] [Revised: 11/10/2023] [Accepted: 11/14/2023] [Indexed: 11/27/2023] Open
Abstract
Oxidative stress occurs through an imbalance between the generation of reactive oxygen species (ROS) and the antioxidant defense mechanisms of cells. The eye is particularly exposed to oxidative stress because of its permanent exposure to light and due to several structures having high metabolic activities. The anterior part of the eye is highly exposed to ultraviolet (UV) radiation and possesses a complex antioxidant defense system to protect the retina from UV radiation. The posterior part of the eye exhibits high metabolic rates and oxygen consumption leading subsequently to a high production rate of ROS. Furthermore, inflammation, aging, genetic factors, and environmental pollution, are all elements promoting ROS generation and impairing antioxidant defense mechanisms and thereby representing risk factors leading to oxidative stress. An abnormal redox status was shown to be involved in the pathophysiology of various ocular diseases in the anterior and posterior segment of the eye. In this review, we aim to summarize the mechanisms of oxidative stress in ocular diseases to provide an updated understanding on the pathogenesis of common diseases affecting the ocular surface, the lens, the retina, and the optic nerve. Moreover, we discuss potential therapeutic approaches aimed at reducing oxidative stress in this context.
Collapse
Affiliation(s)
- Elsa Wilma Böhm
- Department of Ophthalmology, University Medical Center, Johannes Gutenberg University Mainz, Langenbeckstrasse 1, 55131, Mainz, Germany.
| | - Francesco Buonfiglio
- Department of Ophthalmology, University Medical Center, Johannes Gutenberg University Mainz, Langenbeckstrasse 1, 55131, Mainz, Germany
| | - Anna Maria Voigt
- Department of Ophthalmology, University Medical Center, Johannes Gutenberg University Mainz, Langenbeckstrasse 1, 55131, Mainz, Germany
| | - Philipp Bachmann
- Department of Ophthalmology, University Medical Center, Johannes Gutenberg University Mainz, Langenbeckstrasse 1, 55131, Mainz, Germany
| | - Tarek Safi
- Department of Ophthalmology, University Medical Center, Johannes Gutenberg University Mainz, Langenbeckstrasse 1, 55131, Mainz, Germany
| | - Norbert Pfeiffer
- Department of Ophthalmology, University Medical Center, Johannes Gutenberg University Mainz, Langenbeckstrasse 1, 55131, Mainz, Germany
| | - Adrian Gericke
- Department of Ophthalmology, University Medical Center, Johannes Gutenberg University Mainz, Langenbeckstrasse 1, 55131, Mainz, Germany.
| |
Collapse
|
6
|
Giunta S, D'Amico AG, Maugeri G, Bucolo C, Romano GL, Rossi S, Eandi CM, Pricoco E, D'Agata V. Drug-Repurposing Strategy for Dimethyl Fumarate. Pharmaceuticals (Basel) 2023; 16:974. [PMID: 37513886 PMCID: PMC10386358 DOI: 10.3390/ph16070974] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2023] [Revised: 06/26/2023] [Accepted: 06/29/2023] [Indexed: 07/30/2023] Open
Abstract
In the area of drug discovery, repurposing strategies represent an approach to discover new uses of approved drugs besides their original indications. We used this approach to investigate the effects of dimethyl fumarate (DMF), a drug approved for relapsing-remitting multiple sclerosis and psoriasis treatment, on early injury associated with diabetic retinopathy (DR). We used an in vivo streptozotocin (STZ)-induced diabetic rat model. Diabetes was induced by a single injection of STZ in rats, and after 1 week, a group of animals was treated with a daily intraperitoneal injection of DMF or a vehicle. Three weeks after diabetes induction, the retinal expression levels of key enzymes involved in DR were evaluated. In particular, the biomarkers COX-2, iNOS, and HO-1 were assessed via Western blot and immunohistochemistry analysis. Diabetic rats showed a significant retinal upregulation of COX-2 and iNOS compared to the retina of normal rats (non-diabetic), and an increase in HO-1 was also observed in the STZ group. This latter result was due to a mechanism of protection elicited by the pathological condition. DMF treatment significantly induced the retinal expression of HO-1 in STZ-induced diabetic animals with a reduction in iNOS and COX-2 retinal levels. Taken together, these results suggested that DMF might be useful to counteract the inflammatory process and the oxidative response in DR. In conclusion, we believe that DMF represents a potential candidate to treat diabetic retinopathy and warrants further in vivo and clinical evaluation.
Collapse
Affiliation(s)
- Salvatore Giunta
- Department of Biomedical and Biotechnological Sciences, University of Catania, 95123 Catania, Italy
| | - Agata Grazia D'Amico
- Department of Drug and Health Sciences, University of Catania, 95123 Catania, Italy
| | - Grazia Maugeri
- Department of Biomedical and Biotechnological Sciences, University of Catania, 95123 Catania, Italy
| | - Claudio Bucolo
- Department of Biomedical and Biotechnological Sciences, University of Catania, 95123 Catania, Italy
- Center for Research in Ocular Pharmacology (CERFO), University of Catania, 95123 Catania, Italy
| | - Giovanni Luca Romano
- Department of Biomedical and Biotechnological Sciences, University of Catania, 95123 Catania, Italy
- Center for Research in Ocular Pharmacology (CERFO), University of Catania, 95123 Catania, Italy
| | - Settimio Rossi
- Eye Clinic, Multidisciplinary Department of Medical, Surgical and Dental Sciences, University of Campania "Luigi Vanvitelli", 80131 Napoli, Italy
| | - Chiara M Eandi
- Department of Ophthalmology, University of Lausanne, Fondation Asile des Aveugles, Jules Gonin Eye Hospital, 1004 Lausanne, Switzerland
| | - Elisabetta Pricoco
- Department of Medical and Surgical Sciences and Advanced Technologies "G. F. Ingrassia", University of Catania, 95123 Catania, Italy
| | - Velia D'Agata
- Department of Biomedical and Biotechnological Sciences, University of Catania, 95123 Catania, Italy
- Center for Research in Ocular Pharmacology (CERFO), University of Catania, 95123 Catania, Italy
| |
Collapse
|
7
|
Chen J, Cao Y, Jia O, Wang X, Luo Y, Cheuk YC, Zhu T, Zhu D, Zhang Y, Wang J. Monomethyl fumarate prevents alloimmune rejection in mouse heart transplantation by inducing tolerogenic dendritic cells. Acta Biochim Biophys Sin (Shanghai) 2023. [PMID: 37184280 DOI: 10.3724/abbs.2023088] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/16/2023] Open
Abstract
Dendritic cells (DCs) are important targets for eliciting allograft rejection after transplantation. Previous studies have demonstrated that metabolic reprogramming of DCs can transform their immune functions and induce their differentiation into tolerogenic DCs. In this study, we aim to investigate the protective effects and mechanisms of monomethyl fumarate (MMF), a bioactive metabolite of fumaric acid esters, in a mouse model of allogeneic heart transplantation. Bone marrow-derived DCs are harvested and treated with MMF to determine the impact of MMF on the phenotype and immunosuppressive function of DCs by flow cytometry and T-cell proliferation assays. RNA sequencing and Seahorse analyses are performed for mature DCs and MMF-treated DCs (MMF-DCs) to investigate the underlying mechanism. Our results show that MMF prolongs the survival time of heart grafts and inhibits the activation of DCs in vivo. MMF-DCs exhibit a tolerogenic phenotype and function in vitro. RNA sequencing and Seahorse analyses reveal that MMF activates the Nrf2 pathway and mediates metabolic reprogramming. Additionally, MMF-DC infusion prolongs cardiac allograft survival, induces regulatory T cells, and inhibits T-cell activation. MMF prevents allograft rejection in mouse heart transplantation by inducing tolerogenic DCs.
Collapse
Affiliation(s)
- Juntao Chen
- Department of Urology, Zhongshan Hospital, Fudan University, Shanghai 200032, China
- Shanghai Key Laboratory of Organ Transplantation, Shanghai 200032, China
| | - Yirui Cao
- Department of Urology, Zhongshan Hospital, Fudan University, Shanghai 200032, China
- Shanghai Key Laboratory of Organ Transplantation, Shanghai 200032, China
| | - Ouyang Jia
- Nursing Department of Huashan Hospital Affiliated to Fudan University, Shanghai 200031, China
| | - Xuanchuan Wang
- Department of Urology, Zhongshan Hospital, Fudan University, Shanghai 200032, China
- Shanghai Key Laboratory of Organ Transplantation, Shanghai 200032, China
| | - Yongsheng Luo
- Department of Urology, Zhongshan Hospital, Fudan University, Shanghai 200032, China
- Shanghai Key Laboratory of Organ Transplantation, Shanghai 200032, China
| | - Yin Celeste Cheuk
- Department of Urology, Zhongshan Hospital, Fudan University, Shanghai 200032, China
- Shanghai Key Laboratory of Organ Transplantation, Shanghai 200032, China
| | - Tongyu Zhu
- Department of Urology, Zhongshan Hospital, Fudan University, Shanghai 200032, China
- Shanghai Key Laboratory of Organ Transplantation, Shanghai 200032, China
| | - Dong Zhu
- Department of Urology, Zhongshan Hospital, Fudan University, Shanghai 200032, China
- Shanghai Key Laboratory of Organ Transplantation, Shanghai 200032, China
- Department of Urology, Zhongshan Hospital, Fudan University (Xiamen branch), Xiamen 361015, China
| | - Yi Zhang
- Shanghai Key Laboratory of Organ Transplantation, Shanghai 200032, China
- Biomedical Research Center, Institute for Clinical Sciences, Zhongshan Hospital, Fudan University, Shanghai 200032, China
| | - Jina Wang
- Department of Urology, Zhongshan Hospital, Fudan University, Shanghai 200032, China
- Shanghai Key Laboratory of Organ Transplantation, Shanghai 200032, China
| |
Collapse
|
8
|
Hussein Z, Yasir SM. ORIGANUM MAJORANA ATTENUATES CIPROFLOXACIN-INDUCED NEPHROPATHY IN RATS. WIADOMOSCI LEKARSKIE (WARSAW, POLAND : 1960) 2023; 75:3046-3049. [PMID: 36723325 DOI: 10.36740/wlek202212126] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/02/2023]
Abstract
OBJECTIVE The aim: The researchers wanted to discover if Origanum majorana (O. M.) has any renoprotective qualities in a CIN rat model. PATIENTS AND METHODS Materials and methods: Control, ciprofloxacin (ciprofloxacin-induced CIN), two O. majorana groups (rats treated with O. majorana 30 mg and 45 mg), and two ciprofloxacin Plus O. majorana groups (n = 8) were randomly assigned to rats (CIN rats treated with O. majorana at 30 mg and 45 mg). Renal function tests were performed, as well as histological investigation. RESULTS Results: The levels of serum blood urea nitrogen (BUN) and creatinine increased after ciprofloxacin treatment. The serum BUN and creatinine levels in the ciprofloxacin + O. majorana groups were lower as well as in O. majorana groups, however, kidney damage was higher in the ciprofloxacin group and reduced tissue damage in combination groups and O. majorana groups rats. CONCLUSION Conclusions: O. majorana decreases experimental CIN in vivo. This effect is thought to activate the antioxidant defenses pathway.
Collapse
Affiliation(s)
- Zainab Hussein
- DEPARTMENT OF PHARMACY, AL-ZAHRAWI UNIVERSITY COLLEGE, KARBALA, IRAQ
| | - Shaymaa Malik Yasir
- DEPARTMENT OF BIOLOGY, COLLEGE OF EDUCATION FOR PURE SCIENCE, UNIVERSITY OF KARBALA, KARBALA, IRAQ
| |
Collapse
|
9
|
Hsu CL, Wen YT, Hsu TC, Chen CC, Lee LY, Chen WP, Tsai RK. Neuroprotective Effects of Erinacine A on an Experimental Model of Traumatic Optic Neuropathy. Int J Mol Sci 2023; 24:1504. [PMID: 36675019 PMCID: PMC9864134 DOI: 10.3390/ijms24021504] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2022] [Accepted: 01/11/2023] [Indexed: 01/13/2023] Open
Abstract
Erinacine A (EA), a natural neuroprotectant, is isolated from a Chinese herbal medicine, Hericium erinaceus. The aim of this study was to investigate the neuroprotective effects of EA in a rat model of traumatic optic neuropathy. The optic nerves (ONs) of adult male Wistar rats were crushed using a standardized method and divided into three experimental groups: phosphate-buffered saline (PBS control)-treated group, standard EA dose-treated group (2.64 mg/kg in 0.5 mL of PBS), and double EA dose-treated group (5.28 mg/kg in 0.5 mL of PBS). After ON crush, each group was fed orally every day for 14 days before being euthanized. The visual function, retinal ganglion cell (RGC) density, and RGC apoptosis were determined using flash visual-evoked potentials (fVEP) analysis, retrograde Fluoro-Gold labelling, and TdT-dUTP nick end-labelling (TUNEL) assay, respectively. Macrophage infiltration of ON was detected by immunostaining (immunohistochemistry) for ED1. The protein levels of phosphor-receptor-interacting serine/threonine-protein kinase1 (pRIP1), caspase 8 (Cas8), cleaved caspase 3 (cCas3), tumour necrosis factor (TNF)-α, tumour necrosis factor receptor1 (TNFR1), interleukin (IL)-1β, inducible nitric oxide synthase (iNOS), nuclear factor erythroid 2-related factor 2 (Nrf2), haem oxygenase-1 (HO-1), and superoxide dismutase 1 (SOD1) were evaluated by Western blotting. When comparing the standard EA dose-treated group and the double EA dose-treated group with the PBS-treated group, fVEP analysis showed that the amplitudes of P1−N2 in the standard EA dose group and the double EA dose-treated group were 1.8 and 2.4-fold, respectively, higher than that in the PBS-treated group (p < 0.05). The density of RGC in the standard EA dose-treated group and the double EA dose-treated group were 2.3 and 3.7-fold, respectively, higher than that in the PBS-treated group (p < 0.05). The TUNEL assay showed that the standard EA dose-treated group and the double EA dose-treated group had significantly reduced numbers of apoptotic RGC by 10.0 and 15.6-fold, respectively, compared with the PBS-treated group (p < 0.05). The numbers of macrophages on ON were reduced by 1.8 and 2.2-fold in the standard EA dose-treated group and the double EA dose-treated group, respectively (p < 0.01). On the retinal samples, the levels of pRIP, Cas8, cCas3, TNF-α, TNFR1, IL-1β, and iNOS were decreased, whereas those of Nrf2, HO-1, and SOD1 were increased in both EA-treated groups compared to those in the PBS-treated group (p < 0.05). EA treatment has neuroprotective effects on an experimental model of traumatic optic neuropathy by suppressing apoptosis, neuroinflammation, and oxidative stress to protect the RGCs from death as well as preserving the visual function.
Collapse
Affiliation(s)
- Chiao-Ling Hsu
- Institute of Medical Sciences, Tzu Chi University, Hualien 970, Taiwan
- Institute of Eye Research, Hualien Tzu Chi Hospital, Buddhist Tzu Chi Medical Foundation, Hualien 970, Taiwan
| | - Yao-Tseng Wen
- Institute of Eye Research, Hualien Tzu Chi Hospital, Buddhist Tzu Chi Medical Foundation, Hualien 970, Taiwan
| | - Tzu-Chao Hsu
- Department of Medical Education, Medical Administration Office, Hualien Tzu Chi Hospital, Buddhist Tzu Chi Medical Foundation, Hualien 970, Taiwan
| | - Chin-Chu Chen
- Biotech Research Institute, Grap King Bio Ltd., Taoyuan 325002, Taiwan
| | - Li-Ya Lee
- Biotech Research Institute, Grap King Bio Ltd., Taoyuan 325002, Taiwan
| | - Wan-Ping Chen
- Biotech Research Institute, Grap King Bio Ltd., Taoyuan 325002, Taiwan
| | - Rong-Kung Tsai
- Institute of Medical Sciences, Tzu Chi University, Hualien 970, Taiwan
- Institute of Eye Research, Hualien Tzu Chi Hospital, Buddhist Tzu Chi Medical Foundation, Hualien 970, Taiwan
- Doctoral Degree Program in Translational Medicine, Tzu Chi University and Academia Sinica, Hualien 970, Taiwan
| |
Collapse
|
10
|
Jawad M, Al-Akkam K, Mohammed M, Hassan SM. ROLE OF DIMETHYL FUMARATE (NRF2 ACTIVATOR) IN REDUCING OF CIPROFLOXACIN-INDUCED HEPATOTOXICITY IN RATS VIA THE NRF2/HO-1 PATHWAY. WIADOMOSCI LEKARSKIE (WARSAW, POLAND : 1960) 2023; 76:1001-1006. [PMID: 37326082 DOI: 10.36740/wlek202305117] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/17/2023]
Abstract
OBJECTIVE The aim: The present study aims to study the effect of DMF on ciprofloxacin-induced liver damage as assessed by liver function and liver pathology and to study this effect if it is thought to activate the Nrf2 antioxidant defense mechanism. PATIENTS AND METHODS Materials and methods: G1 (control), G2 (ciprofloxacin group), G3 and G4 (two DMF groups rats treated with DMF 50mg and 100mg), and G5 and G6 (two DMF groups rats treated with DMF 50mg and 100mg) (two ciprofloxacin Plus DMF at 50 mg and 100 mg). The tests included study of liver function, Nrf2 analysis, and anti-oxidant enzyme analysis. RESULTS Results: The serum blood Nrf2, HO-1, and tissue anti-oxidant enzymes all increased after ciprofloxacin treatment. The serum levels of Nrf2 and HO-1 were higher in the ciprofloxacin plus DMF groups, but anti-oxidant enzymes were lower. DMF increased Nrf2 expression in rats when ciprofloxacin caused hepatotoxicity. CONCLUSION Conclusions: DMF lowers experimental hepatotoxicity in vivo. This effect is thought to activate the Nrf2 antioxidant defense mechanism.
Collapse
|
11
|
Manai F, Govoni S, Amadio M. The Challenge of Dimethyl Fumarate Repurposing in Eye Pathologies. Cells 2022; 11:cells11244061. [PMID: 36552824 PMCID: PMC9777082 DOI: 10.3390/cells11244061] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2022] [Revised: 11/28/2022] [Accepted: 12/13/2022] [Indexed: 12/23/2022] Open
Abstract
Dimethyl fumarate (DMF) is a small molecule currently approved and used in the treatment of psoriasis and multiple sclerosis due to its immuno-modulatory, anti-inflammatory, and antioxidant properties. As an Nrf2 activator through Keap1 protein inhibition, DMF unveils a potential therapeutical use that is much broader than expected so far. In this comprehensive review we discuss the state-of-art and future perspectives regarding the potential repositioning of this molecule in the panorama of eye pathologies, including Age-related Macular Degeneration (AMD). The DMF's mechanism of action, an extensive analysis of the in vitro and in vivo evidence of its beneficial effects, together with a search of the current clinical trials, are here reported. Altogether, this evidence gives an overview of the new potential applications of this molecule in the context of ophthalmological diseases characterized by inflammation and oxidative stress, with a special focus on AMD, for which our gene-disease (KEAP1-AMD) database search, followed by a protein-protein interaction analysis, further supports the rationale of DMF use. The necessity to find a topical route of DMF administration to the eye is also discussed. In conclusion, the challenge of DMF repurposing in eye pathologies is feasible and worth scientific attention and well-focused research efforts.
Collapse
Affiliation(s)
- Federico Manai
- Department of Biology and Biotechnology “L. Spallanzani”, University of Pavia, 27100 Pavia, Italy
| | - Stefano Govoni
- Department of Drug Sciences, Section of Pharmacology, University of Pavia, 27100 Pavia, Italy
| | - Marialaura Amadio
- Department of Drug Sciences, Section of Pharmacology, University of Pavia, 27100 Pavia, Italy
- Correspondence: ; Tel.: +39-0382-987888
| |
Collapse
|
12
|
Manai F, Amadio M. Dimethyl Fumarate Triggers the Antioxidant Defense System in Human Retinal Endothelial Cells through Nrf2 Activation. Antioxidants (Basel) 2022; 11:antiox11101924. [PMID: 36290650 PMCID: PMC9598343 DOI: 10.3390/antiox11101924] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2022] [Revised: 09/22/2022] [Accepted: 09/24/2022] [Indexed: 12/06/2022] Open
Abstract
Dimethyl fumarate (DMF) is a well-known activator of Nrf2 (NF-E2-related factor 2), used in the treatment of psoriasis and multiple sclerosis. The mechanism of action consists in the modification of the cysteine residues on the Nrf2-inhibitor Keap1, thus leading to the dissociation of these two proteins and the consequent activation of Nrf2. Considering the paucity of evidence of DMF effects in the context of retinal endothelium, this in vitro study investigated the role of DMF in human retinal endothelial cells (HREC). Here, we show for the first time in HREC that DMF activates the Nrf2 pathway, thus leading to an increase in HO-1 protein levels and a decrease in intracellular ROS levels. Furthermore, this molecule also shows beneficial properties in a model of hyperglucose stress, exerting cytoprotective prosurvival effects. The overall collected results suggest that DMF-mediated activation of the Nrf2 pathway may also be a promising strategy in ocular diseases characterized by oxidative stress. This study opens a new perspective on DMF and suggests its potential repositioning in a broader therapeutical context.
Collapse
Affiliation(s)
- Federico Manai
- Department of Biology and Biotechnology “L. Spallanzani”, University of Pavia, 27100 Pavia, Italy
| | - Marialaura Amadio
- Department of Drug Sciences, Section of Pharmacology, University of Pavia, 27100 Pavia, Italy
- Correspondence: ; Tel.: +39-0382-987888
| |
Collapse
|
13
|
Miller WP, Toro AL, Sunilkumar S, Stevens SA, VanCleave AM, Williamson DL, Barber AJ, Dennis MD. Müller Glial Expression of REDD1 Is Required for Retinal Neurodegeneration and Visual Dysfunction in Diabetic Mice. Diabetes 2022; 71:1051-1062. [PMID: 35167652 PMCID: PMC9074768 DOI: 10.2337/db21-0853] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/21/2021] [Accepted: 02/08/2022] [Indexed: 11/13/2022]
Abstract
Clinical studies support a role for the protein regulated in development and DNA damage response 1 (REDD1) in ischemic retinal complications. To better understand how REDD1 contributes to retinal pathology, we examined human single-cell sequencing data sets and found specificity of REDD1 expression that was consistent with markers of retinal Müller glia. Thus, we investigated the hypothesis that REDD1 expression specifically in Müller glia contributes to diabetes-induced retinal pathology. The retina of Müller glia-specific REDD1 knockout (REDD1-mgKO) mice exhibited dramatic attenuation of REDD1 transcript and protein expression. In the retina of streptozotocin-induced diabetic control mice, REDD1 protein expression was enhanced coincident with an increase in oxidative stress. In the retina of diabetic REDD1-mgKO mice, there was no increase in REDD1 protein expression, and oxidative stress was reduced compared with diabetic control mice. In both Müller glia within the retina of diabetic mice and human Müller cell cultures exposed to hyperglycemic conditions, REDD1 was necessary for increased expression of the gliosis marker glial fibrillary acidic protein. The effect of REDD1 deletion in preventing gliosis was associated with suppression of oxidative stress and required the antioxidant transcription factor nuclear factor erythroid-2-related factor 2 (Nrf2). In contrast to diabetic control mice, diabetic REDD1-mgKO mice did not exhibit retinal thinning, increased markers of neurodegeneration within the retinal ganglion cell layer, or deficits in visual function. Overall, the findings support a key role for Müller glial REDD1 in the failed adaptive response of the retina to diabetes that includes gliosis, neurodegeneration, and impaired vision.
Collapse
Affiliation(s)
- William P. Miller
- Department of Cellular and Molecular Physiology, Penn State College of Medicine, Hershey, PA
| | - Allyson L. Toro
- Department of Cellular and Molecular Physiology, Penn State College of Medicine, Hershey, PA
| | - Siddharth Sunilkumar
- Department of Cellular and Molecular Physiology, Penn State College of Medicine, Hershey, PA
| | - Shaunaci A. Stevens
- Department of Cellular and Molecular Physiology, Penn State College of Medicine, Hershey, PA
| | - Ashley M. VanCleave
- Department of Cellular and Molecular Physiology, Penn State College of Medicine, Hershey, PA
| | - David L. Williamson
- Department of Cellular and Molecular Physiology, Penn State College of Medicine, Hershey, PA
- Kinesiology Program, Penn State Harrisburg, Middletown, PA
| | - Alistair J. Barber
- Department of Cellular and Molecular Physiology, Penn State College of Medicine, Hershey, PA
- Department of Ophthalmology, Penn State College of Medicine, Hershey, PA
| | - Michael D. Dennis
- Department of Cellular and Molecular Physiology, Penn State College of Medicine, Hershey, PA
- Department of Ophthalmology, Penn State College of Medicine, Hershey, PA
| |
Collapse
|
14
|
Lin B, Li Y, Jiang N, Huang S, Su W, Zhuo Y. Interleukin-35 suppresses pyroptosis and protects against neuronal death in retinal ischaemia/reperfusion injury. Exp Eye Res 2022; 220:109109. [DOI: 10.1016/j.exer.2022.109109] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2021] [Revised: 03/19/2022] [Accepted: 05/08/2022] [Indexed: 11/04/2022]
|
15
|
Tastan B, Arioz BI, Genc S. Targeting NLRP3 Inflammasome With Nrf2 Inducers in Central Nervous System Disorders. Front Immunol 2022; 13:865772. [PMID: 35418995 PMCID: PMC8995746 DOI: 10.3389/fimmu.2022.865772] [Citation(s) in RCA: 27] [Impact Index Per Article: 13.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2022] [Accepted: 03/04/2022] [Indexed: 12/15/2022] Open
Abstract
The NLRP3 inflammasome is an intracellular multiprotein complex that plays an essential role in the innate immune system by identifying and eliminating a plethora of endogenous and exogenous threats to the host. Upon activation of the NLRP3 complex, pro-inflammatory cytokines are processed and released. Furthermore, activation of the NLRP3 inflammasome complex can induce pyroptotic cell death, thereby propagating the inflammatory response. The aberrant activity and detrimental effects of NLRP3 inflammasome activation have been associated with cardiovascular, neurodegenerative, metabolic, and inflammatory diseases. Therefore, clinical strategies targeting the inhibition of the self-propelled NLRP3 inflammasome activation are required. The transcription factor Nrf2 regulates cellular stress response, controlling the redox equilibrium, metabolic programming, and inflammation. The Nrf2 pathway participates in anti-oxidative, cytoprotective, and anti-inflammatory activities. This prominent regulator, through pharmacologic activation, could provide a therapeutic strategy for the diseases to the etiology and pathogenesis of which NLRP3 inflammasome contributes. In this review, current knowledge on NLRP3 inflammasome activation and Nrf2 pathways is presented; the relationship between NLRP3 inflammasome signaling and Nrf2 pathway, as well as the pre/clinical use of Nrf2 activators against NLRP3 inflammasome activation in disorders of the central nervous system, are thoroughly described. Cumulative evidence points out therapeutic use of Nrf2 activators against NLRP3 inflammasome activation or diseases that NLRP3 inflammasome contributes to would be advantageous to prevent inflammatory conditions; however, the side effects of these molecules should be kept in mind before applying them to clinical practice.
Collapse
Affiliation(s)
- Bora Tastan
- Genc Laboratory, Izmir Biomedicine and Genome Center, Izmir, Turkey,Izmir International Biomedicine and Genome Institute, Dokuz Eylul University, Izmir, Turkey
| | - Burak I. Arioz
- Genc Laboratory, Izmir Biomedicine and Genome Center, Izmir, Turkey,Izmir International Biomedicine and Genome Institute, Dokuz Eylul University, Izmir, Turkey
| | - Sermin Genc
- Genc Laboratory, Izmir Biomedicine and Genome Center, Izmir, Turkey,Department of Neuroscience, Health Sciences Institute, Dokuz Eylul University, Izmir, Turkey,*Correspondence: Sermin Genc,
| |
Collapse
|
16
|
Sun Z, Liu X, Liu Y, Zhao X, Zang X, Wang F. Immunosuppressive effects of dimethyl fumarate on dendritic cell maturation and migration: a potent protector for coronary heart disease. Immunopharmacol Immunotoxicol 2022; 44:178-185. [PMID: 35016591 DOI: 10.1080/08923973.2021.2025245] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/22/2023]
Abstract
Dendritic cells (DCs), as a bridge between innate and adaptive immunity, play key roles in atherogenesis, particularly in plaque rupture, the underlying pathophysiologic cause of myocardial infarction. Targeting DC functions, including maturation and migration to atherosclerotic plaques, may be a novel therapeutic approach to atherosclerotic disease. Dimethyl fumarate (DMF), an agent consisting of a combination of fumaric acid esters, in current study were found to be able to suppress DC maturation by reducing the expression of costimulatory molecules and MHC class II and by blocking cytokine secretion. In addition, DMF efficiently inhibited the migration of activated DCs in vitro and in vivo by reducing the expression of chemokine receptor 7 (CCR7). Additionally, DMF efficiently inhibited the expression of the costimulatory molecule CD86, as well as the chemokine receptor CCR7 and the C-X-C motif chemokine receptor 4 (CXCR4), in healthy donor-derived purified DCs that had been stimulated by ST-segment elevation myocardial infarction (STEMI) patient serum. This study points to the potent therapeutic value of DMF for protecting against cardiovascular disease by suppressing DC functions.
Collapse
Affiliation(s)
- Zikai Sun
- Department of Cardiology, Shanghai General Hospital of Nanjing Medical University, Shanghai, China.,Department of Cardiology, The Affiliated Changzhou No.2 People's Hospital of Nanjing Medical University, Changzhou, China
| | - Xiaoqiang Liu
- Department of Cardiology, Shanghai General Hospital of Nanjing Medical University, Shanghai, China
| | - Yu Liu
- Department of Cardiology, The Affiliated Changzhou No.2 People's Hospital of Nanjing Medical University, Changzhou, China
| | - Xin Zhao
- Department of Cardiology, Zhujiang Hospital, Southern Medical University, Guangzhou, China
| | - Xuan Zang
- Department of Cardiology, The Affiliated Changzhou No.2 People's Hospital of Nanjing Medical University, Changzhou, China
| | - Fang Wang
- Department of Cardiology, Shanghai General Hospital of Nanjing Medical University, Shanghai, China
| |
Collapse
|
17
|
Chen X, Xie Y, Liu Z, Lin Y. Application of Programmable Tetrahedral Framework Nucleic Acid-Based Nanomaterials in Neurological Disorders: Progress and Prospects. Front Bioeng Biotechnol 2021; 9:782237. [PMID: 34900971 PMCID: PMC8662522 DOI: 10.3389/fbioe.2021.782237] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2021] [Accepted: 11/10/2021] [Indexed: 02/05/2023] Open
Abstract
Tetrahedral framework nucleic acid (tFNA), a special DNA nanodevice, is widely applied in diverse biomedical fields. Due to its high programmability, biocompatibility, tissue permeability as well as its capacity for cell proliferation and differentiation, tFNA presents a powerful tool that could overcome potential barriers in the treatment of neurological disorders. This review evaluates recent studies on the use and progress of tFNA-based nanomaterials in neurological disorders.
Collapse
Affiliation(s)
- Xingyu Chen
- State Key Laboratory of Oral Diseases, National Clinical Research Centre for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, China
| | - Yu Xie
- State Key Laboratory of Oral Diseases, National Clinical Research Centre for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, China
| | - Zhiqiang Liu
- State Key Laboratory of Oral Diseases, National Clinical Research Centre for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, China
| | - Yunfeng Lin
- State Key Laboratory of Oral Diseases, National Clinical Research Centre for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, China.,College of Biomedical Engineering, Sichuan University, Chengdu, China
| |
Collapse
|
18
|
Hellmuth N, Brat C, Awad O, George S, Kahnt A, Bauer T, Huynh Phuoc HP, Steinhilber D, Angioni C, Hassan M, Hock KJ, Manolikakes G, Zacharowski K, Roos J, Maier TJ. Structural Modifications Yield Novel Insights Into the Intriguing Pharmacodynamic Potential of Anti-inflammatory Nitro-Fatty Acids. Front Pharmacol 2021; 12:715076. [PMID: 34867322 PMCID: PMC8637440 DOI: 10.3389/fphar.2021.715076] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2021] [Accepted: 10/28/2021] [Indexed: 12/12/2022] Open
Abstract
Endogenous nitro-fatty acids (NFA) are potent electrophilic lipid mediators that exert biological effects in vitro and in vivo via selective covalent modification of thiol-containing target proteins. The cytoprotective, anti-inflammatory, and anti-tumorigenic effects of NFA in animal models of disease caused by targeted protein nitroalkylation are a valuable basis for the development of future anti-phlogistic and anti-neoplastic drugs. Considering the complexity of diseases and accompanying comorbidities there is an urgent need for clinically effective multifunctional drugs. NFA are composed of a fatty acid backbone containing a nitroalkene moiety triggering Michael addition reactions. However, less is known about the target-specific structure–activity relationships and selectivities comparing different NFA targets. Therefore, we analyzed 15 NFA derivatives and compared them with the lead structure 9-nitro-oleic acid (9NOA) in terms of their effect on NF-κB (nuclear factor kappa B) signaling inhibition, induction of Nrf-2 (nuclear factor erythroid 2-related factor 2) gene expression, sEH (soluble epoxide hydrolase), LO (lipoxygenase), and COX-2 (cyclooxygenase-2) inhibition, and their cytotoxic effects on colorectal cancer cells. Minor modifications of the Michael acceptor position and variation of the chain length led to drugs showing increased target preference or enhanced multi-targeting, partly with higher potency than 9NOA. This study is a significant step forward to better understanding the biology of NFA and their enormous potential as scaffolds for designing future anti-inflammatory drugs.
Collapse
Affiliation(s)
- Nadine Hellmuth
- Department of Anesthesiology, Intensive Care Medicine and Pain Therapy, University Hospital Frankfurt, Goethe-University, Frankfurt, Germany
| | - Camilla Brat
- Department of Anesthesiology, Intensive Care Medicine and Pain Therapy, University Hospital Frankfurt, Goethe-University, Frankfurt, Germany
| | - Omar Awad
- Department of Anesthesiology, Intensive Care Medicine and Pain Therapy, University Hospital Frankfurt, Goethe-University, Frankfurt, Germany.,Paul-Ehrlich Institute, Federal Institute for Vaccines and Biomedicines, Langen, Germany
| | - Sven George
- Institute of Pharmaceutical Chemistry, Goethe-University, Frankfurt, Germany
| | - Astrid Kahnt
- Institute of Pharmaceutical Chemistry, Goethe-University, Frankfurt, Germany
| | - Tom Bauer
- Paul-Ehrlich Institute, Federal Institute for Vaccines and Biomedicines, Langen, Germany
| | - Hai Phong Huynh Phuoc
- Paul-Ehrlich Institute, Federal Institute for Vaccines and Biomedicines, Langen, Germany
| | - Dieter Steinhilber
- Institute of Pharmaceutical Chemistry, Goethe-University, Frankfurt, Germany
| | - Carlo Angioni
- Pharmazentrum Frankfurt/ZAFES, Institute of Clinical Pharmacology, Goethe-University, Frankfurt, Germany
| | - Mohamed Hassan
- Department of Chemistry, TU Kaiserslautern, Kaiserslautern, Germany.,Department of Chemistry, Faculty of Science, Aswan University, Aswan, Egypt
| | - Katharina J Hock
- Department of Chemistry, TU Kaiserslautern, Kaiserslautern, Germany
| | | | - Kai Zacharowski
- Department of Anesthesiology, Intensive Care Medicine and Pain Therapy, University Hospital Frankfurt, Goethe-University, Frankfurt, Germany
| | - Jessica Roos
- Department of Anesthesiology, Intensive Care Medicine and Pain Therapy, University Hospital Frankfurt, Goethe-University, Frankfurt, Germany.,Paul-Ehrlich Institute, Federal Institute for Vaccines and Biomedicines, Langen, Germany
| | - Thorsten J Maier
- Department of Anesthesiology, Intensive Care Medicine and Pain Therapy, University Hospital Frankfurt, Goethe-University, Frankfurt, Germany.,Paul-Ehrlich Institute, Federal Institute for Vaccines and Biomedicines, Langen, Germany
| |
Collapse
|
19
|
Zhang T, Tian T, Lin Y. Functionalizing Framework Nucleic-Acid-Based Nanostructures for Biomedical Application. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2021; 34:e2107820. [PMID: 34787933 DOI: 10.1002/adma.202107820] [Citation(s) in RCA: 130] [Impact Index Per Article: 43.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/29/2021] [Revised: 11/07/2021] [Indexed: 02/05/2023]
Abstract
Strategies for functionalizing diverse tetrahedral framework nucleic acids (tFNAs) have been extensively explored since the first successful fabrication of tFNA by Turberfield. One-pot annealing of at least four DNA single strands is the most common method to prepare tFNA, as it optimizes the cost, yield, and speed of assembly. Herein, the focus is on four key merits of tFNAs and their potential for biomedical applications. The natural ability of tFNA to scavenge reactive oxygen species, along with remarkable enhancement in cellular endocytosis and tissue permeability based on its appropriate size and geometry, promotes cell-material interactions to direct or probe cell behavior, especially to treat inflammatory and degenerative diseases. Moreover, the structural programmability of tFNA enables the development of static tFNA-based nanomaterials via engineering of functional oligonucleotides or therapeutic molecules, and dynamic tFNAs via attachment of stimuli-responsive DNA apparatuses, leading to potential applications in targeted therapies, tissue regeneration, antitumor strategies, and antibacterial treatment. Although there are impressive performance and significant progress, the challenges and prospects of functionalizing tFNA-based nanostructures are still indicated in this review.
Collapse
Affiliation(s)
- Tao Zhang
- State Key Laboratory of Oral Diseases National Clinical Research Center for Oral Diseases West China Hospital of Stomatology Sichuan University Chengdu Sichuan 610041 P. R. China
| | - Taoran Tian
- State Key Laboratory of Oral Diseases National Clinical Research Center for Oral Diseases West China Hospital of Stomatology Sichuan University Chengdu Sichuan 610041 P. R. China
| | - Yunfeng Lin
- State Key Laboratory of Oral Diseases West China Hospital of Stomatology Sichuan University Chengdu 610041 P. R. China
- College of Biomedical Engineering Sichuan University Chengdu 610041 P. R. China
| |
Collapse
|
20
|
Mata A, Cadenas S. The Antioxidant Transcription Factor Nrf2 in Cardiac Ischemia-Reperfusion Injury. Int J Mol Sci 2021; 22:11939. [PMID: 34769371 PMCID: PMC8585042 DOI: 10.3390/ijms222111939] [Citation(s) in RCA: 30] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2021] [Revised: 10/27/2021] [Accepted: 10/30/2021] [Indexed: 12/25/2022] Open
Abstract
Nuclear factor erythroid-2 related factor 2 (Nrf2) is a transcription factor that controls cellular defense responses against toxic and oxidative stress by modulating the expression of genes involved in antioxidant response and drug detoxification. In addition to maintaining redox homeostasis, Nrf2 is also involved in various cellular processes including metabolism and inflammation. Nrf2 activity is tightly regulated at the transcriptional, post-transcriptional and post-translational levels, which allows cells to quickly respond to pathological stress. In the present review, we describe the molecular mechanisms underlying the transcriptional regulation of Nrf2. We also focus on the impact of Nrf2 in cardiac ischemia-reperfusion injury, a condition that stimulates the overproduction of reactive oxygen species. Finally, we analyze the protective effect of several natural and synthetic compounds that induce Nrf2 activation and protect against ischemia-reperfusion injury in the heart and other organs, and their potential clinical application.
Collapse
Affiliation(s)
- Ana Mata
- Centro de Biología Molecular “Severo Ochoa” (CSIC/UAM), 28049 Madrid, Spain;
- Instituto de Investigación Sanitaria Princesa (IIS-IP), 28006 Madrid, Spain
| | - Susana Cadenas
- Centro de Biología Molecular “Severo Ochoa” (CSIC/UAM), 28049 Madrid, Spain;
- Instituto de Investigación Sanitaria Princesa (IIS-IP), 28006 Madrid, Spain
| |
Collapse
|
21
|
Ryu J, Gulamhusein H, Oh JK, Chang JH, Chen J, Tsang SH. Nutrigenetic reprogramming of oxidative stress. Taiwan J Ophthalmol 2021; 11:207-215. [PMID: 34703735 PMCID: PMC8493979 DOI: 10.4103/tjo.tjo_4_21] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2020] [Accepted: 01/17/2021] [Indexed: 12/30/2022] Open
Abstract
Retinal disorders such as retinitis pigmentosa, age-related retinal degeneration, oxygen-induced retinopathy, and ischemia-reperfusion injury cause debilitating and irreversible vision loss. While the exact mechanisms underlying these conditions remain unclear, there has been a growing body of evidence demonstrating the pathological contributions of oxidative stress across different cell types within the eye. Nuclear factor erythroid-2-related factor (Nrf2), a transcriptional activator of antioxidative genes, and its regulator Kelch-like ECH-associated protein 1 (Keap1) have emerged as promising therapeutic targets. The purpose of this review is to understand the protective role of the Nrf2-Keap1 pathway in different retinal tissues and shed light on the complex mechanisms underlying these processes. In the photoreceptors, we highlight that Nrf2 preserves their survival and function by maintaining oxidation homeostasis. In the retinal pigment epithelium, Nrf2 similarly plays a critical role in oxidative stabilization but also maintains mitochondrial motility and autophagy-related lipid metabolic processes. In endothelial cells, Nrf2 seems to promote proper vascularization and revascularization through concurrent activation of antioxidative and angiogenic factors as well as inhibition of inflammatory cytokines. Finally, Nrf2 protects retinal ganglion cells against apoptotic cell death. Importantly, we show that Nrf2-mediated protection of the various retinal tissues corresponds to a preservation of functional vision. Altogether, this review underscores the potential of the Nrf2-Keap1 pathway as a powerful tool against retinal degeneration. Key insights into this elegant oxidative defense mechanism may ultimately pave the path toward a universal therapy for various inherited and environmental retinal disorders.
Collapse
Affiliation(s)
- Joseph Ryu
- Department of Ophthalmology, Jonas Children's Vision Care and the Bernard and Shirlee Brown Glaucoma Laboratory, Columbia Stem Cell Initiative, Columbia University, New York, NY, USA
| | - Huzeifa Gulamhusein
- Department of Ophthalmology, Jonas Children's Vision Care and the Bernard and Shirlee Brown Glaucoma Laboratory, Columbia Stem Cell Initiative, Columbia University, New York, NY, USA.,Department of Ophthalmology, Institute of Human Nutrition, Columbia University, New York, NY, USA.,Department of Ophthalmology, The University of Texas Rio Grande Valley School of Medicine, Edinburg, TX, USA
| | - Jin Kyun Oh
- Department of Ophthalmology, Jonas Children's Vision Care and the Bernard and Shirlee Brown Glaucoma Laboratory, Columbia Stem Cell Initiative, Columbia University, New York, NY, USA.,Department of Ophthalmology, State University of New York at Downstate Medical Center, Brooklyn, USA
| | - Joseph H Chang
- Department of Ophthalmology, Jonas Children's Vision Care and the Bernard and Shirlee Brown Glaucoma Laboratory, Columbia Stem Cell Initiative, Columbia University, New York, NY, USA.,Department of Ophthalmology, Institute of Human Nutrition, Columbia University, New York, NY, USA
| | - Jocelyn Chen
- Department of Ophthalmology, Jonas Children's Vision Care and the Bernard and Shirlee Brown Glaucoma Laboratory, Columbia Stem Cell Initiative, Columbia University, New York, NY, USA.,Department of Ophthalmology, Columbia University, New York, USA
| | - Stephen H Tsang
- Department of Ophthalmology, Jonas Children's Vision Care and the Bernard and Shirlee Brown Glaucoma Laboratory, Columbia Stem Cell Initiative, Columbia University, New York, NY, USA.,Department of Ophthalmology, Institute of Human Nutrition, Columbia University, New York, NY, USA.,Department of Pathology and Cell Biology, College of Physicians and Surgeons, Institute of Human Nutrition, Columbia University, NY, USA
| |
Collapse
|
22
|
Huang H, Kuang X, Zhu X, Cheng H, Zou Y, Du H, Tang H, Zhou L, Zeng J, Liu H, Yan J, Long C, Shen H. Maintaining blood retinal barrier homeostasis to attenuate retinal ischemia-reperfusion injury by targeting the KEAP1/NRF2/ARE pathway with lycopene. Cell Signal 2021; 88:110153. [PMID: 34571190 DOI: 10.1016/j.cellsig.2021.110153] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2021] [Revised: 09/13/2021] [Accepted: 09/16/2021] [Indexed: 12/15/2022]
Abstract
Retinal ischemia-reperfusion (I/R) often results in intractable visual impairments, where blood retinal barrier (BRB) homeostasis mediated by retinal pigment epithelium (RPE) and retinal microvascular endothelium (RME) is crucial. However, strategies targeting the BRB are limited. Thus, we investigated the inconclusive effect of lycopene (LYC) in retinal protection under I/R. LYC elevated cellular viability and reversed oxidative stress in aRPE-19 cells/hRME cells under I/R conditions based on oxygen-glucose deprivation (OGD) in vitro. Molecular analysis showed that LYC promoted NRF2 expression and enhanced the downstream factors of the KEAP1/NRF2/ARE pathway: LYC increased the activities of antioxidants, including SOD and CAT, whereas it enhanced the mRNA expression of HO-1 (ho-1) and NQO-1 (nqo-1). The activation resulted in restrained ROS and MDA. On the other hand, LYC ameliorated the damage to retinal function and morphology in a mouse I/R model, which was established by unilateral ligation of the left pterygopalatine artery/external carotid artery and reperfusion. LYC promoted the expression of NRF2 in both the neural retina and the RPE choroid in vivo. This evidence revealed the potential of LYC in retinal protection under I/R, uncovering the pharmacological effect of the KEAP1/NRF2/ARE pathway in BRB targeting. The study generates new insights into scientific practices in retinal research.
Collapse
Affiliation(s)
- Hao Huang
- State Key laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Sun Yat-sen University, Guangzhou 510060, China; Department of Ophthalmology, The First Affiliated Hospital of Guangzhou Medical University, Guangzhou 510120, China
| | - Xielan Kuang
- State Key laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Sun Yat-sen University, Guangzhou 510060, China; Biobank of Eye, State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Sun Yat-sen University, Guangzhou 510060, China
| | - Xiaobo Zhu
- State Key laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Sun Yat-sen University, Guangzhou 510060, China
| | - Hao Cheng
- Department of Ophthalmology, The First Affiliated Hospital of Guangzhou Medical University, Guangzhou 510120, China
| | - Yuxiu Zou
- State Key laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Sun Yat-sen University, Guangzhou 510060, China
| | - Han Du
- State Key laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Sun Yat-sen University, Guangzhou 510060, China
| | - Han Tang
- State Key laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Sun Yat-sen University, Guangzhou 510060, China
| | - Linbin Zhou
- State Key laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Sun Yat-sen University, Guangzhou 510060, China
| | - Jingshu Zeng
- State Key laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Sun Yat-sen University, Guangzhou 510060, China
| | - Huijun Liu
- State Key laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Sun Yat-sen University, Guangzhou 510060, China
| | - Jianhua Yan
- State Key laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Sun Yat-sen University, Guangzhou 510060, China
| | - Chongde Long
- State Key laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Sun Yat-sen University, Guangzhou 510060, China.
| | - Huangxuan Shen
- State Key laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Sun Yat-sen University, Guangzhou 510060, China; Biobank of Eye, State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Sun Yat-sen University, Guangzhou 510060, China.
| |
Collapse
|
23
|
Berger AA, Sottosanti ER, Winnick A, Izygon J, Berardino K, Cornett EM, Kaye AD, Varrassi G, Viswanath O, Urits I. Monomethyl Fumarate (MMF, Bafiertam) for the Treatment of Relapsing Forms of Multiple Sclerosis (MS). Neurol Int 2021; 13:207-223. [PMID: 34069538 PMCID: PMC8162564 DOI: 10.3390/neurolint13020022] [Citation(s) in RCA: 26] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2021] [Revised: 03/18/2021] [Accepted: 04/15/2021] [Indexed: 01/29/2023] Open
Abstract
Multiple sclerosis (MS) is a prevalent neurologic autoimmune disorder affecting two million people worldwide. Symptoms include gait abnormalities, perception and sensory losses, cranial nerve pathologies, pain, cognitive dysfunction, and emotional aberrancies. Traditional therapy includes corticosteroids for the suppression of relapses and injectable interferons. Recently, several modern therapies-including antibody therapy and oral agents-were approved as disease-modifying agents. Monomethyl fumarate (MMF, Bafiertam) is a recent addition to the arsenal available in the fight against MS and appears to be well-tolerated, safe, and effective. In this paper, we review the evidence available regarding the use of monomethyl fumarate (Bafiertam) in the treatment of relapsing-remitting MS.
Collapse
Affiliation(s)
- Amnon A. Berger
- Beth Israel Deaconess Medical Center, Department of Anesthesiology, Critical Care, and Pain Medicine, Harvard Medical School, Boston, MA 02115, USA;
- Correspondence: (A.A.B.); (E.M.C.); Tel.: +1-(617)-667-7000 (A.A.B.); Fax: +1-(617)-667-5050 (A.A.B.)
| | - Emily R. Sottosanti
- Beth Israel Deaconess Medical Center, Department of Anesthesiology, Critical Care, and Pain Medicine, Harvard Medical School, Boston, MA 02115, USA;
| | - Ariel Winnick
- Soroka University Medical Center and Faculty of Health Sciences, Ben Gurion University of the Negev, Beer-Sheva 8400100, Israel; (A.W.); (J.I.)
- School of Optometry, University of California, Berkeley, CA 94720, USA
| | - Jonathan Izygon
- Soroka University Medical Center and Faculty of Health Sciences, Ben Gurion University of the Negev, Beer-Sheva 8400100, Israel; (A.W.); (J.I.)
| | - Kevin Berardino
- School of Medicine, Georgetown University, Washington, DC 20007, USA;
| | - Elyse M. Cornett
- Department of Anesthesiology, Louisiana State University Health Shreveport, Shreveport, LA 71103, USA; (A.D.K.); (O.V.); (I.U.)
- Correspondence: (A.A.B.); (E.M.C.); Tel.: +1-(617)-667-7000 (A.A.B.); Fax: +1-(617)-667-5050 (A.A.B.)
| | - Alan D. Kaye
- Department of Anesthesiology, Louisiana State University Health Shreveport, Shreveport, LA 71103, USA; (A.D.K.); (O.V.); (I.U.)
| | | | - Omar Viswanath
- Department of Anesthesiology, Louisiana State University Health Shreveport, Shreveport, LA 71103, USA; (A.D.K.); (O.V.); (I.U.)
- Department of Anesthesiology, University of Arizona College of Medicine-Phoenix, Phoenix, AZ 85004, USA
- Valley Anesthesiology and Pain Consultants—Envision Physician Services, Phoenix, AZ 85001, USA
- Department of Anesthesiology, School of Medicine, Creighton University, Omaha, NE 68124, USA
| | - Ivan Urits
- Department of Anesthesiology, Louisiana State University Health Shreveport, Shreveport, LA 71103, USA; (A.D.K.); (O.V.); (I.U.)
- Southcoast Health, Southcoast Health Physician Group Pain Medicine, North Dartmouth, MA 02747, USA
| |
Collapse
|
24
|
Maugeri G, Bucolo C, Drago F, Rossi S, Di Rosa M, Imbesi R, D'Agata V, Giunta S. Attenuation of High Glucose-Induced Damage in RPE Cells through p38 MAPK Signaling Pathway Inhibition. Front Pharmacol 2021; 12:684680. [PMID: 34025440 PMCID: PMC8138305 DOI: 10.3389/fphar.2021.684680] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2021] [Accepted: 04/26/2021] [Indexed: 12/18/2022] Open
Abstract
This study aimed to investigate the high glucose damage on human retinal pigment epithelial (RPE) cells, the role of p38 MAPK signaling pathway and how dimethyl fumarate can regulate that. We carried out in vitro studies on ARPE-19 cells exposed to physiological and high glucose (HG) conditions, to evaluate the effects of DMF on cell viability, apoptosis, and expression of inflammatory and angiogenic biomarkers such as COX-2, iNOS, IL-1β, and VEGF. Our data have demonstrated that DMF treatment attenuated HG-induced apoptosis, as confirmed by reduction of BAX/Bcl-2 ratio. Furthermore, in RPE cells exposed to HG we observed a significant increase of iNOS, COX-2, and IL-1β expression, that was reverted by DMF treatment. Moreover, DMF reduced the VEGF levels elicited by HG, inhibiting p38 MAPK signaling pathway. The present study demonstrated that DMF provides a remarkable protection against high glucose-induced damage in RPE cells through p38 MAPK inhibition and the subsequent down-regulation of VEGF levels, suggesting that DMF is a small molecule that represents a good candidate for diabetic retinopathy treatment and warrants further in vivo and clinical evaluation.
Collapse
Affiliation(s)
- Grazia Maugeri
- Section of Anatomy, Histology and Movement Sciences, Department of Biomedical and Biotechnological Sciences, University of Catania, Catania, Italy
| | - Claudio Bucolo
- Pharmacology Section, Department of Biomedical and Biotechnological Sciences, University of Catania, Catania, Italy.,Center for Research in Ocular Pharmacology (CERFO), University of Catania, Catania, Italy
| | - Filippo Drago
- Pharmacology Section, Department of Biomedical and Biotechnological Sciences, University of Catania, Catania, Italy.,Center for Research in Ocular Pharmacology (CERFO), University of Catania, Catania, Italy
| | - Settimio Rossi
- Eye Clinic, Multidisciplinary Department of Medical, Surgical and Dental Sciences, University of Campania "Luigi Vanvitelli", Napoli, Italy
| | - Michelino Di Rosa
- Section of Anatomy, Histology and Movement Sciences, Department of Biomedical and Biotechnological Sciences, University of Catania, Catania, Italy
| | - Rosa Imbesi
- Section of Anatomy, Histology and Movement Sciences, Department of Biomedical and Biotechnological Sciences, University of Catania, Catania, Italy
| | - Velia D'Agata
- Section of Anatomy, Histology and Movement Sciences, Department of Biomedical and Biotechnological Sciences, University of Catania, Catania, Italy
| | - Salvatore Giunta
- Section of Anatomy, Histology and Movement Sciences, Department of Biomedical and Biotechnological Sciences, University of Catania, Catania, Italy
| |
Collapse
|
25
|
Rhee J, Shih KC. Use of Gene Therapy in Retinal Ganglion Cell Neuroprotection: Current Concepts and Future Directions. Biomolecules 2021; 11:biom11040581. [PMID: 33920974 PMCID: PMC8071340 DOI: 10.3390/biom11040581] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2021] [Revised: 04/09/2021] [Accepted: 04/12/2021] [Indexed: 12/14/2022] Open
Abstract
We systematically reviewed published translational research on gene-based therapy for retinal ganglion cell (RGC) neuroprotection. A search was conducted on Entrez PubMed on 23 December 2020 using the keywords "gene therapy", "retinal ganglion cell" and "neuroprotection". The initial search yielded 82 relevant articles. After restricting publications to those with full text available and in the English language, and then curating for only original articles on gene-based therapy, the final yield was 18 relevant articles. From the 18 papers, 17 of the papers utilized an adeno-associated viral (AAV) vector for gene therapy encoding specific genes of interest. Specifically, six of the studies utilized an AAV vector encoding brain-derived neurotrophic factor (BDNF), two of the studies utilized an AAV vector encoding erythropoietin (EPO), the remaining 10 papers utilized AAV vectors encoding different genes and one microRNA study. Although the literature shows promising results in both in vivo and in vitro models, there is still a significant way to go before gene-based therapy for RGC neuroprotection can proceed to clinical trials. Namely, the models of injury in many of the studies were more acute in nature, unlike the more progressive and neurodegenerative pathophysiology of diseases, such as glaucoma. The regulation of gene expression is also highly unexplored despite the use of AAV vectors in the majority of the studies reviewed. It is also expected that with the successful launch of messenger ribonucleic acid (mRNA)-based vaccinations in 2020, we will see a shift towards this technology for gene-based therapy in glaucoma neuroprotection.
Collapse
Affiliation(s)
- Jess Rhee
- Schulich School of Medicine & Dentistry, The University of Western Ontario, London, ON N6A3K7, Canada;
| | - Kendrick Co Shih
- Department of Ophthalmology, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Hong Kong, China
- Correspondence:
| |
Collapse
|
26
|
Biswas C, Chu N, Burn TN, Kreiger PA, Behrens EM. Amelioration of Murine Macrophage Activation Syndrome by Monomethyl Fumarate in Both a Heme Oxygenase 1-Dependent and Heme Oxygenase 1-Independent Manner. Arthritis Rheumatol 2021; 73:885-895. [PMID: 33191652 DOI: 10.1002/art.41591] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2020] [Accepted: 11/10/2020] [Indexed: 11/07/2022]
Abstract
OBJECTIVE Macrophage activation syndrome (MAS) is characterized by increased serum levels of ferritin and heme oxygenase 1 (HO-1), and yet no known function is ascribed to these molecules in MAS. Because HO-1 is antiinflammatory, we hypothesized that pharmacologic activation of HO-1 could ameliorate MAS disease activity. Dimethyl fumarate (DMF), a treatment approved by the US Food and Drug Administration for multiple sclerosis, activates HO-1. Monomethyl fumarate (MMF) is the active metabolite of DMF. We therefore evaluated whether MMF could elicit HO-1-dependent therapeutic improvements in a murine model of MAS. METHODS We induced MAS by repeated activation of Toll-like receptor 9 (TLR-9) in wild-type and myeloid-specific HO-1-deficient mice. MMF was administered twice daily to test its efficacy. We assessed organ weights, serum cytokine levels, histologic features of the spleen and liver tissue, and complete blood cell counts to evaluate disease activity. Statistical testing was performed using Student's t-test or by 2-way analysis of variance as appropriate. RESULTS The presence of HO-1 was required for the majority of TLR-9-induced interleukin-10 (IL-10). IL-10 production in TLR-9-induced MAS was found to correlate with the myeloid-HO-1 gene dose in myeloid cells (P < 0.001). MMF treatment increased the levels of HO-1 in splenic macrophages by ~2-fold (P < 0.01), increased serum levels of IL-10 in an HO-1-dependent manner in mice with TLR-9-induced MAS (P < 0.005), and improved multiple disease parameters in both an HO-1-dependent and HO-1-independent manner. CONCLUSION TLR-9-induced production of IL-10 is regulated by HO-1 activity both in vitro and in vivo. Therapeutic enhancement of the HO-1/IL-10 axis in a murine model was able to significantly ameliorate MAS disease activity. These results suggest that HO-1 may be viable as a MAS therapeutic target, and treatment with DMF and MMF should be considered in future investigations of MAS therapy.
Collapse
Affiliation(s)
- Chhanda Biswas
- Children's Hospital of Philadelphia, Philadelphia, Pennsylvania
| | - Niansheng Chu
- Children's Hospital of Philadelphia, Philadelphia, Pennsylvania
| | - Thomas N Burn
- Children's Hospital of Philadelphia, Philadelphia, Pennsylvania
| | | | | |
Collapse
|
27
|
Singh S, Nagalakshmi D, Sharma KK, Ravichandiran V. Natural antioxidants for neuroinflammatory disorders and possible involvement of Nrf2 pathway: A review. Heliyon 2021; 7:e06216. [PMID: 33659743 PMCID: PMC7890213 DOI: 10.1016/j.heliyon.2021.e06216] [Citation(s) in RCA: 22] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2020] [Revised: 05/21/2020] [Accepted: 02/04/2021] [Indexed: 12/12/2022] Open
Abstract
The transcription factor Nrf2 (nuclear factor-erythroid 2 p45-related factor 2) play a crucial role in cellular redox and metabolic system. Activation of Nrf2 may be an effective therapeutic approach for neuroinflammatory disorders, through activation of antioxidant defences system, lower the inflammation, line up the mitochondrial function, and balancing of protein homeostasis. Various recent studies revealed that many of active substance obtained from plants have been found to activate the Nrf2 and to exert neuroprotective effects in various experimental models, raising the possibility that activation of Nrf2 may be an effective therapeutic approaches for neuroinflammatory disorders. The objective of this review was to evaluate the neuroprotective property of natural substance against neuroinflammatory disorders by reviewing the studies done till today. The outcomes of various in vitro and in vivo examinations have shown that natural compounds producing neuroprotective effects in neuronal system via activation of Nrf2. Herein, we also reviewed the studies to understand the role of Nrf2 for curing CNS disorders. Here we can conclude, herbal/natural moieties having potency to fight and prevent from neuroinflammatory disorders due to their abilities to activate Nrf2 pathway.
Collapse
Affiliation(s)
- Sanjiv Singh
- Department of Pharmacology and Toxicology, National Institute of Pharmaceutical Education and Research, Export Promotion Industrial Park (EPIP), Zandaha Road, Hajipur, Bihar, India
| | - Devarapati Nagalakshmi
- Department of Pharmacology and Toxicology, National Institute of Pharmaceutical Education and Research, Export Promotion Industrial Park (EPIP), Zandaha Road, Hajipur, Bihar, India
| | - K K Sharma
- Department of Pharmacology and Toxicology, National Institute of Pharmaceutical Education and Research, Export Promotion Industrial Park (EPIP), Zandaha Road, Hajipur, Bihar, India
| | - V Ravichandiran
- Department of Pharmacology and Toxicology, National Institute of Pharmaceutical Education and Research, Export Promotion Industrial Park (EPIP), Zandaha Road, Hajipur, Bihar, India
| |
Collapse
|
28
|
Habib AA, Hammad SF, Amer MM, Kamal AH. Stability indicating RP-HPLC method for determination of dimethyl fumarate in presence of its main degradation products: Application to degradation kinetics. J Sep Sci 2020; 44:726-734. [PMID: 33253476 DOI: 10.1002/jssc.202001007] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2020] [Revised: 10/20/2020] [Accepted: 11/25/2020] [Indexed: 02/01/2023]
Abstract
A stability-indicating reverse phase-high-perfromance liquid chromatography method for the quantitative determination of dimethyl fumarate in presence of its main degradation products was developed. The chromatographic conditions were optimized using two-level full factorial design, chromatographic analysis was performed using Inertsil® column (250 × 4.6 mm, 5 μm) maintained at 25°C. Mobile phase was a mixture of water (pH 2.6 adjusted with phosphoric acid) and methanol (40:60, v/v) at a flow rate 1.0 mL/min, detection was performed at 210 nm using diode array detector. Stress degradation of dimethyl fumarate under acidic, alkaline, neutral, oxidative, photolytic, and thermal conditions was carried out, it was found to be very susceptible to hydrolysis under acidic and alkaline conditions; further investigation of degradation kinetics over pH range 1-9 was carried out. The degradation rate constant (K), t1/2 and t90 were calculated. Dimethyl fumarate show decreasing in stability in the following pH order: 7 < 5 < 3 < 1 < 9. The method was validated as per ICH guidelines, the method was found to be linear over concentration range 10-150 μg/mL with coefficient of determination (r2 ) 0.9997. The method was successfully applied for dimethyl fumarate determination in Marclerosis® dosage form within run time less than eight minutes without interference from excipients.
Collapse
Affiliation(s)
- Ahmed A Habib
- Department of Pharmaceutical Analytical Chemistry, Faculty of Pharmacy, Tanta University, Tanta, Egypt
| | - Sherin F Hammad
- Department of Pharmaceutical Analytical Chemistry, Faculty of Pharmacy, Tanta University, Tanta, Egypt
| | - Mona M Amer
- Department of Pharmaceutical Analytical Chemistry, Faculty of Pharmacy, Tanta University, Tanta, Egypt
| | - Amira H Kamal
- Department of Pharmaceutical Analytical Chemistry, Faculty of Pharmacy, Tanta University, Tanta, Egypt
| |
Collapse
|
29
|
Zhao J, Cheng Z, Quan X, Xie Z, Zhang L, Ding Z. Dimethyl fumarate protects cardiomyocytes against oxygen-glucose deprivation/reperfusion (OGD/R)-induced inflammatory response and damages via inhibition of Egr-1. Int Immunopharmacol 2020; 86:106733. [PMID: 32645629 DOI: 10.1016/j.intimp.2020.106733] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2020] [Revised: 06/05/2020] [Accepted: 06/21/2020] [Indexed: 02/07/2023]
Abstract
Acute myocardial infarction (AMI) is associated with high rates of morbidity and mortality. Atherosclerosis is among the leading causes of AMI. The rupture or erosion of atherosclerotic plaques can obstruct coronary arteries, thereby leading to an acute inflammatory reaction to ischemic injury and cardiomyocyte apoptosis. Dimethyl fumarate (DMF) is a fumaric acid diester which is used for the treatment of psoriasis and multiple sclerosis. DMF is most well-known for its modulatory actions on the Nrf2 and NF-κB cellular signaling pathways. In the present study, we employed an oxygen-glucose deprivation/reoxygenation (OGD/R) model of myocardial ischemia/reperfusion injury using H9c2 cardiomyocytes to assess the potential protective effects of DMF. We found that DMF significantly improved cell viability and reduced the expression of pro-inflammatory cytokines and chemokines, including IL-6, IL-8, and MCP-1. We further demonstrated an antioxidant effect of DMF via reduced production of ROS, which was mediated through NOX4 inhibition. Tissue factor and ICAM-1 play a major role in left ventricular remodeling. DMF inhibited the expression of TF and ICAM-1 induced by OGD/R, which we demonstrated to be mediated through the Egr-1 signaling pathway, as silencing of Egr-1 suppressed the expression of TF and ICAM-1. Together, these findings demonstrate a potential role for DMF in the treatment of myocardial infarction.
Collapse
Affiliation(s)
- Jian Zhao
- Department of Cardiovascular Surgery, People's Hospital of Zhengzhou University, Henan Provincial People's Hospital, Fuwai Central China Cardiovascular Hospital, Zhengzhou, Henan 450000, China
| | - Zhaoyun Cheng
- Department of Cardiovascular Surgery, People's Hospital of Zhengzhou University, Henan Provincial People's Hospital, Fuwai Central China Cardiovascular Hospital, Zhengzhou, Henan 450000, China
| | - Xiaoqiang Quan
- Department of Cardiovascular Surgery, People's Hospital of Zhengzhou University, Henan Provincial People's Hospital, Fuwai Central China Cardiovascular Hospital, Zhengzhou, Henan 450000, China.
| | - Zhouliang Xie
- Department of Cardiovascular Surgery, People's Hospital of Zhengzhou University, Henan Provincial People's Hospital, Fuwai Central China Cardiovascular Hospital, Zhengzhou, Henan 450000, China
| | - Leilei Zhang
- Department of Cardiovascular Surgery, People's Hospital of Zhengzhou University, Henan Provincial People's Hospital, Fuwai Central China Cardiovascular Hospital, Zhengzhou, Henan 450000, China
| | - Zhiwei Ding
- Department of Cardiovascular Surgery, People's Hospital of Zhengzhou University, Henan Provincial People's Hospital, Fuwai Central China Cardiovascular Hospital, Zhengzhou, Henan 450000, China
| |
Collapse
|
30
|
Angeloni C, Gatti M, Prata C, Hrelia S, Maraldi T. Role of Mesenchymal Stem Cells in Counteracting Oxidative Stress-Related Neurodegeneration. Int J Mol Sci 2020; 21:ijms21093299. [PMID: 32392722 PMCID: PMC7246730 DOI: 10.3390/ijms21093299] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2020] [Revised: 04/30/2020] [Accepted: 05/04/2020] [Indexed: 02/07/2023] Open
Abstract
Neurodegenerative diseases include a variety of pathologies such as Alzheimer’s disease, Parkinson’s disease, Huntington’s disease, amyotrophic lateral sclerosis, and so forth, which share many common characteristics such as oxidative stress, glycation, abnormal protein deposition, inflammation, and progressive neuronal loss. The last century has witnessed significant research to identify mechanisms and risk factors contributing to the complex etiopathogenesis of neurodegenerative diseases, such as genetic, vascular/metabolic, and lifestyle-related factors, which often co-occur and interact with each other. Apart from several environmental or genetic factors, in recent years, much evidence hints that impairment in redox homeostasis is a common mechanism in different neurological diseases. However, from a pharmacological perspective, oxidative stress is a difficult target, and antioxidants, the only strategy used so far, have been ineffective or even provoked side effects. In this review, we report an analysis of the recent literature on the role of oxidative stress in Alzheimer’s and Parkinson’s diseases as well as in amyotrophic lateral sclerosis, retinal ganglion cells, and ataxia. Moreover, the contribution of stem cells has been widely explored, looking at their potential in neuronal differentiation and reporting findings on their application in fighting oxidative stress in different neurodegenerative diseases. In particular, the exposure to mesenchymal stem cells or their secretome can be considered as a promising therapeutic strategy to enhance antioxidant capacity and neurotrophin expression while inhibiting pro-inflammatory cytokine secretion, which are common aspects of neurodegenerative pathologies. Further studies are needed to identify a tailored approach for each neurodegenerative disease in order to design more effective stem cell therapeutic strategies to prevent a broad range of neurodegenerative disorders.
Collapse
Affiliation(s)
- Cristina Angeloni
- School of Pharmacy, University of Camerino, Via Gentile III da Varano, 62032 Camerino, Italy;
| | - Martina Gatti
- Department of Surgery, Medicine, Dentistry and Morphological Sciences, University of Modena and Reggio Emilia, Via del Pozzo 71, 41124 Modena, Italy; (M.G.); (T.M.)
| | - Cecilia Prata
- Department of Pharmacy and Biotechnology, Alma Mater Studiorum—University of Bologna, Via Irnerio 48, 40126 Bologna, Italy
- Correspondence:
| | - Silvana Hrelia
- Department for Life Quality Studies, Alma Mater Studiorum—University of Bologna, Corso d’Augusto 237, 47921 Rimini, Italy;
| | - Tullia Maraldi
- Department of Surgery, Medicine, Dentistry and Morphological Sciences, University of Modena and Reggio Emilia, Via del Pozzo 71, 41124 Modena, Italy; (M.G.); (T.M.)
| |
Collapse
|
31
|
Pascale CL, Martinez AN, Carr C, Sawyer DM, Ribeiro-Alves M, Chen M, O'Donnell DB, Guidry JJ, Amenta PS, Dumont AS. Treatment with dimethyl fumarate reduces the formation and rupture of intracranial aneurysms: Role of Nrf2 activation. J Cereb Blood Flow Metab 2020; 40:1077-1089. [PMID: 31220996 PMCID: PMC7181091 DOI: 10.1177/0271678x19858888] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
Oxidative stress and chronic inflammation in arterial walls have been implicated in intracranial aneurysm (IA) formation and rupture. Dimethyl fumarate (DMF) exhibits immunomodulatory properties, partly via activation of the nuclear factor erythroid 2-related factor 2 (Nrf2) pathway which reduces oxidative stress by inducing the antioxidant response element (ARE). This study evaluated the effects of DMF both in vitro, using tumor necrosis factor (TNF)-α-treated vascular smooth muscle cells (VSMC), and in vivo, using a murine elastase model to induce aneurysm formation. The mice were treated with either DMF at 100 mg/kg/day P.O. or vehicle for two weeks. DMF treatment protected VSMCs from TNF-α-induced inflammation as demonstrated by its downregulation of cytokines and upregulation of Nrf2 and smooth muscle cell markers. At higher doses, DMF also inhibited the pro-proliferative action of TNF-α by increasing apoptosis which protected the cells from aponecrosis. In mice, DMF treatment significantly decreased the incidence of aneurysm formation and rupture, at the same time increasing Nrf2 levels. DMF demonstrated a neuroprotective effect in mice with a resultant inhibition of oxidative stress, inflammation, and fibrosis in the cerebrovasculature. This suggests a potential role for DMF as a rescue therapy for patients at risk for formation and rupture of IAs.
Collapse
Affiliation(s)
- Crissey L Pascale
- Department of Neurosurgery, Tulane Center for Clinical Neurosciences, Tulane University School of Medicine, New Orleans, LA, USA
| | - Alejandra N Martinez
- Department of Neurosurgery, Tulane Center for Clinical Neurosciences, Tulane University School of Medicine, New Orleans, LA, USA
| | - Christopher Carr
- Department of Neurosurgery, Tulane Center for Clinical Neurosciences, Tulane University School of Medicine, New Orleans, LA, USA
| | - David M Sawyer
- Department of Neurosurgery, Tulane Center for Clinical Neurosciences, Tulane University School of Medicine, New Orleans, LA, USA
| | - Marcelo Ribeiro-Alves
- Laboratory of Clinical Research on STD/AIDS, National Institute of Infectology Evandro Chagas (INI)-Oswaldo Cruz Foundation (FIOCRUZ), Rio de Janeiro, RJ, Brazil
| | - Mimi Chen
- Department of Neurosurgery, Tulane Center for Clinical Neurosciences, Tulane University School of Medicine, New Orleans, LA, USA
| | - Devon B O'Donnell
- Department of Neurosurgery, Tulane Center for Clinical Neurosciences, Tulane University School of Medicine, New Orleans, LA, USA
| | - Jessie J Guidry
- Louisiana State University Health Sciences Center Proteomics Core Facility, New Orleans, LA, USA
| | - Peter S Amenta
- Department of Neurosurgery, Tulane Center for Clinical Neurosciences, Tulane University School of Medicine, New Orleans, LA, USA
| | - Aaron S Dumont
- Department of Neurosurgery, Tulane Center for Clinical Neurosciences, Tulane University School of Medicine, New Orleans, LA, USA
| |
Collapse
|
32
|
Potential Protective and Therapeutic Roles of the Nrf2 Pathway in Ocular Diseases: An Update. OXIDATIVE MEDICINE AND CELLULAR LONGEVITY 2020; 2020:9410952. [PMID: 32273949 PMCID: PMC7125500 DOI: 10.1155/2020/9410952] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/19/2019] [Accepted: 02/05/2020] [Indexed: 12/19/2022]
Abstract
Nuclear factor- (erythroid-derived 2-) like 2 (Nrf2) is a regulator of many processes of life, and it plays an important role in antioxidant, anti-inflammatory, and antifibrotic responses and in cancer. This review is focused on the potential mechanism of Nrf2 in the occurrence and development of ocular diseases. Also, several Nrf2 inducers, including noncoding RNAs and exogenous compounds, which control the expression of Nrf2 through different pathways, are discussed in ocular disease models and ocular cells, protecting them from dysfunctional changes. Therefore, Nrf2 might be a potential target of protecting ocular cells from various stresses and preventing ocular diseases.
Collapse
|
33
|
Xiao H, Wang J, Saul A, Smith SB. Comparison of Neuroprotective Effects of Monomethylfumarate to the Sigma 1 Receptor Ligand (+)-Pentazocine in a Murine Model of Retinitis Pigmentosa. Invest Ophthalmol Vis Sci 2020; 61:5. [PMID: 32150247 PMCID: PMC7401726 DOI: 10.1167/iovs.61.3.5] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2019] [Accepted: 12/24/2019] [Indexed: 12/20/2022] Open
Abstract
Purpose Activating the cell survival modulator sigma 1 receptor (Sig1R) delays cone photoreceptor cell loss in Pde6βrd10/J (rd10) mice, a model of retinitis pigmentosa. Beneficial effects are abrogated in rd10 mice lacking NRF2, implicating NRF2 as essential to Sig1R-mediated cone neuroprotection. Here we asked whether activation of NRF2 alone is sufficient to rescue cones in rd10 mice. Methods Expression of antioxidant genes was evaluated in 661W cells and in mouse retinas after treatment with monomethylfumarate (MMF), a potent NRF2 activator. Rd10 mice were administered MMF (50 mg/kg) or the Sig1R ligand (+)-pentazocine (PTZ; 0.5 mg/kg) intraperitoneally (every other day, P14-42). Mice were evaluated for visual acuity (optokinetic tracking response), retinal function (electroretinography) and architecture (SD-OCT); histologic retinal sections were evaluated morphometrically. Results MMF treatment increased Nrf2, Nqo1, Cat, Sod1, and Hmox1 expression in vitro and in vivo. Visual acuity of (+)-PTZ-treated rd10 mice was similar to wild-type mice; however, MMF treatment did not alter acuity compared with nontreated rd10 mice. Cone electroretinography b-wave amplitudes were greater in PTZ-treated than nontreated or MMF-treated rd10 mice. SD-OCT assessment of retinal thickness was greater in (+)-PTZ-treated mice versus nontreated or MMF-treated rd10 mice. Morphometric assessment of the outer nuclear layer revealed approximately 18 cells/100 µm retinal length in (+)-PTZ-treated rd10 mice, but only approximately 10 to 12 cells/100 µm in MMF-treated and nontreated rd10 retinas. Conclusions Activation of NRF2 using MMF, at least at our dosing regimen, is insufficient to attenuate catastrophic photoreceptor damage characteristic of rd10 mice. The data prompt investigation of additional mechanisms involved in Sig1R-mediated retinal neuroprotection.
Collapse
Affiliation(s)
- Haiyan Xiao
- Department of Cellular Biology and Anatomy, Medical College of Georgia at Augusta University, Augusta, Georgia,United States
- James and Jean Culver Vision Discovery Institute, Augusta University, Augusta, Georgia,United States
| | - Jing Wang
- Department of Cellular Biology and Anatomy, Medical College of Georgia at Augusta University, Augusta, Georgia,United States
- James and Jean Culver Vision Discovery Institute, Augusta University, Augusta, Georgia,United States
| | - Alan Saul
- James and Jean Culver Vision Discovery Institute, Augusta University, Augusta, Georgia,United States
- Department of Ophthalmology, Medical College of Georgia at Augusta University, Augusta, Georgia,United States
| | - Sylvia B. Smith
- Department of Cellular Biology and Anatomy, Medical College of Georgia at Augusta University, Augusta, Georgia,United States
- James and Jean Culver Vision Discovery Institute, Augusta University, Augusta, Georgia,United States
- Department of Ophthalmology, Medical College of Georgia at Augusta University, Augusta, Georgia,United States
| |
Collapse
|
34
|
Wang M, Li J, Zheng Y. The Potential Role of Nuclear Factor Erythroid 2-Related Factor 2 (Nrf2) in Glaucoma: A Review. Med Sci Monit 2020; 26:e921514. [PMID: 31949124 PMCID: PMC6986212 DOI: 10.12659/msm.921514] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
Nuclear factor erythroid 2-related factor 2 (Nrf2) acts as a regulator of many biological processes and plays an essential role in preventing oxidation, inflammation, and fibrosis. In the past 20 years, there has been increasing research on the role of Nrf2 and oxidative stress in human glaucoma, including the roles of inflammation, trabecular meshwork cells, retinal ganglion cells, Tenon's capsule, antioxidants, fibrosis, and noncoding RNAs. Studies have shown that the upregulation of Nrf2 can reduce damage from oxidative stress in the trabecular meshwork cells and the retinal ganglion cells, reduce fibrosis in Tenon's capsule fibroblasts, which may reduce the progression of fibrosis after surgery for glaucoma. The regulatory roles of Nrf2, microRNAs (miRNAs), long noncoding RNAs (lncRNAs), and exogenous compounds on trabecular meshwork cells (TMCs) and retinal ganglion cells have also been studied. The use of Nrf2 agonists, including noncoding RNAs, control the expression of Nrf2 through signaling pathways that continue to be investigated to identify effective treatments to improve clinical outcome following surgery for glaucoma. This review of publications between 1999 and 2019 aims to focus on the potential mechanisms of Nrf2 in the occurrence and development of glaucoma and the prognosis following surgical treatment. Also, several factors that induce the expression of Nrf2 in trabecular meshwork cells, retinal ganglion cells, and human Tenon's capsule fibroblasts are discussed.
Collapse
Affiliation(s)
- Mingxuan Wang
- Department of Ophthalmology, The Second Hospital of Jilin University, Changchun, Jilin, China (mainland)
| | - Jia Li
- Department of Ophthalmology, The Second Hospital of Jilin University, Changchun, Jilin, China (mainland)
| | - Yajuan Zheng
- Department of Ophthalmology, The Second Hospital of Jilin University, Changchun, Jilin, China (mainland)
| |
Collapse
|
35
|
Hui Q, Karlstetter M, Xu Z, Yang J, Zhou L, Eilken HM, Terjung C, Cho H, Gong J, Lai MJ, Nassar K, Duh EJ. Inhibition of the Keap1-Nrf2 protein-protein interaction protects retinal cells and ameliorates retinal ischemia-reperfusion injury. Free Radic Biol Med 2020; 146:181-188. [PMID: 31669760 PMCID: PMC6942228 DOI: 10.1016/j.freeradbiomed.2019.10.414] [Citation(s) in RCA: 34] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/30/2019] [Accepted: 10/23/2019] [Indexed: 12/26/2022]
Abstract
The Nrf2-Keap1 pathway regulates transcription of a wide array of antioxidant and cytoprotective genes and offers critical protection against oxidative stress. This pathway has demonstrated benefit for a variety of retinal conditions. Retinal ischemia plays a pivotal role in many vision threatening diseases. Retinal vascular endothelial cells are an important participant in ischemic injury. In this setting, Nrf2 provides a protective pathway via amelioration of oxidative stress and inflammation. In this study, we investigated a potent small molecule inhibitor of the Nrf2-Keap1 protein-protein interaction (PPI), CPUY192018, for its therapeutic potential in retinal cells and retinal ischemia-reperfusion injury. In human retinal endothelial cells (HREC), treatment with CPUY192018 increased Nrf2 protein levels and nuclear translocation, stimulated Nrf2-ARE-induced transcriptional capacity, and induced Nrf2 target gene expression. Furthermore, CPUY192018 protected HREC against oxidative stress and inflammatory activation. CPUY192018 also activated Nrf2 and suppressed inflammatory response in macrophages. In the retinal ischemia-reperfusion (I/R) model, administration of CPUY192018 induced Nrf2 target gene activation in the retina. Both systemic and topical treatment with CPUY192018 rescued visual function after ischemia-reperfusion injury. Taken together, these findings indicate that small molecule Keap1-Nrf2 PPI inhibitors can activate the Nrf2 pathway in the retina and provide protection against retinal ischemic and inflammatory injury, suggesting Keap1-Nrf2 PPI inhibition in the treatment of retinal conditions.
Collapse
Affiliation(s)
- Qiaoyan Hui
- Department of Ophthalmology, Johns Hopkins University School of Medicine, Baltimore, MD, USA; Department of Ophthalmology, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, Shaanxi, China
| | | | - Zhenhua Xu
- Department of Ophthalmology, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Jing Yang
- Department of Ophthalmology, Johns Hopkins University School of Medicine, Baltimore, MD, USA; Department of Ophthalmology, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, Shaanxi, China
| | - Lingli Zhou
- Department of Ophthalmology, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | | | | | - Hongkwan Cho
- Department of Ophthalmology, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Junsong Gong
- Department of Ophthalmology, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Michael J Lai
- Department of Ophthalmology, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | | | - Elia J Duh
- Department of Ophthalmology, Johns Hopkins University School of Medicine, Baltimore, MD, USA.
| |
Collapse
|
36
|
Inhibiting microRNA-144 potentiates Nrf2-dependent antioxidant signaling in RPE and protects against oxidative stress-induced outer retinal degeneration. Redox Biol 2019; 28:101336. [PMID: 31590045 PMCID: PMC6812120 DOI: 10.1016/j.redox.2019.101336] [Citation(s) in RCA: 56] [Impact Index Per Article: 11.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2019] [Revised: 09/11/2019] [Accepted: 09/26/2019] [Indexed: 01/03/2023] Open
Abstract
The retinal pigment epithelium (RPE) is consistently exposed to high levels of pro-oxidant and inflammatory stimuli. As such, under normal conditions the antioxidant machinery in the RPE cell is one of the most efficient in the entire body. However, antioxidant defense mechanisms are often impacted negatively by the process of aging and/or degenerative disease leaving RPE susceptible to damage which contributes to retinal dysfunction. Thus, understanding better the mechanisms governing antioxidant responses in RPE is critically important. Here, we evaluated the role of the redox sensitive microRNA miR-144 in regulation of antioxidant signaling in human and mouse RPE. In cultured human RPE, miR-144-3p and miR-144-5p expression was upregulated in response to pro-oxidant stimuli. Likewise, overexpression of miR-144-3p and -5p using targeted miR mimics was associated with reduced expression of Nrf2 and downstream antioxidant target genes (NQO1 and GCLC), reduced levels of glutathione and increased RPE cell death. Alternately, some protection was conferred against the above when miR-144-3p and miR-144-5p expression was suppressed using antagomirs. Expression analyses revealed a higher conservation of miR-144-3p expression across species and additionally, the presence of two potential Nrf2 binding sites in the 3p sequence compared to only one in the 5p sequence. Thus, we evaluated the impact of miR-144-3p expression in the retinas of mice in which a robust pro-oxidant environment was generated using sodium iodate (SI). Subretinal injection of miR-144-3p antagomir in SI mice preserved retinal integrity and function, decreased oxidative stress, limited apoptosis and enhanced antioxidant gene expression. Collectively, the present work establishes miR-144 as a potential target for preventing and treating degenerative retinal diseases in which oxidative stress is paramount and RPE is prominently affected (e.g., age-related macular degeneration and diabetic retinopathy).
Collapse
|
37
|
Li Q, Fang W, Hu F, Zhou X, Cheng Y, Jiang C. A high-salt diet aggravates retinal ischaemia/reperfusion injury. Exp Eye Res 2019; 188:107784. [PMID: 31476280 DOI: 10.1016/j.exer.2019.107784] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2019] [Revised: 07/15/2019] [Accepted: 08/30/2019] [Indexed: 10/26/2022]
Abstract
Ischaemia/reperfusion contributes to the pathophysiological process of many retinal diseases. Previous studies have shown that retinal ischaemia/reperfusion mainly results in neuronal degeneration, including thinning of the retina, retinal ganglion cell death and reductions in electroretinography. A high-salt diet contributes to the inflammatory response and tissue hypoperfusion and may be associated with ischaemia/reperfusion injury. In the present study, we investigated the influence of a high-salt diet on retinal ischaemia/reperfusion injury and explored the potential mechanism in a rat model. The results revealed that the high-salt diet aggravated ischaemia/reperfusion-induced thinning of the retina. A TUNEL assay and Brn-3a staining revealed substantially more severe cell death and loss of retinal ganglion cells, and electroretinography confirmed worse retinal function in the ischaemia/reperfusion eyes of rats fed the high-salt diet. These effects may be associated with upregulation of Caspase-3, Bax, Interleukin-1β and Interleukin-6 and decreased expression of nitric oxide. In summary, a high-salt diet aggravates ischaemia/reperfusion-induced retinal neuronal impairment by activating pro-apoptotic and pro-inflammatory signalling pathways and inhibiting vasodilation.
Collapse
Affiliation(s)
- Qingchen Li
- Department of Ophthalmology, Eye and ENT Hospital, Fudan University, Shanghai, China; Key Laboratory of Myopia of State Health Ministry, Key Laboratory of Visual Impairment and Restoration of Shanghai, Shanghai, China
| | - Wangyi Fang
- Department of Ophthalmology, Eye and ENT Hospital, Fudan University, Shanghai, China; Key Laboratory of Myopia of State Health Ministry, Key Laboratory of Visual Impairment and Restoration of Shanghai, Shanghai, China
| | - Fangyuan Hu
- Eye Institute, Eye and ENT Hospital, Fudan University, Shanghai, China
| | - Xujiao Zhou
- Eye Institute, Eye and ENT Hospital, Fudan University, Shanghai, China
| | - Yun Cheng
- Eye Institute, Eye and ENT Hospital, Fudan University, Shanghai, China
| | - Chunhui Jiang
- Department of Ophthalmology, Eye and ENT Hospital, Fudan University, Shanghai, China; Key Laboratory of Myopia of State Health Ministry, Key Laboratory of Visual Impairment and Restoration of Shanghai, Shanghai, China.
| |
Collapse
|
38
|
Singh D, Reeta K, Sharma U, Jagannathan N, Dinda A, Gupta Y. Neuro-protective effect of monomethyl fumarate on ischemia reperfusion injury in rats: Role of Nrf2/HO1 pathway in peri-infarct region. Neurochem Int 2019; 126:96-108. [DOI: 10.1016/j.neuint.2019.03.010] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2018] [Revised: 02/28/2019] [Accepted: 03/11/2019] [Indexed: 12/30/2022]
|
39
|
Wang J, Zhao J, Cui X, Mysona BA, Navneet S, Saul A, Ahuja M, Lambert N, Gazaryan IG, Thomas B, Bollinger KE, Smith SB. The molecular chaperone sigma 1 receptor mediates rescue of retinal cone photoreceptor cells via modulation of NRF2. Free Radic Biol Med 2019; 134:604-616. [PMID: 30743048 PMCID: PMC6619428 DOI: 10.1016/j.freeradbiomed.2019.02.001] [Citation(s) in RCA: 35] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/29/2018] [Revised: 02/01/2019] [Accepted: 02/01/2019] [Indexed: 01/11/2023]
Abstract
Sigma 1 receptor (Sig1R), a putative molecular chaperone, has emerged as a novel therapeutic target for retinal degenerative disease. Earlier studies showed that activation of Sig1R via the high-affinity ligand (+)-pentazocine ((+)-PTZ) induced profound rescue of cone photoreceptor cells in the rd10 mouse model of retinitis pigmentosa; however the mechanism of rescue is unknown. Improved cone function in (+)-PTZ-treated mice was accompanied by reduced oxidative stress and normalization of levels of NRF2, a transcription factor that activates antioxidant response elements (AREs) of hundreds of cytoprotective genes. Here, we tested the hypothesis that modulation of NRF2 is central to Sig1R-mediated cone rescue. Activation of Sig1R in 661W cone cells using (+)-PTZ induced dose-dependent increases in NRF2-ARE binding activity and NRF2 gene/protein expression, whereas silencing Sig1R significantly decreased NRF2 protein levels and increased oxidative stress, although (+)-PTZ did not disrupt NRF2-KEAP1 binding. In vivo studies were conducted to investigate whether, in the absence of NRF2, activation of Sig1R rescues cones. (+)-PTZ was administered systemically for several weeks to rd10/nrf2+/+ and rd10/nrf2-/- mice. Through post-natal day 42, cone function was significant in rd10/nrf2+/+, but minimal in rd10/nrf2-/- mice as indicated by electroretinographic recordings using natural noise stimuli, optical coherence tomography and retinal histological analyses. Immunodetection of cones was limited in (+)-PTZ-treated rd10/nrf2-/-, though considerable in (+)-PTZ-treated rd10/nrf2+/+mice. The data suggest that Sig1R-mediated cone rescue requires NRF2 and provide evidence for a previously-unrecognized relationship between these proteins.
Collapse
Affiliation(s)
- J Wang
- Department of Cellular Biology and Anatomy, Medical College of Georgia at Augusta University, Augusta, GA, USA; James and Jean Culver Vision Discovery Institute, Augusta University, Augusta, GA, USA
| | - J Zhao
- James and Jean Culver Vision Discovery Institute, Augusta University, Augusta, GA, USA; Department of Ophthalmology, Medical College of Georgia at Augusta University, Augusta, GA, USA
| | - X Cui
- Department of Cellular Biology and Anatomy, Medical College of Georgia at Augusta University, Augusta, GA, USA; James and Jean Culver Vision Discovery Institute, Augusta University, Augusta, GA, USA
| | - B A Mysona
- James and Jean Culver Vision Discovery Institute, Augusta University, Augusta, GA, USA; Department of Ophthalmology, Medical College of Georgia at Augusta University, Augusta, GA, USA
| | - S Navneet
- Department of Cellular Biology and Anatomy, Medical College of Georgia at Augusta University, Augusta, GA, USA; James and Jean Culver Vision Discovery Institute, Augusta University, Augusta, GA, USA
| | - A Saul
- James and Jean Culver Vision Discovery Institute, Augusta University, Augusta, GA, USA; Department of Ophthalmology, Medical College of Georgia at Augusta University, Augusta, GA, USA
| | - M Ahuja
- Department of Pharmacology/Toxicology, Medical College of Georgia at Augusta University, Augusta, GA, USA
| | - N Lambert
- Department of Pharmacology/Toxicology, Medical College of Georgia at Augusta University, Augusta, GA, USA
| | - I G Gazaryan
- Department of Anatomy and Cell Biology, New York Medical College, Valhalla, NY, USA
| | - B Thomas
- Department of Pharmacology/Toxicology, Medical College of Georgia at Augusta University, Augusta, GA, USA
| | - K E Bollinger
- James and Jean Culver Vision Discovery Institute, Augusta University, Augusta, GA, USA; Department of Ophthalmology, Medical College of Georgia at Augusta University, Augusta, GA, USA
| | - S B Smith
- Department of Cellular Biology and Anatomy, Medical College of Georgia at Augusta University, Augusta, GA, USA; James and Jean Culver Vision Discovery Institute, Augusta University, Augusta, GA, USA; Department of Ophthalmology, Medical College of Georgia at Augusta University, Augusta, GA, USA.
| |
Collapse
|
40
|
Waugh DT. The Contribution of Fluoride to the Pathogenesis of Eye Diseases: Molecular Mechanisms and Implications for Public Health. INTERNATIONAL JOURNAL OF ENVIRONMENTAL RESEARCH AND PUBLIC HEALTH 2019; 16:E856. [PMID: 30857240 PMCID: PMC6427526 DOI: 10.3390/ijerph16050856] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Received: 02/01/2019] [Revised: 03/04/2019] [Accepted: 03/05/2019] [Indexed: 12/18/2022]
Abstract
This study provides diverse lines of evidence demonstrating that fluoride (F) exposure contributes to degenerative eye diseases by stimulating or inhibiting biological pathways associated with the pathogenesis of cataract, age-related macular degeneration and glaucoma. As elucidated in this study, F exerts this effect by inhibiting enolase, τ-crystallin, Hsp40, Na⁺, K⁺-ATPase, Nrf2, γ -GCS, HO-1 Bcl-2, FoxO1, SOD, PON-1 and glutathione activity, and upregulating NF-κB, IL-6, AGEs, HsP27 and Hsp70 expression. Moreover, F exposure leads to enhanced oxidative stress and impaired antioxidant activity. Based on the evidence presented in this study, it can be concluded that F exposure may be added to the list of identifiable risk factors associated with pathogenesis of degenerative eye diseases. The broader impact of these findings suggests that reducing F intake may lead to an overall reduction in the modifiable risk factors associated with degenerative eye diseases. Further studies are required to examine this association and determine differences in prevalence rates amongst fluoridated and non-fluoridated communities, taking into consideration other dietary sources of F such as tea. Finally, the findings of this study elucidate molecular pathways associated with F exposure that may suggest a possible association between F exposure and other inflammatory diseases. Further studies are also warranted to examine these associations.
Collapse
Affiliation(s)
- Declan Timothy Waugh
- EnviroManagement Services, 11 Riverview, Doherty's Rd, Bandon, P72 YF10 Co. Cork, Ireland.
| |
Collapse
|
41
|
Jiang D, Ryals RC, Huang SJ, Weller KK, Titus HE, Robb BM, Saad FW, Salam RA, Hammad H, Yang P, Marks DL, Pennesi ME. Monomethyl Fumarate Protects the Retina From Light-Induced Retinopathy. Invest Ophthalmol Vis Sci 2019; 60:1275-1285. [PMID: 30924852 PMCID: PMC6440526 DOI: 10.1167/iovs.18-24398] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023] Open
Abstract
Purpose We determine if monomethyl fumarate (MMF) can protect the retina in mice subjected to light-induced retinopathy (LIR). Methods Albino BALB/c mice were intraperitoneally injected with 50 to 100 mg/kg MMF before or after exposure to bright white light (10,000 lux) for 1 hour. Seven days after light exposure, retinal structure and function were evaluated by optical coherence tomography (OCT) and electroretinography (ERG), respectively. Retinal histology also was performed to evaluate photoreceptor loss. Expression levels of Hcar2 and markers of microglia activation were measured by quantitative PCR (qPCR) in the neural retina with and without microglia depletion. At 24 hours after light exposure, retinal sections and whole mount retinas were stained with Iba1 to evaluate microglia status. The effect of MMF on the nuclear factor kB subunit 1 (NF-kB) and Nrf2 pathways was measured by qPCR and Western blot. Results MMF administered before light exposure mediated dose-dependent neuroprotection in a mouse model of LIR. A single dose of 100 mg/kg MMF fully protected retinal structure and function without side effects. Expression of the Hcar2 receptor and the microglia marker Cd14 were upregulated by LIR, but suppressed by MMF. Depleting microglia reduced Hcar2 expression and its upregulation by LIR. Microglial activation, upregulation of proinflammatory genes (Nlrp3, Caspase1, Il-1β, Tnf-α), and upregulation of antioxidative stress genes (Hmox1) associated with LIR were mitigated by MMF treatment. Conclusions MMF can completely protect the retina from LIR in BALB/c mice. Expression of Hcar2, the receptor of MMF, is microglia-dependent in the neural retina. MMF-mediated neuroprotection was associated with attenuation of microglia activation, inflammation and oxidative stress in the retina.
Collapse
Affiliation(s)
- Dan Jiang
- Casey Eye Institute, Oregon Health & Science University, Portland, Oregon, United States
| | - Renee C Ryals
- Casey Eye Institute, Oregon Health & Science University, Portland, Oregon, United States
| | - Samuel J Huang
- Casey Eye Institute, Oregon Health & Science University, Portland, Oregon, United States.,Department of Physiology & Pharmacology, Oregon Health & Science University, Portland, Oregon, United States
| | - Kyle K Weller
- Casey Eye Institute, Oregon Health & Science University, Portland, Oregon, United States
| | - Hope E Titus
- Casey Eye Institute, Oregon Health & Science University, Portland, Oregon, United States
| | - Bryan M Robb
- Casey Eye Institute, Oregon Health & Science University, Portland, Oregon, United States
| | - Firas W Saad
- Casey Eye Institute, Oregon Health & Science University, Portland, Oregon, United States
| | - Ribal A Salam
- Casey Eye Institute, Oregon Health & Science University, Portland, Oregon, United States
| | - Hytham Hammad
- Casey Eye Institute, Oregon Health & Science University, Portland, Oregon, United States
| | - Paul Yang
- Casey Eye Institute, Oregon Health & Science University, Portland, Oregon, United States
| | - Daniel L Marks
- Papé Family Pediatric Research Institute, Oregon Health & Science University, Portland, Oregon, United States
| | - Mark E Pennesi
- Casey Eye Institute, Oregon Health & Science University, Portland, Oregon, United States
| |
Collapse
|
42
|
Qin X, Li N, Zhang M, Lin S, Zhu J, Xiao D, Cui W, Zhang T, Lin Y, Cai X. Tetrahedral framework nucleic acids prevent retina ischemia-reperfusion injury from oxidative stress via activating the Akt/Nrf2 pathway. NANOSCALE 2019; 11:20667-20675. [PMID: 31642452 DOI: 10.1039/c9nr07171g] [Citation(s) in RCA: 58] [Impact Index Per Article: 11.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
Abstract
Retinal ischemia-reperfusion (I/R) injuries are involved in the universal pathological processes of many ophthalmic diseases, including glaucoma, diabetic retinopathy, and retinal arterial occlusion.
Collapse
|
43
|
Pietrucha-Dutczak M, Amadio M, Govoni S, Lewin-Kowalik J, Smedowski A. The Role of Endogenous Neuroprotective Mechanisms in the Prevention of Retinal Ganglion Cells Degeneration. Front Neurosci 2018; 12:834. [PMID: 30524222 PMCID: PMC6262299 DOI: 10.3389/fnins.2018.00834] [Citation(s) in RCA: 32] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2018] [Accepted: 10/25/2018] [Indexed: 12/14/2022] Open
Abstract
Retinal neurons are not able to undergo spontaneous regeneration in response to damage. A variety of stressors, i.e., UV radiation, high temperature, ischemia, allergens, and others, induce reactive oxygen species production, resulting in consecutive alteration of stress-response gene expression and finally can lead to cell apoptosis. Neurons have developed their own endogenous cellular protective systems. Some of them are preventing cell death and others are allowing functional recovery after injury. The high efficiency of these mechanisms is crucial for cell survival. In this review we focus on the contribution of the most recently studied endogenous neuroprotective factors involved in retinal ganglion cell (RGC) survival, among which, neurotrophic factors and their signaling pathways, processes regulating the redox status, and different pathways regulating cell death are the most important. Additionally, we summarize currently ongoing clinical trials for therapies for RGC degeneration and optic neuropathies, including glaucoma. Knowledge of the endogenous cellular protective mechanisms may help in the development of effective therapies and potential novel therapeutic targets in order to achieve progress in the treatment of retinal and optic nerve diseases.
Collapse
Affiliation(s)
- Marita Pietrucha-Dutczak
- Chair and Department of Physiology, School of Medicine in Katowice, Medical University of Silesia, Katowice, Poland
| | - Marialaura Amadio
- Department of Drug Sciences, Section of Pharmacology, University of Pavia, Pavia, Italy
| | - Stefano Govoni
- Department of Drug Sciences, Section of Pharmacology, University of Pavia, Pavia, Italy
| | - Joanna Lewin-Kowalik
- Chair and Department of Physiology, School of Medicine in Katowice, Medical University of Silesia, Katowice, Poland
| | - Adrian Smedowski
- Chair and Department of Physiology, School of Medicine in Katowice, Medical University of Silesia, Katowice, Poland
| |
Collapse
|
44
|
Shalmani AA, Ghahremani MH, Jeivad F, Shadboorestan A, Hassanzadeh G, Beh-Pajooh A, Ganbari-Erdi M, Kasirzadeh S, Mojtahedzadeh M, Sabzevari O. Monomethyl fumarate alleviates sepsis-induced hepatic dysfunction by regulating TLR-4/NF-κB signalling pathway. Life Sci 2018; 215:152-158. [PMID: 30412724 DOI: 10.1016/j.lfs.2018.11.010] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2018] [Accepted: 11/05/2018] [Indexed: 11/20/2022]
Abstract
AIMS Sepsis is a potentially fatal illness that can lead to impairment of multiple organs such as liver. The condition is deeply associated with oxidative stress and inflammation. Monomethyl fumarate (MMF) has manifested antioxidant and immunomodulatory properties. The aim of current study was to evaluate protective effects of MMF in sepsis-induced hepatic dysfunction. MAIN METHODS Sepsis was induced by cecal ligation and puncture (CLP). Wistar rats were assigned to one of sham, CLP, CLP + dexamethasone (as positive control of inflammation) and CLP + MMF groups. Levels of serum IL-1β, IL-6, IL-10, AST, ALT and γ‑GT were quantified. Furthermore, Hepatic levels of GSH and MDA and mRNA expression of TNF and NFKBIA along with hepatic protein level of TLR-4 were assessed. Also, histopathological study of liver was carried out to evaluate hepatic injuries. KEY FINDINGS Septic rats demonstrated risen levels of IL-1β, IL-6, IL-10, AST, ALT and γ‑GT, while treatment with dexamethasone or MMF attenuated these levels. Moreover, enhancements in protein level of TLR-4 and mRNA levels of TNF and NFKBIA were observed in CLP rats. These elevations were mitigated in CLP-induced rats that were treated with either dexamethasone or MMF. Treatment with dexamethasone or MMF also shifted sepsis-induced disturbance in the levels of GSH and MDA towards sham levels. Hepato-protective effects of dexamethasone and MMF were further confirmed by histopathological observations. SIGNIFICANCE Our findings imply that MMF alleviates sepsis-induced hepatic dysfunction by mitigating the inflammatory and oxidative state and this effect is at least partly mediated by the inhibition of TLR-4/NF-κB signalling pathway.
Collapse
Affiliation(s)
- Armin Azadkhah Shalmani
- Toxicology and Poisoning Research Centre, Tehran University of Medical Sciences, Tehran, Iran; Department of Toxicology and Pharmacology, Faculty of Pharmacy, Tehran University of Medical Sciences, Tehran, Iran
| | - Mohammad Hossein Ghahremani
- Toxicology and Poisoning Research Centre, Tehran University of Medical Sciences, Tehran, Iran; Department of Toxicology and Pharmacology, Faculty of Pharmacy, Tehran University of Medical Sciences, Tehran, Iran
| | - Fereshteh Jeivad
- Toxicology and Poisoning Research Centre, Tehran University of Medical Sciences, Tehran, Iran; Department of Toxicology and Pharmacology, Faculty of Pharmacy, Tehran University of Medical Sciences, Tehran, Iran
| | - Amir Shadboorestan
- Department of Toxicology and Pharmacology, Faculty of Pharmacy, Tehran University of Medical Sciences, Tehran, Iran
| | - Gholamreza Hassanzadeh
- Department of Anatomy, School of Medicine, Tehran University of Medical Sciences, Tehran, Iran
| | - Abbas Beh-Pajooh
- Department of Toxicology and Pharmacology, Faculty of Pharmacy, Tehran University of Medical Sciences, Tehran, Iran
| | - Mikhriy Ganbari-Erdi
- Department of Toxicology and Pharmacology, Faculty of Pharmacy, Tehran University of Medical Sciences, Tehran, Iran
| | - Sara Kasirzadeh
- Department of Toxicology and Pharmacology, Faculty of Pharmacy, Tehran University of Medical Sciences, Tehran, Iran
| | - Mojtaba Mojtahedzadeh
- Toxicology and Poisoning Research Centre, Tehran University of Medical Sciences, Tehran, Iran; Department of Clinical Pharmacy, Faculty of Pharmacy, TUMS, Tehran, Iran
| | - Omid Sabzevari
- Toxicology and Poisoning Research Centre, Tehran University of Medical Sciences, Tehran, Iran; Department of Toxicology and Pharmacology, Faculty of Pharmacy, Tehran University of Medical Sciences, Tehran, Iran.
| |
Collapse
|
45
|
Kim H, Thompson J, Ji G, Ganapathy V, Neugebauer V. Monomethyl fumarate inhibits pain behaviors and amygdala activity in a rat arthritis model. Pain 2018; 158:2376-2385. [PMID: 28832396 DOI: 10.1097/j.pain.0000000000001042] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023]
Abstract
Neuroplasticity in the amygdala, a brain center for emotions, leads to increased neuronal activity and output that can generate emotional-affective behaviors and modulate nocifensive responses. Mechanisms of increased activity in the amygdala output region (central nucleus, CeA) include increased reactive oxygen species, and so we explored beneficial effects of monomethyl fumarate (MMF), which can have neuroprotective effects through the nuclear factor (erythroid-derived 2)-like 2 (Nrf2) antioxidant response pathway. Systemic (intraperitoneal) MMF dose-dependently inhibited vocalizations and mechanosensitivity (hindlimb withdrawal reflexes) of rats in an arthritis pain model (kaolin-carrageenan-induced monoarthritis in the knee). Stereotaxic administration of MMF into the CeA by microdialysis also inhibited vocalizations but had a limited effect on mechanosensitivity, suggesting a differential contribution to emotional-affective vs sensory pain aspects. Extracellular single-unit recordings of CeA neurons in anesthetized rats showed that stereotaxic administration of MMF into the CeA by microdialysis inhibited background activity and responses of CeA neurons to knee joint stimulation in the arthritis pain model. Monomethyl fumarate had no effect on behaviors and neuronal activity under normal conditions. The results suggest that MMF can inhibit emotional-affective responses in an arthritis pain model through an action that involves the amygdala (CeA).
Collapse
Affiliation(s)
- Hyunyoung Kim
- Department of Pharmacology and Neuroscience, Texas Tech University Health Sciences Center (TTUHSC), School of Medicine, Lubbock, TX, USA
| | - Jeremy Thompson
- Department of Pharmacology and Neuroscience, Texas Tech University Health Sciences Center (TTUHSC), School of Medicine, Lubbock, TX, USA
| | - Guangchen Ji
- Department of Pharmacology and Neuroscience, Texas Tech University Health Sciences Center (TTUHSC), School of Medicine, Lubbock, TX, USA
| | - Vadivel Ganapathy
- Center of Excellence for Translational Neuroscience and Therapeutics, Texas Tech University Health Sciences Center (TTUHSC), Lubbock, TX, USA.,Department of Cell Biology and Biochemistry, Texas Tech University Health Sciences Center (TTUHSC), Lubbock, TX, USA
| | - Volker Neugebauer
- Department of Pharmacology and Neuroscience, Texas Tech University Health Sciences Center (TTUHSC), School of Medicine, Lubbock, TX, USA.,Center of Excellence for Translational Neuroscience and Therapeutics, Texas Tech University Health Sciences Center (TTUHSC), Lubbock, TX, USA
| |
Collapse
|
46
|
Fowler JH, McQueen J, Holland PR, Manso Y, Marangoni M, Scott F, Chisholm E, Scannevin RH, Hardingham GE, Horsburgh K. Dimethyl fumarate improves white matter function following severe hypoperfusion: Involvement of microglia/macrophages and inflammatory mediators. J Cereb Blood Flow Metab 2018; 38:1354-1370. [PMID: 28606007 PMCID: PMC6077928 DOI: 10.1177/0271678x17713105] [Citation(s) in RCA: 42] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
The brain's white matter is highly vulnerable to reductions in cerebral blood flow via mechanisms that may involve elevated microgliosis and pro-inflammatory pathways. In the present study, the effects of severe cerebral hypoperfusion were investigated on white matter function and inflammation. Male C57Bl/6J mice underwent bilateral common carotid artery stenosis and white matter function was assessed at seven days with electrophysiology in response to evoked compound action potentials (CAPs) in the corpus callosum. The peak latency of CAPs and axonal refractoriness was increased following hypoperfusion, indicating a marked functional impairment in white matter, which was paralleled by axonal and myelin pathology and increased density and numbers of microglia/macrophages. The functional impairment in peak latency was significantly correlated with increased microglia/macrophages. Dimethyl fumarate (DMF; 100 mg/kg), a drug with anti-inflammatory properties, was found to reduce peak latency but not axonal refractoriness. DMF had no effect on hypoperfusion-induced axonal and myelin pathology. The density of microglia/macrophages was significantly increased in vehicle-treated hypoperfused mice, whereas DMF-treated hypoperfused mice had similar levels to that of sham-treated mice. The study suggests that increased microglia/macrophages following cerebral hypoperfusion contributes to the functional impairment in white matter that may be amenable to modulation by DMF.
Collapse
Affiliation(s)
- Jill H Fowler
- 1 Centre for Neuroregeneration, University of Edinburgh, Edinburgh, UK
| | - Jamie McQueen
- 1 Centre for Neuroregeneration, University of Edinburgh, Edinburgh, UK.,2 Centre for Integrative Physiology, University of Edinburgh, Edinburgh, UK
| | - Philip R Holland
- 1 Centre for Neuroregeneration, University of Edinburgh, Edinburgh, UK.,3 Current Address: Department of Basic and Clinical Neuroscience, Institute of Psychiatry, Psychology and Neuroscience, King's College London, London, UK
| | - Yasmina Manso
- 1 Centre for Neuroregeneration, University of Edinburgh, Edinburgh, UK.,4 Current Address: Developmental Neurobiology and Regeneration Lab, Parc Científic de Barcelona, Spain
| | - Martina Marangoni
- 1 Centre for Neuroregeneration, University of Edinburgh, Edinburgh, UK.,5 Current Address: Department of Health Sciences, University of Florence, Florence, Italy
| | - Fiona Scott
- 1 Centre for Neuroregeneration, University of Edinburgh, Edinburgh, UK
| | - Emma Chisholm
- 1 Centre for Neuroregeneration, University of Edinburgh, Edinburgh, UK
| | | | - Giles E Hardingham
- 2 Centre for Integrative Physiology, University of Edinburgh, Edinburgh, UK.,7 The UK Dementia Research Institute at The University of Edinburgh
| | - Karen Horsburgh
- 1 Centre for Neuroregeneration, University of Edinburgh, Edinburgh, UK.,8 Centre for Cognitive Ageing and Cognitive Epidemiology, University of Edinburgh, Edinburgh, UK
| |
Collapse
|
47
|
Liu XF, Zhou DD, Xie T, Hao JL, Malik TH, Lu CB, Qi J, Pant OP, Lu CW. The Nrf2 Signaling in Retinal Ganglion Cells under Oxidative Stress in Ocular Neurodegenerative Diseases. Int J Biol Sci 2018; 14:1090-1098. [PMID: 29989056 PMCID: PMC6036726 DOI: 10.7150/ijbs.25996] [Citation(s) in RCA: 43] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2018] [Accepted: 04/22/2018] [Indexed: 12/28/2022] Open
Abstract
Retinal ganglion cells (RGCs) are one of the important cell types affected in many ocular neurodegenerative diseases. Oxidative stress is considered to be involved in retinal RGCs death in ocular neurodegenerative diseases. More and more attention has been focused on studying the agents that may have neuroprotective effects. Nuclear factor (erythroid-derived 2)-like 2 (Nrf2) is a key nuclear transcription factor for the systemic antioxidant defense system. This review elucidates the underlying mechanism of the Nrf2-mediated neuroprotective effects on RGCs in ocular neurodegenerative diseases, such as diabetic retinopathy and retinal ischemia-reperfusion injury. Several Nrf2 inducers that shield RGCs from oxidative stress-induced neurodegeneration via regulating Nrf2 signaling are discussed.
Collapse
Affiliation(s)
- Xiu-Fen Liu
- Department of Ophthalmology, The First Hospital of Jilin University, Jilin, China
| | - Dan-Dan Zhou
- Department of Radiology, The First Hospital of Jilin University, Jilin, China
| | - Tian Xie
- Department of . Neurosurgery, The People's Hospital of Jilin Province, Jilin, China
| | - Ji-Long Hao
- Department of Ophthalmology, The First Hospital of Jilin University, Jilin, China
| | - Tayyab Hamid Malik
- Department of Gastroenterology, The First Hospital of Jilin University, Jilin, China
| | - Cheng-Bo Lu
- Department of Cardiology, The First Hospital of Jiamusi University, Heilongjiang, China
| | - Jing Qi
- Department of Ophthalmology, The First Hospital of Jilin University, Jilin, China
| | - Om Prakash Pant
- Department of Ophthalmology, The First Hospital of Jilin University, Jilin, China
| | - Cheng-Wei Lu
- Department of Ophthalmology, The First Hospital of Jilin University, Jilin, China
| |
Collapse
|
48
|
Ali T, Rehman SU, Shah FA, Kim MO. Acute dose of melatonin via Nrf2 dependently prevents acute ethanol-induced neurotoxicity in the developing rodent brain. J Neuroinflammation 2018; 15:119. [PMID: 29679979 PMCID: PMC5911370 DOI: 10.1186/s12974-018-1157-x] [Citation(s) in RCA: 60] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2018] [Accepted: 04/10/2018] [Indexed: 12/20/2022] Open
Abstract
BACKGROUND Melatonin is a well-known potent endogenous antioxidant pharmacological agent with significant neuroprotective actions. Here in the current study, we explored the nuclear factor erythroid 2-related factor 2 (Nrf2) gene-dependent antioxidant mechanism underlying the neuroprotective effects of the acute melatonin against acute ethanol-induced elevated reactive oxygen species (ROS)-mediated neuroinflammation and neurodegeneration in the developing rodent brain. METHODS In vivo rat pups were co-treated with a single dose of acute ethanol (5 g/kg, subcutaneous (S.C.)) and a single dose of acute melatonin (20 mg/kg, intraperitoneal (I.P.)). Four hours after a single S.C. and I.P. injections, all of the rat pups were sacrificed for further biochemical (Western blotting, ROS- assay, LPO-assay, and immunohistochemical) analyses. In order to corroborate the in vivo results, we used the in vitro murine-hippocampal HT22 and microglial BV2 cells, which were subjected to knockdown with small interfering RNA (siRNA) of Nrf2 genes and exposed with melatonin (100 μM) and ethanol (100 mM) and proceed for further biochemical analyses. RESULTS Our biochemical, immunohistochemical, and immunofluorescence results demonstrate that acute melatonin significantly upregulated the master endogenous antioxidant Nrf2 and heme oxygenase-1, consequently reversing the acute ethanol-induced elevated ROS and oxidative stress in the developing rodent brain, and in the murine-hippocampal HT22 and microglial BV2 cells. In addition, acute melatonin subsequently reduced the activated MAPK-p-P38-JNK pathways and attenuated neuroinflammation by decreasing the expression of activated gliosis and downregulated the p-NF-K-B/p-IKKβ pathway and decreased the expression levels of other inflammatory markers in the developing rodent brain and BV2 cells. Of note, melatonin acted through the Nrf2-dependent mechanism to attenuate neuronal apoptosis in the postnatal rodent brain and HT22 cells. Immunohistofluorescence results also showed that melatonin prevented ethanol-induced neurodegeneration in the developing rodent brain. The in vitro results indicated that melatonin induced neuroprotection via Nrf2-dependent manner and reduced ethanol-induced neurotoxicity. CONCLUSIONS The pleiotropic and potent neuroprotective antioxidant characteristics of melatonin, together with our in vivo and in vitro findings, suppose that acute melatonin could be beneficial to prevent and combat the acute ethanol-induced neurotoxic effects, such as elevated ROS, neuroinflammation, and neurodegeneration in the developing rodent brain.
Collapse
Affiliation(s)
- Tahir Ali
- Division of Applied Life Science (BK 21), College of Natural Sciences, Gyeongsang National University, Jinju, 660-701, Republic of Korea
| | - Shafiq Ur Rehman
- Division of Applied Life Science (BK 21), College of Natural Sciences, Gyeongsang National University, Jinju, 660-701, Republic of Korea
| | - Fawad Ali Shah
- Department of Pharmacology, Riphah Institute of Pharmaceutical Sciences, Riphah International University, Islamabad, Pakistan
| | - Myeong Ok Kim
- Division of Applied Life Science (BK 21), College of Natural Sciences, Gyeongsang National University, Jinju, 660-701, Republic of Korea.
| |
Collapse
|
49
|
Yu Y, Shen Q, Lai Y, Park SY, Ou X, Lin D, Jin M, Zhang W. Anti-inflammatory Effects of Curcumin in Microglial Cells. Front Pharmacol 2018; 9:386. [PMID: 29731715 PMCID: PMC5922181 DOI: 10.3389/fphar.2018.00386] [Citation(s) in RCA: 91] [Impact Index Per Article: 15.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/24/2017] [Accepted: 04/04/2018] [Indexed: 11/26/2022] Open
Abstract
Lipoteichoic acid (LTA) induces neuroinflammatory molecules, contributing to the pathogenesis of neurodegenerative diseases. Therefore, suppression of neuroinflammatory molecules could be developed as a therapeutic method. Although previous data supports an immune-modulating effect of curcumin, the underlying signaling pathways are largely unidentified. Here, we investigated curcumin’s anti-neuroinflammatory properties in LTA-stimulated BV-2 microglial cells. Inflammatory cytokine tumor necrosis factor-α [TNF-α, prostaglandin E2 (PGE2), and Nitric Oxide (NO] secretion in LTA-induced microglial cells were inhibited by curcumin. Curcumin also inhibited LTA-induced inducible NO synthases (iNOS) and cyclooxygenase-2 (COX-2) expression. Subsequently, our mechanistic studies revealed that curcumin inhibited LTA-induced phosphorylation of mitogen-activated protein kinase (MAPK) including ERK, p38, Akt and translocation of NF-κB. Furthermore, curcumin induced hemeoxygenase (HO)-1HO-1 and nuclear factor erythroid 2-related factor 2 (Nrf-2) expression in microglial cells. Inhibition of HO-1 reversed the inhibition effect of HO-1 on inflammatory mediators release in LTA-stimulated microglial cells. Taken together, our results suggest that curcumin could be a potential therapeutic agent for the treatment of neurodegenerative disorders via suppressing neuroinflammatory responses.
Collapse
Affiliation(s)
- Yangyang Yu
- Shenzhen University Health Science Center, Shenzhen, China
| | - Qian Shen
- Shenzhen University Health Science Center, Shenzhen, China
| | - Yihong Lai
- Shenzhen University Health Science Center, Shenzhen, China
| | - Sun Y Park
- Bio-IT Fusion Technology Research Institute, Pusan National University, Busan, South Korea
| | - Xingmei Ou
- Shenzhen University Health Science Center, Shenzhen, China
| | - Dongxu Lin
- Shenzhen University Health Science Center, Shenzhen, China
| | - Meiling Jin
- Shenzhen University Health Science Center, Shenzhen, China
| | - Weizhen Zhang
- Shenzhen University Health Science Center, Shenzhen, China
| |
Collapse
|
50
|
Navneet S, Cui X, Zhao J, Wang J, Kaidery NA, Thomas B, Bollinger KE, Yoon Y, Smith SB. Excess homocysteine upregulates the NRF2-antioxidant pathway in retinal Müller glial cells. Exp Eye Res 2018; 178:228-237. [PMID: 29608906 DOI: 10.1016/j.exer.2018.03.022] [Citation(s) in RCA: 25] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2018] [Revised: 03/14/2018] [Accepted: 03/22/2018] [Indexed: 10/17/2022]
Abstract
This study evaluated the effects of elevated homocysteine (Hcy) on the oxidative stress response in retinal Müller glial cells. Elevated Hcy has been implicated in retinal diseases including glaucoma and optic neuropathy, which are characterized by retinal ganglion cell (RGC) loss. To understand the mechanisms of Hcy-induced RGC loss, in vitro and in vivo models have been utilized. In vitro isolated RGCs are quite sensitive to elevated Hcy levels, while in vivo murine models of hyperhomocysteinemia (HHcy) demonstrate a more modest RGC loss (∼20%) over a period of many months. This differential response to Hcy between isolated cells and the intact retina suggests that the retinal milieu invokes mechanisms that buffer excess Hcy. Oxidative stress has been implicated as a mechanism of Hcy-induced neuron loss and NRF2 is a transcription factor that plays a major role in regulating cytoprotective responses to oxidative stress. In the present study we investigated whether HHcy upregulates NRF2-mediated stress responses in Müller cells, the chief retinal glial cell responsible for providing trophic support to retinal neurons. Primary Müller cells were exposed to L-Hcy-thiolactone [50μM-10mM] and assessed for viability, reactive oxygen species (ROS), and glutathione (GSH) levels. Gene/protein levels of Nrf2 and levels of NRF2-regulated antioxidants (NQO1, CAT, SOD2, HMOX1, GPX1) were assessed in Hcy-exposed Müller cells. Unlike isolated RGCs, isolated Müller cells are viable over a wide range of Hcy concentrations [50 μM - 1 mM]. Moreover, when exposed to elevated Hcy, Müller cells demonstrate decreased oxidative stress and decreased ROS levels. GSH levels increased by ∼20% within 24 h exposure to Hcy. Molecular analyses revealed 2-fold increase in Nrf2 expression. Expression of antioxidant genes Nqo1, Cat, Sod2, Hmox1, Gpx1 increased significantly. The consequences of Hcy exposure were evaluated also in Müller cells harvested from Nrf2-/- mice. In contrast to WT Müller cells, in which oxidative stress decreased upon exposure to Hcy, the Nrf2-/- Müller cells showed a significant increase in oxidative stress. Our data suggest that at least during early stages of Hhcy, a cytoprotective response may be in place, mediated in part by NRF2 in Müller cells.
Collapse
Affiliation(s)
- Soumya Navneet
- Department of Cellular Biology and Anatomy, Medical College of Georgia, Augusta University, Augusta, GA, United States; James and Jean Culver Vision Discovery Institute, Augusta University, Augusta, GA, United States
| | - Xuezhi Cui
- Department of Cellular Biology and Anatomy, Medical College of Georgia, Augusta University, Augusta, GA, United States; James and Jean Culver Vision Discovery Institute, Augusta University, Augusta, GA, United States
| | - Jing Zhao
- Department of Cellular Biology and Anatomy, Medical College of Georgia, Augusta University, Augusta, GA, United States; James and Jean Culver Vision Discovery Institute, Augusta University, Augusta, GA, United States
| | - Jing Wang
- Department of Cellular Biology and Anatomy, Medical College of Georgia, Augusta University, Augusta, GA, United States; James and Jean Culver Vision Discovery Institute, Augusta University, Augusta, GA, United States
| | - Navneet Ammal Kaidery
- Department of Pharmacology and Toxicology, Medical College of Georgia, Augusta University, Augusta, GA, United States
| | - Bobby Thomas
- Department of Pharmacology and Toxicology, Medical College of Georgia, Augusta University, Augusta, GA, United States
| | - Kathryn E Bollinger
- Department of Cellular Biology and Anatomy, Medical College of Georgia, Augusta University, Augusta, GA, United States; James and Jean Culver Vision Discovery Institute, Augusta University, Augusta, GA, United States; Department of Ophthalmology, Medical College of Georgia, Augusta University, Augusta, GA, United States
| | - Yisang Yoon
- Department of Physiology, Medical College of Georgia, Augusta University, Augusta, GA, United States
| | - Sylvia B Smith
- Department of Cellular Biology and Anatomy, Medical College of Georgia, Augusta University, Augusta, GA, United States; James and Jean Culver Vision Discovery Institute, Augusta University, Augusta, GA, United States; Department of Ophthalmology, Medical College of Georgia, Augusta University, Augusta, GA, United States.
| |
Collapse
|