1
|
Londoño AC, Mora CA. High efficacy therapy to prevent the formation of meningeal tertiary lymphoid organs after CXCL13 index screening in early multiple sclerosis. Front Neurosci 2025; 19:1558810. [PMID: 40165834 PMCID: PMC11955623 DOI: 10.3389/fnins.2025.1558810] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2025] [Accepted: 02/24/2025] [Indexed: 04/02/2025] Open
Abstract
Postmortem studies have shown the presence of subpial inflammation with tertiary lymphoid organs (TLO) in the meninges of patients with progressive multiple sclerosis, playing an important role in the pathophysiology of the disease. The chemokine (C-X-C motif) ligand 13 (CXCL13) induces the formation of these lymphoid organs, thus promoting activity of disease. The progression to disability in multiple sclerosis has been reduced, thanks to the effect of disease modifying therapy. However, despite advances in the treatment of disease with immunomodulatory agents, we still lack specific laboratory biomarkers that could indicate the state of activity of disease, either at time of diagnosis or when escalation therapy seems to be mandatory. In patients with multiple sclerosis, MRI studies have not demonstrated the presence of TLO in the CNS, so far. The determination of the CXCL13 index (ICXCL 13), in clinical specimens, could become a reliable biomarker for the verification of the presence and activity of the TLO, thus contributing to improving therapy outcome, with high efficacy therapy, in the clinical setting.
Collapse
Affiliation(s)
- Ana C. Londoño
- Instituto Neurologico de Colombia (INDEC), Medellin, Colombia
- Retired (2022), Medellin, Colombia
| | - Carlos A. Mora
- Department of Medicine, Neurology Unit, Virginia Tech Carilion School of Medicine, Roanoke, VA, United States
| |
Collapse
|
2
|
Häusler D, Weber MS. Towards Treating Multiple Sclerosis Progression. Pharmaceuticals (Basel) 2024; 17:1474. [PMID: 39598386 PMCID: PMC11597358 DOI: 10.3390/ph17111474] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2024] [Revised: 10/28/2024] [Accepted: 10/29/2024] [Indexed: 11/29/2024] Open
Abstract
Multiple sclerosis (MS) is an inflammatory, demyelinating disease of the central nervous system (CNS). In most patients, the disease starts with an acute onset followed by a remission phase, subsequent relapses and a later transition to steady chronic progression. In a minority of patients, this progressive phase develops from the beginning. MS relapses are characterized predominantly by the de novo formation of an inflammatory CNS lesion and the infiltration of immune cells, whereas the pathological features of MS progression include slowly expanding lesions, global brain atrophy and an inflammatory response predominantly mediated by macrophages/microglia. Importantly, this CNS-intrinsic pathophysiology appears to initiate early during the relapsing-remitting disease phase, while it turns into the key clinical MS feature in later stages. Currently approved disease-modifying treatments for MS are effective in modulating peripheral immunity by dampening immune cell activity or preventing the migration of immune cells into the CNS, resulting in the prevention of relapses; however, they show limited success in halting MS progression. In this manuscript, we first describe the pathological mechanisms of MS and summarize the approved therapeutics for MS progression. We also review the treatment options for progressive MS (PMS) that are currently under investigation. Finally, we discuss potential targets for novel treatment strategies in PMS.
Collapse
Affiliation(s)
- Darius Häusler
- Institute of Neuropathology, University Medical Centre, 37075 Goettingen, Germany;
- Fraunhofer-Institute for Translational Medicine and Pharmacology ITMP, 37075 Goettingen, Germany
| | - Martin S. Weber
- Institute of Neuropathology, University Medical Centre, 37075 Goettingen, Germany;
- Fraunhofer-Institute for Translational Medicine and Pharmacology ITMP, 37075 Goettingen, Germany
- Department of Neurology, University Medical Centre, 37075 Goettingen, Germany
| |
Collapse
|
3
|
Zhang Q, Sun W, Zheng M, Zhang N. Contribution of microglia/macrophage to the pathogenesis of TMEV infection in the central nervous system. Front Microbiol 2024; 15:1452390. [PMID: 39155988 PMCID: PMC11327027 DOI: 10.3389/fmicb.2024.1452390] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2024] [Accepted: 07/23/2024] [Indexed: 08/20/2024] Open
Abstract
The infection of the central nervous system (CNS) with neurotropic viruses induces neuroinflammation and an immune response, which is associated with the development of neuroinflammatory and neurodegenerative diseases, including multiple sclerosis (MS). The activation of both innate and adaptive immune responses, involving microglia, macrophages, and T and B cells, while required for efficient viral control within the CNS, is also associated with neuropathology. Under pathological events, such as CNS viral infection, microglia/macrophage undergo a reactive response, leading to the infiltration of immune cells from the periphery into the brain, disrupting CNS homeostasis and contributing to the pathogenesis of disease. The Theiler's murine encephalomyelitis virus (TMEV)-induced demyelination disease (TMEV-IDD), which serves as a mouse model of MS. This murine model made significant contributions to our understanding of the pathophysiology of MS following subsequent to infection. Microglia/macrophages could be activated into two different states, classic activated state (M1 state) and alternative activated state (M2 state) during TMEV infection. M1 possesses the capacity to initiate inflammatory response and secretes pro-inflammatory cytokines, and M2-liked microglia/macrophages are anti-inflammatory characterized by the secretion of anti-inflammatory cytokines. This review aims to discuss the roles of microglia/macrophages M1/M2-liked polarization during TMEV infection, and explore the potential therapeutic effect of balancing M1/M2-liked polarization of microglia/macrophages on MS.
Collapse
Affiliation(s)
| | | | | | - Ning Zhang
- Institute of Biopharmaceutical Research, Liaocheng University, Liaocheng, Shandong, China
| |
Collapse
|
4
|
Pouzol L, Sassi A, Tunis M, Zurbach A, Baumlin N, Gnerre C, Strasser DS, Marrie J, Vezzali E, Martinic MM. ACKR3 Antagonism Enhances the Repair of Demyelinated Lesions Through Both Immunomodulatory and Remyelinating Effects. Neurochem Res 2024; 49:2087-2104. [PMID: 38819698 PMCID: PMC11233362 DOI: 10.1007/s11064-024-04173-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2024] [Revised: 04/16/2024] [Accepted: 05/22/2024] [Indexed: 06/01/2024]
Abstract
Addressing inflammation, demyelination, and associated neurodegeneration in inflammatory demyelinating diseases like multiple sclerosis (MS) remains challenging. ACT-1004-1239, a first-in-class and potent ACKR3 antagonist, currently undergoing clinical development, showed promise in preclinical MS models, reducing neuroinflammation and demyelination. However, its effectiveness in treating established disease and impact on remyelination after the occurrence of demyelinated lesions remain unexplored. This study assessed the therapeutic effect of ACT-1004-1239 in two demyelinating disease models. In the proteolipid protein (PLP)-induced experimental autoimmune encephalomyelitis (EAE) model, ACT-1004-1239 administered upon the detection of the first signs of paralysis, resulted in a dose-dependent reduction in EAE disease severity, concomitant with diminished immune cell infiltrates in the CNS and reduced demyelination. Notably, efficacy correlated with elevated plasma concentrations of CXCL11 and CXCL12, two pharmacodynamic biomarkers of ACKR3 antagonism. Combining ACT-1004-1239 with siponimod, an approved immunomodulatory treatment for MS, synergistically reduced EAE severity. In the cuprizone-induced demyelination model, ACT-1004-1239 administered after 5 weeks of cuprizone exposure, significantly accelerated remyelination, already quantifiable one week after cuprizone withdrawal. Additionally, ACT-1004-1239 penetrated the CNS, elevating brain CXCL12 concentrations. These results demonstrate that ACKR3 antagonism significantly reduces the severity of experimental demyelinating diseases, even when treatment is initiated therapeutically, after the occurrence of lesions. It confirms the dual mode of action of ACT-1004-1239, exhibiting both immunomodulatory effects by reducing neuroinflammation and promyelinating effects by accelerating myelin repair. The results further strengthen the rationale for evaluating ACT-1004-1239 in clinical trials for patients with demyelinating diseases.
Collapse
Affiliation(s)
- Laetitia Pouzol
- Idorsia Pharmaceuticals Ltd, Hegenheimermattweg 91, Allschwil 4123, Basel-Landschaft, Switzerland.
| | - Anna Sassi
- Idorsia Pharmaceuticals Ltd, Hegenheimermattweg 91, Allschwil 4123, Basel-Landschaft, Switzerland
| | - Mélanie Tunis
- Idorsia Pharmaceuticals Ltd, Hegenheimermattweg 91, Allschwil 4123, Basel-Landschaft, Switzerland
| | - Anaïs Zurbach
- Idorsia Pharmaceuticals Ltd, Hegenheimermattweg 91, Allschwil 4123, Basel-Landschaft, Switzerland
| | - Nadège Baumlin
- Idorsia Pharmaceuticals Ltd, Hegenheimermattweg 91, Allschwil 4123, Basel-Landschaft, Switzerland
| | - Carmela Gnerre
- Idorsia Pharmaceuticals Ltd, Hegenheimermattweg 91, Allschwil 4123, Basel-Landschaft, Switzerland
| | - Daniel S Strasser
- Idorsia Pharmaceuticals Ltd, Hegenheimermattweg 91, Allschwil 4123, Basel-Landschaft, Switzerland
| | - Julia Marrie
- Idorsia Pharmaceuticals Ltd, Hegenheimermattweg 91, Allschwil 4123, Basel-Landschaft, Switzerland
| | - Enrico Vezzali
- Idorsia Pharmaceuticals Ltd, Hegenheimermattweg 91, Allschwil 4123, Basel-Landschaft, Switzerland
| | - Marianne M Martinic
- Idorsia Pharmaceuticals Ltd, Hegenheimermattweg 91, Allschwil 4123, Basel-Landschaft, Switzerland
| |
Collapse
|
5
|
Nheu D, Petratos S. How does Nogo-A signalling influence mitochondrial function during multiple sclerosis pathogenesis? Neurosci Biobehav Rev 2024; 163:105767. [PMID: 38885889 DOI: 10.1016/j.neubiorev.2024.105767] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2024] [Revised: 05/30/2024] [Accepted: 06/08/2024] [Indexed: 06/20/2024]
Abstract
Multiple sclerosis (MS) is a severe neurological disorder that involves inflammation in the brain, spinal cord and optic nerve with key disabling neuropathological outcomes being axonal damage and demyelination. When degeneration of the axo-glial union occurs, a consequence of inflammatory damage to central nervous system (CNS) myelin, dystrophy and death can lead to large membranous structures from dead oligodendrocytes and degenerative myelin deposited in the extracellular milieu. For the first time, this review covers mitochondrial mechanisms that may be operative during MS-related neurodegenerative changes directly activated during accumulating extracellular deposits of myelin associated inhibitory factors (MAIFs), that include the potent inhibitor of neurite outgrowth, Nogo-A. Axonal damage may occur when Nogo-A binds to and signals through its cognate receptor, NgR1, a multimeric complex, to initially stall axonal transport and limit the delivery of important growth-dependent cargo and subcellular organelles such as mitochondria for metabolic efficiency at sites of axo-glial disintegration as a consequence of inflammation. Metabolic efficiency in axons fails during active demyelination and progressive neurodegeneration, preceded by stalled transport of functional mitochondria to fuel axo-glial integrity.
Collapse
Affiliation(s)
- Danica Nheu
- Department of Neuroscience, School of Translational Medicine, Monash University, Prahran, VIC 3004, Australia
| | - Steven Petratos
- Department of Neuroscience, School of Translational Medicine, Monash University, Prahran, VIC 3004, Australia.
| |
Collapse
|
6
|
Hendek HH, Blusch A, Heitmann N, Oberhagemann S, Demir S, Pedreiturria X, Gold R, Faissner S. Siponimod treatment response shows partial BDNF dependency in multiple sclerosis models. Sci Rep 2024; 14:17823. [PMID: 39090252 PMCID: PMC11294562 DOI: 10.1038/s41598-024-68715-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2023] [Accepted: 07/26/2024] [Indexed: 08/04/2024] Open
Abstract
So far, only a small number of medications are effective in progressive multiple sclerosis (MS). The sphingosine-1-phosphate-receptor (S1PR)-1,5 modulator siponimod, licensed for progressive MS, is acting both on peripheral immune cells and in the central nervous system (CNS). So far it remains elusive, whether those effects are related to the neurotrophin brain derived neurotrophic factor (BDNF). We hypothesized that BDNF in immune cells might be a prerequisite to reduce disease activity in experimental autoimmune encephalomyelitis (EAE) and prevent neurotoxicity. MOG35-55 immunized wild type (WT) and BDNF knock-out (BDNFko) mice were treated with siponimod or vehicle and scored daily in a blinded manner. Immune cell phenotyping was performed via flow cytometry. Immune cell infiltration and demyelination of spinal cord were assessed using immunohistochemistry. In vitro, effects on neurotoxicity and mRNA regulation were investigated using dorsal root ganglion cells incubated with EAE splenocyte supernatant. Siponimod led to a dose-dependent reduction of EAE scores in chronic WT EAE. Using a suboptimal dosage of 0.45 µg/day, siponimod reduced clinical signs of EAE independent of BDNF-expression in immune cells in accordance with reduced infiltration and demyelination. Th and Tc cells in secondary lymphoid organs were dose-dependently reduced, paralleled with an increase of regulatory T cells. In vitro, neuronal viability trended towards a deterioration after incubation with EAE supernatant; siponimod showed a slight rescue effect following treatment of WT splenocytes. Neuronal gene expression for CCL2 and CX3CL1 was elevated after incubation with EAE supernatant, which was reversed after siponimod treatment for WT, but not for BNDFko. Apoptosis markers and alternative death pathways were not affected. Siponimod exerts both anti-inflammatory and neuroprotective effects, partially related to BDNF-expression. This might in part explain effectiveness during progression in MS and could be a target for therapy.
Collapse
Affiliation(s)
- Hasan Hüseyin Hendek
- Department of Neurology, Ruhr-University Bochum, St. Josef-Hospital, Gudrunstr. 56, 44791, Bochum, Germany
| | - Alina Blusch
- Department of Neurology, Ruhr-University Bochum, St. Josef-Hospital, Gudrunstr. 56, 44791, Bochum, Germany
| | - Neele Heitmann
- Department of Neurology, Ruhr-University Bochum, St. Josef-Hospital, Gudrunstr. 56, 44791, Bochum, Germany
| | - Sarah Oberhagemann
- Department of Neurology, Ruhr-University Bochum, St. Josef-Hospital, Gudrunstr. 56, 44791, Bochum, Germany
| | - Seray Demir
- Department of Neurology, Ruhr-University Bochum, St. Josef-Hospital, Gudrunstr. 56, 44791, Bochum, Germany
| | - Xiomara Pedreiturria
- Department of Neurology, Ruhr-University Bochum, St. Josef-Hospital, Gudrunstr. 56, 44791, Bochum, Germany
| | - Ralf Gold
- Department of Neurology, Ruhr-University Bochum, St. Josef-Hospital, Gudrunstr. 56, 44791, Bochum, Germany
| | - Simon Faissner
- Department of Neurology, Ruhr-University Bochum, St. Josef-Hospital, Gudrunstr. 56, 44791, Bochum, Germany.
| |
Collapse
|
7
|
Guadalupi L, Mandolesi G, Vanni V, Balletta S, Caioli S, Pavlovic A, De Vito F, Fresegna D, Sanna K, Vitiello L, Nencini M, Tartacca A, Mariani F, Rovella V, Schippling S, Ruf I, Collin L, Centonze D, Musella A. Pharmacological blockade of 2-AG degradation ameliorates clinical, neuroinflammatory and synaptic alterations in experimental autoimmune encephalomyelitis. Neuropharmacology 2024; 252:109940. [PMID: 38570068 DOI: 10.1016/j.neuropharm.2024.109940] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2023] [Revised: 03/15/2024] [Accepted: 03/28/2024] [Indexed: 04/05/2024]
Abstract
The endocannabinoid system (ECS) is critically involved in the pathophysiology of Multiple Sclerosis (MS), a neuroinflammatory and neurodegenerative disease of the central nervous system (CNS). Over the past decade, researchers have extensively studied the neuroprotective and anti-inflammatory effects of the ECS. Inhibiting the degradation of the endocannabinoid 2-arachidonoylglycerol (2-AG) has emerged as a promising strategy to mitigate brain damage in MS. In this study, we investigated the effects of a novel reversible MAGL inhibitor (MAGLi 432) on C57/BL6 female mice with experimental autoimmune encephalomyelitis (EAE), a model of MS. We assessed its implications on motor disability, neuroinflammation, and synaptic dysfunction. Systemic in vivo treatment with MAGLi 432 resulted in a less severe EAE disease, accompanied by increased 2-AG levels and decreased levels of arachidonic acid (AA) and prostaglandins (PGs) in the brain. Additionally, MAGLi 432 reduced both astrogliosis and microgliosis, as evidenced by decreased microglia/macrophage density and a less reactive morphology. Flow cytometry analysis further revealed fewer infiltrating CD45+ and CD3+ cells in the brains of MAGLi 432-treated EAE mice. Finally, MAGLi treatment counteracted the striatal synaptic hyperexcitability promoted by EAE neuroinflammation. In conclusion, MAGL inhibition significantly ameliorated EAE clinical disability and striatal inflammatory synaptopathy through potent anti-inflammatory effects. These findings provide new mechanistic insights into the neuroprotective role of the ECS during neuroinflammation and highlight the therapeutic potential of MAGLi-based drugs in mitigating MS-related inflammatory and neurodegenerative brain damage.
Collapse
Affiliation(s)
- Livia Guadalupi
- Department of Systems Medicine, University of Rome Tor Vergata, Rome, Italy; Synaptic Immunopathology Lab, IRCCS San Raffaele Roma, Rome, Italy
| | - Georgia Mandolesi
- Synaptic Immunopathology Lab, IRCCS San Raffaele Roma, Rome, Italy; Department of Human Sciences and Quality of Life Promotion University of Rome San Raffaele, Italy
| | - Valentina Vanni
- Synaptic Immunopathology Lab, IRCCS San Raffaele Roma, Rome, Italy
| | - Sara Balletta
- IRCCS Istituto Neurologico Mediterraneo (INM) Neuromed, Pozzilli (IS), Italy
| | - Silvia Caioli
- IRCCS Istituto Neurologico Mediterraneo (INM) Neuromed, Pozzilli (IS), Italy
| | - Anto Pavlovic
- Laboratory of Flow Cytometry, IRCCS San Raffaele Roma, Rome, Italy
| | - Francesca De Vito
- IRCCS Istituto Neurologico Mediterraneo (INM) Neuromed, Pozzilli (IS), Italy
| | - Diego Fresegna
- Department of Systems Medicine, University of Rome Tor Vergata, Rome, Italy; Synaptic Immunopathology Lab, IRCCS San Raffaele Roma, Rome, Italy
| | - Krizia Sanna
- Department of Systems Medicine, University of Rome Tor Vergata, Rome, Italy
| | - Laura Vitiello
- Department of Human Sciences and Quality of Life Promotion University of Rome San Raffaele, Italy; Laboratory of Flow Cytometry, IRCCS San Raffaele Roma, Rome, Italy
| | - Monica Nencini
- Synaptic Immunopathology Lab, IRCCS San Raffaele Roma, Rome, Italy
| | - Alice Tartacca
- Department of Systems Medicine, University of Rome Tor Vergata, Rome, Italy
| | - Fabrizio Mariani
- Department of Systems Medicine, University of Rome Tor Vergata, Rome, Italy
| | - Valentina Rovella
- Department of Systems Medicine, University of Rome Tor Vergata, Rome, Italy
| | - Sven Schippling
- F. Hoffmann -La Roche Ltd. Roche. Innovation Center Basel, Switzerland by Roche Pharma Research and Early Development (pRED), Roche Innovation Center Basel, 4070 Basel, Switzerland
| | - Iris Ruf
- F. Hoffmann -La Roche Ltd. Roche. Innovation Center Basel, Switzerland by Roche Pharma Research and Early Development (pRED), Roche Innovation Center Basel, 4070 Basel, Switzerland
| | - Ludovic Collin
- F. Hoffmann -La Roche Ltd. Roche. Innovation Center Basel, Switzerland by Roche Pharma Research and Early Development (pRED), Roche Innovation Center Basel, 4070 Basel, Switzerland
| | - Diego Centonze
- Department of Systems Medicine, University of Rome Tor Vergata, Rome, Italy; IRCCS Istituto Neurologico Mediterraneo (INM) Neuromed, Pozzilli (IS), Italy.
| | - Alessandra Musella
- Synaptic Immunopathology Lab, IRCCS San Raffaele Roma, Rome, Italy; Department of Human Sciences and Quality of Life Promotion University of Rome San Raffaele, Italy
| |
Collapse
|
8
|
Sanna K, Bruno A, Balletta S, Caioli S, Nencini M, Fresegna D, Guadalupi L, Dolcetti E, Azzolini F, Buttari F, Fantozzi R, Borrelli A, Stampanoni Bassi M, Gilio L, Lauritano G, Vanni V, De Vito F, Tartacca A, Mariani F, Rovella V, Musella A, Centonze D, Mandolesi G. Re-emergence of T lymphocyte-mediated synaptopathy in progressive multiple sclerosis. Front Immunol 2024; 15:1416133. [PMID: 38911847 PMCID: PMC11190089 DOI: 10.3389/fimmu.2024.1416133] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2024] [Accepted: 05/24/2024] [Indexed: 06/25/2024] Open
Abstract
Background Secondary progressive multiple sclerosis (SPMS) is defined by the irreversible accumulation of disability following a relapsing-remitting MS (RRMS) course. Despite treatments advances, a reliable tool able to capture the transition from RRMS to SPMS is lacking. A T cell chimeric MS model demonstrated that T cells derived from relapsing patients exacerbate excitatory transmission of central neurons, a synaptotoxic event absent during remitting stages. We hypothesized the re-emergence of T cell synaptotoxicity during SPMS and investigated the synaptoprotective effects of siponimod, a sphingosine 1-phosphate receptor (S1PR) modulator, known to reduce grey matter damage in SPMS patients. Methods Data from healthy controls (HC), SPMS patients, and siponimod-treated SPMS patients were collected. Chimeric experiments were performed incubating human T cells on murine cortico-striatal slices, and recording spontaneous glutamatergic activity from striatal neurons. Homologous chimeric experiments were executed incubating EAE mice T cells with siponimod and specific S1PR agonists or antagonists to identify the receptor involved in siponimod-mediated synaptic recovery. Results SPMS patient-derived T cells significantly increased the striatal excitatory synaptic transmission (n=40 synapses) compared to HC T cells (n=55 synapses), mimicking the glutamatergic alterations observed in active RRMS-T cells. Siponimod treatment rescued SPMS T cells synaptotoxicity (n=51 synapses). Homologous chimeric experiments highlighted S1P5R involvement in the siponimod's protective effects. Conclusion Transition from RRMS to SPMS involves the reappearance of T cell-mediated synaptotoxicity. Siponimod counteracts T cell-induced excitotoxicity, emphasizing the significance of inflammatory synaptopathy in progressive MS and its potential as a promising pharmacological target.
Collapse
Affiliation(s)
- Krizia Sanna
- Department of Systems Medicine, University of Rome Tor Vergata, Rome, Italy
| | - Antonio Bruno
- Ph.D. Program in Neuroscience, Department of Systems Medicine, Tor Vergata University, Rome, Italy
- Unit of Neurology, Istituto di Ricovero e Cura a Carattere Scientifico (IRCCS) Neuromed, Pozzilli, IS, Italy
| | - Sara Balletta
- Unit of Neurology, Istituto di Ricovero e Cura a Carattere Scientifico (IRCCS) Neuromed, Pozzilli, IS, Italy
| | - Silvia Caioli
- Unit of Neurology, Istituto di Ricovero e Cura a Carattere Scientifico (IRCCS) Neuromed, Pozzilli, IS, Italy
| | - Monica Nencini
- Synaptic Immunopathology Lab, Istituto di Ricovero e Cura a Carattere Scientifico (IRCCS) San Raffaele Roma, Rome, Italy
| | - Diego Fresegna
- Department of Systems Medicine, University of Rome Tor Vergata, Rome, Italy
- Synaptic Immunopathology Lab, Istituto di Ricovero e Cura a Carattere Scientifico (IRCCS) San Raffaele Roma, Rome, Italy
| | - Livia Guadalupi
- Department of Systems Medicine, University of Rome Tor Vergata, Rome, Italy
- Synaptic Immunopathology Lab, Istituto di Ricovero e Cura a Carattere Scientifico (IRCCS) San Raffaele Roma, Rome, Italy
| | - Ettore Dolcetti
- Ph.D. Program in Neuroscience, Department of Systems Medicine, Tor Vergata University, Rome, Italy
- Unit of Neurology, Istituto di Ricovero e Cura a Carattere Scientifico (IRCCS) Neuromed, Pozzilli, IS, Italy
| | - Federica Azzolini
- Unit of Neurology, Istituto di Ricovero e Cura a Carattere Scientifico (IRCCS) Neuromed, Pozzilli, IS, Italy
| | - Fabio Buttari
- Department of Systems Medicine, University of Rome Tor Vergata, Rome, Italy
- Unit of Neurology, Istituto di Ricovero e Cura a Carattere Scientifico (IRCCS) Neuromed, Pozzilli, IS, Italy
| | - Roberta Fantozzi
- Unit of Neurology, Istituto di Ricovero e Cura a Carattere Scientifico (IRCCS) Neuromed, Pozzilli, IS, Italy
| | - Angela Borrelli
- Unit of Neurology, Istituto di Ricovero e Cura a Carattere Scientifico (IRCCS) Neuromed, Pozzilli, IS, Italy
| | - Mario Stampanoni Bassi
- Unit of Neurology, Istituto di Ricovero e Cura a Carattere Scientifico (IRCCS) Neuromed, Pozzilli, IS, Italy
| | - Luana Gilio
- Unit of Neurology, Istituto di Ricovero e Cura a Carattere Scientifico (IRCCS) Neuromed, Pozzilli, IS, Italy
| | - Gianluca Lauritano
- Ph.D. Program in Neuroscience, Department of Systems Medicine, Tor Vergata University, Rome, Italy
- Unit of Neurology, Istituto di Ricovero e Cura a Carattere Scientifico (IRCCS) Neuromed, Pozzilli, IS, Italy
| | - Valentina Vanni
- Synaptic Immunopathology Lab, Istituto di Ricovero e Cura a Carattere Scientifico (IRCCS) San Raffaele Roma, Rome, Italy
| | - Francesca De Vito
- Unit of Neurology, Istituto di Ricovero e Cura a Carattere Scientifico (IRCCS) Neuromed, Pozzilli, IS, Italy
| | - Alice Tartacca
- Ph.D. Program in Neuroscience, Department of Systems Medicine, Tor Vergata University, Rome, Italy
| | - Fabrizio Mariani
- Department of Systems Medicine, University of Rome Tor Vergata, Rome, Italy
| | - Valentina Rovella
- Department of Systems Medicine, University of Rome Tor Vergata, Rome, Italy
| | - Alessandra Musella
- Synaptic Immunopathology Lab, Istituto di Ricovero e Cura a Carattere Scientifico (IRCCS) San Raffaele Roma, Rome, Italy
- Department of Human Sciences and Quality of Life Promotion, University of Rome San Raffaele, Rome, Italy
| | - Diego Centonze
- Department of Systems Medicine, University of Rome Tor Vergata, Rome, Italy
- Unit of Neurology, Istituto di Ricovero e Cura a Carattere Scientifico (IRCCS) Neuromed, Pozzilli, IS, Italy
| | - Georgia Mandolesi
- Synaptic Immunopathology Lab, Istituto di Ricovero e Cura a Carattere Scientifico (IRCCS) San Raffaele Roma, Rome, Italy
- Department of Human Sciences and Quality of Life Promotion, University of Rome San Raffaele, Rome, Italy
| |
Collapse
|
9
|
Wu X, Wang S, Xue T, Tan X, Li J, Chen Z, Wang Z. Disease-modifying therapy in progressive multiple sclerosis: a systematic review and network meta-analysis of randomized controlled trials. Front Neurol 2024; 15:1295770. [PMID: 38529035 PMCID: PMC10962394 DOI: 10.3389/fneur.2024.1295770] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2023] [Accepted: 02/06/2024] [Indexed: 03/27/2024] Open
Abstract
Background Currently, disease-modifying therapies (DMTs) for progressive multiple sclerosis (PMS) are widely used in clinical practice. At the same time, there are a variety of drug options for DMTs, but the effect of the drugs that can better relieve symptoms and improve the prognosis are still inconclusive. Objectives This systematic review aimed to evaluate the efficacy and safety of DMTs for PMS and to identify the best among these drugs. Methods MEDLINE, EMBASE, the Cochrane Library, and clinicaltrials.gov were systematically searched to identify relevant studies published before 30 January, 2023. We assessed the certainty of the evidence using the confidence in the network meta-analysis (CINeMA) framework. We estimated the summary risk ratio (RR) for dichotomous outcomes and mean differences (MD) for continuous outcomes with 95% credible intervals (CrIs). Results We included 18 randomized controlled trials (RCTs) involving 9,234 patients in the study. DMT can effectively control the disease progression of MS. Among them, mitoxantrone, siponimod, and ocrelizumab are superior to other drug options in delaying disease progression (high certainty). Mitoxantrone was the best (with high certainty) for mitigating deterioration (progression of disability). Ocrelizumab performed best on the pre- and post-treatment Timed 25-Foot Walk test (T25FW; low certainty), as did all other agents (RR range: 1.12-1.05). In the 9-Hole Peg Test (9HPT), natalizumab performed the best (high certainty), as did all other agents (RR range: 1.59-1.09). In terms of imaging, IFN-beta-1b performed better on the new T2 hypointense lesion on contrast, before and after treatment (high certainty), while siponimod performed best on the change from baseline in the total volume of lesions on T2-weighted image contrast before and after treatment (high certainty), and sWASO had the highest area under the curve (SUCRA) value (100%). In terms of adverse events (AEs), rituximab (RR 1.01), and laquinimod (RR 1.02) were more effective than the placebo (high certainty). In terms of serious adverse events (SAEs), natalizumab (RR 1.09), and ocrelizumab (RR 1.07) were safer than placebo (high certainty). Conclusion DMTs can effectively control disease progression and reduce disease deterioration during the treatment of PMS. Systematic review registration https://inplasy.com/?s=202320071, identifier: 202320071.
Collapse
Affiliation(s)
- Xin Wu
- Department of Neurosurgery and Brain and Nerve Research Laboratory, The First Affiliated Hospital of Soochow University, Suzhou, Jiangsu, China
| | - Shixin Wang
- Department of Neurosurgery and Brain and Nerve Research Laboratory, The First Affiliated Hospital of Soochow University, Suzhou, Jiangsu, China
| | - Tao Xue
- Department of Neurosurgery, Beijing Tiantan Hospital, Capital Medical University, Beijing, China
| | - Xin Tan
- Department of Neurology, The Affiliated Suzhou Hospital of Nanjing Medical University, Suzhou Municipal Hospital, Suzhou, Jiangsu, China
| | - Jiaxuan Li
- Department of Neurosurgery and Brain and Nerve Research Laboratory, The First Affiliated Hospital of Soochow University, Suzhou, Jiangsu, China
| | - Zhouqing Chen
- Department of Neurosurgery and Brain and Nerve Research Laboratory, The First Affiliated Hospital of Soochow University, Suzhou, Jiangsu, China
| | - Zhong Wang
- Department of Neurosurgery and Brain and Nerve Research Laboratory, The First Affiliated Hospital of Soochow University, Suzhou, Jiangsu, China
| |
Collapse
|
10
|
Yamout B, Al-Jumah M, Sahraian MA, Almalik Y, Khaburi JA, Shalaby N, Aljarallah S, Bohlega S, Dahdaleh M, Almahdawi A, Khoury SJ, Koussa S, Slassi E, Daoudi S, Aref H, Mrabet S, Zeineddine M, Zakaria M, Inshasi J, Gouider R, Alroughani R. Consensus recommendations for diagnosis and treatment of Multiple Sclerosis: 2023 revision of the MENACTRIMS guidelines. Mult Scler Relat Disord 2024; 83:105435. [PMID: 38245998 DOI: 10.1016/j.msard.2024.105435] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2023] [Revised: 12/21/2023] [Accepted: 01/06/2024] [Indexed: 01/23/2024]
Abstract
With evolving diagnostic criteria and the advent of new oral and parenteral therapies for Multiple Sclerosis (MS), most current diagnostic and treatment algorithms need revision and updating. The diagnosis of MS relies on incorporating clinical and paraclinical findings to prove dissemination in space and time and exclude alternative diseases that can explain the findings at hand. The differential diagnostic workup should be guided by clinical and laboratory red flags to avoid unnecessary tests. Appropriate selection of MS therapies is critical to maximize patient benefit. The current guidelines review the current diagnostic criteria for MS and the scientific evidence supporting treatment of acute relapses, radiologically isolated syndrome, clinically isolated syndrome, relapsing remitting MS, progressive MS, pediatric cases and pregnant women. The purpose of these guidelines is to provide practical recommendations and algorithms for the diagnosis and treatment of MS based on current scientific evidence and clinical experience.
Collapse
Affiliation(s)
- B Yamout
- Neurology Institute and Multiple Sclerosis Center, Harley Street Medical Center, Abu Dhabi, United Arab Emirates.
| | - M Al-Jumah
- InterHealth hospital, Multiple Sclerosis Center, Riyadh, Saudi Arabia
| | - M A Sahraian
- Multiple Sclerosis Research Center, Neuroscience Institute, Tehran University of Medical Sciences, Tehran, Iran
| | - Y Almalik
- Division of Neurology, College of Medicine, King Saud bin Abdulaziz University for Health Sciences, King Abdullah International Medical Research Center, National Guard Health Affairs, King Abdulaziz Medical City, Riyadh, Saudi Arabia
| | - J Al Khaburi
- Department of Neurology, The Royal Hospital, Sultanate of Oman
| | - N Shalaby
- Neurology Department, Kasr Al-Ainy School of Medicine, Cairo University, Cairo, Egypt
| | | | - S Bohlega
- King Faisal Specialist Hospital and Research Centre, Riyadh, Saudi Arabia
| | | | - A Almahdawi
- Consultant Neurologist, Neurology Unit, Baghdad Teaching Hospital, Medical City Complex, Iraq
| | - S J Khoury
- Nehme and Therese Tohme Multiple Sclerosis Center, American University of Beirut Medical Center, Beirut, Lebanon
| | - S Koussa
- Multiple Sclerosis Center, Geitaoui Lebanese University Hospital, Beirut, Lebanon
| | - E Slassi
- Hôpital Cheikh Khalifa Ibn Zaid, Casablanca, Morocco
| | - S Daoudi
- Hospital Center Nedir Mohamed, Faculty of Medicine, University Mouloud Mammeri Tizi-Ouzou, Algeria
| | - H Aref
- Neurology Department, Ain Shams University, Cairo, Egypt
| | - S Mrabet
- Department of Neurology, CIC, Razi Universitary Hospital, University of Tunis El Manar, Tunis, Tunisia
| | - M Zeineddine
- Middle East and North Africa Committee for Treatment and Research in Multiple Sclerosis (MENACTRIMS), Beirut, Lebanon
| | | | - J Inshasi
- Department of Neurology, Rashid Hospital and Dubai Medical College, Dubai Health Authority, Dubai, United Arab Emirates
| | - R Gouider
- Department of Neurology, CIC, Razi Universitary Hospital, University of Tunis El Manar, Tunis, Tunisia
| | - R Alroughani
- Amiri Hospital, Arabian Gulf Street, Sharq, Kuwait
| |
Collapse
|
11
|
Ludwig R, Malla B, Höhrhan M, Infante-Duarte C, Anderhalten L. Investigating the Mitoprotective Effects of S1P Receptor Modulators Ex Vivo Using a Novel Semi-Automated Live Imaging Set-Up. Int J Mol Sci 2023; 25:261. [PMID: 38203434 PMCID: PMC10778583 DOI: 10.3390/ijms25010261] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2023] [Revised: 12/15/2023] [Accepted: 12/21/2023] [Indexed: 01/12/2024] Open
Abstract
In multiple sclerosis (MS), mitochondrial alterations appear to contribute to disease progression. The sphingosine-1-phosphate receptor modulator siponimod is approved for treating secondary progressive MS. Its preceding compound fingolimod was shown to prevent oxidative stress-induced alterations in mitochondrial morphology. Here, we assessed the effects of siponimod, compared to fingolimod, on neuronal mitochondria in oxidatively stressed hippocampal slices. We have also advanced the model of chronic organotypic hippocampal slices for live imaging, enabling semi-automated monitoring of mitochondrial alterations. The slices were prepared from B6.Cg-Tg(Thy1-CFP/COX8A)S2Lich/J mice that display fluorescent neuronal mitochondria. They were treated with hydrogen peroxide (oxidative stress paradigm) ± 1 nM siponimod or fingolimod for 24 h. Afterwards, mitochondrial dynamics were investigated. Under oxidative stress, the fraction of motile mitochondria decreased and mitochondria were shorter, smaller, and covered smaller distances. Siponimod partly prevented oxidatively induced alterations in mitochondrial morphology; for fingolimod, a similar trend was observed. Siponimod reduced the decrease in mitochondrial track displacement, while both compounds significantly increased track speed and preserved motility. The novel established imaging and analysis tools are suitable for assessing the dynamics of neuronal mitochondria ex vivo. Using these approaches, we showed that siponimod at 1 nM partially prevented oxidatively induced mitochondrial alterations in chronic brain slices.
Collapse
Affiliation(s)
- Rebecca Ludwig
- Experimental and Clinical Research Center (ECRC), 13125 Berlin, Germany; (R.L.); (L.A.)
- Charité—Universitätsmedizin Berlin, 10117 Berlin, Germany
- Max-Delbrück-Center for Molecular Medicine (MDC) in the Helmholtz Association, 13125 Berlin, Germany
| | - Bimala Malla
- Experimental and Clinical Research Center (ECRC), 13125 Berlin, Germany; (R.L.); (L.A.)
- Charité—Universitätsmedizin Berlin, 10117 Berlin, Germany
- Max-Delbrück-Center for Molecular Medicine (MDC) in the Helmholtz Association, 13125 Berlin, Germany
| | - Maria Höhrhan
- Charité—Universitätsmedizin Berlin, 10117 Berlin, Germany
- Institute for Medical Immunology, 13353 Berlin, Germany
| | - Carmen Infante-Duarte
- Experimental and Clinical Research Center (ECRC), 13125 Berlin, Germany; (R.L.); (L.A.)
- Charité—Universitätsmedizin Berlin, 10117 Berlin, Germany
- Max-Delbrück-Center for Molecular Medicine (MDC) in the Helmholtz Association, 13125 Berlin, Germany
| | - Lina Anderhalten
- Experimental and Clinical Research Center (ECRC), 13125 Berlin, Germany; (R.L.); (L.A.)
- Charité—Universitätsmedizin Berlin, 10117 Berlin, Germany
- Max-Delbrück-Center for Molecular Medicine (MDC) in the Helmholtz Association, 13125 Berlin, Germany
| |
Collapse
|
12
|
Basavarajappa D, Gupta V, Chitranshi N, Viswanathan D, Gupta V, Vander Wall R, Palanivel V, Mirzaei M, You Y, Klistorner A, Graham SL. Anti-inflammatory Effects of Siponimod in a Mouse Model of Excitotoxicity-Induced Retinal Injury. Mol Neurobiol 2023; 60:7222-7237. [PMID: 37542647 PMCID: PMC10657799 DOI: 10.1007/s12035-023-03535-0] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2023] [Accepted: 07/22/2023] [Indexed: 08/07/2023]
Abstract
Glaucoma is a leading cause of permanent blindness worldwide and is characterized by neurodegeneration linked to progressive retinal ganglion cell (RGC) death, axonal damage, and neuroinflammation. Glutamate excitotoxicity mediated through N-methyl-D-aspartate (NMDA) receptors plays a crucial role in glaucomatous RGC loss. Sphingosine 1-phosphate receptors (S1PRs) are important mediators of neurodegeneration and neuroinflammation in the brain and the retina. Siponimod is an immunomodulatory drug for multiple sclerosis and is a selective modulator of S1PR subtypes 1 and 5 and has been shown to have beneficial effects on the central nervous system (CNS) in degenerative conditions. Our previous study showed that mice administered orally with siponimod protected inner retinal structure and function against acute NMDA excitotoxicity. To elucidate the molecular mechanisms behind these protective effects, we investigated the inflammatory pathways affected by siponimod treatment in NMDA excitotoxicity model. NMDA excitotoxicity resulted in the activation of glial cells coupled with upregulation of the inflammatory NF-kB pathway and increased expression of TNFα, IL1-β, and IL-6. Siponimod treatment significantly reduced glial activation and suppressed the pro-inflammatory pathways. Furthermore, NMDA-induced activation of NLRP3 inflammasome and upregulation of neurotoxic inducible nitric oxide synthase (iNOS) were significantly diminished with siponimod treatment. Our data demonstrated that siponimod induces anti-inflammatory effects via suppression of glial activation and inflammatory singling pathways that could protect the retina against acute excitotoxicity conditions. These findings provide insights into the anti-inflammatory effects of siponimod in the CNS and suggest a potential therapeutic strategy for neuroinflammatory conditions.
Collapse
Affiliation(s)
- Devaraj Basavarajappa
- Macquarie Medical School, Faculty of Medicine, Health and Human Sciences, Macquarie University, North Ryde, Sydney, NSW, 2109, Australia.
| | - Vivek Gupta
- Macquarie Medical School, Faculty of Medicine, Health and Human Sciences, Macquarie University, North Ryde, Sydney, NSW, 2109, Australia.
| | - Nitin Chitranshi
- Macquarie Medical School, Faculty of Medicine, Health and Human Sciences, Macquarie University, North Ryde, Sydney, NSW, 2109, Australia
| | - Deepa Viswanathan
- Macquarie Medical School, Faculty of Medicine, Health and Human Sciences, Macquarie University, North Ryde, Sydney, NSW, 2109, Australia
| | - Veer Gupta
- School of Medicine, Deakin University, Geelong, VIC, Australia
| | - Roshana Vander Wall
- Macquarie Medical School, Faculty of Medicine, Health and Human Sciences, Macquarie University, North Ryde, Sydney, NSW, 2109, Australia
| | - Viswanthram Palanivel
- Macquarie Medical School, Faculty of Medicine, Health and Human Sciences, Macquarie University, North Ryde, Sydney, NSW, 2109, Australia
| | - Mehdi Mirzaei
- Macquarie Medical School, Faculty of Medicine, Health and Human Sciences, Macquarie University, North Ryde, Sydney, NSW, 2109, Australia
| | - Yuyi You
- Macquarie Medical School, Faculty of Medicine, Health and Human Sciences, Macquarie University, North Ryde, Sydney, NSW, 2109, Australia
| | - Alexander Klistorner
- Macquarie Medical School, Faculty of Medicine, Health and Human Sciences, Macquarie University, North Ryde, Sydney, NSW, 2109, Australia
| | - Stuart L Graham
- Macquarie Medical School, Faculty of Medicine, Health and Human Sciences, Macquarie University, North Ryde, Sydney, NSW, 2109, Australia
- Save Sight Institute, The University of Sydney, Sydney, NSW, 2000, Australia
| |
Collapse
|
13
|
Vališ M, Achiron A, Hartung HP, Mareš J, Tichá V, Štourač P, Halusková S, Angelucci F, Pavelek Z. The Benefits and Risks of Switching from Fingolimod to Siponimod for the Treatment of Relapsing-Remitting and Secondary Progressive Multiple Sclerosis. Drugs R D 2023; 23:331-338. [PMID: 37640862 PMCID: PMC10676342 DOI: 10.1007/s40268-023-00434-6] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 07/11/2023] [Indexed: 08/31/2023] Open
Abstract
Multiple sclerosis (MS) is a chronic neurodegenerative disease that affects the central nervous system (CNS). Currently, MS treatment is limited to several Food and Drug Administration (FDA)- and European Medicines Agency (EMA)-approved medications that slow disease progression by immunomodulatory action. Fingolimod and siponimod have similar mechanisms of action, and consequently, their therapeutic effects may be comparable. However, while fingolimod is mainly used for relapsing-remitting MS (RRMS), siponimod, according to EMA label, is recommended for active secondary progressive MS (SPMS). Clinicians and scientists are analysing whether patients can switch from fingolimod to siponimod and identifying the advantages or disadvantages of such a switch from a therapeutic point of view. In this review, we aim to discuss the therapeutic effects of these two drugs and the advantages/disadvantages of switching treatment from fingolimod to siponimod in patients with the most common forms of MS, RRMS and SPMS.
Collapse
Affiliation(s)
- Martin Vališ
- Department of Neurology, Faculty of Medicine and University Hospital Hradec Králové, Charles University in Prague, Sokolská 581, 500 05, Hradec Králové, Czech Republic
| | - Anat Achiron
- Multiple Sclerosis Center, Sheba Medical Center, Tel-Hashomer, Israel
- Neurology Department, Sheba Medical Center, Tel-Hashomer, Israel
- Sackler School of Medicine, Tel-Aviv University, Tel Aviv, Israel
| | - Hans Peter Hartung
- Department of Neurology, Medical School, Heinrich-Heine University Düsseldorf, Düsseldorf, Germany
- Department of Neurology, Faculty of Medicine at Palacký University and University Hospital in Olomouc, I. P. Pavlova 6, Olomouc, Czech Republic
- Brain and Mind Center, University of Sydney, Sydney, Australia
| | - Jan Mareš
- Department of Neurology, Faculty of Medicine at Palacký University and University Hospital in Olomouc, I. P. Pavlova 6, Olomouc, Czech Republic
| | - Veronika Tichá
- First Faculty of Medicine, Charles University in Prague, Prague, Czech Republic
| | - Pavel Štourač
- Department of Neurology, Faculty of Medicine and University Hospital Hradec Králové, Charles University in Prague, Sokolská 581, 500 05, Hradec Králové, Czech Republic
| | - Simona Halusková
- Department of Neurology, Faculty of Medicine and University Hospital Hradec Králové, Charles University in Prague, Sokolská 581, 500 05, Hradec Králové, Czech Republic
| | - Francesco Angelucci
- Department of Neurology, Faculty of Medicine and University Hospital Hradec Králové, Charles University in Prague, Sokolská 581, 500 05, Hradec Králové, Czech Republic
- Memory Clinic, Department of Neurology, 2nd Faculty of Medicine, Charles University and Motol University Hospital, Prague, Czech Republic
| | - Zbyšek Pavelek
- Department of Neurology, Faculty of Medicine and University Hospital Hradec Králové, Charles University in Prague, Sokolská 581, 500 05, Hradec Králové, Czech Republic.
| |
Collapse
|
14
|
Hartung HP, Cree BA, Barnett M, Meuth SG, Bar-Or A, Steinman L. Bioavailable central nervous system disease-modifying therapies for multiple sclerosis. Front Immunol 2023; 14:1290666. [PMID: 38162670 PMCID: PMC10755740 DOI: 10.3389/fimmu.2023.1290666] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2023] [Accepted: 11/09/2023] [Indexed: 01/03/2024] Open
Abstract
Disease-modifying therapies for relapsing multiple sclerosis reduce relapse rates by suppressing peripheral immune cells but have limited efficacy in progressive forms of the disease where cells in the central nervous system play a critical role. To our knowledge, alemtuzumab, fumarates (dimethyl, diroximel, and monomethyl), glatiramer acetates, interferons, mitoxantrone, natalizumab, ocrelizumab, ofatumumab, and teriflunomide are either limited to the periphery or insufficiently studied to confirm direct central nervous system effects in participants with multiple sclerosis. In contrast, cladribine and sphingosine 1-phosphate receptor modulators (fingolimod, ozanimod, ponesimod, and siponimod) are central nervous system-penetrant and could have beneficial direct central nervous system properties.
Collapse
Affiliation(s)
- Hans-Peter Hartung
- Department of Neurology, Medical Faculty, Heinrich-Heine University, Düsseldorf, Germany
- Brain and Mind Centre, University of Sydney, Sydney, NSW, Australia
- Department of Neurology, Medical University of Vienna, Vienna, Austria
- Department of Neurology, Palacký University Olomouc, Olomouc, Czechia
| | - Bruce A.C. Cree
- Weill Institute for Neurosciences, Department of Neurology, University of California San Francisco, San Francisco, CA, United States
| | - Michael Barnett
- Brain and Mind Centre, University of Sydney, Sydney, NSW, Australia
| | - Sven G. Meuth
- Department of Neurology, Medical Faculty, Heinrich-Heine University, Düsseldorf, Germany
| | - Amit Bar-Or
- Center for Neuroinflammation and Experimental Therapeutics, Department of Neurology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, United States
| | - Lawrence Steinman
- Department of Neurology and Neurological Sciences, Beckman Center for Molecular Medicine, Stanford University Medical Center, Stanford, CA, United States
| |
Collapse
|
15
|
Li J, Huang Y, Zhang Y, Liu P, Liu M, Zhang M, Wu R. S1P/S1PR signaling pathway advancements in autoimmune diseases. BIOMOLECULES & BIOMEDICINE 2023; 23:922-935. [PMID: 37504219 PMCID: PMC10655875 DOI: 10.17305/bb.2023.9082] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/24/2023] [Revised: 07/06/2023] [Accepted: 07/06/2023] [Indexed: 07/29/2023]
Abstract
Sphingosine-1-phosphate (S1P) is a versatile sphingolipid that is generated through the phosphorylation of sphingosine by sphingosine kinase (SPHK). S1P exerts its functional effects by binding to the G protein-coupled S1P receptor (S1PR). This lipid mediator plays a pivotal role in various cellular activities. The S1P/S1PR signaling pathway is implicated in the pathogenesis of immune-mediated diseases, significantly contributing to the functioning of the immune system. It plays a crucial role in diverse physiological and pathophysiological processes, including cell survival, proliferation, migration, immune cell recruitment, synthesis of inflammatory mediators, and the formation of lymphatic and blood vessels. However, the full extent of the involvement of this signaling pathway in the development of autoimmune diseases remains to be fully elucidated. Therefore, this study aims to comprehensively review recent research on the S1P/S1PR axis in diseases related to autoimmunity.
Collapse
Affiliation(s)
- Jianbin Li
- Department of Rheumatology and Immunology, The First Affiliated Hospital of Nanchang University, Nanchang, China
| | - Yiping Huang
- Department of Rheumatology and Immunology, The First Affiliated Hospital of Nanchang University, Nanchang, China
| | - Yueqin Zhang
- Department of Rheumatology and Immunology, The First Affiliated Hospital of Nanchang University, Nanchang, China
| | - Pengcheng Liu
- Department of Rheumatology and Immunology, The First Affiliated Hospital of Nanchang University, Nanchang, China
| | - Mengxia Liu
- Department of Rheumatology and Immunology, The First Affiliated Hospital of Nanchang University, Nanchang, China
| | - Min Zhang
- Department of Rheumatology and Immunology, The First Affiliated Hospital of Nanchang University, Nanchang, China
| | - Rui Wu
- Department of Rheumatology and Immunology, The First Affiliated Hospital of Nanchang University, Nanchang, China
| |
Collapse
|
16
|
Kalkowski L, Walczak P, Mycko MP, Malysz-Cymborska I. Reconsidering the route of drug delivery in refractory multiple sclerosis: Toward a more effective drug accumulation in the central nervous system. Med Res Rev 2023; 43:2237-2259. [PMID: 37203228 DOI: 10.1002/med.21973] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2022] [Revised: 03/08/2023] [Accepted: 04/30/2023] [Indexed: 05/20/2023]
Abstract
Multiple sclerosis is a chronic demyelinating disease with different disease phenotypes. The current FDA-approved disease-modifying therapeutics (DMTs) cannot cure the disease, but only alleviate the disease progression. While the majority of patients respond well to treatment, some of them are suffering from rapid progression. Current drug delivery strategies include the oral, intravenous, subdermal, and intramuscular routes, so these drugs are delivered systemically, which is appropriate when the therapeutic targets are peripheral. However, the potential benefits may be diminished when these targets sequester behind the barriers of the central nervous system. Moreover, systemic drug administration is plagued with adverse effects, sometimes severe. In this context, it is prudent to consider other drug delivery strategies improving their accumulation in the brain, thus providing better prospects for patients with rapidly progressing disease course. These targeted drug delivery strategies may also reduce the severity of systemic adverse effects. Here, we discuss the possibilities and indications for reconsideration of drug delivery routes (especially for those "non-responding" patients) and the search for alternative drug delivery strategies. More targeted drug delivery strategies sometimes require quite invasive procedures, but the potential therapeutic benefits and reduction of adverse effects could outweigh the risks. We characterized the major FDA-approved DMTs focusing on their therapeutic mechanism and the potential benefits of improving the accumulation of these drugs in the brain.
Collapse
Affiliation(s)
- Lukasz Kalkowski
- Department of Diagnostic Radiology and Nuclear Medicine, Center for Advanced Imaging Research, University of Maryland School of Medicine, Baltimore, Maryland, USA
| | - Piotr Walczak
- Department of Diagnostic Radiology and Nuclear Medicine, Center for Advanced Imaging Research, University of Maryland School of Medicine, Baltimore, Maryland, USA
| | - Marcin P Mycko
- Medical Division, Department of Neurology, Laboratory of Neuroimmunology, Collegium Medicum, University of Warmia and Mazury, Olsztyn, Poland
| | - Izabela Malysz-Cymborska
- Department of Neurosurgery, School of Medicine, Collegium Medicum, University of Warmia and Mazury, Olsztyn, Poland
| |
Collapse
|
17
|
Roggeri A, Olivero G, Usai C, Vanmierlo T, Pittaluga A. Presynaptic Release-Regulating Sphingosine 1-Phosphate 1/3 Receptors in Cortical Glutamatergic Terminals: Adaptations in EAE Mice and Impact of Therapeutic FTY720. Cells 2023; 12:2343. [PMID: 37830557 PMCID: PMC10571862 DOI: 10.3390/cells12192343] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2023] [Revised: 09/13/2023] [Accepted: 09/20/2023] [Indexed: 10/14/2023] Open
Abstract
This study provides evidence of the existence of presynaptic inhibitory sphingosine-1-phosphate receptor 1 (S1P1R) and facilitatory S1P3R in cortical nerve endings (synaptosomes) of healthy mice. The conclusion relies on the findings that (i) the S1P1R agonist CS-2100 (0.1-30 nM) inhibits the 12 mM KCl-evoked glutamate exocytosis (quantified as the release of [3H]D-aspartate) while the S1P3R allosteric agonist CYM-5541 potentiates it and (ii) these effects are inhibited by the S1P1R antagonist Ex 26 (30-300 nM) and the S1P3R antagonist TY-52156 (100-1000 nM), respectively. Confocal microscopy and western blot analysis confirmed the presence of S1P1R and S1P3R proteins in cortical glutamatergic synaptosomes, which were scarcely accessible to biotin in a biotinylation study. Then, we demonstrated that S1P1R and S1P3R densities and their release activity are amplified in cortical synaptosomes of mice suffering from experimental autoimmune encephalomyelitis (EAE), despite receptors maintain their preferential internal distribution. Receptor changes recover following chronic oral therapeutic FTY720 (0.03 mg/Kg/day). These results improve our knowledge of the role of presynaptic release-regulating S1P1Rs and S1P3Rs controlling glutamate transmission in the CNS also unravelling functional adaptations during EAE that recover following chronic FTY720. In a whole, these findings provide new information on the central neuroprotectant activities of FTY720.
Collapse
Affiliation(s)
- Alessandra Roggeri
- Department of Pharmacy (DiFar), University of Genoa, Viale Cembrano 4, 16148 Genoa, Italy; (A.R.); (G.O.)
| | - Guendalina Olivero
- Department of Pharmacy (DiFar), University of Genoa, Viale Cembrano 4, 16148 Genoa, Italy; (A.R.); (G.O.)
| | - Cesare Usai
- Institute of Biophysics, National Research Council, Via De Marini 6, 16149 Genoa, Italy;
| | - Tim Vanmierlo
- Department of Neuroscience, Biomedical Research Institute, European Graduate School of Neuroscience, Hasselt University, B-3590 Hasselt, Belgium;
- Department of Psychiatry and Neuropsychology, School for Mental Health and Neurosciences, Division Translational Neuroscience, Maastricht University, 6200 MD Maastricht, The Netherlands
| | - Anna Pittaluga
- Department of Pharmacy (DiFar), Center of Excellence for Biomedical Research, 3Rs Center, University of Genoa, Viale Cembrano 4, 16148 Genoa, Italy
- IRCCS Ospedale Policlinico San Martino, 16145 Genoa, Italy
| |
Collapse
|
18
|
Pol S, Dhanraj R, Taher A, Crever M, Charbonneau T, Schweser F, Dwyer M, Zivadinov R. Effect of Siponimod on Brain and Spinal Cord Imaging Markers of Neurodegeneration in the Theiler's Murine Encephalomyelitis Virus Model of Demyelination. Int J Mol Sci 2023; 24:12990. [PMID: 37629171 PMCID: PMC10455446 DOI: 10.3390/ijms241612990] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2023] [Revised: 08/05/2023] [Accepted: 08/14/2023] [Indexed: 08/27/2023] Open
Abstract
Siponimod (Sp) is a Sphingosine 1-phosphate (S1P) receptor modulator, and it suppresses S1P- mediated autoimmune lymphocyte transport and inflammation. Theiler's murine encephalomyelitis virus (TMEV) infection mouse model of multiple sclerosis (MS) exhibits inflammation-driven acute and chronic phases, spinal cord lesions, brain and spinal cord atrophy, and white matter injury. The objective of the study was to investigate whether Sp treatment could attenuate inflammation-induced pathology in the TMEV model by inhibiting microglial activation and preventing the atrophy of central nervous tissue associated with neurodegeneration. Clinical disability score (CDS), body weight (BW), and rotarod retention time measures were used to assess Sp's impact on neurodegeneration and disease progression in 4 study groups of 102 animals, including 44 Sp-treated (SpT), 44 vehicle-treated, 6 saline-injected, and 8 age-matched healthy controls (HC). Next, 58 (22 SpT, 22 vehicle, 6 saline injected, and 8 HC) out of the 102 animals were further evaluated to assess the effect of Sp on brain region-specific and spinal cord volume changes, as well as microglial activation. Sp increased CDS and decreased BW and rotarod retention time in TMEV mice, but did not significantly affect most brain region volumes, except for lateral ventricle volume. Sp suppressed ventricular enlargement, suggesting reduced TMEV-induced inflammation in LV. No significant differences in spine volume changes were observed between Sp- and vehicle-treated animals, but there were differences between HC and TMEV groups, indicating TMEV-induced inflammation contributed to increased spine volume. Spine histology revealed no significant microglial density differences between groups in gray matter, but HC animals had higher type 1 morphology and lower type 2 morphology percentages in gray and white matter regions. This suggests that Sp did not significantly affect microglial density but may have modulated neuroinflammation in the spinal cord. Sp may have some effects on neuroinflammation and ventricular enlargement. However, it did not demonstrate a significant impact on neurodegeneration, spinal volume, or lesion volume in the TMEV mouse model. Further investigation is required to fully understand Sp's effect on microglial activation and its relevance to the pathophysiology of MS. The differences between the current study and previous research using other MS models, such as EAE, highlight the differences in pathological processes in these two disease models.
Collapse
Affiliation(s)
- Suyog Pol
- Buffalo Neuroimaging Analysis Center, Department of Neurology, School of Medicine and Biomedical Sciences, University at Buffalo, State University of New York, Buffalo, NY 14203, USA; (S.P.); (R.D.); (A.T.); (M.C.); (T.C.); (F.S.); (M.D.)
- Center for Biomedical Imaging, Clinical Translational Science Institute, University at Buffalo, State University of New York, Buffalo, NY 14203, USA
| | - Ravendra Dhanraj
- Buffalo Neuroimaging Analysis Center, Department of Neurology, School of Medicine and Biomedical Sciences, University at Buffalo, State University of New York, Buffalo, NY 14203, USA; (S.P.); (R.D.); (A.T.); (M.C.); (T.C.); (F.S.); (M.D.)
| | - Anissa Taher
- Buffalo Neuroimaging Analysis Center, Department of Neurology, School of Medicine and Biomedical Sciences, University at Buffalo, State University of New York, Buffalo, NY 14203, USA; (S.P.); (R.D.); (A.T.); (M.C.); (T.C.); (F.S.); (M.D.)
| | - Mateo Crever
- Buffalo Neuroimaging Analysis Center, Department of Neurology, School of Medicine and Biomedical Sciences, University at Buffalo, State University of New York, Buffalo, NY 14203, USA; (S.P.); (R.D.); (A.T.); (M.C.); (T.C.); (F.S.); (M.D.)
| | - Taylor Charbonneau
- Buffalo Neuroimaging Analysis Center, Department of Neurology, School of Medicine and Biomedical Sciences, University at Buffalo, State University of New York, Buffalo, NY 14203, USA; (S.P.); (R.D.); (A.T.); (M.C.); (T.C.); (F.S.); (M.D.)
| | - Ferdinand Schweser
- Buffalo Neuroimaging Analysis Center, Department of Neurology, School of Medicine and Biomedical Sciences, University at Buffalo, State University of New York, Buffalo, NY 14203, USA; (S.P.); (R.D.); (A.T.); (M.C.); (T.C.); (F.S.); (M.D.)
- Center for Biomedical Imaging, Clinical Translational Science Institute, University at Buffalo, State University of New York, Buffalo, NY 14203, USA
| | - Michael Dwyer
- Buffalo Neuroimaging Analysis Center, Department of Neurology, School of Medicine and Biomedical Sciences, University at Buffalo, State University of New York, Buffalo, NY 14203, USA; (S.P.); (R.D.); (A.T.); (M.C.); (T.C.); (F.S.); (M.D.)
- Center for Biomedical Imaging, Clinical Translational Science Institute, University at Buffalo, State University of New York, Buffalo, NY 14203, USA
| | - Robert Zivadinov
- Buffalo Neuroimaging Analysis Center, Department of Neurology, School of Medicine and Biomedical Sciences, University at Buffalo, State University of New York, Buffalo, NY 14203, USA; (S.P.); (R.D.); (A.T.); (M.C.); (T.C.); (F.S.); (M.D.)
- Center for Biomedical Imaging, Clinical Translational Science Institute, University at Buffalo, State University of New York, Buffalo, NY 14203, USA
| |
Collapse
|
19
|
Bigaud M, Ramseier P, Tisserand S, Lang M, Urban B, Beerli C, Karlsson G. Central Versus Peripheral Drug Exposure Ratio, a Key Differentiator for Siponimod Over Fingolimod? Neurol Ther 2023; 12:1187-1203. [PMID: 37195409 PMCID: PMC10310674 DOI: 10.1007/s40120-023-00487-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/10/2023] [Accepted: 04/19/2023] [Indexed: 05/18/2023] Open
Abstract
INTRODUCTION Siponimod, a potent and selective sphingosine-1-phosphate (S1P1,5) agonist, is the only therapeutic agent that has shown efficacy against disability progression, decline in cognitive processing speed, total brain volume loss, gray matter atrophy and signs of demyelination in patients with secondary progressive multiple sclerosis (SPMS). Although the pathophysiology of progression in SPMS and primary progressive MS (PPMS) is thought to be similar, fingolimod, the prototype S1P1,3,45 agonist, failed to show efficacy against disability progression in PPMS. Differentiating siponimod from fingolimod at the level of their central effects is believed to be the key to a better understanding of the underlying characteristics that could make siponimod uniquely efficacious in progressive MS (PMS). METHODS Here, we compared the central vs. peripheral dose-dependent drug exposures for siponimod and fingolimod in healthy mice and mice with experimental autoimmune encephalomyelitis (EAE). RESULTS Siponimod treatment achieved dose-dependent efficacy and dose-proportional increases in steady-state drug blood levels, with a central nervous system (CNS)/blood drug-exposure ratio (CNS/bloodDER) of ~ 6 in both healthy and EAE mice. In contrast, fingolimod treatments achieved dose-proportional increases in fingolimod and fingolimod-phosphate blood levels, with respective CNS/bloodDER that were markedly increased (≥ threefold) in EAE vs. healthy mice. CONCLUSION If proven to have translational value, these observations would suggest that CNS/bloodDER may be a key differentiator for siponimod over fingolimod for clinical efficacy in PMS.
Collapse
Affiliation(s)
- Marc Bigaud
- Novartis Institutes for BioMedical Research, Basel, Switzerland.
| | - Pamela Ramseier
- Novartis Institutes for BioMedical Research, Basel, Switzerland
| | - Sarah Tisserand
- Novartis Institutes for BioMedical Research, Basel, Switzerland
| | - Meike Lang
- Novartis Institutes for BioMedical Research, Basel, Switzerland
| | - Beatrice Urban
- Novartis Institutes for BioMedical Research, Basel, Switzerland
| | | | - Göril Karlsson
- Novartis Pharma AG, Forum 1, Novartis Campus, 4056, Basel, Switzerland
| |
Collapse
|
20
|
Carlomagno V, Mirabella M, Lucchini M. Current Status of Oral Disease-Modifying Treatment Effects on Cognitive Outcomes in Multiple Sclerosis: A Scoping Review. Bioengineering (Basel) 2023; 10:848. [PMID: 37508875 PMCID: PMC10376579 DOI: 10.3390/bioengineering10070848] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2023] [Revised: 06/30/2023] [Accepted: 07/10/2023] [Indexed: 07/30/2023] Open
Abstract
INTRODUCTION Cognitive impairment represents one of the most hidden and disabling clinical aspects of multiple sclerosis (MS). In this regard, the major challenges are represented by the need for a comprehensive and standardised cognitive evaluation of each patient, both at disease onset and during follow-up, and by the lack of clear-cut data on the effects of treatments. In the present review, we summarize the current evidence on the effects of the available oral disease-modifying treatments (DMTs) on cognitive outcome measures. MATERIALS AND METHODS In this systematised review, we extract all the studies that reported longitudinally acquired cognitive outcome data on oral DMTs in MS patients. RESULTS We found 29 studies that evaluated at least one oral DMT, including observational studies, randomised controlled trials, and their extension studies. Most of the studies (n = 20) evaluated sphingosine-1-phosphate (S1P) modulators, while we found seven studies on dimethyl fumarate, six on teriflunomide, and one on cladribine. The most frequently used cognitive outcome measures were SDMT and PASAT. Most of the studies reported substantial stability or mild improvement in cognitive outcomes in a short-time follow-up (duration of most studies ≤2 years). A few studies also reported MRI measures of brain atrophy. CONCLUSION Cognitive outcomes were evaluated only in a minority of prospective studies on oral DMTs in MS patients with variable findings. More solid and numerous data are present for the S1P modulators. A standardised cognitive evaluation remains a yet unmet need to better clarify the possible positive effect of oral DMTs on cognition.
Collapse
Affiliation(s)
- Vincenzo Carlomagno
- Fondazione Policlinico Universitario Agostino Gemelli IRCCS, UOC Neurologia, 00168 Rome, Italy
- Department of Neuroscience, Università Cattolica del Sacro Cuore, Centro di ricerca Sclerosi Multipla (CERSM), 00168 Rome, Italy
| | - Massimiliano Mirabella
- Fondazione Policlinico Universitario Agostino Gemelli IRCCS, UOC Neurologia, 00168 Rome, Italy
- Department of Neuroscience, Università Cattolica del Sacro Cuore, Centro di ricerca Sclerosi Multipla (CERSM), 00168 Rome, Italy
| | - Matteo Lucchini
- Fondazione Policlinico Universitario Agostino Gemelli IRCCS, UOC Neurologia, 00168 Rome, Italy
- Department of Neuroscience, Università Cattolica del Sacro Cuore, Centro di ricerca Sclerosi Multipla (CERSM), 00168 Rome, Italy
| |
Collapse
|
21
|
Hashemi E, Yoseph E, Tsai HC, Moreno M, Yeh LH, Mehta SB, Kono M, Proia R, Han MH. Visualizing Sphingosine-1-Phosphate Receptor 1(S1P 1) Signaling During Central Nervous System De- and Remyelination. Cell Mol Neurobiol 2023; 43:1219-1236. [PMID: 35917044 PMCID: PMC10444542 DOI: 10.1007/s10571-022-01245-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2021] [Accepted: 06/14/2022] [Indexed: 11/24/2022]
Abstract
Multiple sclerosis (MS) is an inflammatory-demyelinating disease of the central nervous system (CNS) mediated by aberrant auto-reactive immune responses. The current immune-modulatory therapies are unable to protect and repair immune-mediated neural tissue damage. One of the therapeutic targets in MS is the sphingosine-1-phosphate (S1P) pathway which signals via sphingosine-1-phosphate receptors 1-5 (S1P1-5). S1P receptors are expressed predominantly on immune and CNS cells. Considering the potential neuroprotective properties of S1P signaling, we utilized S1P1-GFP (Green fluorescent protein) reporter mice in the cuprizone-induced demyelination model to investigate in vivo S1P - S1P1 signaling in the CNS. We observed S1P1 signaling in a subset of neural stem cells in the subventricular zone (SVZ) during demyelination. During remyelination, S1P1 signaling is expressed in oligodendrocyte progenitor cells in the SVZ and mature oligodendrocytes in the medial corpus callosum (MCC). In the cuprizone model, we did not observe S1P1 signaling in neurons and astrocytes. We also observed β-arrestin-dependent S1P1 signaling in lymphocytes during demyelination and CNS inflammation. Our findings reveal β-arrestin-dependent S1P1 signaling in oligodendrocyte lineage cells implying a role of S1P1 signaling in remyelination.
Collapse
Affiliation(s)
- Ezzat Hashemi
- Department of Neurology and Neurological Sciences, Stanford University School of Medicine, 1201 Welch Rd, MSLS BLG P212, Stanford, CA, 94305, USA
| | - Ezra Yoseph
- Department of Neurology and Neurological Sciences, Stanford University School of Medicine, 1201 Welch Rd, MSLS BLG P212, Stanford, CA, 94305, USA
| | - Hsing-Chuan Tsai
- Department of Neurology and Neurological Sciences, Stanford University School of Medicine, 1201 Welch Rd, MSLS BLG P212, Stanford, CA, 94305, USA
| | - Monica Moreno
- Department of Neurology and Neurological Sciences, Stanford University School of Medicine, 1201 Welch Rd, MSLS BLG P212, Stanford, CA, 94305, USA
| | - Li-Hao Yeh
- Chan Zuckerberg Biohub, San Francisco, CA, USA
| | | | - Mari Kono
- Genetics and Biochemistry Branch, National Institute of Diabetes and Digestive and Kidney Diseases, NIH, Bethesda, MD, USA
| | - Richard Proia
- Genetics and Biochemistry Branch, National Institute of Diabetes and Digestive and Kidney Diseases, NIH, Bethesda, MD, USA
| | - May H Han
- Department of Neurology and Neurological Sciences, Stanford University School of Medicine, 1201 Welch Rd, MSLS BLG P212, Stanford, CA, 94305, USA.
| |
Collapse
|
22
|
Kandjani OJ, Yaqoubi S, Vahdati SS, Borhannejad B, Dastmalchi S, Alizadeh AA. S1PR1 modulators in multiple sclerosis: Efficacy, safety, comparison, and chemical structure insights. Eur J Med Chem 2023; 250:115182. [PMID: 36758307 DOI: 10.1016/j.ejmech.2023.115182] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2023] [Revised: 02/01/2023] [Accepted: 02/01/2023] [Indexed: 02/07/2023]
Abstract
Multiple sclerosis (MS) is a neurological disease that leads to severe physical and cognitive disabilities. Drugs used in the treatment of MS vary from small synthetic molecules to large macromolecules such as antibodies. Sphingosine 1-phosphate receptor modulators are frequently used for the treatment of MS. These medicines prevent the egress of lymphocytes from secondary lymphoid organs leading to immune system suppression. Currently, four S1PR modulators are on the market and several potential drug candidates are in clinical trials for the treatment of MS. These compounds differ in chemical structure, adverse effects, and efficacy points of view. The current article reviews the latest studies on S1PR1 modulators and compares them with other MS drugs in terms of efficacy, tolerability, and safety. A special focus was dedicated to discussing the structure-activity relationships of these compounds and performing a three-dimensional quantitative structure-activity relationship (3D-QSAR) analysis to gain better insight into the ligand-receptor interaction mode.
Collapse
Affiliation(s)
- Omid Jamshidi Kandjani
- Biotechnology Research Center, Tabriz University of Medical Sciences, Tabriz, Iran; Parmaceutical Analysis Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Shadi Yaqoubi
- Research Center for Integrative Medicine in Aging, Aging Research Institute, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Samad Shams Vahdati
- Emergency and Trauma Care Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Behnam Borhannejad
- Student Research Committee, Tabriz University of Medical Sciences, Tabriz, Iran; School of Pharmacy, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Siavoush Dastmalchi
- Biotechnology Research Center, Tabriz University of Medical Sciences, Tabriz, Iran; School of Pharmacy, Tabriz University of Medical Sciences, Tabriz, Iran; Faculty of Pharmacy, Near East University, POBOX:99138, Nicosia, North Cyprus, Mersin 10, Turkey
| | - Ali Akbar Alizadeh
- Biotechnology Research Center, Tabriz University of Medical Sciences, Tabriz, Iran.
| |
Collapse
|
23
|
Calvillo-Robledo A, Ramírez-Farías C, Valdez-Urias F, Huerta-Carreón EP, Quintanar-Stephano A. Arginine vasopressin hormone receptor antagonists in experimental autoimmune encephalomyelitis rodent models: A new approach for human multiple sclerosis treatment. Front Neurosci 2023; 17:1138627. [PMID: 36998727 PMCID: PMC10043225 DOI: 10.3389/fnins.2023.1138627] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2023] [Accepted: 02/27/2023] [Indexed: 03/18/2023] Open
Abstract
Multiple sclerosis (MS) is a chronic demyelinating and neurodegenerative disease that affects the central nervous system. MS is a heterogeneous disorder of multiple factors that are mainly associated with the immune system including the breakdown of the blood-brain and spinal cord barriers induced by T cells, B cells, antigen presenting cells, and immune components such as chemokines and pro-inflammatory cytokines. The incidence of MS has been increasing worldwide recently, and most therapies related to its treatment are associated with the development of several secondary effects, such as headaches, hepatotoxicity, leukopenia, and some types of cancer; therefore, the search for an effective treatment is ongoing. The use of animal models of MS continues to be an important option for extrapolating new treatments. Experimental autoimmune encephalomyelitis (EAE) replicates the several pathophysiological features of MS development and clinical signs, to obtain a potential treatment for MS in humans and improve the disease prognosis. Currently, the exploration of neuro-immune-endocrine interactions represents a highlight of interest in the treatment of immune disorders. The arginine vasopressin hormone (AVP) is involved in the increase in blood−brain barrier permeability, inducing the development and aggressiveness of the disease in the EAE model, whereas its deficiency improves the clinical signs of the disease. Therefore, this present review discussed on the use of conivaptan a blocker of AVP receptors type 1a and type 2 (V1a and V2 AVP) in the modulation of immune response without completely depleting its activity, minimizing the adverse effects associated with the conventional therapies becoming a potential therapeutic target in the treatment of patients with multiple sclerosis.
Collapse
|
24
|
Abstract
The multiple sclerosis (MS) neurotherapeutic landscape is rapidly evolving. New disease-modifying therapies (DMTs) with improved efficacy and safety, in addition to an expanding pipeline of agents with novel mechanisms, provide more options for patients with MS. While treatment of MS neuroinflammation is well tailored in the existing DMT armamentarium, concerted efforts are currently underway for identifying neuropathological targets and drug discovery for progressive MS. There is also ongoing research to develop agents for remyelination and neuroprotection. Further insights are needed to guide DMT initiation and sequencing as well as to determine the role of autologous stem cell transplantation in relapsing and progressive MS. This review provides a summary of these updates.
Collapse
Affiliation(s)
- Moein Amin
- Cleveland Clinic, Department of Neurology, Cleveland, OH 44195, USA
| | - Carrie M Hersh
- Cleveland Clinic, Lou Ruvo Center for Brain Health, Las Vegas, NV 89106, USA
| |
Collapse
|
25
|
Al-Otaibi KM, Alghamdi BS, Al-Ghamdi MA, Mansouri RA, Ashraf GM, Omar UM. Therapeutic effect of combination vitamin D3 and siponimod on remyelination and modulate microglia activation in cuprizone mouse model of multiple sclerosis. Front Behav Neurosci 2023; 16:1068736. [PMID: 36688131 PMCID: PMC9849768 DOI: 10.3389/fnbeh.2022.1068736] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2022] [Accepted: 11/29/2022] [Indexed: 01/07/2023] Open
Abstract
Stimulation of remyelination is critical for the treatment of multiple sclerosis (MS) to alleviate symptoms and protect the myelin sheath from further damage. The current study aimed to investigate the possible therapeutic effects of combining vitamin D3 (Vit D3) and siponimod (Sipo) on enhancing remyelination and modulating microglia phenotypes in the cuprizone (CPZ) demyelination mouse model. The study was divided into two stages; demyelination (first 5 weeks) and remyelination (last 4 weeks). In the first 5 weeks, 85 mice were randomly divided into two groups, control (n = 20, standard rodent chow) and CPZ (n = 65, 0.3% CPZ mixed with chow for 6 weeks, followed by 3 weeks of standard rodent chow). At week 5, the CPZ group was re-divided into four groups (n = 14) for remyelination stages; untreated CPZ (0.2 ml of CMC orally), CPZ+Vit D3 (800 IU/kg Vit D3 orally), CPZ+Sipo (1.5 mg/kg Sipo orally), and CPZ+Vit D3 (800 IU/kg Vit D3) + Sipo (1.5 mg/kg Sipo orally). Various behavioral tasks were performed to evaluate motor performance. Luxol Fast Blue (LFB) staining, the expression level of myelin basic protein (MBP), and M1/M2 microglia phenotype genes were assessed in the corpus callosum (CC). The results showed that the combination of Vit D3 and Sipo improved behavioral deficits, significantly promoted remyelination, and modulated expression levels of microglia phenotype genes in the CC at early and late remyelination stages. These results demonstrate for the first time that a combination of Vit D3 and Sipo can improve the remyelination process in the cuprizone (CPZ) mouse model by attenuating the M1 microglia phenotype. This may help to improve the treatment of MS patients.
Collapse
Affiliation(s)
- Kholoud M. Al-Otaibi
- Department of Biochemistry, Faculty of Science, King Abdulaziz University, Jeddah, Saudi Arabia,Department of Chemistry, Faculty of Science, Albaha University, Albaha, Saudi Arabia,*Correspondence: Badrah S. Alghamdi Kholoud M. Al-Otaibi
| | - Badrah S. Alghamdi
- Department of Physiology, Neuroscience Unit, Faculty of Medicine, King Abdulaziz University, Jeddah, Saudi Arabia,Pre-Clinical Research Unit, King Fahd Medical Research Center, King Abdulaziz University, Jeddah, Saudi Arabia,*Correspondence: Badrah S. Alghamdi Kholoud M. Al-Otaibi
| | - Maryam A. Al-Ghamdi
- Department of Biochemistry, Faculty of Science, King Abdulaziz University, Jeddah, Saudi Arabia,Vitamin D Pharmacogenomics Research Group, King Abdulaziz University, Jeddah, Saudi Arabia,Experimental Biochemistry Unit, King Fahd Medical Research Center, King Abdulaziz University, Jeddah, Saudi Arabia
| | - Rasha A. Mansouri
- Department of Biochemistry, Faculty of Science, King Abdulaziz University, Jeddah, Saudi Arabia
| | - Ghulam Md Ashraf
- Pre-Clinical Research Unit, King Fahd Medical Research Center, King Abdulaziz University, Jeddah, Saudi Arabia,Department of Medical Laboratory Sciences, Faculty of Applied Medical Sciences, King Abdulaziz University, Jeddah, Saudi Arabia
| | - Ulfat M. Omar
- Department of Biochemistry, Faculty of Science, King Abdulaziz University, Jeddah, Saudi Arabia,Princess Dr. Najla Bint Saud Al-Saud Center for Excellence Research in Biotechnology, King Abdulaziz University, Jeddah, Saudi Arabia
| |
Collapse
|
26
|
Starke L, Millward JM, Prinz C, Sherazi F, Waiczies H, Lippert C, Nazaré M, Paul F, Niendorf T, Waiczies S. First in vivo fluorine-19 magnetic resonance imaging of the multiple sclerosis drug siponimod. Theranostics 2023; 13:1217-1234. [PMID: 36923535 PMCID: PMC10008739 DOI: 10.7150/thno.77041] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2022] [Accepted: 01/10/2023] [Indexed: 02/17/2023] Open
Abstract
Theranostic imaging methods could greatly enhance our understanding of the distribution of CNS-acting drugs in individual patients. Fluorine-19 magnetic resonance imaging (19F MRI) offers the opportunity to localize and quantify fluorinated drugs non-invasively, without modifications and without the application of ionizing or other harmful radiation. Here we investigated siponimod, a sphingosine 1-phosphate (S1P) receptor antagonist indicated for secondary progressive multiple sclerosis (SPMS), to determine the feasibility of in vivo 19F MR imaging of a disease modifying drug. Methods: The 19F MR properties of siponimod were characterized using spectroscopic techniques. Four MRI methods were investigated to determine which was the most sensitive for 19F MR imaging of siponimod under biological conditions. We subsequently administered siponimod orally to 6 mice and acquired 19F MR spectra and images in vivo directly after administration, and in ex vivo tissues. Results: The 19F transverse relaxation time of siponimod was 381 ms when dissolved in dimethyl sulfoxide, and substantially reduced to 5 ms when combined with serum, and to 20 ms in ex vivo liver tissue. Ultrashort echo time (UTE) imaging was determined to be the most sensitive MRI technique for imaging siponimod in a biological context and was used to map the drug in vivo in the stomach and liver. Ex vivo images in the liver and brain showed an inhomogeneous distribution of siponimod in both organs. In the brain, siponimod accumulated predominantly in the cerebrum but not the cerebellum. No secondary 19F signals were detected from metabolites. From a translational perspective, we found that acquisitions done on a 3.0 T clinical MR scanner were 2.75 times more sensitive than acquisitions performed on a preclinical 9.4 T MR setup when taking changes in brain size across species into consideration and using equivalent relative spatial resolution. Conclusion: Siponimod can be imaged non-invasively using 19F UTE MRI in the form administered to MS patients, without modification. This study lays the groundwork for more extensive preclinical and clinical investigations. With the necessary technical development, 19F MRI has the potential to become a powerful theranostic tool for studying the time-course and distribution of CNS-acting drugs within the brain, especially during pathology.
Collapse
Affiliation(s)
- Ludger Starke
- Max-Delbrück-Center for Molecular Medicine in the Helmholtz Association (MDC), Berlin Ultrahigh Field Facility, Berlin, Germany.,Hasso Plattner Institute for Digital Engineering, University of Potsdam, Germany
| | - Jason M Millward
- Max-Delbrück-Center for Molecular Medicine in the Helmholtz Association (MDC), Berlin Ultrahigh Field Facility, Berlin, Germany.,Experimental and Clinical Research Center, a joint cooperation between the Charité Universitätsmedizin Berlin and the Max Delbrück Center for Molecular Medicine in the Helmholtz Association, Berlin, Germany
| | - Christian Prinz
- Max-Delbrück-Center for Molecular Medicine in the Helmholtz Association (MDC), Berlin Ultrahigh Field Facility, Berlin, Germany.,SRH Fernhochschule - The Mobile University, Riedlingen, Germany
| | - Fatima Sherazi
- Max-Delbrück-Center for Molecular Medicine in the Helmholtz Association (MDC), Berlin Ultrahigh Field Facility, Berlin, Germany
| | | | - Christoph Lippert
- Hasso Plattner Institute for Digital Engineering, University of Potsdam, Germany
| | - Marc Nazaré
- Medicinal Chemistry, Leibniz-Institut fϋr Molekulare Pharmakologie (FMP), Berlin, Germany
| | - Friedemann Paul
- Experimental and Clinical Research Center, a joint cooperation between the Charité Universitätsmedizin Berlin and the Max Delbrück Center for Molecular Medicine in the Helmholtz Association, Berlin, Germany.,Charité - Universitätsmedizin Berlin, corporate member of Freie Universität Berlin, Humboldt-Universität zu Berlin, and Berlin Institute of Health (BIH), Berlin, Germany
| | - Thoralf Niendorf
- Max-Delbrück-Center for Molecular Medicine in the Helmholtz Association (MDC), Berlin Ultrahigh Field Facility, Berlin, Germany.,Experimental and Clinical Research Center, a joint cooperation between the Charité Universitätsmedizin Berlin and the Max Delbrück Center for Molecular Medicine in the Helmholtz Association, Berlin, Germany
| | - Sonia Waiczies
- Max-Delbrück-Center for Molecular Medicine in the Helmholtz Association (MDC), Berlin Ultrahigh Field Facility, Berlin, Germany.,Experimental and Clinical Research Center, a joint cooperation between the Charité Universitätsmedizin Berlin and the Max Delbrück Center for Molecular Medicine in the Helmholtz Association, Berlin, Germany
| |
Collapse
|
27
|
Leo H, Kipp M. Remyelination in Multiple Sclerosis: Findings in the Cuprizone Model. Int J Mol Sci 2022; 23:ijms232416093. [PMID: 36555733 PMCID: PMC9783537 DOI: 10.3390/ijms232416093] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2022] [Revised: 12/14/2022] [Accepted: 12/15/2022] [Indexed: 12/23/2022] Open
Abstract
Remyelination therapies, which are currently under development, have a great potential to delay, prevent or even reverse disability in multiple sclerosis patients. Several models are available to study the effectiveness of novel compounds in vivo, among which is the cuprizone model. This model is characterized by toxin-induced demyelination, followed by endogenous remyelination after cessation of the intoxication. Due to its high reproducibility and ease of use, this model enjoys high popularity among various research and industrial groups. In this review article, we will summarize recent findings using this model and discuss the potential of some of the identified compounds to promote remyelination in multiple sclerosis patients.
Collapse
Affiliation(s)
| | - Markus Kipp
- Correspondence: ; Tel.: +49-(0)-381-494-8400
| |
Collapse
|
28
|
Damavandi AR, Mirmosayyeb O, Ebrahimi N, Zalpoor H, khalilian P, Yahiazadeh S, Eskandari N, Rahdar A, Kumar PS, Pandey S. Advances in nanotechnology versus stem cell therapy for the theranostics of multiple sclerosis disease. APPLIED NANOSCIENCE 2022. [DOI: 10.1007/s13204-022-02698-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
|
29
|
Huang H, Shi M, Qi C, Tian Q, Li H, Liu M, Li M, Liu Q. Sphingosine-1-phosphate receptor modulation improves neurogenesis and functional recovery after stroke. FASEB J 2022; 36:e22616. [PMID: 36394527 DOI: 10.1096/fj.202200533rr] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2022] [Revised: 09/29/2022] [Accepted: 10/05/2022] [Indexed: 11/19/2022]
Abstract
Cerebral ischemia activates neural progenitors that participate in brain remodeling following acute injury. Sphingosine-1-phosphate receptor (S1PR) signaling governs cell proliferation and mobilization, yet its potential impact on neural progenitors and stroke recovery remains poorly understood. The goal of this study was to investigate the impact of S1PR modulation on post-stroke neurogenesis and functional recovery, using a S1PR modulator BAF312. Mice were subjected to 60 min middle cerebral artery occlusion (MCAO) and received BAF312 starting from day 3 after MCAO until the end of experiment. BAF312 facilitated motor function recovery in MCAO mice until day 14 after surgery. Flow cytometry analysis revealed that BAF312 treatment led to an increase of type A cells in subventricular zone (SVZ), but not other progenitor cell subsets in MCAO mice. We found an increase of BrdU incorporation in SVZ DCX+ cells from MCAO mice receiving BAF312 and augmented proliferation of DCX+ cells in cultured neurospheres isolated from SVZ tissues. Notably, a S1PR1 antagonist W146 abolished BAF312-induced increase of SVZ type A cells from MCAO mice and proliferation of DCX+ cells in cultured neurospheres. Additionally, the benefit of BAF312 to improve neurogenesis and stroke recovery remains in Rag2-/- mice lacking of T and B cells. Our results demonstrate that S1PR modulation improves neurogenesis and functional recovery following brain ischemia.
Collapse
Affiliation(s)
- Huachen Huang
- Department of Neurology, Tianjin Neurological Institute, Tianjin Medical University General Hospital, Tianjin, China
| | - Mengxuan Shi
- Department of Neurology, Tianjin Neurological Institute, Tianjin Medical University General Hospital, Tianjin, China
| | - Caiyun Qi
- Department of Neurology, Tianjin Neurological Institute, Tianjin Medical University General Hospital, Tianjin, China
| | - Qi Tian
- Department of Neurology, Tianjin Neurological Institute, Tianjin Medical University General Hospital, Tianjin, China
| | - Handong Li
- Department of Neurology, Tianjin Neurological Institute, Tianjin Medical University General Hospital, Tianjin, China
| | - Mingming Liu
- Department of Neurology, Tianjin Neurological Institute, Tianjin Medical University General Hospital, Tianjin, China
| | - Minshu Li
- Department of Neurology, Tianjin Neurological Institute, Tianjin Medical University General Hospital, Tianjin, China
| | - Qiang Liu
- Department of Neurology, Tianjin Neurological Institute, Tianjin Medical University General Hospital, Tianjin, China
| |
Collapse
|
30
|
Weier A, Enders M, Kirchner P, Ekici A, Bigaud M, Kapitza C, Wörl J, Kuerten S. Impact of Siponimod on Enteric and Central Nervous System Pathology in Late-Stage Experimental Autoimmune Encephalomyelitis. Int J Mol Sci 2022; 23:ijms232214209. [PMID: 36430692 PMCID: PMC9695324 DOI: 10.3390/ijms232214209] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2022] [Revised: 11/09/2022] [Accepted: 11/14/2022] [Indexed: 11/18/2022] Open
Abstract
Multiple sclerosis (MS) is an autoimmune disease of the central nervous system (CNS). Although immune modulation and suppression are effective during relapsing-remitting MS, secondary progressive MS (SPMS) requires neuroregenerative therapeutic options that act on the CNS. The sphingosine-1-phosphate receptor modulator siponimod is the only approved drug for SPMS. In the pivotal trial, siponimod reduced disease progression and brain atrophy compared with placebo. The enteric nervous system (ENS) was recently identified as an additional autoimmune target in MS. We investigated the effects of siponimod on the ENS and CNS in the experimental autoimmune encephalomyelitis model of MS. Mice with late-stage disease were treated with siponimod, fingolimod, or sham. The clinical disease was monitored daily, and treatment success was verified using mass spectrometry and flow cytometry, which revealed peripheral lymphopenia in siponimod- and fingolimod-treated mice. We evaluated the mRNA expression, ultrastructure, and histopathology of the ENS and CNS. Single-cell RNA sequencing revealed an upregulation of proinflammatory genes in spinal cord astrocytes and ependymal cells in siponimod-treated mice. However, differences in CNS and ENS histopathology and ultrastructural pathology between the treatment groups were absent. Thus, our data suggest that siponimod and fingolimod act on the peripheral immune system and do not have pronounced direct neuroprotective effects.
Collapse
Affiliation(s)
- Alicia Weier
- Institute of Neuroanatomy, Medical Faculty, University of Bonn, 53115 Bonn, Germany
| | - Michael Enders
- Institute of Neuroanatomy, Medical Faculty, University of Bonn, 53115 Bonn, Germany
| | - Philipp Kirchner
- Institute of Pathology, University of Bern, CH-3008 Bern, Switzerland
| | - Arif Ekici
- Institute of Human Genetics, University Clinic Erlangen, 91054 Erlangen, Germany
| | - Marc Bigaud
- Novartis Institutes for BioMedical Research, CH-4002 Basel, Switzerland
| | - Christopher Kapitza
- Institute of Anatomy and Cell Biology, Friedrich-Alexander-Universität Erlangen-Nürnberg, 91054 Erlangen, Germany
| | - Jürgen Wörl
- Institute of Anatomy and Cell Biology, Friedrich-Alexander-Universität Erlangen-Nürnberg, 91054 Erlangen, Germany
| | - Stefanie Kuerten
- Institute of Neuroanatomy, Medical Faculty, University of Bonn, 53115 Bonn, Germany
- Correspondence: ; Tel.: +49-228-73-2642
| |
Collapse
|
31
|
Yong VW. Microglia in multiple sclerosis: Protectors turn destroyers. Neuron 2022; 110:3534-3548. [PMID: 35882229 DOI: 10.1016/j.neuron.2022.06.023] [Citation(s) in RCA: 52] [Impact Index Per Article: 17.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2022] [Revised: 06/15/2022] [Accepted: 06/27/2022] [Indexed: 12/15/2022]
Abstract
Microglia are implicated in all stages of multiple sclerosis (MS). Microglia alterations are detected by positron emission tomography in people living with MS prior to the formation of structural lesions determined through magnetic resonance imaging. In histological specimens, clusters of microglia form in normal-appearing tissue likely predating the development of lesions. Features of degeneration-associated/pro-inflammatory states of microglia increase with chronicity of MS. However, microglia play many beneficial roles including the removal of neurotoxins and in fostering repair. The protector-gone-rogue microglia in MS is featured herein. We consider mechanisms of microglia neurotoxicity and discuss factors, including aging, osteopontin, and iron metabolism, that cause microglia to lose their protective states and become injurious. We evaluate medications to affect microglia in MS, such as the emerging class of Bruton's tyrosine kinase inhibitors. The framework of microglia-turned-destroyers may instigate new approaches to counter microglia-driven neurodegeneration in MS.
Collapse
Affiliation(s)
- V Wee Yong
- Hotchkiss Brain Institute and the Department of Clinical Neurosciences, University of Calgary, Calgary, AB, Canada.
| |
Collapse
|
32
|
Gruchot J, Lein F, Lewen I, Reiche L, Weyers V, Petzsch P, Göttle P, Köhrer K, Hartung HP, Küry P, Kremer D. Siponimod Modulates the Reaction of Microglial Cells to Pro-Inflammatory Stimulation. Int J Mol Sci 2022; 23:13278. [PMID: 36362063 PMCID: PMC9655930 DOI: 10.3390/ijms232113278] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2022] [Revised: 10/21/2022] [Accepted: 10/26/2022] [Indexed: 09/19/2023] Open
Abstract
Siponimod (Mayzent®), a sphingosine 1-phosphate receptor (S1PR) modulator which prevents lymphocyte egress from lymphoid tissues, is approved for the treatment of relapsing-remitting and active secondary progressive multiple sclerosis. It can cross the blood-brain barrier (BBB) and selectively binds to S1PR1 and S1PR5 expressed by several cell populations of the central nervous system (CNS) including microglia. In multiple sclerosis, microglia are a key CNS cell population moving back and forth in a continuum of beneficial and deleterious states. On the one hand, they can contribute to neurorepair by clearing myelin debris, which is a prerequisite for remyelination and neuroprotection. On the other hand, they also participate in autoimmune inflammation and axonal degeneration by producing pro-inflammatory cytokines and molecules. In this study, we demonstrate that siponimod can modulate the microglial reaction to lipopolysaccharide-induced pro-inflammatory activation.
Collapse
Affiliation(s)
- Joel Gruchot
- Department of Neurology, Medical Faculty, University Hospital Düsseldorf, Heinrich Heine University, Moorenstraße 5, D-40225 Dusseldorf, Germany
| | - Ferdinand Lein
- Department of Neurology, Medical Faculty, University Hospital Düsseldorf, Heinrich Heine University, Moorenstraße 5, D-40225 Dusseldorf, Germany
| | - Isabel Lewen
- Department of Neurology, Medical Faculty, University Hospital Düsseldorf, Heinrich Heine University, Moorenstraße 5, D-40225 Dusseldorf, Germany
| | - Laura Reiche
- Department of Neurology, Medical Faculty, University Hospital Düsseldorf, Heinrich Heine University, Moorenstraße 5, D-40225 Dusseldorf, Germany
| | - Vivien Weyers
- Department of Neurology, Medical Faculty, University Hospital Düsseldorf, Heinrich Heine University, Moorenstraße 5, D-40225 Dusseldorf, Germany
| | - Patrick Petzsch
- Biological and Medical Research Center (BMFZ), Medical Faculty, Heinrich-Heine-University, D-40225 Dusseldorf, Germany
| | - Peter Göttle
- Department of Neurology, Medical Faculty, University Hospital Düsseldorf, Heinrich Heine University, Moorenstraße 5, D-40225 Dusseldorf, Germany
| | - Karl Köhrer
- Biological and Medical Research Center (BMFZ), Medical Faculty, Heinrich-Heine-University, D-40225 Dusseldorf, Germany
| | - Hans-Peter Hartung
- Department of Neurology, Medical Faculty, University Hospital Düsseldorf, Heinrich Heine University, Moorenstraße 5, D-40225 Dusseldorf, Germany
- Brain and Mind Center, University of Sydney, Sydney, NSW 2050, Australia
- Department of Neurology, Palacky University Olomouc, 77146 Olomouc, Czech Republic
| | - Patrick Küry
- Department of Neurology, Medical Faculty, University Hospital Düsseldorf, Heinrich Heine University, Moorenstraße 5, D-40225 Dusseldorf, Germany
| | - David Kremer
- Department of Neurology, Medical Faculty, University Hospital Düsseldorf, Heinrich Heine University, Moorenstraße 5, D-40225 Dusseldorf, Germany
| |
Collapse
|
33
|
Voskuhl RR, MacKenzie-Graham A. Chronic experimental autoimmune encephalomyelitis is an excellent model to study neuroaxonal degeneration in multiple sclerosis. Front Mol Neurosci 2022; 15:1024058. [PMID: 36340686 PMCID: PMC9629273 DOI: 10.3389/fnmol.2022.1024058] [Citation(s) in RCA: 21] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2022] [Accepted: 09/30/2022] [Indexed: 08/19/2023] Open
Abstract
Animal models of multiple sclerosis (MS), specifically experimental autoimmune encephalomyelitis (EAE), have been used extensively to develop anti-inflammatory treatments. However, the similarity between MS and one particular EAE model does not end at inflammation. MS and chronic EAE induced in C57BL/6 mice using myelin oligodendrocyte glycoprotein (MOG) peptide 35-55 share many neuropathologies. Beyond both having white matter lesions in spinal cord, both also have widespread neuropathology in the cerebral cortex, hippocampus, thalamus, striatum, cerebellum, and retina/optic nerve. In this review, we compare neuropathologies in each of these structures in MS with chronic EAE in C57BL/6 mice, and find evidence that this EAE model is well suited to study neuroaxonal degeneration in MS.
Collapse
Affiliation(s)
- Rhonda R. Voskuhl
- UCLA MS Program, Department of Neurology, David Geffen School of Medicine, University of California, Los Angeles, Los Angeles, CA, United States
| | | |
Collapse
|
34
|
Kee R, Naughton M, McDonnell GV, Howell OW, Fitzgerald DC. A Review of Compartmentalised Inflammation and Tertiary Lymphoid Structures in the Pathophysiology of Multiple Sclerosis. Biomedicines 2022; 10:biomedicines10102604. [PMID: 36289863 PMCID: PMC9599335 DOI: 10.3390/biomedicines10102604] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2022] [Accepted: 10/10/2022] [Indexed: 11/24/2022] Open
Abstract
Multiple sclerosis (MS) is a chronic, immune-mediated, demyelinating disease of the central nervous system (CNS). The most common form of MS is a relapsing–remitting disease characterised by acute episodes of demyelination associated with the breakdown of the blood–brain barrier (BBB). In the relapsing–remitting phase there is often relative recovery (remission) from relapses characterised clinically by complete or partial resolution of neurological symptoms. In the later and progressive stages of the disease process, accrual of neurological disability occurs in a pathological process independent of acute episodes of demyelination and is accompanied by a trapped or compartmentalised inflammatory response, most notable in the connective tissue spaces of the vasculature and leptomeninges occurring behind an intact BBB. This review focuses on compartmentalised inflammation in MS and in particular, what we know about meningeal tertiary lymphoid structures (TLS; also called B cell follicles) which are organised clusters of immune cells, associated with more severe and progressive forms of MS. Meningeal inflammation and TLS could represent an important fluid or imaging marker of disease activity, whose therapeutic abrogation might be necessary to stop the most severe outcomes of disease.
Collapse
Affiliation(s)
- Rachael Kee
- Wellcome-Wolfson Institute for Experimental Medicine, Queen’s University Belfast, Belfast BT9 7BL, UK
- Department of Neurology, Royal Victoria Hospital, Belfast BT12 6BA, UK
- Correspondence:
| | - Michelle Naughton
- Wellcome-Wolfson Institute for Experimental Medicine, Queen’s University Belfast, Belfast BT9 7BL, UK
| | | | - Owain W. Howell
- Institute of Life Sciences, Swansea University, Wales SA2 8QA, UK
| | - Denise C. Fitzgerald
- Wellcome-Wolfson Institute for Experimental Medicine, Queen’s University Belfast, Belfast BT9 7BL, UK
| |
Collapse
|
35
|
Siponimod ameliorates metabolic oligodendrocyte injury via the sphingosine-1 phosphate receptor 5. Proc Natl Acad Sci U S A 2022; 119:e2204509119. [PMID: 36161894 DOI: 10.1073/pnas.2204509119] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Multiple sclerosis (MS), an autoimmune-driven, inflammatory demyelinating disease of the central nervous system (CNS), causes irreversible accumulation of neurological deficits to a variable extent. Although there are potent disease-modifying agents for its initial relapsing-remitting phase, immunosuppressive therapies show limited efficacy in secondary progressive MS (SPMS). Although modulation of sphingosine-1 phosphate receptors has proven beneficial during SPMS, the underlying mechanisms are poorly understood. In this project, we followed the hypothesis that siponimod, a sphingosine-1 phosphate receptor modulator, exerts protective effects by direct modulation of glia cell function (i.e., either astrocytes, microglia, or oligodendrocytes). To this end, we used the toxin-mediated, nonautoimmune MS animal model of cuprizone (Cup) intoxication. On the histological level, siponimod ameliorated cuprizone-induced oligodendrocyte degeneration, demyelination, and axonal injury. Protective effects were evident as well using GE180 translocator protein 18-kDa (TSPO) imaging with positron emission tomography (PET)/computed tomography (CT) imaging or next generation sequencing (NGS). Siponimod also ameliorated the cuprizone-induced pathologies in Rag1-deficient mice, demonstrating that the protection is independent of T and B cell modulation. Proinflammatory responses in primary mixed astrocytes/microglia cell cultures were not modulated by siponimod, suggesting that other cell types than microglia and astrocytes are targeted. Of note, siponimod completely lost its protective effects in S1pr5-deficient mice, suggesting direct protection of degenerating oligodendrocytes. Our study demonstrates that siponimod exerts protective effects in the brain in a S1PR5-dependent manner. This finding is not just relevant in the context of MS but in other neuropathologies as well, characterized by a degeneration of the axon-myelin unit.
Collapse
|
36
|
Geladaris A, Torke S, Weber MS. Bruton's Tyrosine Kinase Inhibitors in Multiple Sclerosis: Pioneering the Path Towards Treatment of Progression? CNS Drugs 2022; 36:1019-1030. [PMID: 36178589 PMCID: PMC9550714 DOI: 10.1007/s40263-022-00951-z] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 08/21/2022] [Indexed: 11/03/2022]
Abstract
In multiple sclerosis (MS) persisting disability can derive from acute relapses or, alternatively, from slow and steady deterioration, termed chronic progression. Emerging data suggest that the latter process occurs largely independent from relapse activity or development of new central nervous system (CNS) inflammatory lesions. Pathophysiologically, acute relapses develop as a consequence of de novo CNS infiltration of immune cells, while MS progression appears to be driven by a CNS-trapped inflammatory circuit between CNS-established hematopoietic cells as well as CNS-resident cells, such as microglia, astrocytes, and oligodendrocytes. Within the last decades, powerful therapies have been developed to control relapse activity in MS. All of these agents were primarily designed to systemically target the peripheral immune system and/or to prevent CNS infiltration of immune cells. Based on the above described dichotomy of MS pathophysiology, it is understandable that these agents only exert minor effects on progression and that novel targets within the CNS have to be utilized to control MS progression independent of relapse activity. In this regard, one promising strategy may be the inhibition of the enzyme Bruton's tyrosine kinase (BTK), which is centrally involved in the activation of B cells as well as myeloid cells, such as macrophages and microglia. In this review, we discuss where and to what extent BTK is involved in the immunological and molecular cascades driving MS progression. We furthermore summarize all mechanistic, preclinical, and clinical data on the various BTK inhibitors (evobrutinib, tolebrutinib, fenebrutinib, remibrutinib, orelabrutinib, BIIB091) that are currently in development for treatment of MS, with a particular focus on the potential ability of either drug to control MS progression.
Collapse
Affiliation(s)
- Anastasia Geladaris
- Institute of Neuropathology, University Medical Center, Georg August University, Robert-Koch-Str. 40, 37075, Göttingen, Germany
- Fraunhofer Institute for Translational Medicine and Pharmacology, 37075, Göttingen, Germany
| | - Sebastian Torke
- Institute of Neuropathology, University Medical Center, Georg August University, Robert-Koch-Str. 40, 37075, Göttingen, Germany
- Experimental and Clinical Research Center of the Charité, University Medical Center and the Max-Dellbrück-Center for Molecular Medicine in the Helmholtz Association, 13125, Berlin, Germany
| | - Martin S Weber
- Institute of Neuropathology, University Medical Center, Georg August University, Robert-Koch-Str. 40, 37075, Göttingen, Germany.
- Fraunhofer Institute for Translational Medicine and Pharmacology, 37075, Göttingen, Germany.
- Department of Neurology, University Medical Center, Georg August University, Robert-Koch-Str. 40, 37075, Göttingen, Germany.
| |
Collapse
|
37
|
Gold R, Piani-Meier D, Kappos L, Bar-Or A, Vermersch P, Giovannoni G, Fox RJ, Arnold DL, Benedict RHB, Penner IK, Rouyrre N, Kilaru A, Karlsson G, Ritter S, Dahlke F, Hach T, Cree BAC. Siponimod vs placebo in active secondary progressive multiple sclerosis: a post hoc analysis from the phase 3 EXPAND study. J Neurol 2022; 269:5093-5104. [PMID: 35639197 PMCID: PMC9363350 DOI: 10.1007/s00415-022-11166-z] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2021] [Revised: 04/29/2022] [Accepted: 05/01/2022] [Indexed: 11/11/2022]
Abstract
BACKGROUND Siponimod is a sphingosine 1-phosphate receptor modulator approved for active secondary progressive multiple sclerosis (aSPMS) in most countries; however, phase 3 EXPAND study data are from an SPMS population with/without disease activity. A need exists to characterize efficacy/safety of siponimod in aSPMS. METHODS Post hoc analysis of participants with aSPMS (≥ 1 relapse in 2 years before study and/or ≥ 1 T1 gadolinium-enhancing [Gd +] magnetic resonance imaging [MRI] lesions at baseline) receiving oral siponimod (2 mg/day) or placebo for up to 3 years in EXPAND. ENDPOINTS 3-month/6-month confirmed disability progression (3mCDP/6mCDP); 3-month confirmed ≥ 20% worsening in Timed 25-Foot Walk (T25FW); 6-month confirmed improvement/worsening in Symbol Digit Modalities Test (SDMT) scores (≥ 4-point change); T2 lesion volume (T2LV) change from baseline; number of T1 Gd + lesions baseline-month 24; number of new/enlarging (N/E) T2 lesions over all visits. RESULTS Data from 779 participants with aSPMS were analysed. Siponimod reduced risk of 3mCDP/6mCDP vs placebo (by 31%/37%, respectively; p < 0.01); there was no significant effect on T25FW. Siponimod increased likelihood of 6-month confirmed SDMT improvement vs placebo (by 62%; p = 0.007) and reduced risk of 6-month confirmed SDMT worsening (by 27%; p = 0.060). Siponimod was associated with less increase in T2LV (1316.3 vs 13.3 mm3; p < 0.0001), and fewer T1 Gd + and N/E T2 lesions than placebo (85% and 80% reductions, respectively; p < 0.0001). CONCLUSIONS In aSPMS, siponimod reduced risk of disability progression and was associated with benefits on cognition and MRI outcomes vs placebo. TRIAL REGISTRATION ClinicalTrials.gov number: NCT01665144.
Collapse
Affiliation(s)
- Ralf Gold
- Department of Neurology, St. Josef Hospital and Ruhr University of Bochum, Bochum, Germany.
| | | | - Ludwig Kappos
- Research Center for Clinical Neuroimmunology and Neuroscience Basel (RC2NB) and Multiple Sclerosis Center, Departments of Head, Spine and Neuromedicine, Clinical Research, Biomedicine, and Biomedical Engineering, University Hospital, University of Basel, Basel, Switzerland
| | - Amit Bar-Or
- Center for Neuroinflammation and Experimental Therapeutics, and Department of Neurology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - Patrick Vermersch
- University of Lille, Inserm U1172 LilNCog, CHU Lille, FHU Precise, Lille, France
| | - Gavin Giovannoni
- Blizard Institute, Barts and The London School of Medicine and Dentistry, Queen Mary University of London, London, UK
| | - Robert J Fox
- Mellen Center for Multiple Sclerosis Treatment and Research, Neurological Institute, Cleveland Clinic, Cleveland, OH, USA
| | - Douglas L Arnold
- NeuroRx Research, Montreal, QC, Canada and Montreal Neurological Institute, McGill University, Montreal, QC, Canada
| | | | - Iris-Katharina Penner
- Department of Neurology, Inselspital, Bern University Hospital, University of Bern, Bern, Switzerland
| | | | | | | | | | | | | | - Bruce A C Cree
- UCSF Weill Institute for Neurosciences, Department of Neurology, University of California, San Francisco, San Francisco, CA, USA
| |
Collapse
|
38
|
Cree BAC, Arnold DL, Fox RJ, Gold R, Vermersch P, Benedict RHB, Bar-Or A, Piani-Meier D, Rouyrre N, Ritter S, Kilaru A, Karlsson G, Giovannoni G, Kappos L. Long-term efficacy and safety of siponimod in patients with secondary progressive multiple sclerosis: Analysis of EXPAND core and extension data up to >5 years. Mult Scler 2022; 28:1591-1605. [PMID: 35380078 PMCID: PMC9315196 DOI: 10.1177/13524585221083194] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023]
Abstract
BACKGROUND Siponimod significantly reduced the risk of confirmed disability progression (CDP), worsening in cognitive processing speed (CPS), relapses, and magnetic resonance imaging (MRI) measures of brain atrophy and inflammation versus placebo in secondary progressive multiple sclerosis (SPMS) patients in the Phase 3 EXPAND study. OBJECTIVE The aim of this study was to assess long-term efficacy and safety of siponimod 2 mg/day from the EXPAND study including the extension part, up to > 5 years. METHODS In the open-label extension part, participants receiving placebo during the core part were switched to siponimod (placebo-siponimod group) and those on siponimod continued the same treatment (continuous siponimod group). RESULTS Continuous siponimod reduced the risk of 6-month CDP by 22% (hazard ratio (HR) (95% confidence interval (CI)): 0.78 (0.66-0.92) p = 0.0026) and 6-month confirmed worsening in CPS by 23% (HR (95% CI): 0.77 (0.65-0.92) p = 0.0047) versus the placebo-siponimod group. Sustained efficacy on annualized relapse rate, total and regional brain atrophy, and inflammatory disease activity was also observed. No new, unexpected safety signals for siponimod were identified over the long term. CONCLUSION The sustained efficacy and consistent long-term safety profile of siponimod up to > 5 years support its clinical utility for long-term treatment of SPMS. Benefits in the continuous siponimod versus placebo-siponimod group highlight the significance of earlier treatment initiation. TRIAL REGISTRATION NUMBER NCT01665144.
Collapse
Affiliation(s)
- Bruce AC Cree
- BAC Cree Department of Neurology, UCSF
Weill Institute for Neurosciences, University of California San Francisco, 675
Nelson Rising Lane, Box 3206, San Francisco, CA 94158, USA.
| | - Douglas L Arnold
- NeuroRx Research, and Montreal Neurological
Institute and Hospital, Department of Neurology and Neurosurgery, McGill
University, Montreal, QC, Canada
| | - Robert J Fox
- Mellen Center for Treatment and Research in
Multiple Sclerosis, Neurological Institute, Cleveland Clinic, Cleveland, OH,
USA
| | - Ralf Gold
- Department of Neurology, St. Josef-Hospital and
Ruhr-University Bochum, Bochum, Germany
| | - Patrick Vermersch
- Univ. Lille, INSERM U1172 LilNCog, CHU Lille,
FHU Precise, Lille, France
| | | | - Amit Bar-Or
- Center for Neuroinflammation and Experimental
Therapeutics and Department of Neurology, Perelman School of Medicine,
University of Pennsylvania, Philadelphia, PA, USA
| | | | | | | | | | | | - Gavin Giovannoni
- Blizard Institute, Barts and The London School
of Medicine and Dentistry, Queen Mary University of London, London, UK
| | - Ludwig Kappos
- Neurologic Clinic and Policlinic, Departments
of Medicine, Clinical Research, Biomedicine and Biomedical Engineering,
University Hospital, University of Basel, Basel, Switzerland
| |
Collapse
|
39
|
Zhang W, Li Y, Li F, Ling L. Sphingosine-1-phosphate receptor modulators in stroke treatment. J Neurochem 2022; 162:390-403. [PMID: 35943290 DOI: 10.1111/jnc.15685] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/02/2022] [Revised: 06/30/2022] [Accepted: 08/02/2022] [Indexed: 11/30/2022]
Abstract
Sphingosine-1-phosphate (S1P) is a bioactive lysophospholipid that can influence a broad range of biological processes through its binding to five distinct G protein-coupled receptors. S1P receptor modulators are a new group of immunosuppressive agents currently used in the immunotherapy of multiple sclerosis. Inflammation following stroke may exacerbate injury. Given that S1P signaling is linked to multiple immune processes, therapies targeting the S1P axis may be suitable for treating stroke. In this review, we outline S1P metabolism and S1P receptors, discuss the mechanisms of action of S1P receptor modulators in lymphocyte migration and their direct action on cells of the central nervous system, and provide a concise summary of the efficacy of S1P receptor modulators in animal studies and clinical trials on treatments for stroke.
Collapse
Affiliation(s)
- Wanzhou Zhang
- Department of Neurology, Shenzhen Hospital, Southern Medical University, Shenzhen, Guangdong, China.,The Second School of Clinical Medicine, Southern Medical University, Guangzhou, China
| | - Yudi Li
- Department of Neurology, Shenzhen Hospital, Southern Medical University, Shenzhen, Guangdong, China.,The Second School of Clinical Medicine, Southern Medical University, Guangzhou, China
| | - Fangming Li
- Department of Neurology, Shenzhen University General Hospital, Shenzhen University Clinical Medical Academy, Shenzhen, Guangdong, China
| | - Li Ling
- Department of Neurology, Shenzhen Hospital, Southern Medical University, Shenzhen, Guangdong, China
| |
Collapse
|
40
|
Ogasawara A, Takeuchi H, Komiya H, Ogawa Y, Nishimura K, Kubota S, Hashiguchi S, Takahashi K, Kunii M, Tanaka K, Tada M, Doi H, Tanaka F. Anti-inflammatory effects of siponimod on astrocytes. Neurosci Res 2022; 184:38-46. [DOI: 10.1016/j.neures.2022.08.003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2022] [Revised: 07/27/2022] [Accepted: 08/04/2022] [Indexed: 10/31/2022]
|
41
|
Faissner S, Gold R. Efficacy and Safety of Multiple Sclerosis Drugs Approved Since 2018 and Future Developments. CNS Drugs 2022; 36:803-817. [PMID: 35869335 PMCID: PMC9307218 DOI: 10.1007/s40263-022-00939-9] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 07/06/2022] [Indexed: 11/03/2022]
Abstract
Multiple sclerosis treatment made substantial headway during the last two decades with the implementation of therapeutics with new modes of action and routes of application. We are now in the situation that second-generation molecules, approved since 2018, are on the market, characterized by reduced side effects using a more tailored therapeutic approach. Diroximel fumarate is a second-generation fumarate with reduced gastrointestinal side effects. Moreover, several novel, selective, sphingosine-1-phosphate receptor modulators with reduced off-target effects have been developed; namely siponimod, ozanimod, and ponesimod; all oral formulations. B-cell-targeted therapies such as ocrelizumab, given intravenously, and since 2021 ofatumumab, applied subcutaneously, complement the spectrum of novel therapies. The glycoengineered antibody ublituximab is the next anti-CD20 therapy about to be approved. Within the next years, oral inhibitors of Bruton's tyrosine kinase, currently under investigation in several phase III trials, may be licensed for multiple sclerosis. Those developments currently offer an individualized multiple sclerosis therapy, targeting patient needs with substantial effects on relapses, disability progression, and implications for daily life. In this up-to-date review, we provide a holistic overview about novel developments of the therapeutic landscape and upcoming approaches for multiple sclerosis treatment.
Collapse
Affiliation(s)
- Simon Faissner
- Department of Neurology, Ruhr-University Bochum, St. Josef-Hospital, Gudrunstr. 56, 44791, Bochum, Germany.
| | - Ralf Gold
- Department of Neurology, Ruhr-University Bochum, St. Josef-Hospital, Gudrunstr. 56, 44791, Bochum, Germany
| |
Collapse
|
42
|
Sphingosine-1-Phosphate (S1P) and S1P Signaling Pathway Modulators, from Current Insights to Future Perspectives. Cells 2022; 11:cells11132058. [PMID: 35805142 PMCID: PMC9265592 DOI: 10.3390/cells11132058] [Citation(s) in RCA: 59] [Impact Index Per Article: 19.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2022] [Accepted: 06/23/2022] [Indexed: 01/27/2023] Open
Abstract
Sphingosine-1-phosphate (S1P) and S1P receptors (S1PR) are bioactive lipid molecules that are ubiquitously expressed in the human body and play an important role in the immune system. S1P-S1PR signaling has been well characterized in immune trafficking and activation in both innate and adaptive immune systems. Despite this knowledge, the full scope in the pathogenesis of autoimmune disorders is not well characterized yet. From the discovery of fingolimod, the first S1P modulator, until siponimod, the new molecule recently approved for the treatment of secondary progressive multiple sclerosis (SPMS), there has been a great advance in understanding the S1P functions and their involvement in immune diseases, including multiple sclerosis (MS). Modulation on S1P is an interesting target for the treatment of various autoimmune disorders. Improved understanding of the mechanism of action of fingolimod has allowed the development of the more selective second-generation S1PR modulators. Subtype 1 of the S1PR (S1PR1) is expressed on the cell surface of lymphocytes, which are known to play a major role in MS pathogenesis. The understanding of S1PR1’s role facilitated the development of pharmacological strategies directed to this target, and theoretically reduced the safety concerns derived from the use of fingolimod. A great advance in the MS treatment was achieved in March 2019 when the Food and Drug Association (FDA) approved Siponimod, for both active secondary progressive MS and relapsing–remitting MS. Siponimod became the first oral disease modifying therapy (DMT) specifically approved for active forms of secondary progressive MS. Additionally, for the treatment of relapsing forms of MS, ozanimod was approved by FDA in March 2020. Currently, there are ongoing trials focused on other new-generation S1PR1 modulators. This review approaches the fundamental aspects of the sphingosine phosphate modulators and their main similarities and differences.
Collapse
|
43
|
Dietrich M, Hecker C, Martin E, Langui D, Gliem M, Stankoff B, Lubetzki C, Gruchot J, Göttle P, Issberner A, Nasiri M, Ramseier P, Beerli C, Tisserand S, Beckmann N, Shimshek D, Petzsch P, Akbar D, Levkau B, Stark H, Köhrer K, Hartung HP, Küry P, Meuth SG, Bigaud M, Zalc B, Albrecht P. Increased Remyelination and Proregenerative Microglia Under Siponimod Therapy in Mechanistic Models. NEUROLOGY(R) NEUROIMMUNOLOGY & NEUROINFLAMMATION 2022; 9:9/3/e1161. [PMID: 35354603 PMCID: PMC8969301 DOI: 10.1212/nxi.0000000000001161] [Citation(s) in RCA: 21] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/20/2021] [Accepted: 01/27/2022] [Indexed: 12/11/2022]
Abstract
Background and Objectives Siponimod is an oral, selective sphingosine-1-phosphate receptor-1/5 modulator approved for treatment of multiple sclerosis. Methods Mouse MRI was used to investigate remyelination in the cuprizone model. We then used a conditional demyelination Xenopus laevis model to assess the dose-response of siponimod on remyelination. In experimental autoimmune encephalomyelitis–optic neuritis (EAEON) in C57Bl/6J mice, we monitored the retinal thickness and the visual acuity using optical coherence tomography and optomotor response. Optic nerve inflammatory infiltrates, demyelination, and microglial and oligodendroglial differentiation were assessed by immunohistochemistry, quantitative real-time PCR, and bulk RNA sequencing. Results An increased remyelination was observed in the cuprizone model. Siponimod treatment of demyelinated tadpoles improved remyelination in comparison to control in a bell-shaped dose-response curve. Siponimod in the EAEON model attenuated the clinical score, reduced the retinal degeneration, and improved the visual function after prophylactic and therapeutic treatment, also in a bell-shaped manner. Inflammatory infiltrates and demyelination of the optic nerve were reduced, the latter even after therapeutic treatment, which also shifted microglial differentiation to a promyelinating phenotype. Discussion These results confirm the immunomodulatory effects of siponimod and suggest additional regenerative and promyelinating effects, which follow the dynamics of a bell-shaped curve with high being less efficient than low concentrations.
Collapse
Affiliation(s)
- Michael Dietrich
- From the Department of Neurology (M.D., C.H., M.G., J.G., P.G., A.I., M.N., H.-P.H., P.K., S.G.M.), Heinrich Heine University Düsseldorf, Medical Faculty (P.A.), Düsseldorf, Germany; Sorbonne Université (E.M., D.L., B.S., C.L., D.A., B.Z.), Inserm, CNRS, Institut du Cerveau, Pitié-Salpêtrière Hospital; AP-HP (B.S.), Saint-Antoine Hospital; AP-HP (C.L.), Pitié-Salpêtrière Hospital, Paris, France; Novartis Institutes for BioMedical Research (P.R., C.B., S.T., N.B., D.S., M.B.), Basel, Switzerland; Biological and Medical Research Center (BMFZ) (P.P., K.K.), Heinrich Heine University Düsseldorf, Medical Faculty; Institute for Molecular Medicine III (B.L.), University Hospital Düsseldorf and Heinrich Heine University Düsseldorf; Institute of Pharmaceutical and Medicinal Chemistry (H.S.), Heinrich Heine University Düsseldorf, Duesseldorf, Germany; Brain and Mind Center (H.-P.H.), University of Sydney, NSW, Australia; and Medical University of Vienna (H.-P.H.), Vienna, Austria
| | - Christina Hecker
- From the Department of Neurology (M.D., C.H., M.G., J.G., P.G., A.I., M.N., H.-P.H., P.K., S.G.M.), Heinrich Heine University Düsseldorf, Medical Faculty (P.A.), Düsseldorf, Germany; Sorbonne Université (E.M., D.L., B.S., C.L., D.A., B.Z.), Inserm, CNRS, Institut du Cerveau, Pitié-Salpêtrière Hospital; AP-HP (B.S.), Saint-Antoine Hospital; AP-HP (C.L.), Pitié-Salpêtrière Hospital, Paris, France; Novartis Institutes for BioMedical Research (P.R., C.B., S.T., N.B., D.S., M.B.), Basel, Switzerland; Biological and Medical Research Center (BMFZ) (P.P., K.K.), Heinrich Heine University Düsseldorf, Medical Faculty; Institute for Molecular Medicine III (B.L.), University Hospital Düsseldorf and Heinrich Heine University Düsseldorf; Institute of Pharmaceutical and Medicinal Chemistry (H.S.), Heinrich Heine University Düsseldorf, Duesseldorf, Germany; Brain and Mind Center (H.-P.H.), University of Sydney, NSW, Australia; and Medical University of Vienna (H.-P.H.), Vienna, Austria
| | - Elodie Martin
- From the Department of Neurology (M.D., C.H., M.G., J.G., P.G., A.I., M.N., H.-P.H., P.K., S.G.M.), Heinrich Heine University Düsseldorf, Medical Faculty (P.A.), Düsseldorf, Germany; Sorbonne Université (E.M., D.L., B.S., C.L., D.A., B.Z.), Inserm, CNRS, Institut du Cerveau, Pitié-Salpêtrière Hospital; AP-HP (B.S.), Saint-Antoine Hospital; AP-HP (C.L.), Pitié-Salpêtrière Hospital, Paris, France; Novartis Institutes for BioMedical Research (P.R., C.B., S.T., N.B., D.S., M.B.), Basel, Switzerland; Biological and Medical Research Center (BMFZ) (P.P., K.K.), Heinrich Heine University Düsseldorf, Medical Faculty; Institute for Molecular Medicine III (B.L.), University Hospital Düsseldorf and Heinrich Heine University Düsseldorf; Institute of Pharmaceutical and Medicinal Chemistry (H.S.), Heinrich Heine University Düsseldorf, Duesseldorf, Germany; Brain and Mind Center (H.-P.H.), University of Sydney, NSW, Australia; and Medical University of Vienna (H.-P.H.), Vienna, Austria
| | - Dominique Langui
- From the Department of Neurology (M.D., C.H., M.G., J.G., P.G., A.I., M.N., H.-P.H., P.K., S.G.M.), Heinrich Heine University Düsseldorf, Medical Faculty (P.A.), Düsseldorf, Germany; Sorbonne Université (E.M., D.L., B.S., C.L., D.A., B.Z.), Inserm, CNRS, Institut du Cerveau, Pitié-Salpêtrière Hospital; AP-HP (B.S.), Saint-Antoine Hospital; AP-HP (C.L.), Pitié-Salpêtrière Hospital, Paris, France; Novartis Institutes for BioMedical Research (P.R., C.B., S.T., N.B., D.S., M.B.), Basel, Switzerland; Biological and Medical Research Center (BMFZ) (P.P., K.K.), Heinrich Heine University Düsseldorf, Medical Faculty; Institute for Molecular Medicine III (B.L.), University Hospital Düsseldorf and Heinrich Heine University Düsseldorf; Institute of Pharmaceutical and Medicinal Chemistry (H.S.), Heinrich Heine University Düsseldorf, Duesseldorf, Germany; Brain and Mind Center (H.-P.H.), University of Sydney, NSW, Australia; and Medical University of Vienna (H.-P.H.), Vienna, Austria
| | - Michael Gliem
- From the Department of Neurology (M.D., C.H., M.G., J.G., P.G., A.I., M.N., H.-P.H., P.K., S.G.M.), Heinrich Heine University Düsseldorf, Medical Faculty (P.A.), Düsseldorf, Germany; Sorbonne Université (E.M., D.L., B.S., C.L., D.A., B.Z.), Inserm, CNRS, Institut du Cerveau, Pitié-Salpêtrière Hospital; AP-HP (B.S.), Saint-Antoine Hospital; AP-HP (C.L.), Pitié-Salpêtrière Hospital, Paris, France; Novartis Institutes for BioMedical Research (P.R., C.B., S.T., N.B., D.S., M.B.), Basel, Switzerland; Biological and Medical Research Center (BMFZ) (P.P., K.K.), Heinrich Heine University Düsseldorf, Medical Faculty; Institute for Molecular Medicine III (B.L.), University Hospital Düsseldorf and Heinrich Heine University Düsseldorf; Institute of Pharmaceutical and Medicinal Chemistry (H.S.), Heinrich Heine University Düsseldorf, Duesseldorf, Germany; Brain and Mind Center (H.-P.H.), University of Sydney, NSW, Australia; and Medical University of Vienna (H.-P.H.), Vienna, Austria
| | - Bruno Stankoff
- From the Department of Neurology (M.D., C.H., M.G., J.G., P.G., A.I., M.N., H.-P.H., P.K., S.G.M.), Heinrich Heine University Düsseldorf, Medical Faculty (P.A.), Düsseldorf, Germany; Sorbonne Université (E.M., D.L., B.S., C.L., D.A., B.Z.), Inserm, CNRS, Institut du Cerveau, Pitié-Salpêtrière Hospital; AP-HP (B.S.), Saint-Antoine Hospital; AP-HP (C.L.), Pitié-Salpêtrière Hospital, Paris, France; Novartis Institutes for BioMedical Research (P.R., C.B., S.T., N.B., D.S., M.B.), Basel, Switzerland; Biological and Medical Research Center (BMFZ) (P.P., K.K.), Heinrich Heine University Düsseldorf, Medical Faculty; Institute for Molecular Medicine III (B.L.), University Hospital Düsseldorf and Heinrich Heine University Düsseldorf; Institute of Pharmaceutical and Medicinal Chemistry (H.S.), Heinrich Heine University Düsseldorf, Duesseldorf, Germany; Brain and Mind Center (H.-P.H.), University of Sydney, NSW, Australia; and Medical University of Vienna (H.-P.H.), Vienna, Austria
| | - Catherine Lubetzki
- From the Department of Neurology (M.D., C.H., M.G., J.G., P.G., A.I., M.N., H.-P.H., P.K., S.G.M.), Heinrich Heine University Düsseldorf, Medical Faculty (P.A.), Düsseldorf, Germany; Sorbonne Université (E.M., D.L., B.S., C.L., D.A., B.Z.), Inserm, CNRS, Institut du Cerveau, Pitié-Salpêtrière Hospital; AP-HP (B.S.), Saint-Antoine Hospital; AP-HP (C.L.), Pitié-Salpêtrière Hospital, Paris, France; Novartis Institutes for BioMedical Research (P.R., C.B., S.T., N.B., D.S., M.B.), Basel, Switzerland; Biological and Medical Research Center (BMFZ) (P.P., K.K.), Heinrich Heine University Düsseldorf, Medical Faculty; Institute for Molecular Medicine III (B.L.), University Hospital Düsseldorf and Heinrich Heine University Düsseldorf; Institute of Pharmaceutical and Medicinal Chemistry (H.S.), Heinrich Heine University Düsseldorf, Duesseldorf, Germany; Brain and Mind Center (H.-P.H.), University of Sydney, NSW, Australia; and Medical University of Vienna (H.-P.H.), Vienna, Austria
| | - Joel Gruchot
- From the Department of Neurology (M.D., C.H., M.G., J.G., P.G., A.I., M.N., H.-P.H., P.K., S.G.M.), Heinrich Heine University Düsseldorf, Medical Faculty (P.A.), Düsseldorf, Germany; Sorbonne Université (E.M., D.L., B.S., C.L., D.A., B.Z.), Inserm, CNRS, Institut du Cerveau, Pitié-Salpêtrière Hospital; AP-HP (B.S.), Saint-Antoine Hospital; AP-HP (C.L.), Pitié-Salpêtrière Hospital, Paris, France; Novartis Institutes for BioMedical Research (P.R., C.B., S.T., N.B., D.S., M.B.), Basel, Switzerland; Biological and Medical Research Center (BMFZ) (P.P., K.K.), Heinrich Heine University Düsseldorf, Medical Faculty; Institute for Molecular Medicine III (B.L.), University Hospital Düsseldorf and Heinrich Heine University Düsseldorf; Institute of Pharmaceutical and Medicinal Chemistry (H.S.), Heinrich Heine University Düsseldorf, Duesseldorf, Germany; Brain and Mind Center (H.-P.H.), University of Sydney, NSW, Australia; and Medical University of Vienna (H.-P.H.), Vienna, Austria
| | - Peter Göttle
- From the Department of Neurology (M.D., C.H., M.G., J.G., P.G., A.I., M.N., H.-P.H., P.K., S.G.M.), Heinrich Heine University Düsseldorf, Medical Faculty (P.A.), Düsseldorf, Germany; Sorbonne Université (E.M., D.L., B.S., C.L., D.A., B.Z.), Inserm, CNRS, Institut du Cerveau, Pitié-Salpêtrière Hospital; AP-HP (B.S.), Saint-Antoine Hospital; AP-HP (C.L.), Pitié-Salpêtrière Hospital, Paris, France; Novartis Institutes for BioMedical Research (P.R., C.B., S.T., N.B., D.S., M.B.), Basel, Switzerland; Biological and Medical Research Center (BMFZ) (P.P., K.K.), Heinrich Heine University Düsseldorf, Medical Faculty; Institute for Molecular Medicine III (B.L.), University Hospital Düsseldorf and Heinrich Heine University Düsseldorf; Institute of Pharmaceutical and Medicinal Chemistry (H.S.), Heinrich Heine University Düsseldorf, Duesseldorf, Germany; Brain and Mind Center (H.-P.H.), University of Sydney, NSW, Australia; and Medical University of Vienna (H.-P.H.), Vienna, Austria
| | - Andrea Issberner
- From the Department of Neurology (M.D., C.H., M.G., J.G., P.G., A.I., M.N., H.-P.H., P.K., S.G.M.), Heinrich Heine University Düsseldorf, Medical Faculty (P.A.), Düsseldorf, Germany; Sorbonne Université (E.M., D.L., B.S., C.L., D.A., B.Z.), Inserm, CNRS, Institut du Cerveau, Pitié-Salpêtrière Hospital; AP-HP (B.S.), Saint-Antoine Hospital; AP-HP (C.L.), Pitié-Salpêtrière Hospital, Paris, France; Novartis Institutes for BioMedical Research (P.R., C.B., S.T., N.B., D.S., M.B.), Basel, Switzerland; Biological and Medical Research Center (BMFZ) (P.P., K.K.), Heinrich Heine University Düsseldorf, Medical Faculty; Institute for Molecular Medicine III (B.L.), University Hospital Düsseldorf and Heinrich Heine University Düsseldorf; Institute of Pharmaceutical and Medicinal Chemistry (H.S.), Heinrich Heine University Düsseldorf, Duesseldorf, Germany; Brain and Mind Center (H.-P.H.), University of Sydney, NSW, Australia; and Medical University of Vienna (H.-P.H.), Vienna, Austria
| | - Milad Nasiri
- From the Department of Neurology (M.D., C.H., M.G., J.G., P.G., A.I., M.N., H.-P.H., P.K., S.G.M.), Heinrich Heine University Düsseldorf, Medical Faculty (P.A.), Düsseldorf, Germany; Sorbonne Université (E.M., D.L., B.S., C.L., D.A., B.Z.), Inserm, CNRS, Institut du Cerveau, Pitié-Salpêtrière Hospital; AP-HP (B.S.), Saint-Antoine Hospital; AP-HP (C.L.), Pitié-Salpêtrière Hospital, Paris, France; Novartis Institutes for BioMedical Research (P.R., C.B., S.T., N.B., D.S., M.B.), Basel, Switzerland; Biological and Medical Research Center (BMFZ) (P.P., K.K.), Heinrich Heine University Düsseldorf, Medical Faculty; Institute for Molecular Medicine III (B.L.), University Hospital Düsseldorf and Heinrich Heine University Düsseldorf; Institute of Pharmaceutical and Medicinal Chemistry (H.S.), Heinrich Heine University Düsseldorf, Duesseldorf, Germany; Brain and Mind Center (H.-P.H.), University of Sydney, NSW, Australia; and Medical University of Vienna (H.-P.H.), Vienna, Austria
| | - Pamela Ramseier
- From the Department of Neurology (M.D., C.H., M.G., J.G., P.G., A.I., M.N., H.-P.H., P.K., S.G.M.), Heinrich Heine University Düsseldorf, Medical Faculty (P.A.), Düsseldorf, Germany; Sorbonne Université (E.M., D.L., B.S., C.L., D.A., B.Z.), Inserm, CNRS, Institut du Cerveau, Pitié-Salpêtrière Hospital; AP-HP (B.S.), Saint-Antoine Hospital; AP-HP (C.L.), Pitié-Salpêtrière Hospital, Paris, France; Novartis Institutes for BioMedical Research (P.R., C.B., S.T., N.B., D.S., M.B.), Basel, Switzerland; Biological and Medical Research Center (BMFZ) (P.P., K.K.), Heinrich Heine University Düsseldorf, Medical Faculty; Institute for Molecular Medicine III (B.L.), University Hospital Düsseldorf and Heinrich Heine University Düsseldorf; Institute of Pharmaceutical and Medicinal Chemistry (H.S.), Heinrich Heine University Düsseldorf, Duesseldorf, Germany; Brain and Mind Center (H.-P.H.), University of Sydney, NSW, Australia; and Medical University of Vienna (H.-P.H.), Vienna, Austria
| | - Christian Beerli
- From the Department of Neurology (M.D., C.H., M.G., J.G., P.G., A.I., M.N., H.-P.H., P.K., S.G.M.), Heinrich Heine University Düsseldorf, Medical Faculty (P.A.), Düsseldorf, Germany; Sorbonne Université (E.M., D.L., B.S., C.L., D.A., B.Z.), Inserm, CNRS, Institut du Cerveau, Pitié-Salpêtrière Hospital; AP-HP (B.S.), Saint-Antoine Hospital; AP-HP (C.L.), Pitié-Salpêtrière Hospital, Paris, France; Novartis Institutes for BioMedical Research (P.R., C.B., S.T., N.B., D.S., M.B.), Basel, Switzerland; Biological and Medical Research Center (BMFZ) (P.P., K.K.), Heinrich Heine University Düsseldorf, Medical Faculty; Institute for Molecular Medicine III (B.L.), University Hospital Düsseldorf and Heinrich Heine University Düsseldorf; Institute of Pharmaceutical and Medicinal Chemistry (H.S.), Heinrich Heine University Düsseldorf, Duesseldorf, Germany; Brain and Mind Center (H.-P.H.), University of Sydney, NSW, Australia; and Medical University of Vienna (H.-P.H.), Vienna, Austria
| | - Sarah Tisserand
- From the Department of Neurology (M.D., C.H., M.G., J.G., P.G., A.I., M.N., H.-P.H., P.K., S.G.M.), Heinrich Heine University Düsseldorf, Medical Faculty (P.A.), Düsseldorf, Germany; Sorbonne Université (E.M., D.L., B.S., C.L., D.A., B.Z.), Inserm, CNRS, Institut du Cerveau, Pitié-Salpêtrière Hospital; AP-HP (B.S.), Saint-Antoine Hospital; AP-HP (C.L.), Pitié-Salpêtrière Hospital, Paris, France; Novartis Institutes for BioMedical Research (P.R., C.B., S.T., N.B., D.S., M.B.), Basel, Switzerland; Biological and Medical Research Center (BMFZ) (P.P., K.K.), Heinrich Heine University Düsseldorf, Medical Faculty; Institute for Molecular Medicine III (B.L.), University Hospital Düsseldorf and Heinrich Heine University Düsseldorf; Institute of Pharmaceutical and Medicinal Chemistry (H.S.), Heinrich Heine University Düsseldorf, Duesseldorf, Germany; Brain and Mind Center (H.-P.H.), University of Sydney, NSW, Australia; and Medical University of Vienna (H.-P.H.), Vienna, Austria
| | - Nicolau Beckmann
- From the Department of Neurology (M.D., C.H., M.G., J.G., P.G., A.I., M.N., H.-P.H., P.K., S.G.M.), Heinrich Heine University Düsseldorf, Medical Faculty (P.A.), Düsseldorf, Germany; Sorbonne Université (E.M., D.L., B.S., C.L., D.A., B.Z.), Inserm, CNRS, Institut du Cerveau, Pitié-Salpêtrière Hospital; AP-HP (B.S.), Saint-Antoine Hospital; AP-HP (C.L.), Pitié-Salpêtrière Hospital, Paris, France; Novartis Institutes for BioMedical Research (P.R., C.B., S.T., N.B., D.S., M.B.), Basel, Switzerland; Biological and Medical Research Center (BMFZ) (P.P., K.K.), Heinrich Heine University Düsseldorf, Medical Faculty; Institute for Molecular Medicine III (B.L.), University Hospital Düsseldorf and Heinrich Heine University Düsseldorf; Institute of Pharmaceutical and Medicinal Chemistry (H.S.), Heinrich Heine University Düsseldorf, Duesseldorf, Germany; Brain and Mind Center (H.-P.H.), University of Sydney, NSW, Australia; and Medical University of Vienna (H.-P.H.), Vienna, Austria
| | - Derya Shimshek
- From the Department of Neurology (M.D., C.H., M.G., J.G., P.G., A.I., M.N., H.-P.H., P.K., S.G.M.), Heinrich Heine University Düsseldorf, Medical Faculty (P.A.), Düsseldorf, Germany; Sorbonne Université (E.M., D.L., B.S., C.L., D.A., B.Z.), Inserm, CNRS, Institut du Cerveau, Pitié-Salpêtrière Hospital; AP-HP (B.S.), Saint-Antoine Hospital; AP-HP (C.L.), Pitié-Salpêtrière Hospital, Paris, France; Novartis Institutes for BioMedical Research (P.R., C.B., S.T., N.B., D.S., M.B.), Basel, Switzerland; Biological and Medical Research Center (BMFZ) (P.P., K.K.), Heinrich Heine University Düsseldorf, Medical Faculty; Institute for Molecular Medicine III (B.L.), University Hospital Düsseldorf and Heinrich Heine University Düsseldorf; Institute of Pharmaceutical and Medicinal Chemistry (H.S.), Heinrich Heine University Düsseldorf, Duesseldorf, Germany; Brain and Mind Center (H.-P.H.), University of Sydney, NSW, Australia; and Medical University of Vienna (H.-P.H.), Vienna, Austria
| | - Patrick Petzsch
- From the Department of Neurology (M.D., C.H., M.G., J.G., P.G., A.I., M.N., H.-P.H., P.K., S.G.M.), Heinrich Heine University Düsseldorf, Medical Faculty (P.A.), Düsseldorf, Germany; Sorbonne Université (E.M., D.L., B.S., C.L., D.A., B.Z.), Inserm, CNRS, Institut du Cerveau, Pitié-Salpêtrière Hospital; AP-HP (B.S.), Saint-Antoine Hospital; AP-HP (C.L.), Pitié-Salpêtrière Hospital, Paris, France; Novartis Institutes for BioMedical Research (P.R., C.B., S.T., N.B., D.S., M.B.), Basel, Switzerland; Biological and Medical Research Center (BMFZ) (P.P., K.K.), Heinrich Heine University Düsseldorf, Medical Faculty; Institute for Molecular Medicine III (B.L.), University Hospital Düsseldorf and Heinrich Heine University Düsseldorf; Institute of Pharmaceutical and Medicinal Chemistry (H.S.), Heinrich Heine University Düsseldorf, Duesseldorf, Germany; Brain and Mind Center (H.-P.H.), University of Sydney, NSW, Australia; and Medical University of Vienna (H.-P.H.), Vienna, Austria
| | - David Akbar
- From the Department of Neurology (M.D., C.H., M.G., J.G., P.G., A.I., M.N., H.-P.H., P.K., S.G.M.), Heinrich Heine University Düsseldorf, Medical Faculty (P.A.), Düsseldorf, Germany; Sorbonne Université (E.M., D.L., B.S., C.L., D.A., B.Z.), Inserm, CNRS, Institut du Cerveau, Pitié-Salpêtrière Hospital; AP-HP (B.S.), Saint-Antoine Hospital; AP-HP (C.L.), Pitié-Salpêtrière Hospital, Paris, France; Novartis Institutes for BioMedical Research (P.R., C.B., S.T., N.B., D.S., M.B.), Basel, Switzerland; Biological and Medical Research Center (BMFZ) (P.P., K.K.), Heinrich Heine University Düsseldorf, Medical Faculty; Institute for Molecular Medicine III (B.L.), University Hospital Düsseldorf and Heinrich Heine University Düsseldorf; Institute of Pharmaceutical and Medicinal Chemistry (H.S.), Heinrich Heine University Düsseldorf, Duesseldorf, Germany; Brain and Mind Center (H.-P.H.), University of Sydney, NSW, Australia; and Medical University of Vienna (H.-P.H.), Vienna, Austria
| | - Bodo Levkau
- From the Department of Neurology (M.D., C.H., M.G., J.G., P.G., A.I., M.N., H.-P.H., P.K., S.G.M.), Heinrich Heine University Düsseldorf, Medical Faculty (P.A.), Düsseldorf, Germany; Sorbonne Université (E.M., D.L., B.S., C.L., D.A., B.Z.), Inserm, CNRS, Institut du Cerveau, Pitié-Salpêtrière Hospital; AP-HP (B.S.), Saint-Antoine Hospital; AP-HP (C.L.), Pitié-Salpêtrière Hospital, Paris, France; Novartis Institutes for BioMedical Research (P.R., C.B., S.T., N.B., D.S., M.B.), Basel, Switzerland; Biological and Medical Research Center (BMFZ) (P.P., K.K.), Heinrich Heine University Düsseldorf, Medical Faculty; Institute for Molecular Medicine III (B.L.), University Hospital Düsseldorf and Heinrich Heine University Düsseldorf; Institute of Pharmaceutical and Medicinal Chemistry (H.S.), Heinrich Heine University Düsseldorf, Duesseldorf, Germany; Brain and Mind Center (H.-P.H.), University of Sydney, NSW, Australia; and Medical University of Vienna (H.-P.H.), Vienna, Austria
| | - Holger Stark
- From the Department of Neurology (M.D., C.H., M.G., J.G., P.G., A.I., M.N., H.-P.H., P.K., S.G.M.), Heinrich Heine University Düsseldorf, Medical Faculty (P.A.), Düsseldorf, Germany; Sorbonne Université (E.M., D.L., B.S., C.L., D.A., B.Z.), Inserm, CNRS, Institut du Cerveau, Pitié-Salpêtrière Hospital; AP-HP (B.S.), Saint-Antoine Hospital; AP-HP (C.L.), Pitié-Salpêtrière Hospital, Paris, France; Novartis Institutes for BioMedical Research (P.R., C.B., S.T., N.B., D.S., M.B.), Basel, Switzerland; Biological and Medical Research Center (BMFZ) (P.P., K.K.), Heinrich Heine University Düsseldorf, Medical Faculty; Institute for Molecular Medicine III (B.L.), University Hospital Düsseldorf and Heinrich Heine University Düsseldorf; Institute of Pharmaceutical and Medicinal Chemistry (H.S.), Heinrich Heine University Düsseldorf, Duesseldorf, Germany; Brain and Mind Center (H.-P.H.), University of Sydney, NSW, Australia; and Medical University of Vienna (H.-P.H.), Vienna, Austria
| | - Karl Köhrer
- From the Department of Neurology (M.D., C.H., M.G., J.G., P.G., A.I., M.N., H.-P.H., P.K., S.G.M.), Heinrich Heine University Düsseldorf, Medical Faculty (P.A.), Düsseldorf, Germany; Sorbonne Université (E.M., D.L., B.S., C.L., D.A., B.Z.), Inserm, CNRS, Institut du Cerveau, Pitié-Salpêtrière Hospital; AP-HP (B.S.), Saint-Antoine Hospital; AP-HP (C.L.), Pitié-Salpêtrière Hospital, Paris, France; Novartis Institutes for BioMedical Research (P.R., C.B., S.T., N.B., D.S., M.B.), Basel, Switzerland; Biological and Medical Research Center (BMFZ) (P.P., K.K.), Heinrich Heine University Düsseldorf, Medical Faculty; Institute for Molecular Medicine III (B.L.), University Hospital Düsseldorf and Heinrich Heine University Düsseldorf; Institute of Pharmaceutical and Medicinal Chemistry (H.S.), Heinrich Heine University Düsseldorf, Duesseldorf, Germany; Brain and Mind Center (H.-P.H.), University of Sydney, NSW, Australia; and Medical University of Vienna (H.-P.H.), Vienna, Austria
| | - Hans-Peter Hartung
- From the Department of Neurology (M.D., C.H., M.G., J.G., P.G., A.I., M.N., H.-P.H., P.K., S.G.M.), Heinrich Heine University Düsseldorf, Medical Faculty (P.A.), Düsseldorf, Germany; Sorbonne Université (E.M., D.L., B.S., C.L., D.A., B.Z.), Inserm, CNRS, Institut du Cerveau, Pitié-Salpêtrière Hospital; AP-HP (B.S.), Saint-Antoine Hospital; AP-HP (C.L.), Pitié-Salpêtrière Hospital, Paris, France; Novartis Institutes for BioMedical Research (P.R., C.B., S.T., N.B., D.S., M.B.), Basel, Switzerland; Biological and Medical Research Center (BMFZ) (P.P., K.K.), Heinrich Heine University Düsseldorf, Medical Faculty; Institute for Molecular Medicine III (B.L.), University Hospital Düsseldorf and Heinrich Heine University Düsseldorf; Institute of Pharmaceutical and Medicinal Chemistry (H.S.), Heinrich Heine University Düsseldorf, Duesseldorf, Germany; Brain and Mind Center (H.-P.H.), University of Sydney, NSW, Australia; and Medical University of Vienna (H.-P.H.), Vienna, Austria
| | - Patrick Küry
- From the Department of Neurology (M.D., C.H., M.G., J.G., P.G., A.I., M.N., H.-P.H., P.K., S.G.M.), Heinrich Heine University Düsseldorf, Medical Faculty (P.A.), Düsseldorf, Germany; Sorbonne Université (E.M., D.L., B.S., C.L., D.A., B.Z.), Inserm, CNRS, Institut du Cerveau, Pitié-Salpêtrière Hospital; AP-HP (B.S.), Saint-Antoine Hospital; AP-HP (C.L.), Pitié-Salpêtrière Hospital, Paris, France; Novartis Institutes for BioMedical Research (P.R., C.B., S.T., N.B., D.S., M.B.), Basel, Switzerland; Biological and Medical Research Center (BMFZ) (P.P., K.K.), Heinrich Heine University Düsseldorf, Medical Faculty; Institute for Molecular Medicine III (B.L.), University Hospital Düsseldorf and Heinrich Heine University Düsseldorf; Institute of Pharmaceutical and Medicinal Chemistry (H.S.), Heinrich Heine University Düsseldorf, Duesseldorf, Germany; Brain and Mind Center (H.-P.H.), University of Sydney, NSW, Australia; and Medical University of Vienna (H.-P.H.), Vienna, Austria
| | - Sven Günther Meuth
- From the Department of Neurology (M.D., C.H., M.G., J.G., P.G., A.I., M.N., H.-P.H., P.K., S.G.M.), Heinrich Heine University Düsseldorf, Medical Faculty (P.A.), Düsseldorf, Germany; Sorbonne Université (E.M., D.L., B.S., C.L., D.A., B.Z.), Inserm, CNRS, Institut du Cerveau, Pitié-Salpêtrière Hospital; AP-HP (B.S.), Saint-Antoine Hospital; AP-HP (C.L.), Pitié-Salpêtrière Hospital, Paris, France; Novartis Institutes for BioMedical Research (P.R., C.B., S.T., N.B., D.S., M.B.), Basel, Switzerland; Biological and Medical Research Center (BMFZ) (P.P., K.K.), Heinrich Heine University Düsseldorf, Medical Faculty; Institute for Molecular Medicine III (B.L.), University Hospital Düsseldorf and Heinrich Heine University Düsseldorf; Institute of Pharmaceutical and Medicinal Chemistry (H.S.), Heinrich Heine University Düsseldorf, Duesseldorf, Germany; Brain and Mind Center (H.-P.H.), University of Sydney, NSW, Australia; and Medical University of Vienna (H.-P.H.), Vienna, Austria
| | - Marc Bigaud
- From the Department of Neurology (M.D., C.H., M.G., J.G., P.G., A.I., M.N., H.-P.H., P.K., S.G.M.), Heinrich Heine University Düsseldorf, Medical Faculty (P.A.), Düsseldorf, Germany; Sorbonne Université (E.M., D.L., B.S., C.L., D.A., B.Z.), Inserm, CNRS, Institut du Cerveau, Pitié-Salpêtrière Hospital; AP-HP (B.S.), Saint-Antoine Hospital; AP-HP (C.L.), Pitié-Salpêtrière Hospital, Paris, France; Novartis Institutes for BioMedical Research (P.R., C.B., S.T., N.B., D.S., M.B.), Basel, Switzerland; Biological and Medical Research Center (BMFZ) (P.P., K.K.), Heinrich Heine University Düsseldorf, Medical Faculty; Institute for Molecular Medicine III (B.L.), University Hospital Düsseldorf and Heinrich Heine University Düsseldorf; Institute of Pharmaceutical and Medicinal Chemistry (H.S.), Heinrich Heine University Düsseldorf, Duesseldorf, Germany; Brain and Mind Center (H.-P.H.), University of Sydney, NSW, Australia; and Medical University of Vienna (H.-P.H.), Vienna, Austria
| | - Bernard Zalc
- From the Department of Neurology (M.D., C.H., M.G., J.G., P.G., A.I., M.N., H.-P.H., P.K., S.G.M.), Heinrich Heine University Düsseldorf, Medical Faculty (P.A.), Düsseldorf, Germany; Sorbonne Université (E.M., D.L., B.S., C.L., D.A., B.Z.), Inserm, CNRS, Institut du Cerveau, Pitié-Salpêtrière Hospital; AP-HP (B.S.), Saint-Antoine Hospital; AP-HP (C.L.), Pitié-Salpêtrière Hospital, Paris, France; Novartis Institutes for BioMedical Research (P.R., C.B., S.T., N.B., D.S., M.B.), Basel, Switzerland; Biological and Medical Research Center (BMFZ) (P.P., K.K.), Heinrich Heine University Düsseldorf, Medical Faculty; Institute for Molecular Medicine III (B.L.), University Hospital Düsseldorf and Heinrich Heine University Düsseldorf; Institute of Pharmaceutical and Medicinal Chemistry (H.S.), Heinrich Heine University Düsseldorf, Duesseldorf, Germany; Brain and Mind Center (H.-P.H.), University of Sydney, NSW, Australia; and Medical University of Vienna (H.-P.H.), Vienna, Austria
| | - Philipp Albrecht
- From the Department of Neurology (M.D., C.H., M.G., J.G., P.G., A.I., M.N., H.-P.H., P.K., S.G.M.), Heinrich Heine University Düsseldorf, Medical Faculty (P.A.), Düsseldorf, Germany; Sorbonne Université (E.M., D.L., B.S., C.L., D.A., B.Z.), Inserm, CNRS, Institut du Cerveau, Pitié-Salpêtrière Hospital; AP-HP (B.S.), Saint-Antoine Hospital; AP-HP (C.L.), Pitié-Salpêtrière Hospital, Paris, France; Novartis Institutes for BioMedical Research (P.R., C.B., S.T., N.B., D.S., M.B.), Basel, Switzerland; Biological and Medical Research Center (BMFZ) (P.P., K.K.), Heinrich Heine University Düsseldorf, Medical Faculty; Institute for Molecular Medicine III (B.L.), University Hospital Düsseldorf and Heinrich Heine University Düsseldorf; Institute of Pharmaceutical and Medicinal Chemistry (H.S.), Heinrich Heine University Düsseldorf, Duesseldorf, Germany; Brain and Mind Center (H.-P.H.), University of Sydney, NSW, Australia; and Medical University of Vienna (H.-P.H.), Vienna, Austria
| |
Collapse
|
44
|
Zheng K, Lv B, Wu L, Wang C, Xu H, Li X, Wu Z, Zhao Y, Zheng Z. Protecting effect of emodin in experimental autoimmune encephalomyelitis mice by inhibiting microglia activation and inflammation via Myd88/PI3K/Akt/NF-κB signalling pathway. Bioengineered 2022; 13:9322-9344. [PMID: 35287559 PMCID: PMC9161934 DOI: 10.1080/21655979.2022.2052671] [Citation(s) in RCA: 26] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022] Open
Abstract
Experimental autoimmune encephalomyelitis (EAE) is characterised by demyelination of the central nervous system. Emodin is an anthraquinone derivative with comprehensive anti-inflammatory, anti-cancer, and immunomodulatory effects and is widely used in the treatment of inflammatory, tumour, and immune system diseases. However, none of the clinical or experimental studies have explored the therapeutic efficacy of emodin in EAE/multiple sclerosis (MS). Thus, we evaluated the protective effect of emodin on EAE mediated via inhibition of microglia activation and inflammation. Wild-type mice were randomly divided into the normal control, EAE, low-dose emodin, and high-dose emodin groups. Clinical scores and pathological changes were assessed 21 days after immunisation. The network pharmacology approach was used to elucidate underlying mechanisms by using an online database. Molecular docking, polymerase chain reaction tests, western blotting, and immunofluorescence were performed to verify the network pharmacology results. An in vivo experiment showed that high-dose emodin ameliorated clinical symptoms, inflammatory cell infiltration, and myelination. Pharmacological network analysis showed AKT1 was the main target and that emodin played a key role in MS treatment mainly via the PI3K-Akt pathway. Molecular docking showed that emodin bound well with PI3K, AKT1, and NFKB1. Emodin decreased the expression of phosphorylated(p)-PI3K, p-Akt, NF-κB, and myeloid differentiation factor 88 and the levels of markers (CD86 and CD206) in M1- and M2-phenotype microglia in EAE. Thus, emodin inhibited microglial activation and exhibited anti-inflammatory and neuroprotective effects against EAE via the Myd88/PI3K/Akt/NF-κB signalling pathway. In conclusion, emodin has a promising role in EAE/MS treatment, warranting further detailed studies.
Collapse
Affiliation(s)
- Kenan Zheng
- The First Clinical School, Guangzhou University of Chinese Medicine, Guangzhou, China.,Lingnan Medical Research Center, Guangzhou University of Chinese Medicine, Guangzhou, China
| | - Baojiang Lv
- The First Clinical School, Guangzhou University of Chinese Medicine, Guangzhou, China.,Lingnan Medical Research Center, Guangzhou University of Chinese Medicine, Guangzhou, China
| | - Lulu Wu
- The First Clinical School, Guangzhou University of Chinese Medicine, Guangzhou, China.,Lingnan Medical Research Center, Guangzhou University of Chinese Medicine, Guangzhou, China
| | - Chen Wang
- Department of Traditional Chinese Medicine, Zhujiang Hospital, Southern Medical University, Guangzhou, China
| | - Haoyou Xu
- Department of Neurology, The Second Affiliated Hospital of Guangzhou University of Chinese Medicine, Guangdong Provincial Hospital of Traditional Chinese Medicine, Guangzhou, China
| | - Xiaojun Li
- The Second Clinical School, Guangzhou University of Chinese Medicine, Guangzhou, China
| | - Zhibing Wu
- Department of Neurology, The First Affiliated Hospital of Guangzhou University of Chinese Medicine, Guangzhou, China
| | - Yuanqi Zhao
- Department of Neurology, The Second Affiliated Hospital of Guangzhou University of Chinese Medicine, Guangdong Provincial Hospital of Traditional Chinese Medicine, Guangzhou, China
| | - Zequan Zheng
- Department of Neurology, The Second Affiliated Hospital of Guangzhou University of Chinese Medicine, Guangdong Provincial Hospital of Traditional Chinese Medicine, Guangzhou, China.,Doctoral candidates with the same academic level of Guangzhou University of Chinese Medicine, Guangzhou, China
| |
Collapse
|
45
|
Arnold DL, Piani-Meier D, Bar-Or A, Benedict RH, Cree BA, Giovannoni G, Gold R, Vermersch P, Arnould S, Dahlke F, Hach T, Ritter S, Karlsson G, Kappos L, Fox RJ. Effect of siponimod on magnetic resonance imaging measures of neurodegeneration and myelination in secondary progressive multiple sclerosis: Gray matter atrophy and magnetization transfer ratio analyses from the EXPAND phase 3 trial. Mult Scler 2022; 28:1526-1540. [PMID: 35261318 PMCID: PMC9315182 DOI: 10.1177/13524585221076717] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
BACKGROUND Magnetic resonance imaging (MRI) measurements of gray matter (GM) atrophy and magnetization transfer ratio (MTR; correlate of myelination) may provide better insights than conventional MRI regarding brain tissue integrity/myelination in multiple sclerosis (MS). OBJECTIVE To examine the effect of siponimod in the EXPAND trial on whole-brain and GM atrophy, newly formed normalized magnetization transfer ratio (nMTR) lesions, and nMTR-assessed integrity of normal-appearing brain tissue (NABT), cortical GM (cGM), and normal-appearing white matter (NAWM). METHODS Patients with secondary progressive multiple sclerosis (SPMS) received siponimod (2 mg/day; n =1037) or placebo (n = 523). Endpoints included percentage change from baseline to months 12/24 in whole-brain, cGM, and thalamic volumes; change in nMTR from baseline to months 12/24 in NABT, cGM, and NAWM; MTR recovery in newly formed lesions. RESULTS Compared with placebo, siponimod significantly reduced progression of whole-brain and GM atrophy over 12/24 months, and was associated with improvements in brain tissue integrity/myelination within newly formed nMTR lesions and across NABT, cGM, and NAWM over 24 months. Effects were consistent across age, disease duration, inflammatory activity subgroups, and disease severity. CONCLUSION Siponimod reduced brain tissue damage in patients with SPMS as evidenced by objective measures of brain tissue integrity/myelination. This is consistent with central nervous system (CNS) effects observed in preclinical models. ClinicalTrials.gov number: NCT01665144.
Collapse
Affiliation(s)
- Douglas L Arnold
- NeuroRx, Montreal, QC, Canada/Montreal Neurological Institute, McGill University, Montreal, QC, Canada
| | | | - Amit Bar-Or
- Center for Neuroinflammation and Experimental Therapeutics and Department of Neurology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | | | - Bruce Ac Cree
- UCSF Weill Institute for Neurosciences, Department of Neurology, University of California San Francisco, San Francisco, CA, USA
| | - Gavin Giovannoni
- Blizard Institute, Barts and The London School of Medicine and Dentistry, Queen Mary University of London, London, UK
| | - Ralf Gold
- Department of Neurology, St Josef-Hospital/Ruhr-University Bochum, Bochum, Germany
| | - Patrick Vermersch
- Univ. Lille, Inserm U1172 LilNCog, CHU Lille, FHU Precise, Lille, France
| | - Sophie Arnould
- Novartis Pharma AG, Basel, Switzerland; *at the time of writing
| | - Frank Dahlke
- Novartis Pharma AG, Basel, Switzerland; *at the time of writing
| | - Thomas Hach
- Novartis Pharma AG, Basel, Switzerland; *at the time of writing
| | - Shannon Ritter
- Novartis Pharma AG, Basel, Switzerland; *at the time of writing
| | - Göril Karlsson
- Novartis Pharma AG, Basel, Switzerland; *at the time of writing
| | - Ludwig Kappos
- Research Center for Clinical Neuroimmunology and Neuroscience Basel (RC2NB) and MS Center, Departments of Head, Spine and Neuromedicine, Clinical Research, Biomedicine and Biomedical Engineering, University Hospital, University of Basel, Basel, Switzerland
| | - Robert J Fox
- Mellen Center for Multiple Sclerosis Treatment and Research, Neurological Institute, Cleveland Clinic, Cleveland, OH, USA
| | | |
Collapse
|
46
|
Kamma E, Lasisi W, Libner C, Ng HS, Plemel JR. Central nervous system macrophages in progressive multiple sclerosis: relationship to neurodegeneration and therapeutics. J Neuroinflammation 2022; 19:45. [PMID: 35144628 PMCID: PMC8830034 DOI: 10.1186/s12974-022-02408-y] [Citation(s) in RCA: 65] [Impact Index Per Article: 21.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2021] [Accepted: 01/31/2022] [Indexed: 02/08/2023] Open
Abstract
There are over 15 disease-modifying drugs that have been approved over the last 20 years for the treatment of relapsing–remitting multiple sclerosis (MS), but there are limited treatment options available for progressive MS. The development of new drugs for the treatment of progressive MS remains challenging as the pathophysiology of progressive MS is poorly understood. The progressive phase of MS is dominated by neurodegeneration and a heightened innate immune response with trapped immune cells behind a closed blood–brain barrier in the central nervous system. Here we review microglia and border-associated macrophages, which include perivascular, meningeal, and choroid plexus macrophages, during the progressive phase of MS. These cells are vital and are largely the basis to define lesion types in MS. We will review the evidence that reactive microglia and macrophages upregulate pro-inflammatory genes and downregulate homeostatic genes, that may promote neurodegeneration in progressive MS. We will also review the factors that regulate microglia and macrophage function during progressive MS, as well as potential toxic functions of these cells. Disease-modifying drugs that solely target microglia and macrophage in progressive MS are lacking. The recent treatment successes for progressive MS include include B-cell depletion therapies and sphingosine-1-phosphate receptor modulators. We will describe several therapies being evaluated as a potential treatment option for progressive MS, such as immunomodulatory therapies that can target myeloid cells or as a potential neuroprotective agent.
Collapse
Affiliation(s)
- Emily Kamma
- Department of Pathology and Laboratory Medicine, Faculty of Medicine, University of British Columbia, Vancouver, BC, Canada
| | - Wendy Lasisi
- Recovery and Performance Laboratory, Faculty of Medicine, Memorial University of Newfoundland, Saint John's, NL, Canada
| | - Cole Libner
- Department of Health Sciences and the Office of the Saskatchewan Multiple Sclerosis Clinical Research Chair, College of Medicine, University of Saskatchewan, Saskatoon, SK, Canada
| | - Huah Shin Ng
- Division of Neurology and the Djavad Mowafaghian Centre for Brain Health, Department of Medicine, University of British Columbia, Vancouver, BC, Canada
| | - Jason R Plemel
- Division of Neurology, Department of Medicine, University of Alberta, Edmonton, AB, Canada. .,Neuroscience and Mental Health Institute, University of Alberta, Edmonton, AB, Canada. .,Department of Medical Microbiology and Immunology, University of Alberta, Edmonton, AB, Canada. .,University of Alberta, 5-64 Heritage Medical Research Centre, Edmonton, AB, T6G2S2, Canada.
| |
Collapse
|
47
|
Kuntzel T, Bagnard D. Manipulating Macrophage/Microglia Polarization to Treat Glioblastoma or Multiple Sclerosis. Pharmaceutics 2022; 14:344. [PMID: 35214076 PMCID: PMC8877500 DOI: 10.3390/pharmaceutics14020344] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2021] [Revised: 01/26/2022] [Accepted: 01/28/2022] [Indexed: 12/24/2022] Open
Abstract
Macrophages and microglia are implicated in several diseases with divergent roles in physiopathology. This discrepancy can be explained by their capacity to endorse different polarization states. Theoretical extremes of these states are called M1 and M2. M1 are pro-inflammatory, microbicidal, and cytotoxic whereas M2 are anti-inflammatory, immunoregulatory cells in favor of tumor progression. In pathological states, these polarizations are dysregulated, thus restoring phenotypes could be an interesting treatment approach against diseases. In this review, we will focus on compounds targeting macrophages and microglia polarization in two very distinctive pathologies: multiple sclerosis and glioblastoma. Multiple sclerosis is an inflammatory disease characterized by demyelination and axon degradation. In this case, macrophages and microglia endorse a M1-like phenotype inducing inflammation. Promoting the opposite M2-like polarization could be an interesting treatment strategy. Glioblastoma is a brain tumor in which macrophages and microglia facilitate tumor progression, spreading, and angiogenesis. They are part of the tumor associated macrophages displaying an anti-inflammatory phenotype, thereby inhibiting anti-tumoral immunity. Re-activating them could be a method to limit and reduce tumor progression. These two pathologies will be used to exemplify that targeting the polarization of macrophages and microglia is a promising approach with a broad spectrum of applications deserving more attention.
Collapse
Affiliation(s)
- Thomas Kuntzel
- UMR7242 Biotechnology and Cell Signaling, Centre National de la Recherche Scientifique, Strasbourg Drug Discovery and Development Institute (IMS), University of Strasbourg, 67400 Illkirch-Graffenstaden, France;
| | - Dominique Bagnard
- UMR7242 Biotechnology and Cell Signaling, Centre National de la Recherche Scientifique, Strasbourg Drug Discovery and Development Institute (IMS), University of Strasbourg, 67400 Illkirch-Graffenstaden, France;
- Ecole Supérieure de Biotechnologie de Strasbourg, 67400 Illkirch-Graffenstaden, France
| |
Collapse
|
48
|
A Distinct Hibiscus sabdariffa Extract Prevents Iron Neurotoxicity, a Driver of Multiple Sclerosis Pathology. Cells 2022; 11:cells11030440. [PMID: 35159249 PMCID: PMC8834068 DOI: 10.3390/cells11030440] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2021] [Revised: 01/23/2022] [Accepted: 01/25/2022] [Indexed: 02/04/2023] Open
Abstract
Iron deposition in the brain begins early in multiple sclerosis (MS) and continues unabated. Ferrous iron is toxic to neurons, yet the therapies used in MS do not counter iron neurotoxicity. Extracts of Hibiscus sabdariffa (HS) are used in many cultures for medicinal purposes. We collected a distinct HS extract and found that it abolished the killing of neurons by iron in culture; medications used in MS were ineffective when similarly tested. Neuroprotection by HS was not due to iron chelation or anthocyanin content. In free radical scavenging assays, HS was equipotent to alpha lipoic acid, an anti-oxidant being tested in MS. However, alpha lipoic acid was only modestly protective against iron-mediated killing. Moreover, a subfraction of HS without radical scavenging activity negated iron toxicity, whereas a commercial hibiscus preparation with anti-oxidant activity could not. The idea that HS might have altered properties within neurons to confer neuroprotection is supported by its amelioration of toxicity caused by other toxins: beta-amyloid, rotenone and staurosporine. Finally, in a mouse model of MS, HS reduced disability scores and ameliorated the loss of axons in the spinal cord. HS holds therapeutic potential to counter iron neurotoxicity, an unmet need that drives the progression of disability in MS.
Collapse
|
49
|
Cohan SL, Benedict RHB, Cree BAC, DeLuca J, Hua LH, Chun J. The Two Sides of Siponimod: Evidence for Brain and Immune Mechanisms in Multiple Sclerosis. CNS Drugs 2022; 36:703-719. [PMID: 35725892 PMCID: PMC9259525 DOI: 10.1007/s40263-022-00927-z] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 05/12/2022] [Indexed: 12/13/2022]
Abstract
Siponimod is a selective sphingosine 1-phosphate receptor subtype 1 (S1P1) and 5 (S1P5) modulator approved in the United States and the European Union as an oral treatment for adults with relapsing forms of multiple sclerosis (RMS), including active secondary progressive multiple sclerosis (SPMS). Preclinical and clinical studies provide support for a dual mechanism of action of siponimod, targeting peripherally mediated inflammation and exerting direct central effects. As an S1P1 receptor modulator, siponimod reduces lymphocyte egress from lymph nodes, thus inhibiting their migration from the periphery to the central nervous system. As a result of its peripheral immunomodulatory effects, siponimod reduces both magnetic resonance imaging (MRI) lesion (gadolinium-enhancing and new/enlarging T2 hyperintense) and relapse activity compared with placebo. Independent of these effects, siponimod can penetrate the blood-brain barrier and, by binding to S1P1 and S1P5 receptors on a variety of brain cells, including astrocytes, oligodendrocytes, neurons, and microglia, exert effects to modulate neural inflammation and neurodegeneration. Clinical data in patients with SPMS have shown that, compared with placebo, siponimod treatment is associated with reductions in levels of neurofilament light chain (a marker of neuroaxonal damage) and thalamic and cortical gray matter atrophy, with smaller reductions in MRI magnetization transfer ratio and reduced confirmed disability progression. This review examines the preclinical and clinical data supporting the dual mechanism of action of siponimod in RMS.
Collapse
Affiliation(s)
- Stanley L Cohan
- Providence Multiple Sclerosis Center, Providence Brain Institute, 9135 SW Barnes Rd Suite 461, Portland, OR, 97225, USA.
| | | | - Bruce A C Cree
- UCSF Weill Institute for Neurosciences, Department of Neurology, University of California San Francisco, San Francisco, CA, USA
| | | | - Le H Hua
- Cleveland Clinic Lou Ruvo Center for Brain Health, Las Vegas, NV, USA
| | - Jerold Chun
- Sanford Burnham Prebys Medical Discovery Institute, La Jolla, CA, USA
| |
Collapse
|
50
|
Schoedel KA, Kolly C, Gardin A, Neelakantham S, Shakeri-Nejad K. Abuse and dependence potential of sphingosine-1-phosphate (S1P) receptor modulators used in the treatment of multiple sclerosis: a review of literature and public data. Psychopharmacology (Berl) 2022; 239:1-13. [PMID: 34773483 PMCID: PMC8770388 DOI: 10.1007/s00213-021-06011-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/06/2021] [Accepted: 10/18/2021] [Indexed: 12/05/2022]
Abstract
Abuse and misuse of prescription drugs remains an ongoing concern in the USA and worldwide; thus, all centrally active new drugs must be assessed for abuse and dependence potential. Sphingosine-1-phosphate (S1P) receptor modulators are used primarily in the treatment of multiple sclerosis. Among the new S1P receptor modulators, siponimod, ozanimod, and ponesimod have recently been approved in the USA, European Union (EU), and other countries. This review of literature and other public data has been undertaken to assess the potential for abuse of S1P receptor modulators, including ozanimod, siponimod, ponesimod, and fingolimod, as well as several similar compounds in development. The S1P receptor modulators have not shown chemical or pharmacological similarity to known drugs of abuse; have not shown abuse or dependence potential in animal models for subjective effects, reinforcement, or physical dependence; and do not have adverse event profiles demonstrating effects of interest to individuals who abuse drugs (such as sedative, stimulant, mood-elevating, or hallucinogenic effects). In addition, no reports of actual abuse, misuse, or dependence were identified in the scientific literature for fingolimod, which has been on the market since 2010 (USA) and 2011 (EU). Overall, the data suggest that S1P receptor modulators are not associated with significant potential for abuse or dependence, consistent with their unscheduled status in the USA and internationally.
Collapse
Affiliation(s)
| | - Carine Kolly
- grid.419481.10000 0001 1515 9979Novartis Institutes for Biomedical Research, Novartis Pharma AG, Basel, Switzerland
| | - Anne Gardin
- grid.419481.10000 0001 1515 9979Novartis Institutes for Biomedical Research, Novartis Pharma AG, Basel, Switzerland
| | - Srikanth Neelakantham
- grid.464975.d0000 0004 0405 8189Novartis Institutes for Biomedical Research, Novartis Healthcare Pvt Ltd, Hyderabad, India
| | - Kasra Shakeri-Nejad
- grid.419481.10000 0001 1515 9979Novartis Institutes for Biomedical Research, Novartis Pharma AG, Basel, Switzerland
| |
Collapse
|