1
|
Zhou Y, Xue R, Li Y, Ran W, Chen Y, Luo Z, Zhang K, Zhang R, Wang J, Fang M, Chen C, Lou M. Impaired Meningeal Lymphatics and Glymphatic Pathway in Patients with White Matter Hyperintensity. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2024; 11:e2402059. [PMID: 38704728 PMCID: PMC11234435 DOI: 10.1002/advs.202402059] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/26/2024] [Revised: 04/07/2024] [Indexed: 05/07/2024]
Abstract
White matter hyperintensity (WMH) represents a critical global medical concern linked to cognitive decline and dementia, yet its underlying mechanisms remain poorly understood. Here, humans are directly demonstrated that high WMH burden correlates with delayed drainage of meningeal lymphatic vessels (mLVs) and glymphatic pathway. Additionally, a longitudinal cohort study reveals that glymphatic dysfunction predicts WMH progression. Next, in a rat model of WMH, the presence of impaired lymphangiogenesis and glymphatic drainage is confirmed, followed by elevated microglial activation and white matter demyelination. Notably, enhancing meningeal lymphangiogenesis through adeno-associated virus delivery of vascular endothelial growth factor-C (VEGF-C) mitigates microglial gliosis and white matter demyelination. Conversely, blocking the growth of mLVs with a VEGF-C trap strategy exacerbates these changes. The findings highlight the role of mLVs and glymphatic pathway dysfunction in aggravating brain white matter injury, providing a potential novel strategy for WMH prevention and treatment.
Collapse
Affiliation(s)
- Ying Zhou
- Department of Neurology, the Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, 310009, China
| | - Rui Xue
- Department of Neurology, the Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, 310009, China
| | - Yifei Li
- Department of Neurology, the Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, 310009, China
| | - Wang Ran
- Department of Neurology, the Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, 310009, China
| | - Yuping Chen
- Department of Neurology, the Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, 310009, China
| | - Zhongyu Luo
- Department of Neurology, the Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, 310009, China
| | - Kemeng Zhang
- Department of Neurology, the Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, 310009, China
| | - Ruoxia Zhang
- Department of Neurology, the Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, 310009, China
| | - Junjun Wang
- Department of Neurology, the Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, 310009, China
| | - Mengmeng Fang
- Department of Radiology, the Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, 310009, China
| | - Cong Chen
- Department of Radiology, the Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, 310009, China
| | - Min Lou
- Department of Neurology, the Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, 310009, China
| |
Collapse
|
2
|
Etebar N, Naderpour S, Akbari S, Zali A, Akhlaghdoust M, Daghighi SM, Baghani M, Sefat F, Hamidi SH, Rahimzadegan M. Impacts of SARS-CoV-2 on brain renin angiotensin system related signaling and its subsequent complications on brain: A theoretical perspective. J Chem Neuroanat 2024; 138:102423. [PMID: 38705215 DOI: 10.1016/j.jchemneu.2024.102423] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2024] [Revised: 04/08/2024] [Accepted: 04/18/2024] [Indexed: 05/07/2024]
Abstract
Cellular ACE2 (cACE2), a vital component of the renin-angiotensin system (RAS), possesses catalytic activity to maintain AngII and Ang 1-7 balance, which is necessary to prevent harmful effects of AngII/AT2R and promote protective pathways of Ang (1-7)/MasR and Ang (1-7)/AT2R. Hemostasis of the brain-RAS is essential for maintaining normal central nervous system (CNS) function. Severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) is a viral disease that causes multi-organ dysfunction. SARS-CoV-2 mainly uses cACE2 to enter the cells and cause its downregulation. This, in turn, prevents the conversion of Ang II to Ang (1-7) and disrupts the normal balance of brain-RAS. Brain-RAS disturbances give rise to one of the pathological pathways in which SARS-CoV-2 suppresses neuroprotective pathways and induces inflammatory cytokines and reactive oxygen species. Finally, these impairments lead to neuroinflammation, neuronal injury, and neurological complications. In conclusion, the influence of RAS on various processes within the brain has significant implications for the neurological manifestations associated with COVID-19. These effects include sensory disturbances, such as olfactory and gustatory dysfunctions, as well as cerebrovascular and brain stem-related disorders, all of which are intertwined with disruptions in the RAS homeostasis of the brain.
Collapse
Affiliation(s)
- Negar Etebar
- Functional Neurosurgery Research Center, Shohada Tajrish Comprehensive Neurosurgical Center of Excellence, Shahid Beheshti University of Medical Sciences, Tehran, Iran; Faculty of Pharmacy - Eastern Mediterranean University Famagusta, North Cyprus via Mersin 10, Turkey
| | - Saghi Naderpour
- Functional Neurosurgery Research Center, Shohada Tajrish Comprehensive Neurosurgical Center of Excellence, Shahid Beheshti University of Medical Sciences, Tehran, Iran; Faculty of Pharmacy - Eastern Mediterranean University Famagusta, North Cyprus via Mersin 10, Turkey
| | - Setareh Akbari
- Neuroscience and Research Committee, School of Advanced Technology in Medicine, Iran University of Medical Sciences, Tehran, Iran
| | - Alireza Zali
- Functional Neurosurgery Research Center, Shohada Tajrish Comprehensive Neurosurgical Center of Excellence, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Meisam Akhlaghdoust
- Functional Neurosurgery Research Center, Shohada Tajrish Comprehensive Neurosurgical Center of Excellence, Shahid Beheshti University of Medical Sciences, Tehran, Iran; USERN Office, Functional Neurosurgery Research Center, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Seyed Mojtaba Daghighi
- Pharmaceutical Sciences Research Center (PSRC), The Institute of Pharmaceutical Sciences (TIPS), Tehran University of Medical Sciences, Tehran, Iran
| | - Matin Baghani
- Functional Neurosurgery Research Center, Shohada Tajrish Comprehensive Neurosurgical Center of Excellence, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Farshid Sefat
- Department of Biomedical Engineering, School of Engineering, University of Bradford, Bradford, UK
| | - Seyed Hootan Hamidi
- Functional Neurosurgery Research Center, Shohada Tajrish Comprehensive Neurosurgical Center of Excellence, Shahid Beheshti University of Medical Sciences, Tehran, Iran; Acharya BM Reddy College of Pharmacy, Rajiv Gandhi University of Health Sciences, Bangalore, India
| | - Milad Rahimzadegan
- Functional Neurosurgery Research Center, Shohada Tajrish Comprehensive Neurosurgical Center of Excellence, Shahid Beheshti University of Medical Sciences, Tehran, Iran.
| |
Collapse
|
3
|
Morosini C, Vivarelli F, Rullo L, Volino E, Losapio LM, Paolini M, Romualdi P, Canistro D, Candeletti S. Unburned Tobacco Smoke Affects Neuroinflammation-Related Pathways in the Rat Mesolimbic System. Int J Mol Sci 2024; 25:5259. [PMID: 38791298 PMCID: PMC11120663 DOI: 10.3390/ijms25105259] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2024] [Revised: 05/03/2024] [Accepted: 05/09/2024] [Indexed: 05/26/2024] Open
Abstract
Tobacco use disorder represents a significant public health challenge due to its association with various diseases. Despite awareness efforts, smoking rates remain high, partly due to ineffective cessation methods and the spread of new electronic devices. This study investigated the impact of prolonged nicotine exposure via a heat-not-burn (HnB) device on selected genes and signaling proteins involved in inflammatory processes in the rat ventral tegmental area (VTA) and nucleus accumbens (NAc), two brain regions associated with addiction to different drugs, including nicotine. The results showed a reduction in mRNA levels for PPARα and PPARγ, two nuclear receptors and anti-inflammatory transcription factors, along with the dysregulation of gene expression of the epigenetic modulator KDM6s, in both investigated brain areas. Moreover, decreased PTEN mRNA levels and higher AKT phosphorylation were detected in the VTA of HnB-exposed rats with respect to their control counterparts. Finally, significant alterations in ERK 1/2 phosphorylation were observed in both mesolimbic areas, with VTA decrease and NAc increase, respectively. Overall, the results suggest that HnB aerosol exposure disrupts intracellular pathways potentially involved in the development and maintenance of the neuroinflammatory state. Moreover, these data highlight that, similar to conventional cigarettes, HnB devices use affects specific signaling pathways shaping neuroinflammatory process in the VTA and NAc, thus triggering mechanisms that are currently considered as potentially relevant for the development of addictive behavior.
Collapse
Affiliation(s)
- Camilla Morosini
- Department of Pharmacy and Biotechnology, Alma Mater Studiorum–University of Bologna, 40126 Bologna, Italy; (C.M.); (F.V.); (E.V.); (L.M.L.); (M.P.); (D.C.); (S.C.)
| | - Fabio Vivarelli
- Department of Pharmacy and Biotechnology, Alma Mater Studiorum–University of Bologna, 40126 Bologna, Italy; (C.M.); (F.V.); (E.V.); (L.M.L.); (M.P.); (D.C.); (S.C.)
| | - Laura Rullo
- Department of Pharmacy and Biotechnology, Alma Mater Studiorum–University of Bologna, 40126 Bologna, Italy; (C.M.); (F.V.); (E.V.); (L.M.L.); (M.P.); (D.C.); (S.C.)
| | - Emilia Volino
- Department of Pharmacy and Biotechnology, Alma Mater Studiorum–University of Bologna, 40126 Bologna, Italy; (C.M.); (F.V.); (E.V.); (L.M.L.); (M.P.); (D.C.); (S.C.)
- Department of Biomedical and Neuromotor Sciences, Alma Mater Studiorum–University of Bologna, 40126 Bologna, Italy
| | - Loredana Maria Losapio
- Department of Pharmacy and Biotechnology, Alma Mater Studiorum–University of Bologna, 40126 Bologna, Italy; (C.M.); (F.V.); (E.V.); (L.M.L.); (M.P.); (D.C.); (S.C.)
| | - Moreno Paolini
- Department of Pharmacy and Biotechnology, Alma Mater Studiorum–University of Bologna, 40126 Bologna, Italy; (C.M.); (F.V.); (E.V.); (L.M.L.); (M.P.); (D.C.); (S.C.)
| | - Patrizia Romualdi
- Department of Pharmacy and Biotechnology, Alma Mater Studiorum–University of Bologna, 40126 Bologna, Italy; (C.M.); (F.V.); (E.V.); (L.M.L.); (M.P.); (D.C.); (S.C.)
| | - Donatella Canistro
- Department of Pharmacy and Biotechnology, Alma Mater Studiorum–University of Bologna, 40126 Bologna, Italy; (C.M.); (F.V.); (E.V.); (L.M.L.); (M.P.); (D.C.); (S.C.)
| | - Sanzio Candeletti
- Department of Pharmacy and Biotechnology, Alma Mater Studiorum–University of Bologna, 40126 Bologna, Italy; (C.M.); (F.V.); (E.V.); (L.M.L.); (M.P.); (D.C.); (S.C.)
| |
Collapse
|
4
|
Vasquez Ayala A, Hsu CY, Oles RE, Matsuo K, Loomis LR, Buzun E, Carrillo Terrazas M, Gerner RR, Lu HH, Kim S, Zhang Z, Park JH, Rivaud P, Thomson M, Lu LF, Min B, Chu H. Commensal bacteria promote type I interferon signaling to maintain immune tolerance in mice. J Exp Med 2024; 221:e20230063. [PMID: 38085267 PMCID: PMC10716256 DOI: 10.1084/jem.20230063] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2023] [Revised: 10/05/2023] [Accepted: 11/15/2023] [Indexed: 12/18/2023] Open
Abstract
Type I interferons (IFNs) exert a broad range of biological effects important in coordinating immune responses, which have classically been studied in the context of pathogen clearance. Yet, whether immunomodulatory bacteria operate through IFN pathways to support intestinal immune tolerance remains elusive. Here, we reveal that the commensal bacterium, Bacteroides fragilis, utilizes canonical antiviral pathways to modulate intestinal dendritic cells (DCs) and regulatory T cell (Treg) responses. Specifically, IFN signaling is required for commensal-induced tolerance as IFNAR1-deficient DCs display blunted IL-10 and IL-27 production in response to B. fragilis. We further establish that IFN-driven IL-27 in DCs is critical in shaping the ensuing Foxp3+ Treg via IL-27Rα signaling. Consistent with these findings, single-cell RNA sequencing of gut Tregs demonstrated that colonization with B. fragilis promotes a distinct IFN gene signature in Foxp3+ Tregs during intestinal inflammation. Altogether, our findings demonstrate a critical role of commensal-mediated immune tolerance via tonic type I IFN signaling.
Collapse
Affiliation(s)
| | - Chia-Yun Hsu
- Department of Pathology, University of California, San Diego, La Jolla, CA, USA
| | - Renee E. Oles
- Department of Pathology, University of California, San Diego, La Jolla, CA, USA
| | - Kazuhiko Matsuo
- Department of Pathology, University of California, San Diego, La Jolla, CA, USA
- Division of Chemotherapy, Kindai University Faculty of Pharmacy, Higashi-osaka, Japan
| | - Luke R. Loomis
- Department of Pathology, University of California, San Diego, La Jolla, CA, USA
| | - Ekaterina Buzun
- Department of Pathology, University of California, San Diego, La Jolla, CA, USA
| | | | - Romana R. Gerner
- TUM School of Life Sciences Weihenstephan, ZIEL Institute for Food & Health, Freising-Weihenstephan, Germany
| | - Hsueh-Han Lu
- Department of Pathology, University of California, San Diego, La Jolla, CA, USA
| | - Sohee Kim
- Department of Microbiology and Immunology, Northwestern University Feinberg School of Medicine, Chicago, IL, USA
| | - Ziyue Zhang
- School of Biological Sciences, University of California, San Diego, La Jolla, CA, USA
| | - Jong Hwee Park
- Division of Biology, California Institute of Technology, Pasadena, CA, USA
| | - Paul Rivaud
- Division of Biology, California Institute of Technology, Pasadena, CA, USA
| | - Matt Thomson
- Division of Biology, California Institute of Technology, Pasadena, CA, USA
| | - Li-Fan Lu
- School of Biological Sciences, University of California, San Diego, La Jolla, CA, USA
| | - Booki Min
- Department of Microbiology and Immunology, Northwestern University Feinberg School of Medicine, Chicago, IL, USA
| | - Hiutung Chu
- Department of Pathology, University of California, San Diego, La Jolla, CA, USA
- Chiba University-UC San Diego Center for Mucosal Immunology, Allergy and Vaccines, University of California, San Diego, La Jolla, CA, USA
- Humans and the Microbiome Program, Canadian Institute for Advanced Research, Toronto, Canada
| |
Collapse
|
5
|
Kipp M. Astrocytes: Lessons Learned from the Cuprizone Model. Int J Mol Sci 2023; 24:16420. [PMID: 38003609 PMCID: PMC10671869 DOI: 10.3390/ijms242216420] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2023] [Revised: 11/06/2023] [Accepted: 11/14/2023] [Indexed: 11/26/2023] Open
Abstract
A diverse array of neurological and psychiatric disorders, including multiple sclerosis, Alzheimer's disease, and schizophrenia, exhibit distinct myelin abnormalities at both the molecular and histological levels. These aberrations are closely linked to dysfunction of oligodendrocytes and alterations in myelin structure, which may be pivotal factors contributing to the disconnection of brain regions and the resulting characteristic clinical impairments observed in these conditions. Astrocytes, which significantly outnumber neurons in the central nervous system by a five-to-one ratio, play indispensable roles in the development, maintenance, and overall well-being of neurons and oligodendrocytes. Consequently, they emerge as potential key players in the onset and progression of a myriad of neurological and psychiatric disorders. Furthermore, targeting astrocytes represents a promising avenue for therapeutic intervention in such disorders. To gain deeper insights into the functions of astrocytes in the context of myelin-related disorders, it is imperative to employ appropriate in vivo models that faithfully recapitulate specific aspects of complex human diseases in a reliable and reproducible manner. One such model is the cuprizone model, wherein metabolic dysfunction in oligodendrocytes initiates an early response involving microglia and astrocyte activation, culminating in multifocal demyelination. Remarkably, following the cessation of cuprizone intoxication, a spontaneous process of endogenous remyelination occurs. In this review article, we provide a historical overview of studies investigating the responses and putative functions of astrocytes in the cuprizone model. Following that, we list previously published works that illuminate various aspects of the biology and function of astrocytes in this multiple sclerosis model. Some of the studies are discussed in more detail in the context of astrocyte biology and pathology. Our objective is twofold: to provide an invaluable overview of this burgeoning field, and, more importantly, to inspire fellow researchers to embark on experimental investigations to elucidate the multifaceted functions of this pivotal glial cell subpopulation.
Collapse
Affiliation(s)
- Markus Kipp
- Institute of Anatomy, Rostock University Medical Center, 18057 Rostock, Germany
| |
Collapse
|
6
|
Wang Y, Pleasure D, Deng W, Guo F. Therapeutic Potentials of Poly (ADP-Ribose) Polymerase 1 (PARP1) Inhibition in Multiple Sclerosis and Animal Models: Concept Revisiting. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2022; 9:e2102853. [PMID: 34935305 PMCID: PMC8844485 DOI: 10.1002/advs.202102853] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/04/2021] [Revised: 10/12/2021] [Indexed: 05/05/2023]
Abstract
Poly (ADP-ribose) polymerase 1 (PARP1) plays a fundamental role in DNA repair and gene expression. Excessive PARP1 hyperactivation, however, has been associated with cell death. PARP1 and/or its activity are dysregulated in the immune and central nervous system of multiple sclerosis (MS) patients and animal models. Pharmacological PARP1 inhibition is shown to be protective against immune activation and disease severity in MS animal models while genetic PARP1 deficiency studies reported discrepant results. The inconsistency suggests that the function of PARP1 and PARP1-mediated PARylation may be complex and context-dependent. The article reviews PARP1 functions, discusses experimental findings and possible interpretations of PARP1 in inflammation, neuronal/axonal degeneration, and oligodendrogliopathy, three major pathological components cooperatively determining MS disease course and neurological progression, and points out future research directions. Cell type specific PARP1 manipulations are necessary for revisiting the role of PARP1 in the three pathological components prior to moving PARP1 inhibition into clinical trials for MS therapy.
Collapse
Affiliation(s)
- Yan Wang
- Department of NeurologySchool of MedicineUniversity of CaliforniaDavisCA95817USA
- Institute for Pediatric Regenerative MedicineUC Davis School of Medicine/Shriners Hospitals for ChildrenSacramentoCAUSA
| | - David Pleasure
- Department of NeurologySchool of MedicineUniversity of CaliforniaDavisCA95817USA
- Institute for Pediatric Regenerative MedicineUC Davis School of Medicine/Shriners Hospitals for ChildrenSacramentoCAUSA
| | - Wenbin Deng
- School of Pharmaceutical Sciences (Shenzhen)Sun Yat‐sen UniversityGuangzhou510006China
| | - Fuzheng Guo
- Department of NeurologySchool of MedicineUniversity of CaliforniaDavisCA95817USA
- Institute for Pediatric Regenerative MedicineUC Davis School of Medicine/Shriners Hospitals for ChildrenSacramentoCAUSA
| |
Collapse
|
7
|
Critical Roles of Lysophospholipid Receptors in Activation of Neuroglia and Their Neuroinflammatory Responses. Int J Mol Sci 2021; 22:ijms22157864. [PMID: 34360625 PMCID: PMC8346064 DOI: 10.3390/ijms22157864] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2021] [Revised: 07/21/2021] [Accepted: 07/21/2021] [Indexed: 12/12/2022] Open
Abstract
Activation of microglia and/or astrocytes often releases proinflammatory molecules as critical pathogenic mediators that can promote neuroinflammation and secondary brain damages in diverse diseases of the central nervous system (CNS). Therefore, controlling the activation of glial cells and their neuroinflammatory responses has been considered as a potential therapeutic strategy for treating neuroinflammatory diseases. Recently, receptor-mediated lysophospholipid signaling, sphingosine 1-phosphate (S1P) receptor- and lysophosphatidic acid (LPA) receptor-mediated signaling in particular, has drawn scientific interest because of its critical roles in pathogenies of diverse neurological diseases such as neuropathic pain, systemic sclerosis, spinal cord injury, multiple sclerosis, cerebral ischemia, traumatic brain injury, hypoxia, hydrocephalus, and neuropsychiatric disorders. Activation of microglia and/or astrocytes is a common pathogenic event shared by most of these CNS disorders, indicating that lysophospholipid receptors could influence glial activation. In fact, many studies have reported that several S1P and LPA receptors can influence glial activation during the pathogenesis of cerebral ischemia and multiple sclerosis. This review aims to provide a comprehensive framework about the roles of S1P and LPA receptors in the activation of microglia and/or astrocytes and their neuroinflammatory responses in CNS diseases.
Collapse
|
8
|
Arnold JW, Roach J, Fabela S, Moorfield E, Ding S, Blue E, Dagher S, Magness S, Tamayo R, Bruno-Barcena JM, Azcarate-Peril MA. The pleiotropic effects of prebiotic galacto-oligosaccharides on the aging gut. MICROBIOME 2021; 9:31. [PMID: 33509277 PMCID: PMC7845053 DOI: 10.1186/s40168-020-00980-0] [Citation(s) in RCA: 44] [Impact Index Per Article: 14.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/21/2020] [Accepted: 12/16/2020] [Indexed: 05/05/2023]
Abstract
BACKGROUND Prebiotic galacto-oligosaccharides (GOS) have an extensively demonstrated beneficial impact on intestinal health. In this study, we determined the impact of GOS diets on hallmarks of gut aging: microbiome dysbiosis, inflammation, and intestinal barrier defects ("leaky gut"). We also evaluated if short-term GOS feeding influenced how the aging gut responded to antibiotic challenges in a mouse model of Clostridioides difficile infection. Finally, we assessed if colonic organoids could reproduce the GOS responder-non-responder phenotypes observed in vivo. RESULTS Old animals had a distinct microbiome characterized by increased ratios of non-saccharolytic versus saccharolytic bacteria and, correspondingly, a lower abundance of β-galactosidases compared to young animals. GOS reduced the overall diversity, increased the abundance of specific saccharolytic bacteria (species of Bacteroides and Lactobacillus), increased the abundance of β-galactosidases in young and old animals, and increased the non-saccharolytic organisms; however, a robust, homogeneous bifidogenic effect was not observed. GOS reduced age-associated increased intestinal permeability and increased MUC2 expression and mucus thickness in old mice. Clyndamicin reduced the abundance Bifidobacterium while increasing Akkermansia, Clostridium, Coprococcus, Bacillus, Bacteroides, and Ruminococcus in old mice. The antibiotics were more impactful than GOS on modulating serum markers of inflammation. Higher serum levels of IL-17 and IL-6 were observed in control and GOS diets in the antibiotic groups, and within those groups, levels of IL-6 were higher in the GOS groups, regardless of age, and higher in the old compared to young animals in the control diet groups. RTqPCR revealed significantly increased gene expression of TNFα in distal colon tissue of old mice, which was decreased by the GOS diet. Colon transcriptomics analysis of mice fed GOS showed increased expression of genes involved in small-molecule metabolic processes and specifically the respirasome in old animals, which could indicate an increased oxidative metabolism and energetic efficiency. In young mice, GOS induced the expression of binding-related genes. The galectin gene Lgals1, a β-galactosyl-binding lectin that bridges molecules by their sugar moieties and is an important modulator of the immune response, and the PI3K-Akt and ECM-receptor interaction pathways were also induced in young mice. Stools from mice exhibiting variable bifidogenic response to GOS injected into colon organoids in the presence of prebiotics reproduced the response and non-response phenotypes observed in vivo suggesting that the composition and functionality of the microbiota are the main contributors to the phenotype. CONCLUSIONS Dietary GOS modulated homeostasis of the aging gut by promoting changes in microbiome composition and host gene expression, which was translated into decreased intestinal permeability and increased mucus production. Age was a determining factor on how prebiotics impacted the microbiome and expression of intestinal epithelial cells, especially apparent from the induction of galectin-1 in young but not old mice. Video abstract.
Collapse
Affiliation(s)
- Jason W Arnold
- Department of Medicine, Division of Gastroenterology and Hepatology, School of Medicine, University of North Carolina, Chapel Hill, NC, USA
- UNC Microbiome Core, Center for Gastrointestinal Biology and Disease (CGIBD), School of Medicine, University of North Carolina, Chapel Hill, NC, USA
| | - Jeffery Roach
- UNC Microbiome Core, Center for Gastrointestinal Biology and Disease (CGIBD), School of Medicine, University of North Carolina, Chapel Hill, NC, USA
- UNC Information Technology Services and Research Computing, University of North Carolina, Chapel Hill, NC, USA
| | - Salvador Fabela
- Department of Medicine, Division of Gastroenterology and Hepatology, School of Medicine, University of North Carolina, Chapel Hill, NC, USA
- UNC Microbiome Core, Center for Gastrointestinal Biology and Disease (CGIBD), School of Medicine, University of North Carolina, Chapel Hill, NC, USA
- Current affiliation: Programa de Inmunología Molecular Microbiana. Departamento de Microbiología y Parasitología, Facultad de Medicina, Universidad Nacional Autónoma de Mexico, Mexico City, Mexico
| | - Emily Moorfield
- Department of Cell Biology and Physiology, University of North Carolina, Chapel Hill, NC, USA
| | - Shengli Ding
- Department of Cell Biology and Physiology, University of North Carolina, Chapel Hill, NC, USA
| | - Eric Blue
- Department of Cell Biology and Physiology, University of North Carolina, Chapel Hill, NC, USA
| | - Suzanne Dagher
- Department of Plant and Microbial Biology, North Carolina State University, Raleigh, NC, USA
| | - Scott Magness
- Joint Department of Biomedical Engineering, University of North Carolina, Chapel Hill and North Carolina State University, Raleigh, NC, USA
| | - Rita Tamayo
- Department of Microbiology and Immunology, University of North Carolina, Chapel Hill, NC, USA
| | - Jose M Bruno-Barcena
- Department of Plant and Microbial Biology, North Carolina State University, Raleigh, NC, USA
| | - M Andrea Azcarate-Peril
- Department of Medicine, Division of Gastroenterology and Hepatology, School of Medicine, University of North Carolina, Chapel Hill, NC, USA.
- UNC Microbiome Core, Center for Gastrointestinal Biology and Disease (CGIBD), School of Medicine, University of North Carolina, Chapel Hill, NC, USA.
| |
Collapse
|
9
|
Li R, Wang B, Wu C, Li D, Wu Y, Ye L, Ye L, Chen X, Li P, Yuan Y, Zhang H, Xie L, Li X, Xiao J, Wang J. Acidic fibroblast growth factor attenuates type 2 diabetes-induced demyelination via suppressing oxidative stress damage. Cell Death Dis 2021; 12:107. [PMID: 33479232 PMCID: PMC7819983 DOI: 10.1038/s41419-021-03407-2] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2020] [Revised: 12/16/2020] [Accepted: 12/17/2020] [Indexed: 02/06/2023]
Abstract
Prolonged type 2 diabetes mellitus (T2DM) produces a common complication, peripheral neuropathy, which is accompanied by nerve fiber disorder, axon atrophy, and demyelination. Growing evidence has characterized the beneficial effects of acidic fibroblast growth factor (aFGF) and shown that it relieves hyperglycemia, increases insulin sensitivity, and ameliorates neuropathic impairment. However, there is scarce evidence on the role of aFGF on remodeling of aberrant myelin under hyperglycemia condition. Presently, we observed that the expression of aFGF was rapidly decreased in a db/db T2DM mouse model. Administration of exogenous aFGF was sufficient to block acute demyelination and nerve fiber disorganization. Furthermore, this strong anti-demyelinating effect was most likely dominated by an aFGF-mediated increase of Schwann cell (SC) proliferation and migration as well as suppression of its apoptosis. Mechanistically, the beneficial biological effects of aFGF on SC behavior and abnormal myelin morphology were likely due to the inhibition of hyperglycemia-induced oxidative stress activation, which was most likely activated by kelch-like ECH-associated protein 1 (Keap1)/nuclear factor erythroid-derived-like 2 (Nrf2) signaling. Thus, this evidence indicates that aFGF is a promising protective agent for relieving myelin pathology through countering oxidative stress signaling cascades under diabetic conditions.
Collapse
Affiliation(s)
- Rui Li
- grid.268099.c0000 0001 0348 3990Department of Hand Surgery and Peripheral Neurosurgery, The First Affiliated Hospital and School of Pharmaceutical Sciences, Wenzhou Medical University, 325000 Wenzhou, Zhejiang China ,grid.268099.c0000 0001 0348 3990Research Center, Affiliated Xiangshang Hospital, Wenzhou Medical University, 315700 Ningbo, Zhejiang China ,grid.12981.330000 0001 2360 039XSchool of Chemistry, Sun Yat-sen University, 510275 Guangzhou, Guangdong China
| | - Beini Wang
- grid.268099.c0000 0001 0348 3990Department of Hand Surgery and Peripheral Neurosurgery, The First Affiliated Hospital and School of Pharmaceutical Sciences, Wenzhou Medical University, 325000 Wenzhou, Zhejiang China
| | - Chengbiao Wu
- grid.268099.c0000 0001 0348 3990Research Center, Affiliated Xiangshang Hospital, Wenzhou Medical University, 315700 Ningbo, Zhejiang China
| | - Duohui Li
- grid.268099.c0000 0001 0348 3990Department of Hand Surgery and Peripheral Neurosurgery, The First Affiliated Hospital and School of Pharmaceutical Sciences, Wenzhou Medical University, 325000 Wenzhou, Zhejiang China
| | - Yanqing Wu
- grid.268099.c0000 0001 0348 3990Department of Hand Surgery and Peripheral Neurosurgery, The First Affiliated Hospital and School of Pharmaceutical Sciences, Wenzhou Medical University, 325000 Wenzhou, Zhejiang China
| | - Libing Ye
- grid.268099.c0000 0001 0348 3990Department of Hand Surgery and Peripheral Neurosurgery, The First Affiliated Hospital and School of Pharmaceutical Sciences, Wenzhou Medical University, 325000 Wenzhou, Zhejiang China
| | - Luxia Ye
- grid.268099.c0000 0001 0348 3990Department of Hand Surgery and Peripheral Neurosurgery, The First Affiliated Hospital and School of Pharmaceutical Sciences, Wenzhou Medical University, 325000 Wenzhou, Zhejiang China
| | - Xiongjian Chen
- grid.268099.c0000 0001 0348 3990Department of Hand Surgery and Peripheral Neurosurgery, The First Affiliated Hospital and School of Pharmaceutical Sciences, Wenzhou Medical University, 325000 Wenzhou, Zhejiang China
| | - Peifeng Li
- grid.268099.c0000 0001 0348 3990Department of Hand Surgery and Peripheral Neurosurgery, The First Affiliated Hospital and School of Pharmaceutical Sciences, Wenzhou Medical University, 325000 Wenzhou, Zhejiang China
| | - Yuan Yuan
- grid.268099.c0000 0001 0348 3990Department of Hand Surgery and Peripheral Neurosurgery, The First Affiliated Hospital and School of Pharmaceutical Sciences, Wenzhou Medical University, 325000 Wenzhou, Zhejiang China
| | - Hongyu Zhang
- grid.268099.c0000 0001 0348 3990Department of Hand Surgery and Peripheral Neurosurgery, The First Affiliated Hospital and School of Pharmaceutical Sciences, Wenzhou Medical University, 325000 Wenzhou, Zhejiang China
| | - Ling Xie
- grid.268099.c0000 0001 0348 3990Department of Hand Surgery and Peripheral Neurosurgery, The First Affiliated Hospital and School of Pharmaceutical Sciences, Wenzhou Medical University, 325000 Wenzhou, Zhejiang China
| | - Xiaokun Li
- grid.268099.c0000 0001 0348 3990Department of Hand Surgery and Peripheral Neurosurgery, The First Affiliated Hospital and School of Pharmaceutical Sciences, Wenzhou Medical University, 325000 Wenzhou, Zhejiang China
| | - Jian Xiao
- grid.268099.c0000 0001 0348 3990Department of Hand Surgery and Peripheral Neurosurgery, The First Affiliated Hospital and School of Pharmaceutical Sciences, Wenzhou Medical University, 325000 Wenzhou, Zhejiang China
| | - Jian Wang
- grid.268099.c0000 0001 0348 3990Department of Hand Surgery and Peripheral Neurosurgery, The First Affiliated Hospital and School of Pharmaceutical Sciences, Wenzhou Medical University, 325000 Wenzhou, Zhejiang China
| |
Collapse
|
10
|
Quarta A, Meese T, Pieters Z, Van Breedam E, Le Blon D, Van Broeckhoven J, Hendrix S, Goossens H, Hens N, Berneman Z, Van Nieuwerburgh F, Ponsaerts P. Murine induced pluripotent stem cell-derived neuroimmune cell culture models emphasize opposite immune-effector functions of interleukin 13-primed microglia and macrophages in terms of neuroimmune toxicity. Glia 2020; 69:326-345. [PMID: 32865285 DOI: 10.1002/glia.23899] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2020] [Revised: 07/28/2020] [Accepted: 07/30/2020] [Indexed: 12/19/2022]
Abstract
Cellular models of induced pluripotent stem cell (iPSC)-derived microglia and macrophages are an emerging toolbox to investigate neuroinflammation in vitro. We previously demonstrated that murine iPSC-microglia and iPSC-macrophages display phenotypical activation properties highly comparable to microglia and macrophages in vivo. Here we extended the characterization of iPSC-microglia and iPSC-macrophages with the analysis of their transcriptome profile. Next, these cellular models were employed to evaluate neuroimmune toxicity in vitro and to investigate the immune-modulatory properties of interleukin 13 (IL13), a cytokine known for its ability to protect against neuroinflammation-induced pathology by modulating microglia and macrophage activation. iPSC-microglia and iPSC-macrophages, in co-culture with astrocyte-committed neural stem cells (NSC), were (pre)treated with IL13 and stimulated with lipopolysaccharide (LPS) and interferon γ (IFNγ), to assess how IL13 modulates their inflammatory response. Additionally, the use of luciferase-expressing NSC (Luc-NSC) allowed real-time monitoring of immune-mediated neurotoxicity. Despite the known anti-inflammatory properties of IL13, iPSC-microglia primed with IL13 before LPS + IFNγ stimulation significantly increased NO secretion. This was associated with a marked reduction of the luminescence signal produced by Luc-NSC. Interestingly, we observed that IL13 signaling has a divergent functional outcome in microglia as compared to macrophages, as for the latter no major alterations in NO release and Luc-NSC viability were observed upon IL13 (pre)treatment. Finally, the striking IL13-induced upregulation of NO secretion by microglia under pro-inflammatory conditions was confirmed in vivo, where intracerebral delivery of IL13 increased inducible nitric oxide synthase mRNA expression. Concluding, we applied iPSC-derived neuroimmune cell culture models to identify distinct neuroimmune (toxicity) responses of microglia and macrophages to IL13-based immune modulation.
Collapse
Affiliation(s)
- Alessandra Quarta
- Laboratory of Experimental Hematology, University of Antwerp, Antwerp, Belgium.,Vaccine and Infectious Disease Institute (Vaxinfectio), University of Antwerp, Antwerp, Belgium
| | - Tim Meese
- Laboratory of Pharmaceutical Biotechnology, Faculty of Pharmaceutical Sciences, Ghent University, Ghent, Belgium
| | - Zoë Pieters
- Vaccine and Infectious Disease Institute (Vaxinfectio), University of Antwerp, Antwerp, Belgium.,Interuniversity Institute for Biostatistics and Statistical Bioinformatics (I-BioStat), Data Science Institute, Hasselt University, Hasselt, Belgium.,Centre for Health Economics Research and Modelling Infectious Diseases, University of Antwerp, Antwerp, Belgium
| | - Elise Van Breedam
- Laboratory of Experimental Hematology, University of Antwerp, Antwerp, Belgium.,Vaccine and Infectious Disease Institute (Vaxinfectio), University of Antwerp, Antwerp, Belgium
| | - Debbie Le Blon
- Laboratory of Experimental Hematology, University of Antwerp, Antwerp, Belgium.,Vaccine and Infectious Disease Institute (Vaxinfectio), University of Antwerp, Antwerp, Belgium
| | - Jana Van Broeckhoven
- Department of Immunology and Infection, Biomedical Research Institute, Hasselt University, Diepenbeek, Belgium
| | - Sven Hendrix
- Department of Immunology and Infection, Biomedical Research Institute, Hasselt University, Diepenbeek, Belgium
| | - Herman Goossens
- Vaccine and Infectious Disease Institute (Vaxinfectio), University of Antwerp, Antwerp, Belgium
| | - Niel Hens
- Vaccine and Infectious Disease Institute (Vaxinfectio), University of Antwerp, Antwerp, Belgium.,Interuniversity Institute for Biostatistics and Statistical Bioinformatics (I-BioStat), Data Science Institute, Hasselt University, Hasselt, Belgium.,Centre for Health Economics Research and Modelling Infectious Diseases, University of Antwerp, Antwerp, Belgium
| | - Zwi Berneman
- Laboratory of Experimental Hematology, University of Antwerp, Antwerp, Belgium.,Vaccine and Infectious Disease Institute (Vaxinfectio), University of Antwerp, Antwerp, Belgium
| | - Filip Van Nieuwerburgh
- Laboratory of Pharmaceutical Biotechnology, Faculty of Pharmaceutical Sciences, Ghent University, Ghent, Belgium
| | - Peter Ponsaerts
- Laboratory of Experimental Hematology, University of Antwerp, Antwerp, Belgium.,Vaccine and Infectious Disease Institute (Vaxinfectio), University of Antwerp, Antwerp, Belgium
| |
Collapse
|
11
|
Ma Y, Deng M, Liu M. Effect of Differently Polarized Macrophages on Proliferation and Differentiation of Ependymal Cells from Adult Spinal Cord. J Neurotrauma 2019; 36:2337-2347. [PMID: 30638124 DOI: 10.1089/neu.2018.6133] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/17/2023] Open
Affiliation(s)
- Yonggang Ma
- 1Department of Orthopedics, Renmin Hospital, School of Basic Medical Sciences, Wuhan University, Wuhan City, China
| | - Ming Deng
- 1Department of Orthopedics, Renmin Hospital, School of Basic Medical Sciences, Wuhan University, Wuhan City, China
| | - Min Liu
- 2Department of Immunology, School of Basic Medical Sciences, Wuhan University, Wuhan City, China
| |
Collapse
|
12
|
Megalencephalic Leukoencephalopathy with Subcortical Cysts Protein-1 (MLC1) Counteracts Astrocyte Activation in Response to Inflammatory Signals. Mol Neurobiol 2019; 56:8237-8254. [DOI: 10.1007/s12035-019-01657-y] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2019] [Accepted: 05/20/2019] [Indexed: 01/08/2023]
|
13
|
Ogata T. Therapeutic Strategies for Oligodendrocyte-Mediated Remyelination. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2019; 1190:265-279. [PMID: 31760650 DOI: 10.1007/978-981-32-9636-7_17] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Given recent progress in our understanding of oligodendrocyte biology, significant attention has been directed toward cell therapy for myelin repair and remyelination. This trend has been reinforced by findings about the importance of white matter lesions in a variety of central nervous system (CNS) diseases, including demyelinating diseases as well as brain or spinal cord trauma and degenerative disorders such as Alzheimer's disease. Remyelination strategies include the implementation of myelin forming cells and the surrounding conditions and pathological disease context. Successful remyelination requires proper number of cells at the required location and subsequent maturation. Those processes involve variety of molecules, related to oligodendrocyte development or inflammation in the lesion. Understanding and manipulation of the functions of those molecules may improve the outcome of the cell therapies toward remyelination. Furthermore, the development of monitoring method for myelination is also anticipated to evaluate the effects of therapeutic interventions.
Collapse
Affiliation(s)
- Toru Ogata
- Department of Rehabilitation for the Movement Functions, Research Institute, National Rehabilitation Center, Tokorozawa, Saitama, Japan.
| |
Collapse
|
14
|
Kim S, Bielawski J, Yang H, Kong Y, Zhou B, Li J. Functional antagonism of sphingosine-1-phosphate receptor 1 prevents cuprizone-induced demyelination. Glia 2017; 66:654-669. [PMID: 29193293 DOI: 10.1002/glia.23272] [Citation(s) in RCA: 35] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2017] [Revised: 11/07/2017] [Accepted: 11/15/2017] [Indexed: 11/08/2022]
Abstract
Recent evidence suggests that the oral drug Fingolimod (FTY720) for relapsing-remitting multiple sclerosis (MS) may act directly on the central nervous system (CNS) and modulate disease pathogenesis and progression in experimental models of MS. However, the specific subtype of sphingosine-1-phosphate (S1P) receptors that mediates the effect of FTY720 on the CNS cells has not been fully elucidated. Here, we report that S1P receptor 1 (S1PR1) is elevated in reactive astrocytes in an autoimmunity independent mouse model of MS and that selective S1PR1 modulation is sufficient to ameliorate the loss of oligodendrocytes and demyelination. The non-selective S1PR modulator, FTY720, or a short-lived S1PR1-specific modulator, CYM5442, was administered daily to mice while on cuprizone diet. Both FTY720- and CYM5422-treated mice displayed a significant reduction in oligodendrocyte apoptosis and astrocyte and microglial activation in comparison to vehicle-treated groups, which was associated with decreased production of proinflammatory mediators and down-regulation of astrocytic S1PR1 protein. Interestingly, S1PR1 modulation during the early phase of cuprizone intoxication was required to suppress oligodendrocyte death and consequent demyelination as drug treatment from 10 days after the initiation of cuprizone feeding was no longer effective. CYM5442 treatment during the brief cuprizone exposure significantly prevented Il-1β, Il-6, Cxcl10, and Cxcl3 induction, resulting in suppression of subsequent reactive gliosis and demyelination. Our study identifies functional antagonism of S1PR1 as a major mechanism for the protective effect of FTY720 in the cuprizone model and suggests pathogenic contributions of astrocyte S1PR1 signaling in primary demyelination and its potential as a therapeutic target for CNS inflammation.
Collapse
Affiliation(s)
- SunJa Kim
- Department of Veterinary Integrative Biosciences, Texas A&M University, College Station, Texas, 77843
| | - Jacek Bielawski
- Lipidomics Center, Medical University of South Carolina, Charleston, South Carolina, 29425
| | - Hyunmin Yang
- Department of Veterinary Integrative Biosciences, Texas A&M University, College Station, Texas, 77843
| | - Yu Kong
- Department of Veterinary Integrative Biosciences, Texas A&M University, College Station, Texas, 77843
| | - Beiyan Zhou
- Department of Veterinary Physiology and Pharmacology, Texas A&M University, College Station, Texas, 77843
| | - Jianrong Li
- Department of Veterinary Integrative Biosciences, Texas A&M University, College Station, Texas, 77843.,Institute for Neuroscience, Texas A&M University, College Station, Texas, 77843
| |
Collapse
|
15
|
Polysialylation at Early Stages of Oligodendrocyte Differentiation Promotes Myelin Repair. J Neurosci 2017; 37:8131-8141. [PMID: 28760868 DOI: 10.1523/jneurosci.1147-17.2017] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2017] [Revised: 06/22/2017] [Accepted: 07/18/2017] [Indexed: 11/21/2022] Open
Abstract
Polysialic acid is a glycan modification of the neural cell adhesion molecule (NCAM) produced by the polysialyltransferases ST8SIA2 and ST8SIA4. Polysialic acid has been detected in multiple sclerosis plaques, but its beneficial or adverse role in remyelination is elusive. Here, we show that, despite a developmental delay, myelination at the onset and during cuprizone-induced demyelination was unaffected in male Ncam1-/- or St8sia2-/- mice. However, remyelination, restoration of oligodendrocyte densities, and motor recovery after the cessation of cuprizone treatment were compromised. Impaired differentiation of NCAM- or ST8SIA2-negative oligodendrocyte precursors suggested an underlying cell-autonomous mechanism. In contrast, premature differentiation in ST8SIA4-negative cultures explained the accelerated remyelination previously observed in St8sia4-/- mice. mRNA profiling during differentiation of human stem cell-derived and primary murine oligodendrocytes indicated that the opposing roles of ST8SIA2 and ST8SIA4 arise from sequential expression. We also provide evidence that potentiation of ST8SIA2 by 9-cis-retinoic acid and artificial polysialylation of oligodendrocyte precursors by a bacterial polysialyltransferase are mechanisms to promote oligodendrocytic differentiation. Thus, differential targeting of polysialyltransferases and polysialic acid engineering are promising strategies to advance the treatment of demyelinating diseases.SIGNIFICANCE STATEMENT The beneficial or adverse role of polysialic acid (polySia) in myelin repair is a long-standing question. As a modification of the neural cell adhesion molecule (NCAM), polySia is produced by the polysialyltransferases ST8SIA2 and ST8SIA4. Here we demonstrate that NCAM and ST8SIA2 promote oligodendrocyte differentiation and myelin repair as well as motor recovery after cuprizone-induced demyelination. In contrast, ST8SIA4 delays oligodendrocyte differentiation, explaining its adverse role in remyelination. These opposing roles of the polysialyltransferases are based on different expression profiles. 9-cis-retinoic acid enhances ST8SIA2 expression, providing a mechanism for understanding how it supports oligodendrocyte differentiation and remyelination. Furthermore, artificial polysialylation of the cell surface promotes oligodendrocyte differentiation. Thus, boosting ST8SIA2 and engineering of polySia are promising strategies for improving myelin repair.
Collapse
|
16
|
Yamamoto S, Yamashina K, Ishikawa M, Gotoh M, Yagishita S, Iwasa K, Maruyama K, Murakami-Murofushi K, Yoshikawa K. Protective and therapeutic role of 2-carba-cyclic phosphatidic acid in demyelinating disease. J Neuroinflammation 2017; 14:142. [PMID: 28732510 PMCID: PMC5521126 DOI: 10.1186/s12974-017-0923-5] [Citation(s) in RCA: 40] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2017] [Accepted: 07/14/2017] [Indexed: 01/05/2023] Open
Abstract
BACKGROUND Multiple sclerosis is a neuroinflammatory demyelinating and neurodegenerative disease of the central nervous system characterized by recurrent and progressive demyelination/remyelination cycles, neuroinflammation, oligodendrocyte loss, demyelination, and axonal degeneration. Cyclic phosphatidic acid (cPA) is a natural phospholipid mediator with a unique cyclic phosphate ring structure at the sn-2 and sn-3 positions of the glycerol backbone. We reported earlier that cPA elicits a neurotrophin-like action and protects hippocampal neurons from ischemia-induced delayed neuronal death. We designed, chemically synthesized, and metabolically stabilized derivatives of cPA: 2-carba-cPA (2ccPA), a synthesized compound in which one of the phosphate oxygen molecules is replaced with a methylene group at the sn-2 position. In the present study, we investigated whether 2ccPA exerts protective effects in oligodendrocytes and suppresses pathology in the two most common mouse models of multiple sclerosis. METHODS To evaluate whether 2ccPA has potential beneficial effects on the pathology of multiple sclerosis, we investigated the effects of 2ccPA on oligodendrocyte cell death in vitro and administrated 2ccPA to mouse models of experimental autoimmune encephalomyelitis (EAE) and cuprizone-induced demyelination. RESULTS We demonstrated that 2ccPA suppressed the CoCl2-induced increase in the Bax/Bcl-2 protein expression ratio and phosphorylation levels of p38MAPK and JNK protein. 2ccPA treatment reduced cuprizone-induced demyelination, microglial activation, NLRP3 inflammasome, and motor dysfunction. Furthermore, 2ccPA treatment reduced autoreactive T cells and macrophages, spinal cord injury, and pathological scores in EAE, the autoimmune multiple sclerosis mouse model. CONCLUSIONS We demonstrated that 2ccPA protected oligodendrocytes via suppression of the mitochondrial apoptosis pathway. Also, we found beneficial effects of 2ccPA in the multiperiod of cuprizone-induced demyelination and the pathology of EAE. These data indicate that 2ccPA may be a promising compound for the development of new drugs to treat demyelinating disease and ameliorate the symptoms of multiple sclerosis.
Collapse
Affiliation(s)
- Shinji Yamamoto
- Department of Pharmacology, Faculty of Medicine, Saitama Medical University, 38 Moro-hongo, Moroyama-machi, Iruma-gun, Saitama, 350-0495, Japan
| | - Kota Yamashina
- Department of Pharmacology, Faculty of Medicine, Saitama Medical University, 38 Moro-hongo, Moroyama-machi, Iruma-gun, Saitama, 350-0495, Japan
| | - Masaki Ishikawa
- Department of Pharmacology, Faculty of Medicine, Saitama Medical University, 38 Moro-hongo, Moroyama-machi, Iruma-gun, Saitama, 350-0495, Japan
| | - Mari Gotoh
- Endowed Research Division of Human Welfare Sciences, Ochanomizu University, 2-1-1 Ohtsuka, Bunkyo-ku, Tokyo, 112-8610, Japan
| | - Sosuke Yagishita
- Department of Pharmacology, Faculty of Medicine, Saitama Medical University, 38 Moro-hongo, Moroyama-machi, Iruma-gun, Saitama, 350-0495, Japan
| | - Kensuke Iwasa
- Department of Pharmacology, Faculty of Medicine, Saitama Medical University, 38 Moro-hongo, Moroyama-machi, Iruma-gun, Saitama, 350-0495, Japan
| | - Kei Maruyama
- Department of Pharmacology, Faculty of Medicine, Saitama Medical University, 38 Moro-hongo, Moroyama-machi, Iruma-gun, Saitama, 350-0495, Japan
| | - Kimiko Murakami-Murofushi
- Endowed Research Division of Human Welfare Sciences, Ochanomizu University, 2-1-1 Ohtsuka, Bunkyo-ku, Tokyo, 112-8610, Japan
| | - Keisuke Yoshikawa
- Department of Pharmacology, Faculty of Medicine, Saitama Medical University, 38 Moro-hongo, Moroyama-machi, Iruma-gun, Saitama, 350-0495, Japan.
| |
Collapse
|