1
|
Salib AMN, Crane MJ, Jamieson AM, Lipscombe D. Peripheral Ca V2.2 Channels in the Skin Regulate Prolonged Heat Hypersensitivity during Neuroinflammation. eNeuro 2024; 11:ENEURO.0311-24.2024. [PMID: 39433408 PMCID: PMC11599794 DOI: 10.1523/eneuro.0311-24.2024] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2024] [Revised: 09/13/2024] [Accepted: 09/26/2024] [Indexed: 10/23/2024] Open
Abstract
Neuroinflammation can lead to chronic maladaptive pain affecting millions of people worldwide. Neurotransmitters, cytokines, and ion channels are implicated in neuroimmune cell signaling, but their roles in specific behavioral responses are not fully elucidated. Voltage-gated CaV2.2 channel activity in skin controls rapid and transient heat hypersensitivity induced by intradermal (i.d.) capsaicin via IL-1ɑ cytokine signaling. CaV2.2 channels are not, however, involved in mechanical hypersensitivity that developed in the i.d. capsaicin animal model. Here, we show that CaV2.2 channels are also critical for heat hypersensitivity induced by i.d. complete Freund adjuvant (CFA). i.d. CFA, a model of chronic neuroinflammation, involves ongoing cytokine signaling for days leading to pronounced edema and hypersensitivity to sensory stimuli. Peripheral CaV2.2 channel activity in the skin was required for the full development and week-long time course of heat hypersensitivity induced by i.d. CFA, but paw edema and mechanical hypersensitivity were independent of CaV2.2 channel activity. CFA induced increases in several cytokines in hindpaw fluid including IL-6 which was also dependent on CaV2.2 channel activity. Using IL-6-specific neutralizing antibodies in vivo, we show that IL-6 contributes to heat hypersensitivity and that neutralizing both IL-1ɑ and IL-6 was even more effective at reducing the magnitude and duration of CFA-induced heat hypersensitivity. Our findings demonstrate a functional link between CaV2.2 channel activity and the release of IL-6 in the skin and show that CaV2.2 channels have a privileged role in the induction and maintenance of heat hypersensitivity during chronic forms of neuroinflammation in the skin.
Collapse
Affiliation(s)
- Anne-Mary N Salib
- Departments of Neuroscience, Brown University, Providence, Rhode Island 02912
- Carney Institute for Brain Science, Brown University, Providence, Rhode Island 02912
| | - Meredith J Crane
- Molecular Microbiology and Immunology, Brown University, Providence, Rhode Island 02912
| | - Amanda M Jamieson
- Molecular Microbiology and Immunology, Brown University, Providence, Rhode Island 02912
| | - Diane Lipscombe
- Departments of Neuroscience, Brown University, Providence, Rhode Island 02912
- Carney Institute for Brain Science, Brown University, Providence, Rhode Island 02912
| |
Collapse
|
2
|
Castellanos-Molina A, Bretheau F, Boisvert A, Bélanger D, Lacroix S. Constitutive DAMPs in CNS injury: From preclinical insights to clinical perspectives. Brain Behav Immun 2024; 122:583-595. [PMID: 39222725 DOI: 10.1016/j.bbi.2024.07.047] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/30/2024] [Revised: 06/28/2024] [Accepted: 07/04/2024] [Indexed: 09/04/2024] Open
Abstract
Damage-associated molecular patterns (DAMPs) are endogenous molecules released in tissues upon cellular damage and necrosis, acting to initiate sterile inflammation. Constitutive DAMPs (cDAMPs) have the particularity to be present within the intracellular compartments of healthy cells, where they exert diverse functions such as regulation of gene expression and cellular homeostasis. However, after injury to the central nervous system (CNS), cDAMPs are rapidly released by stressed, damaged or dying neuronal, glial and endothelial cells, and can trigger inflammation without undergoing structural modifications. Several cDAMPs have been described in the injured CNS, such as interleukin (IL)-1α, IL-33, nucleotides (e.g. ATP), and high-mobility group box protein 1. Once in the extracellular milieu, these molecules are recognized by the remaining surviving cells through specific DAMP-sensing receptors, thereby inducing a cascade of molecular events leading to the production and release of proinflammatory cytokines and chemokines, as well as cell adhesion molecules. The ensuing immune response is necessary to eliminate cellular debris caused by the injury, allowing for damage containment. However, seeing as some molecules associated with the inflammatory response are toxic to surviving resident CNS cells, secondary damage occurs, aggravating injury and exacerbating neurological and behavioral deficits. Thus, a better understanding of these cDAMPs, as well as their receptors and downstream signaling pathways, could lead to identification of novel therapeutic targets for treating CNS injuries such as SCI, TBI, and stroke. In this review, we summarize the recent literature on cDAMPs, their specific functions, and the therapeutic potential of interfering with cDAMPs or their signaling pathways.
Collapse
Affiliation(s)
- Adrian Castellanos-Molina
- Axe Neurosciences du Centre de recherche du Centre hospitalier universitaire (CHU) de Québec-Université Laval et Département de médecine moléculaire de l'Université Laval, Québec, QC G1V 4G2, Canada
| | - Floriane Bretheau
- Axe Neurosciences du Centre de recherche du Centre hospitalier universitaire (CHU) de Québec-Université Laval et Département de médecine moléculaire de l'Université Laval, Québec, QC G1V 4G2, Canada
| | - Ana Boisvert
- Axe Neurosciences du Centre de recherche du Centre hospitalier universitaire (CHU) de Québec-Université Laval et Département de médecine moléculaire de l'Université Laval, Québec, QC G1V 4G2, Canada
| | - Dominic Bélanger
- Axe Neurosciences du Centre de recherche du Centre hospitalier universitaire (CHU) de Québec-Université Laval et Département de médecine moléculaire de l'Université Laval, Québec, QC G1V 4G2, Canada
| | - Steve Lacroix
- Axe Neurosciences du Centre de recherche du Centre hospitalier universitaire (CHU) de Québec-Université Laval et Département de médecine moléculaire de l'Université Laval, Québec, QC G1V 4G2, Canada.
| |
Collapse
|
3
|
Salib AMN, Crane MJ, Jamieson AM, Lipscombe D. Peripheral Ca V2.2 channels in skin regulate prolonged heat hypersensitivity during neuroinflammation. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.07.13.603149. [PMID: 39071304 PMCID: PMC11275762 DOI: 10.1101/2024.07.13.603149] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/30/2024]
Abstract
Neuroinflammation can lead to chronic maladaptive pain affecting millions of people worldwide. Neurotransmitters, cytokines, and ion channels are implicated in neuro-immune cell signaling but their roles in specific behavioral responses are not fully elucidated. Voltage-gated CaV2.2 channel activity in skin controls rapid and transient heat hypersensitivity induced by intradermal capsaicin via IL-1α cytokine signaling. CaV2.2 channels are not, however, involved in mechanical hypersensitivity that developed in the same animal model. Here, we show that CaV2.2 channels are also critical for heat hypersensitivity induced by the intradermal (id) Complete Freund's Adjuvant (CFA) model of chronic neuroinflammation that involves ongoing cytokine signaling for days. Ongoing CFA-induced cytokine signaling cascades in skin lead to pronounced edema, and hypersensitivity to sensory stimuli. Peripheral CaV2.2 channel activity in skin is required for the full development and week-long time course of heat hypersensitivity induced by id CFA. CaV2.2 channels, by contrast, are not involved in paw edema and mechanical hypersensitivity. CFA induced increases in cytokines in hind paws including IL-6 which was dependent on CaV2.2 channel activity. Using IL-6 specific neutralizing antibodies, we show that IL-6 contributes to heat hypersensitivity and, neutralizing both IL-1α and IL-6 was even more effective at reducing the magnitude and duration of CFA-induced heat hypersensitivity. Our findings demonstrate a functional link between CaV2.2 channel activity and the release of IL-6 in skin and show that CaV2.2 channels have a privileged role in the induction and maintenance of heat hypersensitivity during chronic forms of neuroinflammation in skin.
Collapse
Affiliation(s)
- Anne-Mary N Salib
- Department of Neuroscience & the Carney Institute for Brain Science Brown University, Providence, RI 02912, USA
| | - Meredith J Crane
- Department of Molecular Microbiology and Immunology, Brown University, Providence, RI 02912, USA
| | - Amanda M Jamieson
- Department of Molecular Microbiology and Immunology, Brown University, Providence, RI 02912, USA
| | - Diane Lipscombe
- Department of Neuroscience & the Carney Institute for Brain Science Brown University, Providence, RI 02912, USA
| |
Collapse
|
4
|
Luo F, Huang C. New Insight into Neuropathic Pain: The Relationship between α7nAChR, Ferroptosis, and Neuroinflammation. Int J Mol Sci 2024; 25:6716. [PMID: 38928421 PMCID: PMC11203537 DOI: 10.3390/ijms25126716] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2024] [Revised: 06/15/2024] [Accepted: 06/16/2024] [Indexed: 06/28/2024] Open
Abstract
Neuropathic pain, which refers to pain caused by a lesion or disease of the somatosensory system, represents a wide variety of peripheral or central disorders. Treating neuropathic pain is quite demanding, primarily because of its intricate underlying etiological mechanisms. The central nervous system relies on microglia to maintain balance, as they are associated with serving primary immune responses in the brain next to cell communication. Ferroptosis, driven by phospholipid peroxidation and regulated by iron, is a vital mechanism of cell death regulation. Neuroinflammation can be triggered by ferroptosis in microglia, which contributes to the release of inflammatory cytokines. Conversely, neuroinflammation can induce iron accumulation in microglia, resulting in microglial ferroptosis. Accumulating evidence suggests that neuroinflammation, characterized by glial cell activation and the release of inflammatory substances, significantly exacerbates the development of neuropathic pain. By inhibiting microglial ferroptosis, it may be possible to prevent neuroinflammation and subsequently alleviate neuropathic pain. The activation of the homopentameric α7 subtype of the neuronal nicotinic acetylcholine receptor (α7nAChR) has the potential to suppress microglial activation, transitioning M1 microglia to an M2 phenotype, facilitating the release of anti-inflammatory factors, and ultimately reducing neuropathic pain. Recent years have witnessed a growing recognition of the regulatory role of α7nAChR in ferroptosis, which could be a potential target for treating neuropathic pain. This review summarizes the mechanisms related to α7nAChR and the progress of ferroptosis in neuropathic pain according to recent research. Such an exploration will help to elucidate the relationship between α7nAChR, ferroptosis, and neuroinflammation and provide new insights into neuropathic pain management.
Collapse
Affiliation(s)
- Fangting Luo
- School of Public Health and Health Management, Gannan Medical University, Ganzhou 341000, China;
| | - Cheng Huang
- School of Public Health and Health Management, Gannan Medical University, Ganzhou 341000, China;
- Department of Physiology, School of Basic Medicine, Gannan Medical University, Ganzhou 341000, China
- Pain Medicine Research Institute, Gannan Medical University, Ganzhou 341000, China
| |
Collapse
|
5
|
Zhang S, Chen Y, Wang Y, Wang H, Yao D, Chen G. Tau Accumulation in the Spinal Cord Contributes to Chronic Inflammatory Pain by Upregulation of IL-1β and BDNF. Neurosci Bull 2024; 40:466-482. [PMID: 38148427 PMCID: PMC11003936 DOI: 10.1007/s12264-023-01152-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2023] [Accepted: 07/09/2023] [Indexed: 12/28/2023] Open
Abstract
Microtubule-associated protein Tau is responsible for the stabilization of neuronal microtubules under normal physiological conditions. Much attention has been focused on Tau's contribution to cognition, but little research has explored its role in emotions such as pain, anxiety, and depression. In the current study, we found a significant increase in the levels of p-Tau (Thr231), total Tau, IL-1β, and brain-derived neurotrophic factor (BDNF) on day 7 after complete Freund's adjuvant (CFA) injection; they were present in the vast majority of neurons in the spinal dorsal horn. Microinjection of Mapt-shRNA recombinant adeno-associated virus into the spinal dorsal cord alleviated CFA-induced inflammatory pain and inhibited CFA-induced IL-1β and BDNF upregulation. Importantly, Tau overexpression was sufficient to induce hyperalgesia by increasing the expression of IL-1β and BDNF. Furthermore, the activation of glycogen synthase kinase 3 beta partly contributed to Tau accumulation. These findings suggest that Tau in the dorsal horn could be a promising target for chronic inflammatory pain therapy.
Collapse
Affiliation(s)
- Shuxia Zhang
- Department of Anesthesiology, School of Medicine, Sir Run Run Shaw Hospital, Zhejiang University, Hangzhou, 310016, China
| | - Yeru Chen
- Department of Anesthesiology, School of Medicine, Sir Run Run Shaw Hospital, Zhejiang University, Hangzhou, 310016, China
| | - Yongjie Wang
- Key Laboratory of Elemene Anti-Cancer Medicine of Zhejiang Province and Holistic Integrative Pharmacy Institutes, Hangzhou Normal University, Hangzhou, 311121, China
- Engineering Laboratory of Development and Application of Traditional Chinese Medicine from Zhejiang Province, Holistic Integrative Pharmacy Institutes, Hangzhou Normal University, Hangzhou, 311121, China
| | - Hongwei Wang
- Department of Anesthesiology, School of Medicine, Sir Run Run Shaw Hospital, Zhejiang University, Hangzhou, 310016, China
| | - Dandan Yao
- Department of Anesthesiology, School of Medicine, Sir Run Run Shaw Hospital, Zhejiang University, Hangzhou, 310016, China
| | - Gang Chen
- Department of Anesthesiology, School of Medicine, Sir Run Run Shaw Hospital, Zhejiang University, Hangzhou, 310016, China.
| |
Collapse
|
6
|
Weng HR. Emerging Molecular and Synaptic Targets for the Management of Chronic Pain Caused by Systemic Lupus Erythematosus. Int J Mol Sci 2024; 25:3602. [PMID: 38612414 PMCID: PMC11011483 DOI: 10.3390/ijms25073602] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2024] [Revised: 03/13/2024] [Accepted: 03/19/2024] [Indexed: 04/14/2024] Open
Abstract
Patients with systemic lupus erythematosus (SLE) frequently experience chronic pain due to the limited effectiveness and safety profiles of current analgesics. Understanding the molecular and synaptic mechanisms underlying abnormal neuronal activation along the pain signaling pathway is essential for developing new analgesics to address SLE-induced chronic pain. Recent studies, including those conducted by our team and others using the SLE animal model (MRL/lpr lupus-prone mice), have unveiled heightened excitability in nociceptive primary sensory neurons within the dorsal root ganglia and increased glutamatergic synaptic activity in spinal dorsal horn neurons, contributing to the development of chronic pain in mice with SLE. Nociceptive primary sensory neurons in lupus animals exhibit elevated resting membrane potentials, and reduced thresholds and rheobases of action potentials. These changes coincide with the elevated production of TNFα and IL-1β, as well as increased ERK activity in the dorsal root ganglion, coupled with decreased AMPK activity in the same region. Dysregulated AMPK activity is linked to heightened excitability in nociceptive sensory neurons in lupus animals. Additionally, the increased glutamatergic synaptic activity in the spinal dorsal horn in lupus mice with chronic pain is characterized by enhanced presynaptic glutamate release and postsynaptic AMPA receptor activation, alongside the reduced activity of glial glutamate transporters. These alterations are caused by the elevated activities of IL-1β, IL-18, CSF-1, and thrombin, and reduced AMPK activities in the dorsal horn. Furthermore, the pharmacological activation of spinal GPR109A receptors in microglia in lupus mice suppresses chronic pain by inhibiting p38 MAPK activity and the production of both IL-1β and IL-18, as well as reducing glutamatergic synaptic activity in the spinal dorsal horn. These findings collectively unveil crucial signaling molecular and synaptic targets for modulating abnormal neuronal activation in both the periphery and spinal dorsal horn, offering insights into the development of analgesics for managing SLE-induced chronic pain.
Collapse
Affiliation(s)
- Han-Rong Weng
- Department of Basic Sciences, California Northstate University College of Medicine, Elk Grove, CA 95757, USA
| |
Collapse
|
7
|
Li Z, Lee JE, Cho N, Yoo HM. Anti-viral effect of usenamine a using SARS-CoV-2 pseudo-typed viruses. Heliyon 2023; 9:e21742. [PMID: 38027904 PMCID: PMC10656252 DOI: 10.1016/j.heliyon.2023.e21742] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2023] [Revised: 09/09/2023] [Accepted: 10/26/2023] [Indexed: 12/01/2023] Open
Abstract
The escalating pandemic brought about by the novel SARS-CoV-2 virus is threatening global health, and thus, it is necessary to develop effective antiviral drugs. Usenamine A is a dibenzo-furan derivative separated from lichen Usnea diffracta showing broad-spectrum activity against different viruses. We evaluate that usenamine A has antiviral effects against novel SARS-CoV-2 Delta variant pseudotyped viruses (PVs) in A549 cells. In addition, usenamine A significantly suppresses SARS-CoV-2 PV-induced mitochondrial depolarization, elevated reactive oxygen species (ROS) levels, apoptosis, and inflammation. Usenamine A also causes the SARS-CoV-2 spike protein to become less stable. Thus, usenamine A shows potential as an antiviral drug that can provide protection against COVID-19.
Collapse
Affiliation(s)
- Zijun Li
- Biometrology Group, Korea Research Institute of Standards and Science (KRISS), Daejeon 34113, South Korea
- Research Institute of Pharmaceutical Sciences, College of Pharmacy, Chonnam National University, Gwangju 61186, South Korea
| | - Joo-Eun Lee
- Research Institute of Pharmaceutical Sciences, College of Pharmacy, Chonnam National University, Gwangju 61186, South Korea
| | - Namki Cho
- Research Institute of Pharmaceutical Sciences, College of Pharmacy, Chonnam National University, Gwangju 61186, South Korea
| | - Hee Min Yoo
- Biometrology Group, Korea Research Institute of Standards and Science (KRISS), Daejeon 34113, South Korea
- Department of Precision Measurement, University of Science and Technology (UST), Daejeon 34113, South Korea
| |
Collapse
|
8
|
Manis AD, Cook-Snyder DR, Duffy E, Osmani WA, Eilbes M, Dillard M, Palygin O, Staruschenko A, Hodges MR. Repeated seizures lead to progressive ventilatory dysfunction in SS Kcnj16-/- rats. J Appl Physiol (1985) 2023; 135:872-885. [PMID: 37535709 PMCID: PMC10642517 DOI: 10.1152/japplphysiol.00072.2023] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2023] [Revised: 08/01/2023] [Accepted: 08/01/2023] [Indexed: 08/05/2023] Open
Abstract
Patients with uncontrolled epilepsy experience repeated seizures putting them at increased risk for sudden unexpected death in epilepsy (SUDEP). Data from human patients have led to the hypothesis that SUDEP results from severe cardiorespiratory suppression after a seizure, which may involve pathological deficiencies in the brainstem serotonin (5-HT) system. Rats with a genomic Kcnj16 mutation (SSKcnj16-/- rats) are susceptible to sound-induced generalized tonic-clonic seizures (GTCS) which, when repeated once daily for up to 10 days (10-day seizure protocol), increased mortality, particularly in male rats. Here, we test the hypothesis that repeated seizures across the 10-day protocol will cause a progressive ventilatory dysfunction due to time-dependent 5-HT deficiency. Initial severe seizures led to ictal and postictal apneas and transient decreases in breathing frequency, ventilatory drive, breath-to-breath variability, and brief hypoventilation. These seizure-induced effects on ventilation were exacerbated with increasing seizures and ventilatory chemoreflexes became further impaired after repeated seizures. Tissue analyses of key brainstem regions controlling breathing showed time-dependent 5-HT system suppression and increased immunoreactivity for IBA-1 (microglial marker) without changes in overall cell counts at 3, 7, and 10 days of seizures. Fluoxetine treatment in SSKcnj16-/- rats prevented repeated seizure-induced progressive respiratory suppression but failed to prevent seizure-related mortality. We conclude that repeated seizures cause a progressive compromise of ventilatory control in the immediate postictal period largely mediated by serotonin system suppression in brainstem regions of respiratory control. However, other unknown factors contribute to overall survival following repeated seizures in this model.NEW & NOTEWORTHY This study demonstrated that repeated seizures in a novel rat model (SSKcnj16-/- rats) caused a progressively greater ventilatory dysfunction in the immediate postictal period associated with brainstem serotonin (5-HT) suppression. Augmenting brain 5-HT with a selective serotonin reuptake inhibitor prevented the progressive ventilatory dysfunction induced by repeated seizures but failed to prevent seizure-related mortality, suggesting that repeated seizures may lead to cardiorespiratory suppression and failure through multiple mechanisms.
Collapse
Affiliation(s)
- Anna D Manis
- Department of Physiology, Medical College of Wisconsin, Milwaukee, Wisconsin, United States
| | - Denise R Cook-Snyder
- Department of Physiology, Medical College of Wisconsin, Milwaukee, Wisconsin, United States
| | - Erin Duffy
- Department of Physiology, Medical College of Wisconsin, Milwaukee, Wisconsin, United States
| | - Wasif A Osmani
- Department of Physiology, Medical College of Wisconsin, Milwaukee, Wisconsin, United States
| | - Melissa Eilbes
- Department of Physiology, Medical College of Wisconsin, Milwaukee, Wisconsin, United States
| | - Matthew Dillard
- Department of Physiology, Medical College of Wisconsin, Milwaukee, Wisconsin, United States
| | - Oleg Palygin
- Department of Physiology, Medical College of Wisconsin, Milwaukee, Wisconsin, United States
- Division of Nephrology, Department of Medicine, Medical University of South Carolina, Charleston, South Carolina, United States
| | - Alexander Staruschenko
- Department of Physiology, Medical College of Wisconsin, Milwaukee, Wisconsin, United States
- Department of Molecular Pharmacology & Physiology, University of South Florida, Tampa, Florida, United States
- James A. Haley Veterans' Hospital, Tampa, Florida, United States
| | - Matthew R Hodges
- Department of Physiology, Medical College of Wisconsin, Milwaukee, Wisconsin, United States
- Neuroscience Research Center, Medical College of Wisconsin, Milwaukee, Wisconsin, United States
| |
Collapse
|
9
|
Varodayan FP, Pahng AR, Davis TD, Gandhi P, Bajo M, Steinman MQ, Kiosses WB, Blednov YA, Burkart MD, Edwards S, Roberts AJ, Roberto M. Chronic ethanol induces a pro-inflammatory switch in interleukin-1β regulation of GABAergic signaling in the medial prefrontal cortex of male mice. Brain Behav Immun 2023; 110:125-139. [PMID: 36863493 PMCID: PMC10106421 DOI: 10.1016/j.bbi.2023.02.020] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/11/2022] [Revised: 02/20/2023] [Accepted: 02/25/2023] [Indexed: 03/04/2023] Open
Abstract
Neuroimmune pathways regulate brain function to influence complex behavior and play a role in several neuropsychiatric diseases, including alcohol use disorder (AUD). In particular, the interleukin-1 (IL-1) system has emerged as a key regulator of the brain's response to ethanol (alcohol). Here we investigated the mechanisms underlying ethanol-induced neuroadaptation of IL-1β signaling at GABAergic synapses in the prelimbic region of the medial prefrontal cortex (mPFC), an area responsible for integrating contextual information to mediate conflicting motivational drives. We exposed C57BL/6J male mice to the chronic intermittent ethanol vapor-2 bottle choice paradigm (CIE-2BC) to induce ethanol dependence, and conducted ex vivo electrophysiology and molecular analyses. We found that the IL-1 system regulates basal mPFC function through its actions at inhibitory synapses on prelimbic layer 2/3 pyramidal neurons. IL-1β can selectively recruit either neuroprotective (PI3K/Akt) or pro-inflammatory (MyD88/p38 MAPK) mechanisms to produce opposing synaptic effects. In ethanol naïve conditions, there was a strong PI3K/Akt bias leading to a disinhibition of pyramidal neurons. Ethanol dependence produced opposite IL-1 effects - enhanced local inhibition via a switch in IL-1β signaling to the canonical pro-inflammatory MyD88 pathway. Ethanol dependence also increased cellular IL-1β in the mPFC, while decreasing expression of downstream effectors (Akt, p38 MAPK). Thus, IL-1β may represent a key neural substrate in ethanol-induced cortical dysfunction. As the IL-1 receptor antagonist (kineret) is already FDA-approved for other diseases, this work underscores the high therapeutic potential of IL-1 signaling/neuroimmune-based treatments for AUD.
Collapse
Affiliation(s)
- F P Varodayan
- Department of Molecular Medicine, The Scripps Research Institute, La Jolla, CA, USA; Developmental Exposure Alcohol Research Center and Behavioral Neuroscience Program, Department of Psychology, Binghamton University-SUNY, Binghamton, NY, USA
| | - A R Pahng
- Department of Physiology, Louisiana State University Health Sciences Center, New Orleans, LA, USA; Southeast Louisiana Veterans Health Care System, New Orleans, LA, USA
| | - T D Davis
- Department of Chemistry & Biochemistry, University of California, San Diego, La Jolla, CA, USA; Department of Pharmaceutical Sciences, School of Pharmacy and Pharmaceutical Sciences, Binghamton University-SUNY, Binghamton, NY, USA
| | - P Gandhi
- Department of Molecular Medicine, The Scripps Research Institute, La Jolla, CA, USA
| | - M Bajo
- Department of Molecular Medicine, The Scripps Research Institute, La Jolla, CA, USA
| | - M Q Steinman
- Department of Molecular Medicine, The Scripps Research Institute, La Jolla, CA, USA
| | - W B Kiosses
- Microscopy Core Imaging Facility, La Jolla Institute for Immunology, La Jolla, CA 92037, USA
| | - Y A Blednov
- Waggoner Center for Alcohol and Addiction Research, University of Texas at Austin, Austin, TX 78712, USA
| | - M D Burkart
- Department of Chemistry & Biochemistry, University of California, San Diego, La Jolla, CA, USA
| | - S Edwards
- Department of Physiology, Louisiana State University Health Sciences Center, New Orleans, LA, USA
| | - A J Roberts
- Animal Models Core Facility, The Scripps Research Institute, La Jolla, CA, USA
| | - M Roberto
- Department of Molecular Medicine, The Scripps Research Institute, La Jolla, CA, USA.
| |
Collapse
|
10
|
Chen Y, Dong Y, Zhang Z, Han J, Chen F, Tong X, Ma H. Fra-1 induces apoptosis and neuroinflammation by targeting S100A8 to modulate TLR4 pathways in spinal cord ischemia/reperfusion injury. Brain Pathol 2023; 33:e13113. [PMID: 36634215 PMCID: PMC9836372 DOI: 10.1111/bpa.13113] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2022] [Accepted: 08/01/2022] [Indexed: 02/01/2023] Open
Abstract
Spinal cord ischemia/reperfusion injury (SCII) is a severe complication driven by apoptosis and neuroinflammation. An increase in the expression of c-Fos, a member of the AP-1 family, is known as a neuronal activation marker in SCII. The AP-1 family is composed of Jun, Fos, and is associated with the regulation of cytokines expression and apoptosis. Fra-1 is a member of the Fos family, however, the contribution of Fra-1 to SCII is still unclear. In our study, Fra-1 was highly upregulated especially in neurons and microglia and promoted apoptosis by changing the expression of Bax/Bcl-2 after SCII. Furthermore, we found that Fra-1 directly regulated the transcription expression of S100A8. We demonstrated that knockdown of Fra-1 alleviated S100A8 mediated neuronal apoptosis and inflammatory factor release, thus improved motor function after SCII. Interestingly, we showed that administration of TAK-242, the TLR4 inhibitor, to the ischemia/reperfusion (I/R) injury induced rats suppressed the activation of the ERK and NF-κB pathways, and further reduced Fra-1 expression. In conclusion, we found that Fra-1-targeted S100A8 was expressed the upstream of Fra-1, and the Fra-1/S100A8 interaction formed a feedback loop in the signaling pathways activated by SCII.
Collapse
Affiliation(s)
- Ying Chen
- Department of AnesthesiologyFirst Affiliated Hospital, China Medical UniversityShenyangLiaoningChina
| | - Yan Dong
- Department of AnesthesiologyFirst Affiliated Hospital, China Medical UniversityShenyangLiaoningChina
| | - Zai‐Li Zhang
- Department of AnesthesiologyFirst Affiliated Hospital, China Medical UniversityShenyangLiaoningChina
| | - Jie Han
- Department of AnesthesiologyFirst Affiliated Hospital, China Medical UniversityShenyangLiaoningChina
| | - Feng‐Shou Chen
- Department of AnesthesiologyFirst Affiliated Hospital, China Medical UniversityShenyangLiaoningChina
| | - Xiang‐Yi Tong
- Department of AnesthesiologyFirst Affiliated Hospital, China Medical UniversityShenyangLiaoningChina
| | - Hong Ma
- Department of AnesthesiologyFirst Affiliated Hospital, China Medical UniversityShenyangLiaoningChina
| |
Collapse
|
11
|
Proinflammatory cytokines and their receptors as druggable targets to alleviate pathological pain. Pain 2022; 163:S79-S98. [DOI: 10.1097/j.pain.0000000000002737] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2022] [Accepted: 07/14/2022] [Indexed: 02/07/2023]
|
12
|
Omura CM, Lüdtke DD, Horewicz VV, Fernandes PF, Galassi TDO, Salgado ASI, Palandi J, Baldança HDS, Bittencourt EB, Mack JM, Seim LA, Martins DF, Bobinski F. Decrease of IL-1β and TNF in the Spinal Cord Mediates Analgesia Produced by Ankle Joint Mobilization in Complete Freund Adjuvant-Induced Inflammation Mice Model. Front Physiol 2022; 12:816624. [PMID: 35095573 PMCID: PMC8795789 DOI: 10.3389/fphys.2021.816624] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2021] [Accepted: 12/24/2021] [Indexed: 01/26/2023] Open
Abstract
Objective This study aims to investigate the effects of ankle joint mobilization (AJM) on mechanical hyperalgesia and peripheral and central inflammatory biomarkers after intraplantar (i.pl.) Complete Freund’s Adjuvant (CFA)-induced inflammation. Methods Male Swiss mice were randomly assigned to 3 groups (n = 7): Saline/Sham, CFA/Sham, and CFA/AJM. Five AJM sessions were carried out at 6, 24, 48, 72, and 96 h after CFA injection. von Frey test was used to assess mechanical hyperalgesia. Tissues from paw skin, paw muscle and spinal cord were collected to measure pro-inflammatory (TNF, IL-1β) and anti-inflammatory cytokines (IL-4, IL-10, and TGF-β1) by ELISA. The macrophage phenotype at the inflammation site was evaluated by Western blotting assay using the Nitric Oxide Synthase 2 (NOS 2) and Arginase-1 immunocontent to identify M1 and M2 macrophages, respectively. Results Our results confirm a consistent analgesic effect of AJM following the second treatment session. AJM did not change cytokines levels at the inflammatory site, although it promoted a reduction in M2 macrophages. Also, there was a reduction in the levels of pro-inflammatory cytokines IL-1β and TNF in the spinal cord. Conclusion Taken together, the results confirm the anti-hyperalgesic effect of AJM and suggest a central neuroimmunomodulatory effect in a model of persistent inflammation targeting the pro-inflammatory cytokines IL-1β and TNF.
Collapse
Affiliation(s)
- Carlos Minoru Omura
- Experimental Neuroscience Laboratory (LaNEx), Graduate Program in Health Sciences, University of Southern Santa Catarina, Palhoça, Brazil
| | - Daniela Dero Lüdtke
- Experimental Neuroscience Laboratory (LaNEx), Graduate Program in Health Sciences, University of Southern Santa Catarina, Palhoça, Brazil
- Faculty of Physical Therapy, University of Southern Santa Catarina, Palhoça, Brazil
| | - Verônica Vargas Horewicz
- Experimental Neuroscience Laboratory (LaNEx), Graduate Program in Health Sciences, University of Southern Santa Catarina, Palhoça, Brazil
| | - Paula Franson Fernandes
- Experimental Neuroscience Laboratory (LaNEx), Graduate Program in Health Sciences, University of Southern Santa Catarina, Palhoça, Brazil
| | - Taynah de Oliveira Galassi
- Experimental Neuroscience Laboratory (LaNEx), Graduate Program in Health Sciences, University of Southern Santa Catarina, Palhoça, Brazil
| | | | - Juliete Palandi
- Experimental Neuroscience Laboratory (LaNEx), Graduate Program in Health Sciences, University of Southern Santa Catarina, Palhoça, Brazil
- Laboratory of Experimentation in Neuropathology (LEN), Graduate Program in Neuroscience, Department of Biochemistry, Federal University of Santa Catarina, Florianopolis, Brazil
| | - Heloiza dos Santos Baldança
- Experimental Neuroscience Laboratory (LaNEx), Graduate Program in Health Sciences, University of Southern Santa Catarina, Palhoça, Brazil
- Faculty of Physical Therapy, University of Southern Santa Catarina, Palhoça, Brazil
| | | | - Josiel Mileno Mack
- Experimental Neuroscience Laboratory (LaNEx), Graduate Program in Health Sciences, University of Southern Santa Catarina, Palhoça, Brazil
- Graduate Program in Medical Sciences, Department of Medical Clinic, Federal University of Santa Catarina (UFSC), Florianopolis, Brazil
- Faculty of Medicine, University of Southern Santa Catarina, Palhoça, Brazil
| | - Lynsey A. Seim
- Department of Hospital Internal Medicine, Mayo Clinic, Jacksonville, FL, United States
| | - Daniel Fernandes Martins
- Experimental Neuroscience Laboratory (LaNEx), Graduate Program in Health Sciences, University of Southern Santa Catarina, Palhoça, Brazil
| | - Franciane Bobinski
- Experimental Neuroscience Laboratory (LaNEx), Graduate Program in Health Sciences, University of Southern Santa Catarina, Palhoça, Brazil
- *Correspondence: Franciane Bobinski,
| |
Collapse
|
13
|
Ducza L, Szücs P, Hegedűs K, Bakk E, Gajtkó A, Wéber I, Holló K. NLRP2 Is Overexpressed in Spinal Astrocytes at the Peak of Mechanical Pain Sensitivity during Complete Freund Adjuvant-Induced Persistent Pain. Int J Mol Sci 2021; 22:ijms222111408. [PMID: 34768839 PMCID: PMC8584130 DOI: 10.3390/ijms222111408] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2021] [Revised: 10/09/2021] [Accepted: 10/17/2021] [Indexed: 12/15/2022] Open
Abstract
Our earlier findings revealed that interleukin-1 receptor type-1 (IL-1R1) was overexpressed in spinal neurons, and IL-1R1-deficient mice showed significant attenuation of thermal and mechanical allodynia during the course of the Complete Freund adjuvant (CFA)-induced persistent pain model. In the present study, we found that a ligand of IL-1R1, termed interleukin-1β (IL-1β), is also significantly overexpressed at the peak of mechanical pain sensitivity in the CFA-evoked pain model. Analysis of cellular distribution and modeling using IMARIS software showed that in the lumbar spinal dorsal horn, IL-1β is significantly elevated by astrocytic expression. Maturation of IL-1β to its active form is facilitated by the formation of the multiprotein complex called inflammasome; thus, we tested the expression of NOD-like receptor proteins (NLRPs) in astrocytes. At the peak of mechanical allodynia, we found expression of the NLRP2 inflammasome sensor and its significantly elevated co-localization with the GFAP astrocytic marker, while NLRP3 was moderately present and NLRP1 showed total segregation from the astrocytic profiles. Our results indicate that peripheral CFA injection induces NLRP2 inflammasome and IL-1β expression in spinal astrocytes. The release of mature IL-1β can contribute to the maintenance of persistent pain by acting on its neuronally expressed receptor, which can lead to altered neuronal excitability.
Collapse
|
14
|
The Toxoplasma Polymorphic Effector GRA15 Mediates Seizure Induction by Modulating Interleukin-1 Signaling in the Brain. mBio 2021; 12:e0133121. [PMID: 34154412 PMCID: PMC8262954 DOI: 10.1128/mbio.01331-21] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Toxoplasmic encephalitis can develop in individuals infected with the protozoan parasite Toxoplasma gondii and is typified by parasite replication and inflammation within the brain. Patients often present with seizures, but the parasite genes and host pathways involved in seizure development and/or propagation are unknown. We previously reported that seizure induction in Toxoplasma-infected mice is parasite strain dependent. Using quantitative trait locus mapping, we identify four loci in the Toxoplasma genome that potentially correlate with seizure development. In one locus, we identify the polymorphic virulence factor, GRA15, as a Toxoplasma gene associated with onset of seizures. GRA15 was previously shown to regulate host NF-κB-dependent gene expression during acute infections, and we demonstrate a similar role for GRA15 in brains of toxoplasmic encephalitic mice. GRA15 is important for increased expression of interleukin 1 beta (IL-1β) and other IL-1 pathway host genes, which is significant since IL-1 signaling is involved in onset of seizures. Inhibiting IL-1 receptor signaling reduced seizure severity in Toxoplasma-infected mice. These data reveal one mechanism by which seizures are induced during toxoplasmic encephalitis.
Collapse
|
15
|
Yang LY, Bhaskar K, Thompson J, Duval K, Torbey M, Yang Y. Non-invasive vagus nerve stimulation reduced neuron-derived IL-1β and neuroinflammation in acute ischemic rat brain. BRAIN HEMORRHAGES 2021. [DOI: 10.1016/j.hest.2021.06.003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022] Open
|
16
|
Erythropoietin Stimulates GABAergic Maturation in the Mouse Hippocampus. eNeuro 2021; 8:ENEURO.0006-21.2021. [PMID: 33495244 PMCID: PMC7890522 DOI: 10.1523/eneuro.0006-21.2021] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2021] [Accepted: 01/09/2021] [Indexed: 12/15/2022] Open
Abstract
Several neurodevelopmental disabilities are strongly associated with alterations in GABAergic transmission, and therapies to stimulate its normal development are lacking. Erythropoietin (EPO) is clinically used in neonatology to mitigate acute brain injury, and to stimulate neuronal maturation. Yet it remains unclear whether EPO can stimulate maturation of the GABAergic system. Here, with the use of a transgenic mouse line that constitutively overexpresses neuronal EPO (Tg21), we show that EPO stimulates postnatal GABAergic maturation in the hippocampus. We show an increase in hippocampal GABA-immunoreactive neurons, and postnatal elevation of interneurons expressing parvalbumin (PV), somatostatin (SST), and neuropeptide Y (NPY). Analysis of perineuronal net (PNN) formation and innervation of glutamatergic terminals onto PV+ cells, shows to be enhanced early in postnatal development. Additionally, an increase in GABAAergic synapse density and IPSCs in CA1 pyramidal cells from Tg21 mice is observed. Detection of EPO receptor (EPOR) mRNA was observed to be restricted to glutamatergic pyramidal cells and increased in Tg21 mice at postnatal day (P)7, along with reduced apoptosis. Our findings show that EPO can stimulate postnatal GABAergic maturation in the hippocampus, by increasing neuronal survival, modulating critical plasticity periods, and increasing synaptic transmission. Our data supports EPO’s clinical use to balance GABAergic dysfunction.
Collapse
|
17
|
Cioato SG, Medeiros LF, Lopes BC, de Souza A, Medeiros HR, Assumpção JAF, Caumo W, Roesler R, Torres ILS. Antinociceptive and neurochemical effects of a single dose of IB-MECA in chronic pain rat models. Purinergic Signal 2020; 16:573-584. [PMID: 33161497 PMCID: PMC7855191 DOI: 10.1007/s11302-020-09751-w] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2020] [Accepted: 10/18/2020] [Indexed: 12/31/2022] Open
Abstract
This study aimed to evaluate the effect of a single administration of IB-MECA, an A3 adenosine receptor agonist, upon the nociceptive response and central biomarkers of rats submitted to chronic pain models. A total of 136 adult male Wistar rats were divided into two protocols: (1) chronic inflammatory pain (CIP) using complete Freund's adjuvant and (2) neuropathic pain (NP) by chronic constriction injury of the sciatic nerve. Thermal and mechanical hyperalgesia was measured using von Frey (VF), Randal-Selitto (RS), and hot plate (HP) tests. Rats were treated with a single dose of IB-MECA (0.5 μmol/kg i.p.), a vehicle (dimethyl sulfoxide-DMSO), or positive control (morphine, 5 mg/kg i.p.). Interleukin 1β (IL-1β), brain-derived neurotrophic factor (BDNF), and nerve growth factor (NGF) levels were measured in the brainstem and spinal cord using enzyme-linked immunosorbent assay (ELISA). The establishment of the chronic pain (CIP or NP) model was observed 14 days after induction by a decreased nociceptive threshold in all three tests (GEE, P < 0.05). The antinociceptive effect of a single dose of IB-MECA was observed in both chronic pain models, but this was more effective in NP model. There was an increase in IL-1β levels promoted by CIP. NP model promoted increase in the brainstem BDNF levels, which was reversed by IB-MECA.
Collapse
Affiliation(s)
- Stefania Giotti Cioato
- Laboratório de Farmacologia da Dor e Neuromodulação, Investigações Pré-clínicas, Centro de Pesquisa Experimental (CPE), Hospital de Clínicas de Porto Alegre (HCPA), Universidade Federal do Rio Grande do Sul (UFRGS), Rua Ramiro Barcelos, 2350, Porto Alegre, RS, 90035-007, Brazil
- Unidade de Experimentação Animal, Grupo de Pesquisa e Pós-Graduação, HCPA, Porto Alegre, RS, Brazil
- Programa de Pós-Graduação em Ciências Biológicas, Farmacologia e Terapêutica, Instituto de Ciências Básicas da Saúde (ICBS), UFRGS, Porto Alegre, RS, Brazil
| | - Liciane Fernandes Medeiros
- Laboratório de Farmacologia da Dor e Neuromodulação, Investigações Pré-clínicas, Centro de Pesquisa Experimental (CPE), Hospital de Clínicas de Porto Alegre (HCPA), Universidade Federal do Rio Grande do Sul (UFRGS), Rua Ramiro Barcelos, 2350, Porto Alegre, RS, 90035-007, Brazil
- Unidade de Experimentação Animal, Grupo de Pesquisa e Pós-Graduação, HCPA, Porto Alegre, RS, Brazil
- Programa de Pós-Graduação em Ciências Biológicas, Farmacologia e Terapêutica, Instituto de Ciências Básicas da Saúde (ICBS), UFRGS, Porto Alegre, RS, Brazil
- Programa de Pós-Graduação em Saúde e Desenvolvimento Humano, Universidade La Salle, Canoas, RS, Brazil
| | - Bettega Costa Lopes
- Laboratório de Farmacologia da Dor e Neuromodulação, Investigações Pré-clínicas, Centro de Pesquisa Experimental (CPE), Hospital de Clínicas de Porto Alegre (HCPA), Universidade Federal do Rio Grande do Sul (UFRGS), Rua Ramiro Barcelos, 2350, Porto Alegre, RS, 90035-007, Brazil
- Unidade de Experimentação Animal, Grupo de Pesquisa e Pós-Graduação, HCPA, Porto Alegre, RS, Brazil
- Programa de Pós-Graduação em Ciências Biológicas: Fisiologia, ICBS, UFRGS, Porto Alegre, RS, Brazil
| | - Andressa de Souza
- Laboratório de Farmacologia da Dor e Neuromodulação, Investigações Pré-clínicas, Centro de Pesquisa Experimental (CPE), Hospital de Clínicas de Porto Alegre (HCPA), Universidade Federal do Rio Grande do Sul (UFRGS), Rua Ramiro Barcelos, 2350, Porto Alegre, RS, 90035-007, Brazil
- Programa de Pós-Graduação em Saúde e Desenvolvimento Humano, Universidade La Salle, Canoas, RS, Brazil
| | - Helouise Richardt Medeiros
- Laboratório de Farmacologia da Dor e Neuromodulação, Investigações Pré-clínicas, Centro de Pesquisa Experimental (CPE), Hospital de Clínicas de Porto Alegre (HCPA), Universidade Federal do Rio Grande do Sul (UFRGS), Rua Ramiro Barcelos, 2350, Porto Alegre, RS, 90035-007, Brazil
- Unidade de Experimentação Animal, Grupo de Pesquisa e Pós-Graduação, HCPA, Porto Alegre, RS, Brazil
- Programa de Pós-Graduação em Medicina, Ciências Médicas, UFRGS, Porto Alegre, RS, Brazil
| | - José Antônio Fagundes Assumpção
- Laboratório de Farmacologia da Dor e Neuromodulação, Investigações Pré-clínicas, Centro de Pesquisa Experimental (CPE), Hospital de Clínicas de Porto Alegre (HCPA), Universidade Federal do Rio Grande do Sul (UFRGS), Rua Ramiro Barcelos, 2350, Porto Alegre, RS, 90035-007, Brazil
- Unidade de Experimentação Animal, Grupo de Pesquisa e Pós-Graduação, HCPA, Porto Alegre, RS, Brazil
- Programa de Pós-Graduação em Ciências Biológicas, Farmacologia e Terapêutica, Instituto de Ciências Básicas da Saúde (ICBS), UFRGS, Porto Alegre, RS, Brazil
| | - Wolnei Caumo
- Programa de Pós-Graduação em Medicina, Ciências Médicas, UFRGS, Porto Alegre, RS, Brazil
| | - Rafael Roesler
- Programa de Pós-Graduação em Ciências Biológicas, Farmacologia e Terapêutica, Instituto de Ciências Básicas da Saúde (ICBS), UFRGS, Porto Alegre, RS, Brazil
- Programa de Pós-Graduação em Medicina, Ciências Médicas, UFRGS, Porto Alegre, RS, Brazil
- Cancer and Neurobiology Laboratory, Experimental Research Center, HCPA, Porto Alegre, RS, Brazil
| | - Iraci L S Torres
- Laboratório de Farmacologia da Dor e Neuromodulação, Investigações Pré-clínicas, Centro de Pesquisa Experimental (CPE), Hospital de Clínicas de Porto Alegre (HCPA), Universidade Federal do Rio Grande do Sul (UFRGS), Rua Ramiro Barcelos, 2350, Porto Alegre, RS, 90035-007, Brazil.
- Unidade de Experimentação Animal, Grupo de Pesquisa e Pós-Graduação, HCPA, Porto Alegre, RS, Brazil.
- Programa de Pós-Graduação em Ciências Biológicas, Farmacologia e Terapêutica, Instituto de Ciências Básicas da Saúde (ICBS), UFRGS, Porto Alegre, RS, Brazil.
- Programa de Pós-Graduação em Medicina, Ciências Médicas, UFRGS, Porto Alegre, RS, Brazil.
| |
Collapse
|
18
|
Gajtkó A, Bakk E, Hegedűs K, Ducza L, Holló K. IL-1β Induced Cytokine Expression by Spinal Astrocytes Can Play a Role in the Maintenance of Chronic Inflammatory Pain. Front Physiol 2020; 11:543331. [PMID: 33304271 PMCID: PMC7701125 DOI: 10.3389/fphys.2020.543331] [Citation(s) in RCA: 35] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2020] [Accepted: 10/23/2020] [Indexed: 01/05/2023] Open
Abstract
It is now widely accepted that the glial cells of the central nervous system (CNS) are key players in many processes, especially when they are activated via neuron-glia or glia-glia interactions. In turn, many of the glia-derived pro-inflammatory cytokines contribute to central sensitization during inflammation or nerve injury-evoked pathological pain conditions. The prototype of pro-inflammatory cytokines is interleukin-1beta (IL-1β) which has widespread functions in inflammatory processes. Our earlier findings showed that in the spinal cord (besides neurons) astrocytes express the ligand binding interleukin-1 receptor type 1 (IL-1R1) subunit of the IL-1 receptor in the spinal dorsal horn in the chronic phase of inflammatory pain. Interestingly, spinal astrocytes are also the main source of the IL-1β itself which in turn acts on its neuronal and astrocytic IL-1R1 leading to cell-type specific responses. In the initial experiments we measured the IL-1β concentration in the spinal cord of C57BL/6 mice during the course of complete Freund adjuvant (CFA)-induced inflammatory pain and observed a peak of IL-1β level at the time of highest mechanical sensitivity. In order to further study astrocytic activation, primary astrocyte cultures from spinal cords of C57BL/6 wild type and IL-1R1 deficient mice were exposed to IL-1β in concentrations corresponding to the spinal levels in the CFA-induced pain model. By using cytokine array method we observed significant increase in the expressional level of three cytokines: interleukin-6 (IL-6), granulocyte-macrophage colony stimulating factor (GM-CSF) and chemokine (C-C motif) ligand 5 (CCL5 or RANTES). We also observed that the secretion of the three cytokines is mediated by the NFkB signaling pathway. Our data completes the picture of the IL-1β-triggered cytokine cascade in spinal astrocytes, which may lead to enhanced activation of the local cells (neurons and glia as well) and can lead to the prolonged maintenance of chronic pain. All these cytokines and the NFkB pathway can be possible targets of pain therapy.
Collapse
Affiliation(s)
- Andrea Gajtkó
- Department of Anatomy, Histology and Embryology, Faculty of Medicine, University of Debrecen, Debrecen, Hungary
| | - Erzsébet Bakk
- Department of Anatomy, Histology and Embryology, Faculty of Medicine, University of Debrecen, Debrecen, Hungary
| | - Krisztina Hegedűs
- Department of Anatomy, Histology and Embryology, Faculty of Medicine, University of Debrecen, Debrecen, Hungary
| | - László Ducza
- Department of Anatomy, Histology and Embryology, Faculty of Medicine, University of Debrecen, Debrecen, Hungary
| | - Krisztina Holló
- Department of Anatomy, Histology and Embryology, Faculty of Medicine, University of Debrecen, Debrecen, Hungary
| |
Collapse
|
19
|
Predisposition of Neonatal Maternal Separation to Visceral Hypersensitivity via Downregulation of Small-Conductance Calcium-Activated Potassium Channel Subtype 2 (SK2) in Mice. Neural Plast 2020; 2020:8876230. [PMID: 33029124 PMCID: PMC7528131 DOI: 10.1155/2020/8876230] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2020] [Revised: 08/31/2020] [Accepted: 09/06/2020] [Indexed: 12/13/2022] Open
Abstract
Background Visceral hypersensitivity is a common occurrence of gastrointestinal diseases such as irritable bowel syndrome (IBS), wherein early-life stress (ELS) may have a high predisposition to the development of visceral hypersensitivity in adulthood, with the specific underlying mechanism still elusive. Herein, we assessed the potential effect of small-conductance calcium-activated potassium channel subtype 2 (SK2) in the spinal dorsal horn (DH) on the pathogenesis of visceral hypersensitivity induced by maternal separation (MS) in mice. Methods Neonatal mice were subjected to the MS paradigm, an established ELS model. In adulthood, the visceral pain threshold and the abdominal withdrawal reflex (AWR) were measured with an inflatable balloon. The elevated plus maze, open field test, sucrose preference test, and forced swim test were employed to evaluate the anxiety- and depression-like behaviors. The expression levels of SK2 in the spinal DH were determined by immunofluorescence and western blotting. The mRNA of SK2 and membrane palmitoylated protein 2 (MPP2) were determined by quantitative real-time polymerase chain reaction (qRT-PCR). Electrophysiology was applied to evaluate the neuronal firing rates and SK2 channel-mediated afterhyperpolarization current (I AHP). The interaction between MPP2 and SK2 was validated by coimmunoprecipitation. Results In contrast to the naïve mice, ethological findings in MS mice revealed lowered visceral pain threshold, more evident anxiety- and depression-like behaviors, and downregulated expression of membrane SK2 protein and MPP2 protein. Moreover, electrophysiological results indicated increased neuronal firing rates and decreased I AHP in the spinal DH neurons. Nonetheless, intrathecal injection of the SK2 channel activator 1-ethyl-2-benzimidazolinone (1-EBIO) in MS mice could reverse the electrophysiological alterations and elevate the visceral pain threshold. In the naïve mice, administration of the SK2 channel blocker apamin abated I AHP and elevated spontaneous neuronal firing rates in the spinal DH neurons, reducing the visceral pain threshold. Finally, disruption of the MPP2 expression by small interfering RNA (siRNA) could amplify visceral hypersensitivity in naïve mice. Conclusions ELS-induced visceral pain and visceral hypersensitivity are associated with the underfunction of SK2 channels in the spinal DH.
Collapse
|
20
|
Xu X, Tao X, Huang P, Lin F, Liu Q, Xu L, Xu J, Huang Y. N-methyl-d-aspartate receptor subunit 2B on keratinocyte mediates peripheral and central sensitization in chronic post-ischemic pain in male rats. Brain Behav Immun 2020; 87:579-590. [PMID: 32032782 DOI: 10.1016/j.bbi.2020.09.019] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/20/2019] [Revised: 01/27/2020] [Accepted: 02/03/2020] [Indexed: 11/22/2022] Open
Abstract
The spinal N-methyl-d-aspartate (NMDA) receptor, and particularly its NR2B subunit, plays a pivotal role in neuropathic pain. However, the role of peripheral NMDA receptor in neuropathic pain is less well understood. We first treated cultured human keratinocytes, HaCaT cells with NMDA or NR2B-specific antagonist, ifenprodil and evaluated the level of total and phosphorylated NR2B at 24 h using Western blot. Next, using the chronic post-ischemia pain (CPIP) model, we administered NMDA or ifenprodil subcutaneously into the hind paws of male rats. Nociceptive behaviors were assessed by measuring mechanical and thermal withdrawal thresholds. Expression and phosphorylation of NR2B on keratinocyte were analyzed at 6, 12, 18, and 24 h on day 1 (initiation of pain) as well as day 2, 6, 10 and 14 (development and maintenance of pain) after the ischemia. The level of peripheral sensitization-related proteins (nuclear factor-κB (NF-κB), extracellular regulated protein kinases (ERK), and interleukin-1β (IL-1β)) in epidermis and dorsal root ganglion (DRG) were evaluated by immunofluorescence and western blot. Central sensitization-related C-fos induction, as well as astrocytes and microglia activation in the spinal cord dorsal horn (SDH) were studied using immunofluorescence. Administration of NMDA upregulated NR2B phosphorylation on HaCaT cells. CPIP-induced mechanical allodynia and thermal hyperalgesia were intensified by NMDA and alleviated by ifenprodil. CPIP resulted in an early upregulation of NR2B (peaked at 24 h) and late phosphorylation of NR2B (peaked at 14d) in hindpaw keratinocytes. CPIP led to an upregulation and phosphorylation of NF-κB and ERK, as well as an increased IL-1β production in the ipsilateral skin and DRG. CPIP-associated c-fos induction in SDH persisted from acute to chronic stages after ischemia, while microglia and astrocyte activation were only observed in chronic phase. These CPIP-induced changes were also suppressed by ifenprodil administered subcutaneously in the hind paw. Our findings reveal a previously unrecognized role of keratinocyte NMDA receptor subunit 2B in peripheral and central nociceptive sensitization induced by CPIP.
Collapse
Affiliation(s)
- Xiaohan Xu
- Department of Anesthesiology, Chinese Academy of Medical Sciences & Peking Union Medical College Hospital, Beijing 100730, China
| | - Xin Tao
- Department of Anesthesiology, Chinese Academy of Medical Sciences & Peking Union Medical College Hospital, Beijing 100730, China; Department of Infectious Disease, Southern Medical University Nanfang Hospital, Guangzhou, Guangdong 510515, China
| | - Ping Huang
- Department of Pain Management, Anesthesiology Institute, Cleveland Clinic, Cleveland, OH 44195, United States; Department of Inflammation and Immunity, Lerner Research Institute, Cleveland Clinic, Cleveland, OH 44195, United States
| | - Feng Lin
- Department of Inflammation and Immunity, Lerner Research Institute, Cleveland Clinic, Cleveland, OH 44195, United States
| | - Qing Liu
- Department of Anesthesiology, Chinese Academy of Medical Sciences & Peking Union Medical College Hospital, Beijing 100730, China
| | - Li Xu
- Department of Anesthesiology, Chinese Academy of Medical Sciences & Peking Union Medical College Hospital, Beijing 100730, China.
| | - Jijun Xu
- Department of Pain Management, Anesthesiology Institute, Cleveland Clinic, Cleveland, OH 44195, United States; Department of Inflammation and Immunity, Lerner Research Institute, Cleveland Clinic, Cleveland, OH 44195, United States.
| | - Yuguang Huang
- Department of Anesthesiology, Chinese Academy of Medical Sciences & Peking Union Medical College Hospital, Beijing 100730, China
| |
Collapse
|
21
|
Xu X, Tao X, Huang P, Lin F, Liu Q, Xu L, Xu J, Huang Y. N-methyl-d-aspartate receptor subunit 2B on keratinocyte mediates peripheral and central sensitization in chronic post-ischemic pain in male rats. Brain Behav Immun 2020; 87:579-590. [PMID: 32032782 PMCID: PMC8922412 DOI: 10.1016/j.bbi.2020.02.003] [Citation(s) in RCA: 26] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/20/2019] [Revised: 01/27/2020] [Accepted: 02/03/2020] [Indexed: 12/26/2022] Open
Abstract
The spinal N-methyl-d-aspartate (NMDA) receptor, and particularly its NR2B subunit, plays a pivotal role in neuropathic pain. However, the role of peripheral NMDA receptor in neuropathic pain is less well understood. We first treated cultured human keratinocytes, HaCaT cells with NMDA or NR2B-specific antagonist, ifenprodil and evaluated the level of total and phosphorylated NR2B at 24 h using Western blot. Next, using the chronic post-ischemia pain (CPIP) model, we administered NMDA or ifenprodil subcutaneously into the hind paws of male rats. Nociceptive behaviors were assessed by measuring mechanical and thermal withdrawal thresholds. Expression and phosphorylation of NR2B on keratinocyte were analyzed at 6, 12, 18, and 24 h on day 1 (initiation of pain) as well as day 2, 6, 10 and 14 (development and maintenance of pain) after the ischemia. The level of peripheral sensitization-related proteins (nuclear factor-κB (NF-κB), extracellular regulated protein kinases (ERK), and interleukin-1β (IL-1β)) in epidermis and dorsal root ganglion (DRG) were evaluated by immunofluorescence and western blot. Central sensitization-related C-fos induction, as well as astrocytes and microglia activation in the spinal cord dorsal horn (SDH) were studied using immunofluorescence. Administration of NMDA upregulated NR2B phosphorylation on HaCaT cells. CPIP-induced mechanical allodynia and thermal hyperalgesia were intensified by NMDA and alleviated by ifenprodil. CPIP resulted in an early upregulation of NR2B (peaked at 24 h) and late phosphorylation of NR2B (peaked at 14d) in hindpaw keratinocytes. CPIP led to an upregulation and phosphorylation of NF-κB and ERK, as well as an increased IL-1β production in the ipsilateral skin and DRG. CPIP-associated c-fos induction in SDH persisted from acute to chronic stages after ischemia, while microglia and astrocyte activation were only observed in chronic phase. These CPIP-induced changes were also suppressed by ifenprodil administered subcutaneously in the hind paw. Our findings reveal a previously unrecognized role of keratinocyte NMDA receptor subunit 2B in peripheral and central nociceptive sensitization induced by CPIP.
Collapse
Affiliation(s)
- Xiaohan Xu
- Department of Anesthesiology, Chinese Academy of Medical Sciences & Peking Union Medical College Hospital, Beijing 100730, China
| | - Xin Tao
- Department of Anesthesiology, Chinese Academy of Medical Sciences & Peking Union Medical College Hospital, Beijing 100730, China,Department of Infectious Disease, Southern Medical University Nanfang Hospital, Guangzhou, Guangdong 510515, China
| | - Ping Huang
- Department of Pain Management, Anesthesiology Institute, Cleveland Clinic, Cleveland, OH 44195, United States,Department of Inflammation and Immunity, Lerner Research Institute, Cleveland Clinic, Cleveland, OH 44195, United States
| | - Feng Lin
- Department of Inflammation and Immunity, Lerner Research Institute, Cleveland Clinic, Cleveland, OH 44195, United States
| | - Qing Liu
- Department of Anesthesiology, Chinese Academy of Medical Sciences & Peking Union Medical College Hospital, Beijing 100730, China
| | - Li Xu
- Department of Anesthesiology, Chinese Academy of Medical Sciences & Peking Union Medical College Hospital, Beijing 100730, China.
| | - Jijun Xu
- Department of Pain Management, Anesthesiology Institute, Cleveland Clinic, Cleveland, OH 44195, United States; Department of Inflammation and Immunity, Lerner Research Institute, Cleveland Clinic, Cleveland, OH 44195, United States.
| | - Yuguang Huang
- Department of Anesthesiology, Chinese Academy of Medical Sciences & Peking Union Medical College Hospital, Beijing 100730, China
| |
Collapse
|
22
|
Xiang HC, Lin LX, Hu XF, Zhu H, Li HP, Zhang RY, Hu L, Liu WT, Zhao YL, Shu Y, Pan HL, Li M. AMPK activation attenuates inflammatory pain through inhibiting NF-κB activation and IL-1β expression. J Neuroinflammation 2019; 16:34. [PMID: 30755236 PMCID: PMC6373126 DOI: 10.1186/s12974-019-1411-x] [Citation(s) in RCA: 142] [Impact Index Per Article: 23.7] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2018] [Accepted: 01/22/2019] [Indexed: 12/23/2022] Open
Abstract
BACKGROUND Chronic pain is a major clinical problem with limited treatment options. Previous studies have demonstrated that activation of adenosine monophosphate-activated protein kinase (AMPK) can attenuate neuropathic pain. Inflammation/immune response at the site of complete Freund's adjuvant (CFA) injection is known to be a critical trigger of the pathological changes that produce inflammatory pain. However, whether activation of AMPK produces an analgesic effect through inhibiting the proinflammatory cytokines, including interleukin-1β (IL-1β), in inflammatory pain remains unknown. METHODS Inflammatory pain was induced in mice injected with CFA. The effects of AICAR (5-aminoimidazole-4-carboxyamide ribonucleoside, an AMPK activator), Compound C (an AMPK inhibitor), and IL-1ra (an IL-1 receptor antagonist) were tested at day 4 after CFA injection. Inflammatory pain was assessed with von Frey filaments and hot plate. Immunoblotting, hematoxylin and eosin (H&E) staining, and immunofluorescence were used to assess inflammation-induced biochemical changes. RESULTS The AMPK activator AICAR produced an analgesic effect and inhibited the level of proinflammatory cytokine IL-1β in the inflamed skin in mice. Moreover, activation of AMPK suppressed CFA-induced NF-κB p65 translocation from the cytosol to the nucleus in activated macrophages (CD68+ and CX3CR1+) of inflamed skin tissues. Subcutaneous injection of IL-1ra attenuated CFA-induced inflammatory pain. The AMPK inhibitor Compound C and AMPKα shRNA reversed the analgesic effect of AICAR and the effects of AICAR on IL-1β and NF-κB activation in inflamed skin tissues. CONCLUSIONS Our study provides new information that AMPK activation produces the analgesic effect by inhibiting NF-κB activation and reducing the expression of IL-1β in inflammatory pain.
Collapse
Affiliation(s)
- Hong-Chun Xiang
- Department of Neurobiology, School of Basic Medicine, Tongji Medical College, Huazhong University of Science and Technology, 13 Hangkong Road, Wuhan, 430030, Hubei, People's Republic of China
| | - Li-Xue Lin
- Department of Neurobiology, School of Basic Medicine, Tongji Medical College, Huazhong University of Science and Technology, 13 Hangkong Road, Wuhan, 430030, Hubei, People's Republic of China
| | - Xue-Fei Hu
- Department of Neurobiology, School of Basic Medicine, Tongji Medical College, Huazhong University of Science and Technology, 13 Hangkong Road, Wuhan, 430030, Hubei, People's Republic of China
| | - He Zhu
- Department of Neurobiology, School of Basic Medicine, Tongji Medical College, Huazhong University of Science and Technology, 13 Hangkong Road, Wuhan, 430030, Hubei, People's Republic of China
| | - Hong-Ping Li
- Department of Neurobiology, School of Basic Medicine, Tongji Medical College, Huazhong University of Science and Technology, 13 Hangkong Road, Wuhan, 430030, Hubei, People's Republic of China
| | - Ru-Yue Zhang
- Department of Neurobiology, School of Basic Medicine, Tongji Medical College, Huazhong University of Science and Technology, 13 Hangkong Road, Wuhan, 430030, Hubei, People's Republic of China
| | - Liang Hu
- Department of Pharmacology, School of Basic Medicine, Nanjing Medical University, Nanjing, 210000, China
| | - Wen-Tao Liu
- Department of Pharmacology, School of Basic Medicine, Nanjing Medical University, Nanjing, 210000, China
| | - Yi-Lin Zhao
- Department of Anesthesiology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, China
| | - Yang Shu
- Department of Central Laboratory, Affiliated Hospital of Jiangsu University, Zhenjiang, 212000, China
| | - Hui-Lin Pan
- Department of Anesthesiology and Perioperative Medicine, The University of Texas MD Anderson Cancer Center, Houston, TX, 77030, USA
| | - Man Li
- Department of Neurobiology, School of Basic Medicine, Tongji Medical College, Huazhong University of Science and Technology, 13 Hangkong Road, Wuhan, 430030, Hubei, People's Republic of China.
| |
Collapse
|
23
|
Ebersberger A. The analgesic potential of cytokine neutralization with biologicals. Eur J Pharmacol 2018; 835:19-30. [DOI: 10.1016/j.ejphar.2018.07.040] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2018] [Revised: 06/26/2018] [Accepted: 07/19/2018] [Indexed: 12/13/2022]
|
24
|
Durrant A, Swift M, Beazley-Long N. A role for pericytes in chronic pain? Curr Opin Support Palliat Care 2018; 12:154-161. [PMID: 29553988 PMCID: PMC6027993 DOI: 10.1097/spc.0000000000000342] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/17/2022]
Abstract
PURPOSE OF REVIEW The importance of the blood-brain barrier (BBB) and neuroinflammation in neurodegenerative conditions is becoming increasingly apparent, yet very little is known about these neurovascular functions in nonmalignant disease chronic pain. Neural tissue pericytes play critical roles in the formation and maintenance of the BBB. Herein, we review the important roles of neural pericytes and address their potential role in chronic pain. RECENT FINDINGS Pericytes are implicated in the function of neural microvasculature, including BBB permeability, neuroimmune factor secretion and leukocyte transmigration. In addition, the multipotent stem cell nature of pericytes affords pericytes the ability to migrate into neural parenchyma and differentiate into pain-associated cell types. These recent findings indicate that pericytes are key players in pathological BBB disruption and neuroinflammation, and as such pericytes may be key players in chronic pain states. SUMMARY Pericytes play key roles in pathological processes associated with chronic pain. We propose that pericytes may be a therapeutic target for painful diseases that have associated neural vascular dysfunction. Given the paucity of new pharmacotherapies for chronic pain conditions, we hope that this review inspires researchers to unearth the potential role(s) of pericytes in chronic pain sowing the seeds for future new chronic pain therapies.
Collapse
Affiliation(s)
- A.M. Durrant
- Arthritis Research UK Pain Centre & School of Life Sciences, Medical School, University of Nottingham, Nottingham NG7 2UH
| | - M.N Swift
- Arthritis Research UK Pain Centre & School of Life Sciences, Medical School, University of Nottingham, Nottingham NG7 2UH
| | - N. Beazley-Long
- Arthritis Research UK Pain Centre & School of Life Sciences, Medical School, University of Nottingham, Nottingham NG7 2UH
| |
Collapse
|
25
|
Yue J, Wang XS, Guo YY, Zheng KY, Liu HY, Hu LN, Zhao MG, Liu SB. Anxiolytic effect of CPEB1 knockdown on the amygdala of a mouse model of inflammatory pain. Brain Res Bull 2018; 137:156-165. [DOI: 10.1016/j.brainresbull.2017.12.002] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2017] [Revised: 11/28/2017] [Accepted: 12/08/2017] [Indexed: 10/18/2022]
|
26
|
Song A, Zhu L, Gorantla G, Berdysz O, Amici SA, Guerau-de-Arellano M, Madalena KM, Lerch JK, Liu X, Quan N. Salient type 1 interleukin 1 receptor expression in peripheral non-immune cells. Sci Rep 2018; 8:723. [PMID: 29335509 PMCID: PMC5768710 DOI: 10.1038/s41598-018-19248-7] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2017] [Accepted: 12/21/2017] [Indexed: 12/26/2022] Open
Abstract
Interleukin 1 is a pleiotropic cytokine that mediates diverse functions through its receptor, type I interleukin 1 receptor (IL-1R1). Most previous studies have focused on the expression and function of IL-1R1 in immune cells. Here we performed a comprehensive mapping of IL-1R1 distribution in multiple peripheral tissues using our IL-1R1 reporter (IL-1R1GR/GR) mice. This method yielded the highest sensitivity of in situ detection of IL-1R1 mRNA and protein. Besides validating previously reported IL-1R1 expression in the endocrine tissues including pituitary and pancreas, our results refuted previously reported exclusive IL-1R1 expression in neurons of the spinal cord dorsal horn and dorsal root ganglia (DRG). Instead, IL-1R1 expression was detected in endothelial cells within DRG, spinal cord, pancreas, colon, muscles and many immune organs. In addition, gp38+ fibroblastic reticular cells (FRCs), rather than tissue macrophages or other immune cells, were found to express high levels of IL-1R1 in colon and many immune organs. A functional test of spleen FRCs showed that they responded rapidly to systemic IL-1β stimulation in vivo. Taken together, this study provides a rigorous re-examination of IL-1R1 expression in peripheral tissues and reveals tissue FRCs as a previously unappreciated novel high IL-1R1-expressing cell type in peripheral IL-1 signaling.
Collapse
Affiliation(s)
- Anping Song
- Department of Oncolgy, Tongji Hospital, Huazhong University of Science and Technology Tongji Medical College, Wuhan, Hubei, 430030, P. R. China
| | - Ling Zhu
- Institute for Behavioral Medicine Research, College of Medicine, The Ohio State University, Columbus, OH, 43210, USA.,West China School of Basic Medical Sciences and Forensic Medicine, Sichuan University, Chengdu, Sichuan, 610041, P. R. China
| | - Gowthami Gorantla
- Institute for Behavioral Medicine Research, College of Medicine, The Ohio State University, Columbus, OH, 43210, USA
| | - Olimpia Berdysz
- Institute for Behavioral Medicine Research, College of Medicine, The Ohio State University, Columbus, OH, 43210, USA
| | - Stephanie A Amici
- Institute for Behavioral Medicine Research, College of Medicine, The Ohio State University, Columbus, OH, 43210, USA.,School of Health and Rehabilitation Sciences, Division of Medical Laboratory Science, College of Medicine, Wexner Medical Center, The Ohio State University, Columbus, OH, 43210, USA
| | - Mireia Guerau-de-Arellano
- Institute for Behavioral Medicine Research, College of Medicine, The Ohio State University, Columbus, OH, 43210, USA.,School of Health and Rehabilitation Sciences, Division of Medical Laboratory Science, College of Medicine, Wexner Medical Center, The Ohio State University, Columbus, OH, 43210, USA.,Department of Microbial Infection and Immunity, The Ohio State University, Columbus, OH, 43210, USA.,Department of Neuroscience, The Ohio State University, Columbus, OH, 43210, USA
| | - Kathryn M Madalena
- Department of Neuroscience, The Ohio State University, Columbus, OH, 43210, USA.,Center for Brain and Spinal Cord Repair, The Ohio State University, Columbus, OH, 43210, USA
| | - Jessica K Lerch
- Department of Neuroscience, The Ohio State University, Columbus, OH, 43210, USA.,Center for Brain and Spinal Cord Repair, The Ohio State University, Columbus, OH, 43210, USA
| | - Xiaoyu Liu
- Institute for Behavioral Medicine Research, College of Medicine, The Ohio State University, Columbus, OH, 43210, USA. .,Division of Biosciences, College of Dentistry, The Ohio State University, Columbus, OH, 43210, USA. .,Institute for Behavioral Medicine Research, 460 Medical Center Drive, Columbus, OH, 43210, USA.
| | - Ning Quan
- Institute for Behavioral Medicine Research, College of Medicine, The Ohio State University, Columbus, OH, 43210, USA. .,Division of Biosciences, College of Dentistry, The Ohio State University, Columbus, OH, 43210, USA. .,Institute for Behavioral Medicine Research, 460 Medical Center Drive, Columbus, OH, 43210, USA.
| |
Collapse
|